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ON FULKERSON CONJECTURE

J.L. FOUQUET AND J.M. VANHERPE

Abstract. If G is a bridgeless cubic graph, Fulkerson conjectured that we
can find 6 perfect matchings (a Fulkerson covering) with the property that
every edge of G is contained in exactly two of them. A consequence of the
Fulkerson conjecture would be that every bridgeless cubic graph has 3 perfect
matchings with empty intersection (this problem is known as the Fan Raspaud
Conjecture). A FR-triple is a set of 3 such perfect matchings. We show here
how to derive a Fulkerson covering from two FR-triples.

Moreover, we give a simple proof that the Fulkerson conjecture holds true
for some classes of well known snarks.

1. Introduction

The following conjecture is due to Fulkerson, and appears first in [3].

Conjecture 1.1. If G is a bridgeless cubic graph, then there exist 6 perfect match-
ings M1, . . . , M6 of G with the property that every edge of G is contained in exactly
two of M1, . . . , M6.

We shall say that F = {M1 . . .M6}, in the above conjecture, is a Fulkerson
covering. A consequence of the Fulkerson conjecture would be that every bridgeless
cubic graph has 3 perfect matchings with empty intersection (take any 3 of the 6
perfect matchings given by the conjecture). The following weakening of this (also
suggested by Berge) is still open.

Conjecture 1.2. There exists a fixed integer k such that every bridgeless cubic
graph has a list of k perfect matchings with empty intersection.

For k = 3 this conjecture is known as the Fan Raspaud Conjecture.

Conjecture 1.3. [1] Every bridgeless cubic graph contains perfect matching M1,
M2, M3 such that

M1 ∩ M2 ∩ M3 = ∅

Let G be a cubic graph with 3 perfect matchings M1, M2 and M3 having an empty
intersection. Since G satisfies the Fan Raspaud conjecture, when considering these
perfect matchings, we shall say that T = (M1, M2, M3) is a FR-triple. We define
Ti ⊂ E(G) (i = 0..2) as the set of edges of G which are covered i times by T . It
will be convenient to use T ′

i (i = 0..2) for the FR-triple T ′.

2. FR-triples and Fulkerson covering

In this section, we are concerned with the relationship between FR-triples and
Fulkerson coverings.
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2.1. On FR-triples.

Proposition 2.1. Let G be a bridgeless cubic graph with T a FR-triple. Then T0

and T2 are disjoint matchings.

Proof Let v be a vertex incident to an edge of T0. Since v must be incident to
each perfect matching of T and since the three perfect matchings have an empty
intersection, one of the remaining edges incident to v must be contained into 2 per-
fect matchings while the other is contained in exactly one perfect matching. The
result follows. �

We intoduce now concepts and definitions coming from [8]. Let ab be an edge of
bridgeless cubic graph G. We shall say that we have splitted the edge ab when we
have applied the operation depicted in Figure 1. The resulting graph is no longer
cubic since we get 4 vertices with degree 2 instead of two vertices of degree 3. Let
A1 and A2 be two disjoint matchings of G (we insist to say that these matchings are
not, necessarily, perfect matchings). For i = 1, 2, let GAi

be the graph obtained by
splitting the edge of Ai and let GAi

be the graph homeomorphic to GAi
when the

degree 2 vertices are deleted. The connected component of GAi
are cubic graphs

and vertexless loop graphs (graph with one edge and no vertex). We shall say that
GAi

is 3−edge colourable whenever the cubic components are 3−edge colourable
(any colour can be given to the vertexless loops).

The following proposition can be obtained from the work of Hao and al. [8] when
considering FR-triples.

a

b

a1

b1

a2

b2

Figure 1. Splitting an edge

Lemma 2.2. Let G be a bridgeless cubic graph and let T be a FR-triple. Then
GT2

is 3−edge colourable.

Proof

Assume that T = (M1, M2, M3) is a FR-triple. Let ab be an edge of T2 then the
two edges of T1 incident with ab must be in the same perfect matching of T . Hence,
these two edges are identified in some sens. If we colour the edges of T1 with 1, 2 or
3 when they are in M1, M2 or M3 respectively, we get a natural 3−edge colouring
of GT2

. �

Lemma 2.3. Let G be a bridgeless cubic graph containing two disjoint matchings
A1 and A2 such that GA1

is 3−edge colourable. Then G has a FR-triple T where
T2 = A1 and T0 = A2.

Proof Obviously, A1 ∪ A2 forms an union of disjoint even cycles in G. Let
C = a0a1 . . . a2p−1 be an even cycle of A1 ∪A2 and assume that aiai+1 ∈ A1 when
i ≡ 0(2).



3

Let M1, M2 and M3 be the three matchings associated to a 3 edge-colouring of
GA1

. Thanks to the construction of GA1
for some i ≡ 0[2], the third edge incident

to ai, say e, and the third one incident to ai+1, say e′ lead to a unique edge of GA1
.

Assume that this edge of GA1
is in M1, then M1 can be extended naturally to a

matching of G containing {e, e′}. Moreover we add aiai+1 to M2 and aiai+1 to M3.
When applying this process to all edges of A1 on all cycles of A1 ∪ A2 we extend
the colours of GA1

into perfect matchings of G. Since every edge of G belongs to at
most 2 matchings in {M1, M2, M3} we have a FR-triple with T = {M1, M2, M3}.
By construction, we have T2 = A1 and T0 = A2, as claimed.

�

Proposition 2.4. Let G be a bridgeless cubic graph then G has a FR-triple if and
only if G has two disjoint matchings A1 and A2 such that GA1

or GA2
are 3−edge

colourable.

Proof Assume that G has two disjoint matchings A1 and A2 such that, without
loss of generality, GA1

is 3−edge colourable. From Lemma 2.3, G has a FR-triple
T where T2 = A1 and T0 = A2.

Conversely, assume that T is a FR-triple. From Lemma 2.2 GT2
is 3-edge

colourable. Let A1 = T0 and A2 = T2. Then A1 and A2 are two disjoint matchings
and GA2

is 3−edge colourable. �

2.2. On compatible FR-triples. As pointed out in the introduction, any three
perfect matchings in a Fulkerson covering leads to a FR-triple. Is it possible to
get a Fulkerson covering when we know one or more FR-triples? In fact, we can
characterize a Fulkerson covering in terms of FR-triples in the following way.

Let G be a bridgeless cubic graph with T = (M1, M2, M3) and T ′ = (M ′

1, M
′

2, M
′

3)
two FR-triples. We shall say that T and T ′ are compatible whenever T0 = T ′

2 and
T2 = T ′

0 (and hence T1 = T ′

1).

Theorem 2.5. Let G be a bridgeless cubic graph then G can be provided with a
Fulkerson covering if and only if G has two compatible FR-triples.

Proof Let F = {M1 . . . M6} be a Fulkerson covering of G and let T = (M1, M2, M3)
and T ′ = (M4, M5, M6). T and T ′ are two FR-triples and we claim that they are
compatible. Since each edge of G is covered exactly twice by F , T1 the set of edges
covered only once by T must be covered also only once by T ′, T0 the set of edges
not covered by T must be covered exactly twice by T ′ and T2 the set of edges cov-
ered exactly twice by T is not covered by T ′. Which means that T1 = T ′

1, T0 = T ′

2

and T2 = T ′

0, that is T and T ′ are compatible.
Conversely, assume that T and T ′ are two FR-triples compatible. Then it is an

easy task to check that each edge of G is contained in exactly 2 perfect matchings
of the 6 perfect matchings involved in T or T ′. �

Proposition 2.6. Let G be a bridgeless cubic graph then G has two compatible
FR-triples if and only if G has two disjoint matchings A1 and A2 such that GA1

and GA2
are 3−edge colourable.
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Proof Let T and T ′ be 2 compatible FR-triples. From Lemma 2.2 we know
that GT2

and GT
′

2

are 3−edge colourable. Since T0 = T
′

2 and T
′

0 = T2 by the

compatibility of T and T
′

, the result holds when we set A1 = T0 and A2 = T2.
Conversely, assume that G has two disjoint matchings A1 and A2 such that GA1

and GA2
are 3−edge colourable. From Lemma 2.3, G has a FR-triple T where

T2 = A1 and T0 = A2 as well as a FR-triple T
′

where T
′

2 = A2 and T
′

0 = A1. These
two FR-triples are obviously compatible. �

Proposition 2.7. [8] Let G be a bridgeless cubic graph then G can be provided with
a Fulkerson covering if and only if G has two disjoint matchings A1 and A2 such
that GA1

and GA2
are 3−edge colourable.

Proof Obvious in view of Theorem 2.5 and Proposition 2.6. �

3. Fulkerson covering for some classical snarks

A non 3−edge colourable, bridgeless, cyclically 4−edge-connected cubic graph
is called a snark. Proposition 2.7 is essentially used in [8] in order to show that
the so called flower snarks and Goldberg snarks can be provided with a Fulkerson
covering. We shall see, in this section, that this result can be directly obtained.

For an odd k ≥ 3 the flower snark Jk intoduced by Isaac (see [5]) is the cubic
graph on 4k vertices x0, x1, . . . xk−1, y0, y1, . . . yk−1, z0, z1, . . . zk−1, t0, t1, . . . tk−1

such that x0x1 . . . xk−1 is an induced cycle of length k, y0y1 . . . yk−1 z0z1 . . . zk−1

is an induced cycle of length 2k and for i = 0 . . . k − 1 the vertex ti is adjacent to
xi, yi and zi. The set {ti, xi, yi, zi} induces the claw Ci. In Figure 2 we have a
representation of J3, the half edges (to the left and to the right in the figure) with
same labels are identified.

a

b

c

a

c

b

1 4 1 43 5 2 6

2 5 1 6 4 5 3 6

3 4
2 6

1 5

2 3
1 4

5 6

3 6 2 4 1 3 2 5

1 2

3 5

4 6

Figure 2. J3

Theorem 3.1. For any odd k ≥ 3, Jk can be provided with a Fulkerson covering.

Proof For k = 3 the Fulkerson covering is given in Figure 2. We obtain a
Fulkerson covering of Jk by inserting a suitable number of subgraphs isomorphic to
the subgraph depicted in Figure 3 when we cut J3 along the dashed line of Figure
2. The labels of the edges of the two sets of three semi-edges (left and right) are
identical which insures that the process can be repeated as long as necessary. These
labels lead to the perfect matchings of the Fulkerson covering.

�

Let H be the graph depicted in Figure 4
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2 6

2 5

3 6

1 5

3 4

3 5

1 6

2 4

1 41 4

3 5

2 4

2 5

3 6

1 6

Figure 3. A block for the flower snark

a

b

d

e f

g

hc

Figure 4. H

Let Gk (k odd) be a cubic graph obtained from k copies of H (H0 . . . Hk−1 where
the name of vertices are indexed by i) in adding edges aiai+1, cici+1, eiei+1, fifi+1

and hihi+1 (subscripts are taken modulo k).
If k = 5, then Gk is known as the Goldberg snark (see [4]). Accordingly, we refer

to all graphs Gk as Goldberg graphs. The graph G5 is shown in Figure 5. The half
edges (to the left and to the right in the figure) with same labels are identified.

x

z

x

y

z

y

Figure 5. Goldberg snark G5

Theorem 3.2. For any odd k ≥ 5, Gk can be provided with a Fulkerson covering.

Proof We give first a Fulkerson covering of G3 in Figure 6. The reader will
complete easily the matchings along the 5−cycles by remarking that these cycles
are incident to 5 edges with a common label from 1 to 6 and to exactly one edge
of each remaining label. We obtain a Fulkerson covering of Gk with odd k ≥ 5 by
inserting a suitable number of subgraphs isomorphic to the subgraph depicted in
Figure 7 when we cut G3 along the dashed line. The labels of the edges of the two
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sets of three semi-edges (left and right) are identical which insures that the process
can be repeated as long as necessary. These labels lead to the perfect matchings of
the Fulkerson covering.

3 5

1 6

2 4

3 5

1 6

2 4

5 6 2 6

z

y

x
1 2

3 6

4 5

4 6

1 3

2 5

1 2

1 51 4

4 6

1 3 1 6 3 6

3 2 3 4

3 5

x

y

z

Figure 6. G3

1 3

3 4

2 3 3 5

1 6 1 6

3 5

1 2

3 6

4 5 4 5

1 2

3 6

5 6

2 4

2 3

3 4

3 4

2 61 5

1 4 4 6

1 52 6

3 4

4 6 1 4

Figure 7. A block for the Goldberg snark

�

4. A technical tool

Let M be a perfect matching, a set A ⊆ E(G) is a M−balanced matching when
we can find a perfect matchings M ′ such that A = M ∩ M ′. Assume that M =
{A, B, C, D} are 4 pairwise disjoint M−balanced matchings, we shall say that M
is a F-family for M whenever the three following conditions are fulfilled:

i Every odd cycle of G\M has exactly one vertex incident with one edge of
each subset of M.

ii Every even cycle of G\M incident with some subset of M contains 4 vertices
such that two of them are incident to one subset of M while the other are
incident to another subset of M or the 4 vertices are incident to the same
subset of M.

iii The 4 vertices so determined in the previous items induce a matching.

It will be convenient to denote the set of edges described in the third item by N .

Theorem 4.1. Let G be a bridgeless cubic graph together with a perfect matching
M and a F-family for M M. Then G can be provided with a Fulkerson covering.



7

Proof Since A, B, C and D are M−balanced matchings, we can find 4 perfect
matchings MA, MB, MC and MD such that

M ∩ MA = A M ∩ MB = B M ∩ MC = C M ∩ MD = D

Let M ′ = M\{A, B, C, D}∪N , we will prove that F = {M, MA, MB, MC , MD, M ′}
is a Fulkerson covering of G.

Claim 4.1.1. M ′ is a perfect matching

Proof The vertices of G which are not incident with some edge in M\{A, B, C, D}
are precisely those which are end vertices of edges in M. From the definition of a
nice family, the 4 vertices defined on each cycle of {Ci|i = 1 . . . k} incident to edges
of M form a matching with two edges, which insures that M ′ is a perfect matching.

�

Let C = {Γi|i = 1 . . . k} be the set of cycles of G\M and let X and Y be two
distinct members of M.

Claim 4.1.2. Let Γ ∈ C be an odd cycle. Assume that X and Y have ends x and
y on Γ. Then xy is the only edge of C not covered by MX ∪ MY

Proof Since MX (MY respectively) is a perfect matching, the edges of MX

(MY respectively) contained in Γ saturate every vertex of Γ with the exception of
x (y respectively). The result follows. �

Claim 4.1.3. Let Γ ∈ C be an even cycle. Assume that X and Y have ends x1, x2

and y1, y2 on C with x1y1 ∈ N and x2y2 ∈ N . Then x1y1 and x2y2 are the only
edges of Γ not covered by MX ∪ MY

Proof The perfect matching MX must saturate every vertex of Γ with the
exception of x1 and x2. The same holds with MY and y1 and y2. Since x1y2 and
x2y1 are edges of C, these two edges are not covered by MX ∪MY and we can easily
checked that the other edges are covered.

�

Claim 4.1.4. Let Γ ∈ C be an even cycle. Assume that X and Y have ends x1, x2

and y1, y2 on C with x1x2 ∈ N and y1y2 ∈ N . Then either x1x2 and y1y2 are the
only edges of Γ not covered by MX ∪ MY or MX ∪ MY induces a perfect matching
on Γ such that every edge in that perfect matching is covered by MX and MY with
the exception of x1x2 which belongs to MY and y1y2 which belongs to MX.

Proof The perfect matching MX must saturate every vertex of Γ with the
exception of the two consecutive vertices x1 and x2. The same holds with MY and
y1 and y2.

Let us recall here that, since X (Y respectively) is a balanced matching, the
paths determined by x1 and x2 on Γ have odd lengths (the paths determined by y1

and y2 respectively). Two cases may occur.
case 1: The two paths obtained on Γ by deleting the edges x1x2 and y1y2 have

odd lengths We can check that MX ∪ MY determines a perfect matching on Γ
such that every edge in that perfect matching is covered by MX and MY with the
exception of x1x2 which belongs to MY and y1y2 which belongs to MX
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case 2: The two paths obtained on Γ by deleting x1x2 and y1y2 have even lengths
We can check that MX ∪MY covers every edge of Γ with the exception of x1x2 and
y1y2.

�

Claim 4.1.5. Let Γ ∈ C be an even cycle. Assume that X have ends x1, x2, x3 and
x4 on Γ with x1x2 ∈ N and x3x4 ∈ N . Then we can choose a perfect matching MY

in such a way that x1x2 and x3x4 are the only edges of Γ not covered by MX ∪MY .

Proof Since MX is a perfect matching, the edges of MX contained in Γ saturate
every vertex of Γ with the exception of x1, x2, x3 and x4. Since Y is not incident to
Γ the perfect matching MY can be chosen in two way (taking one of the two perfect
matchings contained in this cycle). We can see easily that we can choose MY in
such a way that every edge distinct from x1x2 and x3x4 is covered by MX or MY . �

Since {A, B, C, D, M ′ ∩M} is a partition of M , each edge of M is covered twice
by some perfect matchings of F .

Let Γ ∈ C be an odd cycle, each edge of Γ distinct from the two edges of N

(Claim 4.1.2) is covered twice by some perfect matchings of F . The two edges of
N are covered by exactly one perfect matching belonging to {MA, MB, MC , MD}
and by the perfect matching M ′. Hence every edge of Γ is covered twice by F .

Let Γ ∈ C be an even cycle. Assume first that 4 vertices of Γ are ends of some
edges in A while no other set of M is incident with Γ. From Claim 4.1.5 we can
choose MB in such a way that every edge distinct from the two edges of N is covered
by MA or MB. We can then choose MC in such a way that one of the two edges of
N belongs to MC . Finally, we can choose MD in order to cover the other edge of
N . Each edge of Γ distinct from the two edges of N (Claim 4.1.5) is covered twice
by some perfect matchings of F . The two edges of N are covered by exactly one
perfect matching belonging to {MA, MB, MC , MD} and by the perfect matching
M ′. Hence every edge of Γ is covered twice by F .

Assume now that 2 vertices of Γ are ends of some edges in A (say a1 and a2)
and 2 other vertices are ends of some edges in B (say b1 and b2).

case1: a1b1 ∈ N and a2b2 ∈ N . We can choose MC and MD in order to
cover every edge of Γ. From Claim 4.1.3 every edge of γ is covered by MA ∪ MB

with the exception of a1b1 and a2b2. Hence every edge of Γ is covered twice by
MA ∪ MB ∪ MC ∪ MD while a1b1 and a2b2 are covered twice by MC ∪ MD ∪ M

′

Hence every edge of Γ is covered twice by F .
case 2: a1a2 ∈ N and b1b2 ∈ N . Assume that a1a2 and b1b2 are the only edges

of Γ not covered by MA ∪ MB (Claim 4.1.4). Then we can choose MC and MD in
such a way that every edge of Γ is covered by MC ∪ MD. In that case every edge
of Γ is covered by twice by MA ∪ MB ∪ MC ∪ MD with the exception of a1a2 and
b1b2 which are covered twice by MC ∪ MD ∪ M

′

.
Assume now that MA ∪ MB induces a perfect matching on Γ where a1a2 ∈ MB

and b1b2 ∈ MA while the other edges of this perfect matchings are in MA ∩ MB

(Claim 4.1.4). Then we can choose MC and MD such that every edge of Γ not
contained in MA ∪MB is covered twice by MC ∪MD (MC ∪MD induces a perfect
matching on Γ). hence every edge of Γ is covered twice by MC∪MD or by MA∪MB

with the exception of a1a2 which is covered twice by MB ∪ M
′

and b1b2 which is
covered twice by MA ∪ M

′

.
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Finally, assume that Γ has no vertex as end of some edge in M. Then we can
choose easily MA, MB, MC and MD such that every edge of Γ is covered twice by
MA ∪ MB ∪ MC ∪ MD

Hence F is a Fulkerson covering of G. �

Remark 4.2. Observe that the matchings of the Fulkerson covering described in
the above proof are all distinct.

5. Applications

Let B be the graph on 8 vertices depicted in Figure 9.

a

x

b y c

z

dt

Figure 8. B

Theorem 5.1. Let G be a bridgeless cubic graph containing the subgraph B. As-
sume that G contains a 2−factor C = {C1, C2 . . . Ck} with only two odd cycles (C1

and C2) and assume that these two odd cycles have vertices in B as well as vertices
outside B. Then G can be provided with a Fulkerson covering.

Proof Let M be the perfect matching associated to the 2−factor C. Since C1

(C2 respectively) must have vertices on B, as well as outside of B, it can be easily
seen that every vertex of B must be in C1 ∪ C2. Up to a renaming of the vertices
we must have, in fact, that atyc is a subpath of C1 and bxzd is a subpath of C2 or
axzc is a subpath of C1 and bytd is a subpath of C2.

In the first case let A = {xa}, B = {yb}, C = {zc} and D = {td}. In the second
case let A = {ta}, B = {xb}, C = {yc} and D = {zd}.

We can check that, in both cases, M = {A, B, C, D} is a F-family for M . The
result follows from Theorem 4.1 �

b
′ a b

′

a
′

b

Block A2
Block A1

b

a

a
′

Figure 9. Blocks for the construction of generalized Blanuša snarks.
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In [7] Watkins proposed two families of generalized Blanuša snarks using the
blocks B (depicted in Figure 8), A1 and A2 (depicted in Figure 9). The generalized
Blanuša snarks of type 1 (resp. of type 2) are obtained by considering a number
of blocks B and one block A1 (resp. A2), these blocks are arranged cyclically as in
Figure 10, the semi-edges a′ and b′ of one block being connected to the semi-edges
a, b of the next one.

B BB

b

a b

a

Figure 10. Generalized Blanusa snark of type 1

Corollary 5.2. Each generalized Blanuša snark can be provided with a Fulkerson
covering.

Proof It is easy to see that a generalized Blanuša snark has a 2−factor formed
with exactly two odd (chordless) cycles. Each block isomorphic to B must be vis-
ited by these two cycles. The result follows from Theorem 5.1. �

Let G be a bridgeless cubic graph having a 2−factor where each cycle is iso-
morphic to a chordless C5. We denote by G∗ the multigraph obtained from G by
shrinking each C5 of this 2−factor in a single vertex. The graph G∗ is 5−regular
and we can easily check that it is bridgeless.

Theorem 5.3. Let G be a bridgeless cubic graph having a 2−factor of chordless C5.
Assume that G∗ has chromatic index 5. Then G can be provided with a Fulkerson
covering.

Proof Let M be the perfect matching complementary of the 2−factor of C5.
Let {A, B, C, D, E} be a 5−edge colouring of G∗. Each colour corresponds to a
matching of G (let us denote these matchings by A, B, C, D and E). Then it is an
easy task to see that M = {A, B, C, D} is a F-family for M and the result follows
from Theorem 4.1.

�

Theorem 5.4. Let G be a bridgeless cubic graph having a 2−factor of chordless C5.
Assume that G∗ is bipartite. Then G can be provided with a Fulkerson covering.

Proof It is well known, in that case, the chromatic index of G∗ is 5. the result
follows from Theorem 5.3. �

Remark that, when considering the Petersen graph P , the graph associated P ∗

is reduced to two vertices and is thus bipartite.
We can construct cubic graphs with chromatic index 4 (snarks in the literature)

which are cyclically 4- edge connected and having a 2-factor of C5’s. Indeed, let
G be cyclically 4-edge connected snark of size n and M be a perfect matching of
G, M = {xiyi|i = 1 . . . n

2
}. Let G1 . . . Gn

2
be n

2
cyclically 4-edge connected snarks

(each of them having a 2-factor of C5). For each Gi (i = 1 . . . n
2
) we consider two
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non adjacent edges e1
i and e2

i of the perfect matching which is the complement of
the 2−factor.

We construct then a new cyclically 4-edge connected snark H by applying the
well known operation dot-product, introduced by Isaac [5] on {e1

i , e
2
i } and the edge

xiyi (i = 1 . . . n
2
). We remark that the vertices of G vanish in the operation and

the resulting graph H has a 2 factor of C5, which is the union of the 2−factors of
C5 of the Gi. Unfortunately, when considering the graph H∗, derived from H , we
cannot insure, in general, that H∗ is 5−edge colourable in order to apply Theorem
5.3 and obtain hence a Fulkerson covering of H .

An interesting case is obtained when, in the above construction of H , each graph
Gi is isomorphic to the Petersen graph. Indeed, the 2−factor of C5 obtained then
is such that we can find a partition of the vertex set of H into sets of 2 C5 joined
by 3 edges. These sets lead to pairs of vertices of H∗ joined by three parallel edges.
We can thus see H∗ as a cubic graph where a perfect matching is taken 3 times.
Let us denote by H̃ this cubic graph (by the way H̃ is 3-connected). It is an easy

task to see that, when H̃ is 3−edge colourable, H∗ is 5−edge colourable and hence,
Theorem 5.3 can be applied.

Figure 11. H∗ isomorphic to P(3)

Let us consider by example the graph H obtained with 5 copies of the Petersen
graph following the above construction (let us remark that the graph G involved in
our construction must be isomorphic also to the Petersen graph). This graph is a

snark on 50 vertices. Since H̃ is a bridgeless cubic graph, the only case for which
we cannot say whether H has a Fulkerson covering occurs when H̃ is isomorphic
to the Petersen graph and, hence H∗ is isomorphic to the unslicable graph P(3)
described by Rizzi [6] (see Figure 11).

By the way, we do not know example of cyclically 5-edge connected snarks (ex-
cepted the Petersen graph) with a 2-factor of induced cycles of length 5. We have
proposed in [2] the following problem.

Problem 5.5. Is there any 5-edge connected snark distinct from the Petersen graph
with a 2-factor of C5’s ?
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6. On proper Fulkerson covering

As noticed in the introduction, when a cubic graph is 3−edge colourable, we can
find a Fulkerson covering by using a 3−edge colouring and considering each colour
twice.

Proposition 6.1. Let G be a bridgeless cubic graph with chromatic index 4. As-
sume that G has a Fulkerson covering F = {M1, M2, M3, M4, M5, M6} of its edge
set. Then the 6 perfect matchings are distinct.

Proof Assume, without loss of generality that M1 = M2. Since each edge is con-
tained in exactly 2 perfect matchings of F , we must have M3 ∩ M1 = ∅. Hence G

is 3−edge colourable, a contradiction. �

Let us say that a Fulkerson covering is proper whenever the 6 perfect matchings
involved in this covering are distinct. An interesting question is thus to determine
which cubic bridgeless graph have a proper Fulkerson covering.

A 3-edge colourable graph is said to be bi-hamiltonian whenever in any 3-edge
colouring, there are at least two colours whose removing leads to an hamiltonian
2-factor.

Proposition 6.2. Let G be a bridgeless cubic graph which is not bi-hamiltonian.
Then G has a proper Fulkerson covering.

Proof Let Φ E(G) → {α, β, γ} be a 3−edge colouring of G. When x and y are
colours in {α, β, γ}, Φ(x, y) denotes the set of disjoint even cycles induced by the
two colours x and y.
Since the graph G is not bi-hamiltonian we may assume that the 2-factors Φ(α, β)
and Φ(β, γ) are not hamiltonian cycles. Let C be a cycle in Φ(α, β), we get a

new 3−edge colouring Φ
′

by exchanging the two colours α and β along C. We get
hence a partition of E(G) into 3 perfect matching α

′

, β
′

and γ. In the same way,

when considering a cycle D in Φ(β, γ), we get a new 3−edge colouring Φ
′′

of G

by exchanging β and γ along D. Let α,β
′′

and γ
′′

be the 3 perfect matchings so
obtained.

Since we have two distinct 3−edge colourings of G, Φ
′

and Φ
′′

, the set of 6 perfect
matchings so involved {α, α

′

, β
′

, β
′′

, γ, γ
′′

} is a Fulkerson covering. It remains to
show that this set is actually a proper Fulkerson covering.

The exchange operated in order to get Φ
′

involve some edges in α and some
edges in β (those which are on C1) while the other edges keep their colour. In the

same way, the exchange operated in order to get Φ
′′

involve some edges in β and
some edges in γ (those which are on D1) while the other edges keep their colour.

The 3 perfect matchings of Φ
′

(α
′

, β
′

and γ ) are pairwise disjoint as well as

those of Φ
′′

(α, β
′′

and γ
′′

). We have α 6= α
′

since α
′

contains some edges of β.

We have α ∩ β
′′

= ∅ and α ∩ γ
′′

= ∅ since we have exchanged β and γ in order to
obtain β

′′

and γ
′′

. We have β
′

6= β
′′

since β
′

contains some edges of α while β
′′

contains some edges of γ. We have β
′

6= γ
′′

since β
′

contains some edges of α and
γ

′′

contains only edges in β or in γ. We have γ 6= γ
′′

since γ
′′

contains some edges
of β.

Hence {α, α
′

, β
′

, β
′′

, γ, γ
′′

} is a proper Fulkerson covering.
�
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The theta graph (2 vertices joined by 3 edges), K4, K3,3 are examples of small
bridgeless cubic graph without proper Fulkerson covering. The infinite family of
bridgeless cubic bi-hamiltonian graphs obtained by doubling the edges of a perfect
matching of an even cycle has no proper Fulkerson covering. On the other hand,
we can provide a bi-hamiltonian graph together with a proper Fulkerson covering.
Consider for example the graph G on 10 vertices which have a 2 factor of C5’s,
namely abcde and 12345 with the additional edges edges a2, b4, c3, d5 and e1, it is
not difficult to check that this graph is bi-hamiltonian. Moreover since the following
four balanced matchings {a2}, {b4}, {c3} and {d5} form a F -family for the perfect
matching {a2, b4, c3, d5, e1}, due to Theorem 4.1 and Remark 4.2, the graph G has
a proper Fulkerson covering.

A challenging problem is thus to characterize those bridgeless cubic graphs hav-
ing a proper Fulkerson covering.
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