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A new proof of the uniqueness of the flow for ordinary differential equations with BV vector fields *

We provide in this article a new proof of the uniqueness of the flow solution to ordinary differential equations with BV vector-fields that have divergence in L ∞ (or in L 1 ) and that are nearly incompressible (see the text for the definition of this term). The novelty of the proof lies in the fact it does not use the associated transport equation.

Introduction and statement of our main result

In 1989, P.-L. Lions and R. DiPerna showed in [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] the existence and the uniqueness of the almost everywhere defined flow solution to an ordinary differential equation of the type:

ẏ(t) = b(t, y(t)) , (1) 
for W 1,1 vector fields b with L 1 loc (R t , L ∞ y ) divergence (along with some technical assumptions). For such 'singular' vector fields, the only possibility is to solve the equation almost everywhere on the space Ω of initial conditions. In that case, one defines a flow X(t, x) : R × Ω → Ω satisfying: Ẋ(t, x) = b(t, X(t, x)) for all t, X(0, x) = x .

(2)

for almost all x ∈ Ω. An initial time s = 0 may of course be chosen, and the flow then depends parametrically on this initial time s. With a view to simplifying the presentation, we will assume henceforth and throughout this article that the field b is time-independent. Our arguments may be modified to cover the time-dependent case.

In the present article, we also adopt a notion of almost everywhere flow solution similar to that of DiPerna and Lions. We denote by (X(t, •) # λ) (E) = λ(X(-t, E)) the pushforward of the Lebesgue measure λ. In the sequel, the vector-field b will always be assumed at least L 1 loc .

Definition 1 (Almost everywhere flows) An almost everywhere flow solution to (2) is a measurable function X(t, x) : R × Ω → Ω satisfying the following conditions:

(i) For almost all x ∈ Ω, the map t → X(t, x) is a continuous solution to γ = b(γ) satisfying γ(0) = x:

for almost all x ∈ Ω, ∀t ∈ R, X(t, x) = x + t 0 b(X(s, x)) ds (ii) For all t, the measure X(t, •) # λ is absolutely continuous with respect to λ, and there exist a timedependent function C(t) > 0 such that:

∀t ∈ R + , ∀|τ | ≤ t, 1 C(t) λ ≤ X(τ, •) # λ ≤ C(t)λ ,
(iii) X is a one-parameter transformation group, i.e. satisfies: X(t, X(s, x)) = X(s + t, x), for almost all x ∈ Ω, ∀s, t

Remark 1 Di Perna and Lions originally define in [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] a flow solution with condition (i) replaced by X ∈ C(R, L 1 ) satisfies the ordinary differential equation (2) in the sense of distribution. Their definition is equivalent to ours. It is indeed shown in [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] that the original definition implies (i), and it can be shown that conditions (ii) and (iii) together imply that X ∈ C(R, L 1 ).

Remark 2 Condition (ii) is in particular satisfied if b is sufficiently smooth, and div(b) ∈ L ∞ . In that case C(t) = e div(b) ∞|t| is convenient. Besides this case, for a class of ordinary differential equations coming from some particular types of hyperbolic equations, such as the Keyfitz-Krantzer system, div(b) is only L 1 , but an estimate of the form (ii) may be established using a maximal principle. See the work [START_REF] Bressan | An ill posed Cauchy problem for a hyperbolic system in two space dimensions[END_REF] by Bressan for more details on these systems and that by L. Ambrosio, F. Bouchut and C. De Lellis [START_REF] Ambrosio | Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions[END_REF] for a discussion on the relevance of condition (ii).

Before stating our result, we give a brief state-of-the-art survey on the theory of ordinary differential equations with vector fields of low regularity. The seminal work [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] by DiPerna and Lions has been complemented and extended notably by L. Ambrosio in [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF]. Several other authors have made important contributions. We would like to specifically cite the work [START_REF] Lerner | Transport equations with partially BV velocities[END_REF] by N. Lerner which has inspired our own, present work. To date, the minimal conditions that are known to guarantee the existence and the uniqueness of the flow are the BV regularity of the vector field, a L 1 bound on the divergence together with a nearincompressibility condition (or more classicaly a bounded divergence condition) of the type (ii). The classical proofs of such results are based upon the consideration of the associated transport equation, written either in the conservative form:

∂u ∂t + div (b(x)u) = 0, (3) 
or in the non-conservative form:

∂u ∂t + b(x) • ∇ x u = 0, (4) 
both with the initial condition u(0, x) = u 0 (x). Remark that, for divergence-free fields, the two equations coincide. When the existence and the uniqueness of the solution to the transport equation is established, for any given initial condition, one deduces the same result for the a.e. flow solution to the ordinary differential equation. The key ingredient for the resolution of the transport equation is a commutation lemma (first stated in [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]), which says that:

ρ ε * div(bu) -div((b * ρ ε )u) -→ ε→0 0 in L 1 .
C. De Lellis and G. Crippa have recently given in [START_REF] Crippa | Estimates and regularity results for the DiPerna-Lions flow[END_REF] a new proof of the existence and uniqueness of the flow solution of (2), not using the the associated transport equation. Their very interesting approach provides regularity estimates for W 1,p vector-fields with p > 1 but seemingly fails for W 1,1 vector-fields, unfortunately.

Main result

The purpose of this article is to give a new and direct proof of the uniqueness of the a.e. flow solution to (2) for BV vector fields, without arguing on the associated transport equation. We adopt the approach already used in [START_REF] Hauray | Deux remarques sur les flots généralisés d'équations différentielles ordinaires[END_REF] for W 1,1 vector fields. Basically, the commutation lemma instrumental in the proof contained in this prior publication is replaced by another strategy of proof, namely the introduction of a second variable. This is explained in details in the next paragraph.

Our result is the following:

Theorem 1 Let b be a BV vector field on the N -dimensional torus T N . If div(b) ∈ L 1 , then there exists at most one a.e. flow solution to (2), in the sense of Definition 1.

Remark 3 In [CDP96], B. Perthame and I. Capuzzo Dolcetta remarked that the assumption "b ∈ W 1,1 " of the original work by DiPerna and Lions could be replaced by the weaker assumption "the symmetric part of Db is a matrix-valued L 1 function". This observation seems to not be valid for the present strategy of proof, and more generally in the BV case. The reason is, their argument is based on the use of radially symmetric regularization kernels, while the regularization kernels we use here for the BV case are typically anisotropic.

Main idea of the proof

To start with, we outline here the proof performed in details in the next section. As already said, the proof uses a technique introduced in [START_REF] Hauray | Deux remarques sur les flots généralisés d'équations différentielles ordinaires[END_REF]. In that work, a smooth convolution kernel ρ, with normalized integral, is considered. It is then proved that for any two a.e. flows X and Y solutions to the ordinary differential equation with W 1,1 coefficients,

lim ε→0 d dt |X(t, x) -Y (t, y)| 1 ε d ρ( x -y ε ) dx dy = 0. Now, the limit of the integral is d dt |X(t, x) -Y (t, x)| dx = 0.
This shows that, for all t,

|X(t, x) -Y (t, x)| dx = 0,
since this quantity vanishes at initial time. The uniqueness of the solution follows. Remark that the introduction of the extra-variable y allows to perform the calculation without using the transport equation.

Our aim is to now modify the above approach and treat BV vector fields. For this purpose, we use a convolution kernel well adapted to the geometry of the flow and the possible singularities of the BV vector field under consideration. In short, we consider the regularization kernel

1 ε d ρ(x, x -y ε ) with ρ(x, z) = F 0 (|U (x)z| 2 ) det U (x) , and U (x) = Id + γη(x) ⊗ η(x) .
Here, F 0 is a smooth function, γ is a constant that will be sent to infinity, and η is an approximation of the direction normal to the jumps of the measure Db. The purpose of such a construction is to have a regularization that decreases faster in the direction normal to the jumps. The idea of a direction-dependent regularization was first introduced by P.L. Lions in [START_REF] Lions | Sur les équations différentielles ordinaires et les équations de transport[END_REF]. N. Lerner introduced the specific positiondependent regularization used here in [START_REF] Lerner | Transport equations with partially BV velocities[END_REF] with a view to simplifying the proof of uniqueness originally given by L. Ambrosio for the BV case. His argument, however, is still based upon the equivalence with the transport equation. In the present paper, we combine his argument with the approach consisting in introducing a second variable, already employed in [START_REF] Hauray | Deux remarques sur les flots généralisés d'équations différentielles ordinaires[END_REF] for W 1,1 vector fields.

Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We denote by µ

1 (t, •) (resp. µ 2 (t, •)) the L ∞ density of the measure X(-t, •) # λ (resp. Y (-t, •) # λ) with respect to λ. Consider now the kernel 1 ε d ρ(x, x -y ε ),
where ρ is a smooth, compactly supported, function, from T n × T n to R + which we will make precise below. Assume in addition ρ satisfies ρ(x, z) dz = 1 for all x. Our aim is to estimate

I ε (t) = d dt |X(t, x) -Y (t, y)| 1 ε d ρ(x, x -y ε )µ 1 (t, x)µ 2 (t, y) dx dy . ( 5 
)
where X and Y are two flow solutions to (2). In the sense of distributions,

lim ε→0 I ε (t) = d dt |X(t, x) -Y (t, x)|µ 1 (t, x)µ 2 (t, x) dx . (6) 
This is established using the Lebesgue continuity of the functions Y and µ 2 at almost every point, along with the L ∞ bound on µ 1 . Remark that the Lebesgue continuity may be used if the support of ρ(x, •) is not exceedingly stretched in one direction (more specifically, we should have some constant c > 0 such that ∀x ∈ T n , B(0, c -1 ) ⊂ Suppρ(x, •) ⊂ B(0, c), See [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF] for more details). The kernel we shall use satisfies such a condition for all ε > 0, even though in the limit of a vanishing ε, it is infinitely stretched. Our purpose is to show that the limit (6) is

lim ε→0 I ε (t) = -|X(t, x) -Y (t, x)| div(b)(x)µ 1 (t, x)µ 2 (t, x) dx.
This will eventually prove the uniqueness of the flow solution to (2) using the bounds from below on µ 1 and µ 2 inferred from (ii). To this end, we first perform the change of variable (x, y) → (X(t, x), Y (t, y)) in I ε (t), and then differentiate under the integral:

I ε (t) = d dt |x -y| 1 ε d ρ(X(-t, x), X(-t, x) -Y (-t, y) ε ) dx dy ,
which we write I ε (t) = I 1 ε (t) + I 2 ε (t), with:

I 1 ε (t) = - |x -y| 1 ε d ∂ 1 ρ(X(-t, x), X(-t, x) -Y (-t, y) ε ) • b(X(-t, x)) dx dy I 2 ε (t) = - |x -y| 1 ε d+1 ∂ 2 ρ(X(-t, x), X(-t, x) -Y (-t, y) ε ) • (b(X(-t, x)) -b(Y (-t, y))) dx dy.
Then, we return to the original variables (x, y):

I 1 ε (t) = - |X(t, x) -Y (t, y)| 1 ε d ∂ 1 ρ(x, x -y ε ) • b(x)µ 1 (t, x)µ 2 (t, y) dx dy I 2 ε (t) = - |X(t, x) -Y (t, y)| 1 ε d+1 ∂ 2 ρ(x, x -y ε ) • (b(x) -b(y))µ 1 (t, x)µ 2 (t, y) dx dy,
and next use the change of variable z = (y -x)/ε:

I 1 ε (t) = - |X(t, x) -Y (t, x + εz)| ∂ 1 ρ(x, z) • b(x)µ 1 (t, x)µ 2 (t, x + εz) dx dz (7) 
I 2 ε (t) = - |X(t, x) -Y (t, x + εz)| ∂ 2 ρ(x, z) • (b(x) -b(x + εz)) ε µ 1 (t, x)µ 2 (t, x + εz) dx dz. ( 8 
)
We now need to estimate these two terms when ε goes to zero. We begin with the easiest of the two, namely

I 1 ε . Step 1: Limit of I 1 ε Because ρ is smooth, b ∈ L 1 ,
and almost all points are Lesbesgue points for the two functions Y and µ 2 , we can use the Lebesgue dominated convergence theorem and obtain:

lim ε→0 I 1 ε (t) = -|X(t, x) -Y (t, x)| ∂ 1 ρ(x, z) dz • b(x)µ 1 (t, x)µ 2 (t, x) dx. Now ∂ 1 ρ(x, z) dz = d dx ρ(x, z) dz = 0 , since ρ(x, z) dz = 1, for all x. Thus, lim ε→0 I 1 ε (t) = 0. ( 9 
)
The treatment for I 2 ε is more elaborate and will necessitate several steps.

Step 2: Bound for I 2 ε We now wish to pass to the limit ε → 0 in (8). If b were W 1,1 , the limit could easily be identified. It would suffice to replace (b(x + εz) -b(x))/ε by 1 0 Db(x + θεz) • z dθ in (8), and next use the Lebesgue dominated convergence theorem. All this does not require making specific the convolution kernel ρ (See below and [START_REF] Hauray | Deux remarques sur les flots généralisés d'équations différentielles ordinaires[END_REF]). Owing to the presence of the singular part of Db, we have to argue more carefully.

To proceed further, we recall the following result.

Proposition 1 [from [AFP00, Theorem 1.28, Corollary 1.29]] Let b be a BV vector-field on T n . (i) The Radon-Nikodym decomposition of its derivative Db writes

Db = D a b + D s b, with D a b << L d , D s b ⊥ L d ,
where the superscript a stand for "absolute continuous part", and s stand for "singular" respectively. As D a b is absolutely continuous with respect to the Lebesgue measure, we write it:

D a b = ∂ a b dx ,
where ∂ a b is a L 1 matrix-valued fonction. (ii) In addition, the polar decomposition of the singular part D s b of the measure Db writes:

D s b = M s |D s b| ,
where |D s b| is the total variation of the matrix-valued measure D s b, and M s a matrix-valued fonction, such that |M s (x)| = 1, |D s b|-a.e (the norm used for M is the norm induced on matrices by the Euclidian norm of R n ).

In view of the above decomposition, we now claim that lim sup

ε-→0 1 0 |X(t, x) -Y (t, x + εz)| ∂ 2 ρ(x, z) • b(x + εz) -b(x) ε -∂ a b(x + εθz) • z µ 1 (t, x)µ 2 (t, x + εz) dθ dx dz ≤ 2C(t) 2 |∂ 2 ρ(x, z) • M s (x) • z| d|Db|(x) dz. (10) 
For convenience, we denote by

I 2 ε,a = - 1 0 |X(t, x) -Y (t, x + εz)| ∂ 2 ρ(x, z) • ∂ a b(x + εθz) • z dθ dx dz,
in the left-hand side, and Ī2

s (t) = |∂ 2 ρ(x, z) • M s (x) • z| d|Db|(x) dz,
in the right-hand side.

To prove our claim, we regularize X, Y , µ 1 and µ 2 , using some smooth X α , Y α , µ α 1 and µ α 2 . Next, we replace (b(x + εz) -b(x))/ε by 1 0 Db(x + θεz) • z dθ (an equality true for almost all (x, z)) and perform the change of variable x ′ = x + εθz (we use it even for the measure Db because this is a linear change of variable). We obtain: 

I 2,α ε (t) := - |X α (t, x) -Y α (t, x + εz)| ∂ 2 ρ(x, z) • (b(x + εz) -b(x)) ε µ α 1 (t, x)µ α 2 (t, x + εz) dx dz = - 1 0 |X α (t, x) -Y α (t, x + εz)| ∂ 2 ρ(x, z) • Db(x + θεz) • zµ α 1 (t, x)µ α 2 (t, x + εz) dx dz dθ = - 1 0 |X α (t, x -εθz) -Y α (t, x + ε(1 -θ)z)| ∂ 2 ρ(x -εθz, z) • Db(x) • zµ α 1 (t, x -εθz)µ α 2 (t, x + ε(1 -θ)z)
I 2,α ε (t) = I 2,α ε,a (t) + I 2,α ε,s (t)
, where:

I 2,α ε,a (t) = - 1 0 |X α (t, x -εθz) -Y α (t, x + ε(1 -θ)z)| (12) ∂ 2 ρ(x -εθz, z) • ∂ a b(x) • z µ α 1 (t, x -εθz)µ α 2 (t, x + ε(1 -θ)z) dx dz dθ (13) |I 2,α ε,s (t)| ≤ 2C(t) 2 1 0 ∂ 2 ρ(x -εθz, z) • M s (x) • z |D s b|(x) dz dθ, (14) 
where we have used that |X α -Y α | ≤ 2 (as we work on the torus). And letting ε going to zero, we obtain (10) for X α , Y α and the µ α i . Then (10) is obtained letting X α , Y α , µ α 1 and µ α 2 approximate X, Y , µ 1 and µ 2 , respectively.

The majoration (10) being established, we proceed as follows. Arguing as above for I 1 ε , that is using the smoothness of ρ and the fact that almost every point is a Lebesgue point for Y , µ 1 and µ 2 , we obtain:

lim ε→0 I 2 ε,a (t) = lim ε→0 - 1 0 |X(t, x -εθz) -Y (t, x + ε(1 -θ)z)| ∂ 2 ρ(x -εθz, z) • ∂ a b(x) • z µ 1 (t, x -εθ)µ 2 (t, x + ε(1 -θ)z) dθ dx dz = - |X(t, x) -Y (t, x)|∂ 2 ρ(x, z) • ∂ a b(x) • z µ 1 (t, x)µ 2 (t, x) dx dz = -|X(t, x) -Y (t, x)|R a (x)µ 1 (t, x)µ 2 (t, x) dx, with R a (x) = ∂ 2 ρ(x, z) • ∂ a b(x) • z dz.
To calculate this term, we integrate by parts and use the property ∀x ∈ T n , ρ(x, z) dz = 1 :

R a (x) = i,j ∂ρ ∂z i (x, z) ∂ a b i ∂x j (x)z j dz = i,j ∂ a b i ∂x i (x) -ρ(x, z) ∂z j ∂z i dz = - i ∂ a b i ∂z i (x) ρ(x, z) dz = -div a b. (15) 
So we have obtained:

lim ε→0 I 2 ε,a = |X(t, x) -Y (t, x)| div a b(x)µ 1 (t, x)µ 2 (t, x) dx. (16) 
The next step consists in proving that the right-hand side of (10) may be chosen arbitrarily small.

Step 3: A bound on the singular part In order to estimate the right hand side of (10), we now use a geometric information, namely, the special form of M s (x), proved by G. Alberti [START_REF] Alberti | Rank one property for derivatives of functions with bounded variation[END_REF].

Theorem 2 [Alberti's rank one Theorem, [AFP00, Theorem 3.94]] Let b be a BV vector-field defined on T d , and write Db = D s b+D a b the Radon-Nikodym decomposition of its gradient. Consider D s b = M |D s b| the polar decomposition of the singular part as in Proposition 1. Then, M is of rank one |D s b|-almost everywhere, that is, there exists two vector-valued functions ξ b and η b |D s b|-measurables, such that ξ b and η b are unit vectors |D s b|-a.e. and satisfy:

M (x) = ξ b (x) ⊗ η b (x), |Db s | -almost everywhere, where ξ b ⊗ η b denotes the linear map x → η b , x ξ b .
Corollary 1 As a consequence, the singular part of the divergence is div s b = ξ, η |D s b|. If we assume that the divergence of b belongs to L 1 , it follows that ξ, η = 0, |Db s | -a. e., a property that will be crucial in the sequel.

Using the decomposition provided by Theorem 2, we rewrite our bound in (10), which we denote Ī2 s (t) in the sequel:

Ī2 s (t) ≤ 2C(t) 2 | ∂ 2 ρ(x, z), ξ b (x) || η b (x), z | d|Db s |(x) dz.
In order to render the right-hand side arbitrarily small, we now make specific our convolution kernel ρ. We choose:

ρ(x, z) = F 0 (|U (x)z| 2 ) det(U (x)),
where F 0 is a smooth, compactly supported, non negative function such that R d F 0 (|z| 2 ) dz = 1, and U is a smooth, matrix-valued function, such that U (x) is an orientation preserving matrix for all x. Note that owing to the presence of the determinant, the integral of ρ(x, •) remains equals to one independently of x.

The dilation matrix U (x) is set to U (x) = Id + γη(x) ⊗ η(x) (with the notation a ⊗ b for the endomorphism x → b, x a), where η is a smooth vector-valued function. On the jump of the measure Db, η will be chosen later as an approximation of the direction normal to the jump set. The factor γ will be chosen as large as possible. It may possibly depend upon x and be large only on a neighbourhood of the singular set of the measure Db, but we for simplicity of the calculation we will not use that not essential possibility here. The partial derivative of ρ writes:

∂ 2 ρ(x, z) = 2F ′ 0 (|U (x)z| 2 ) U (x)z, U (x)• det(U (x)).
We use this in the bound on Ī2 s (t) to obtain:

Ī2 s (t) ≤ C |F ′ 0 (|U (x)z| 2 )|| U (x)z, U (x)ξ b (x) | η b (x), z | det(U (x)) d|Db s |(x) dz,
where here and below C denotes various irrelevant constants. To simplify this term, we perform the change of variable z → U (x)z, and obtain:

Ī2 s (t) ≤ C |F ′ 0 (|z| 2 )|| z, U (x)ξ b (x) | | η b (x), U -1 z | d|Db s |(x) dz. (17) 
We next intend to use the special form U (x) = Id + γ(x)η(x) ⊗ η(x), to bound from above the two scalar products. Let us first formally illustrate our argument, performing our calculation with η = η b , as if η b were smooth. In this case,

| z, U (x)ξ b (x) | = | z, ξ b (x) | ≤ |z|,
because η b , ξ b = 0 and ξ b has unit norm. For the second scalar product,

| η b (x), U -1 (x)z | = 1 1 + γ | η b (x), z | ≤ 1 1 + γ , because U -1 = Id - γ 1 + γ η b ⊗ η b .
Inserting these bounds in (17), we obtain:

Ī2 s (t) ≤ C 1 + γ |F ′ 0 (|z| 2 )| |Db s |(x) dz ≤ C(F 0 , b) 1 + γ ,
where the constant C(F 0 , b) depends only of F 0 and b. It remains then to let γ to infinity to obtain Ī2 s (t) = 0 and conclude our (formal) proof.

We now modify the above formal argument using an approximation η of η b , instead of η b itself. First, we remark

| z, U (x)ξ b | = | z, ξ b + γ ξ b , η η | ≤ (1 + γ| ξ b , η |) |z| ≤ (1 + γ| ξ b , η -η b |) |z| ≤ (1 + γ|η -η b |) |z|, (18) 
where we have used ξ b , η b = 0, |Db s |-a.e (from Corollary 1), and that ξ b , η b are unit vectors. To bound the scalar product | η b (x), U -1 z |, we decompose z in z = z η + z ⊥ , where z η is the projection of z on R • η:

| η b , U -1 z | = η b , z - γ 1 + γ η, z η = η b , z ⊥ + 1 1 + γ z η ≤ η b -η, z ⊥ + 1 1 + γ z η + η, z ⊥ + 1 1 + γ z η ≤ |η b -η| + 1 1 + γ |z|. (19) 
From ( 18) and (19) we deduce:

| z, U (x)ξ b | | η b , U -1 z | ≤ 2|η -η b | + 1 1 + γ + γ|η -η b | 2 |z| 2 .
We insert this bound in (17) and obtain:

Ī2 s (t) ≤ C |η -η b | + 1 1 + γ + γ|η -η b | 2 F ′ 0 (|z| 2 )|z| 2 dz. |Db s |(x) ≤ C(F 0 ) 1 1 + γ + (1 + 2γ) |η -η b | |Db s |(x) , (20) 
because the integral F ′ 0 (|z| 2 )|z| 2 dz is fixed, and both η b and η are unit vectors. We finally show that inf γ>0,η smooth

1 1 + γ + (1 + 2γ) |η -η b | |Db s |(x) = 0.
To this end, we first choose γ such that 1/(1+γ) is small, and then construct a smooth function η, sufficiently close to η b on the support of D s b so that (1 + 2γ) |η -η b | |Db s |(x) is also small (use for that classical approximation theorem with respect to the Radon measure D s b). Note that η can be arbitrarily extended to the whole torus as its value outside the support of D s b is irrelevant. This concludes the proof of the convergence of the right-hand side of (10) to zero.

Step 4: Conclusion Collecting all the previous results, we obtain

d dt |X(t, x) -Y (t, x)|µ 1 (t, x)µ 2 (t, x) dx = -|X(t, x) -Y (t, x)| div(b)(x)µ 1 (t, x)µ 2 (t, x) dx. (21) 
where we have replaced div Since the integral in the right hand side vanishes initially, we conclude that |X(t, x) -Y (t, x)|µ 1 (t, x)µ 2 (t, x) dx = 0 and finally that X(t, •) = Y (t, •) a.e. in x since the µ i are bounded away from 0. Note that, as usual, if only the solution at positive times if of interest, an assumption on the negative part div(b) -of the divergence suffices to conclude.

When only the weaker hypothesis div(b) ∈ L 1 holds, we have to slightly adapt the above argument. We choose a smooth compactly supported function φ(x), insert a factor φ(X(t, x)) in the integral (5) defining I ε . We now estimate 

I φ ε (t) = d dt
We next define u(t, x) = |x -Y (t, X(-t, x))|µ 2 (t, X(-t, x)). Equation ( 23) holding for all φ, it follows that ∂u ∂t + div(b)(X(-t, x)) u = 0, (24) in the distributional sense. There is no derivative of u with respect to x in the equation, so that the variable x is only a parameter. Since div(b) ∈ L 1 and condition (ii) holds, we have 24) is wellposed for almost all x, and since by construction its solution u vanishes at initial time, it vanishes for all time: u(t, x) = 0 for all t, a.e. in x. This concludes the proof: X ≡ Y .

  dx dz dθ . (11) Let us decompose I 2,α ε in two parts, according to the above Proposition 1,

  a (b) by div(b), since we are dealing with vector fields b having at least, divergence inL 1 . If div(b) ∈ L ∞ , then d dt |X(t, x) -Y (t, x)|µ 1 (t, x)µ 2 (t, x) dx ≤ C |X(t, x) -Y (t, x)|µ 1 (t, x)µ 2 (t, x) dx .

x T 0 |

 0 div(b)(X(-t, x))| dtdx < +∞ for all time T . So that, for almost all x, T 0 | div(b)(X(-t, x))| dt < +∞. Therefore equation (

  (t, x)µ 2 (t, y) dx dy .The above argument carries over to the present case. An equality similar to (21) is obtained:

	φ(X(t, x))|X(t, x) -Y (t, y)| )µ 1 d 1 ε d ρ(x, x -y ε dt φ(X(t, x))|X(t, x) -Y (t, x)|µ 1 (t, x)µ 2 (t, x) dx	
	= -φ(X(t, x))|X(t, x) -Y (t, x)| div(b)(x)µ 1 (t, x)µ 2 (t, x) dx	(22)

which can also be written (using the change of variable x = X(t, x))

d dt φ(x)|x -Y (t, X(-t, x))|µ 2 (t, X(-t, x)) dx = -φ(x)|x -Y (t, X(-t, x))| div(b)(X(-t, x))µ 2 (t, X(-t, x)) dx.