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Abstract. We propose certified reduced basis methods for the efficient and reliable evaluation
of a general output that is implicitly connected to a given parameterized input through the harmonic
Maxwell’s equations. The truth approximation and the development of the reduced basis through a
greedy approach is based on a discontinuous Galerkin approximation of the linear partial differential
equation. The formulation allows the use of different approximation spaces for solving the primal
and the dual truth approximation problems to respect the characteristics of both problem types,
leading to an overall reduction in the off-line computational effort.

The main features of the method are: i) rapid convergence on the entire set of parameters,
ii) rigorous a posteriori error estimators for the output and iii) a parameter independent off-line
phase and a computationally very efficient on-line phase to enable the rapid solution of many-
query problems arising in control, optimization, and design. The versatility and performance of this
approach is shown through a numerical experiment, illustrating the modeling of material variations
and problems with resonant behavior.

Key words. Reduced basis methods; a priori theory; a posteriori error estimation; discontinuous
Galerkin methods; Maxwell’s equations.
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1. Introduction. Many applications related to computational optimization, con-
trol and design, require the ability to rapidly, perhaps even in real time, and accurately
predict some quantities of interest under the variation of a set of parameters. A sim-
ilar need can be found in the development of large simulation based databases or the
development of efficient ways to quantify uncertainty and its impact.
In such cases, an output of interest, here denoted by se, is often provided by a func-
tional applied to the solution of a parametrized partial differential equation (PDE)
that describes the underlying physics. More precisely,

∣∣∣∣∣∣∣∣∣

For an input ν ∈ D ⊂ Rq the output is defined by

se(ν) := l(ue(ν); ν) ∈ C,

where ue(ν) ∈ Xe is the solution of the linear PDE

L(ν)ue(ν) = f(ν).

(1.1)

The q-dimensional set of parameters ν, here denoting the input, determine a par-
ticular configuration of the system. In practice the parameters can be related to
the description of sources, materials, geometries, uncertainties etc. In such cases we
have an implicit relationship between the input and the output through the partial
differential equation.
Our primary goal is to develop a systematic approach to obtain an accurate and
reliable approximation of the output of interest at very low computational cost for
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applications where many queries, i.e., solutions, are needed. We will explore the use of
a reduced basis method by recognizing, and implicitly assuming, that the parameter
dependent solution ue(ν) is not simply an arbitrary member of the infinite-dimensional
space associated with the partial differential equation, but rather that it evolves on
a lower-dimensional manifold induced by the parametric dependence. Under this
assumption we can expect that as ν (∈ D ⊂ Rq) varies, the set of all solutions ue(ν)
can be well approximated by a finite and low dimensional vector space. Hence, for
a well chosen set of N parameters νi, there exist coefficients ci = cNi (ν) such that∑N

i=1 ci u(νi) is very close to ue(ν) for any ν ∈ D when measured in an appropriate
norm.

The reduced basis method was first introduced in the 1970’s for nonlinear structural
analysis [1, 19] and it was subsequently abstracted, analyzed [4, 24] and generalized to
other type of parametrized partial differential equations [10, 20]. Most of these earlier
works focus on arguments that are local in the parameter space. Expansions to a
low dimensional manifold are typically defined around a particular point of interest
and the associated a priori analysis relies on asymptotic arguments on sufficiently
small neighborhoods [7, 22]. In such cases, the computational improvements are quite
modest. In [2, 13] a global approximation space was built by using solutions of the
governing PDE at globally sampled points in the parameter space, resulting in a much
more efficient method. However, no a priori theory or a posteriori error estimators
were developed in this early work.

In recent years, a number of novel ideas and essential new features have been presented
[15, 14, 29, 23, 28, 3, 9, 27, 25]. In particular, global approximation spaces have been
introduced and uniform exponential convergence of the reduced basis approximation
has been numerically observed and confirmed in [16] where the first theoretical a
priori convergence result for a one dimensional parametric space problem is presented.
The development of rigorous a posteriori error estimators has also been presented,
thereby transforming the reduced basis methods from an experimental technique to
a computational method with a true predictive value.

Furthermore, in cases where the problem satisfies an affine assumption; that is, the op-
erators and the data can be written as a linear combination of functions with separable
dependence of the parameter and the spatial variation of the data, an off–line/on–
line computational strategy can be formulated. The off–line part of the algorithm,
consisting of the generation of the reduced basis space, is ν-independent and can be
done in preprocessing. The computational cost of the on–line part depends solely on
the dimension of the reduced basis space and the parametric complexity of the prob-
lem, while the dependence on the complexity of the truth approximation has been
removed, resulting in a highly efficient approach.

When the data of the PDE are not affine, this computational strategy can not be
directly applied anymore and the on–line computational cost of the algorithm may be
rather high. Recently, in [3], a procedure allowing the treatment of some of these non-
affine operators has been presented and shown to recover the off–line/on–line efficiency
of the original algorithm. This technique, which also provides asymptotic a posteriori
error estimators, has been successfully used in several applications [9, 8, 18, 26].

Following standard techniques, we will consider (1.1) on weak form as
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For an input ν ∈ D ⊂ Rp the output is defined by

se(ν) := l(ue(ν); ν) ∈ C,

where ue(ν) ∈ Xe is the exact solution of the linear PDE

a(ue(ν), v; ν) = f(v; ν), ∀v ∈ Xe.

(1.2)

In contrast to most previous work, we focus on wave-dominated problems such as
acoustic and electromagnetic wave propagation. As we will experience later in this
work, this introduces a number of additional complexities when compared to the more
straightforward coercive problem.
It is useful to realize that the output se(ν) can also be obtained using adjoint tech-
niques. Let us consider the adjoint problem

∣∣∣∣∣
Seek ψe(ν) ∈ Xe such that

a(φ, ψe(ν); ν) = l(φ; ν), ∀φ ∈ Xe.
(1.3)

We will refer to (1.2) as the primal problem, and to (1.3) as the dual problem. One
has

f(ψe(ν); ν) = a(ue(ν), ψe(ν); ν) = l(ue(ν); ν) = se(ν).

As we will discuss later (see also [21, 23] for more details), an efficient and accurate
way to compute the output needs to solve both problems, the nature of which might be
slightly different except in the simple self-adjoint case. For this reason we will allow
the use of different approximation spaces for solving these problems. This yields
some additional flexibility and may reduce the off-line computational effort without
adversely impacting the accuracy.
To solve the primal and dual problems for specific parameter choices, we will use a
discontinuous Galerkin method [11]. These methods have developed rapidly during
the last decade and have proven themselves to be an efficient and accurate way to
solve general wave problems and Maxwell’s equations in particular. While the anal-
ysis of the resulting reduced basis method is influenced somewhat by the choice of
the approximation technique for the primal/dual problems, the general framework
developed here can be expected to generalize to other techniques such as classic finite
element methods.
What remains of the paper is organized as follows. In Sec. 2 we briefly outline
the harmonic Maxwell’s equations and discuss appropriate boundary conditions and
solution spaces. This sets the stage for Sec. 3 where we discuss the discontinuous
Galerkin method for discretizing Maxwell’s equations. Section 4 is the first main part
of this work and outlines in detail the development of the reduced basis technique,
including a priori theory and a posteriori error estimates. In Sec. 5 we address the
second main topic related to the algorithmic aspects of the method while Sec. 6 is
devoted to illustrating the performance of the algorithm on a non-trivial test case.
Section 7 contains a few concluding remarks and suggestions for future work.

2. The harmonic Maxwell’s equations. Let us consider the harmonic charge-
free Maxwell’s equations defined on x ∈ Ω ⊂ Rd with ∂Ω representing the boundary
of the domain of interest.

iωεE = ∇×H + J , iωµH = −∇×E (2.1)

∇ · (εE) = 0, ∇ · (µH) = 0.
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Here E(x) = (Ex, Ey, Ez), H(x) = (Hx, Hy, Hz) represent the electric and magnetic
vectors phasor fields, J(x) = (Jx, Jy, Jz) the current source, and (ε(x), µ(x)) are
the tensors of electric permittivity and magnetic permeability, respectively. Both of
these are Hermitian for the energy conserving case but are complex negative definite
tensors for general lossy materials. To simplify matters we assume isotropic materials
in which case ε(x) = ε(x)I where ε(x) is a scalar and I a 3-identity matrix, and
similarly for the permeability. The parameter ω reflects the angular frequency of the
electromagnetic wave.
The boundary conditions on the electric field are imposed on the tangential com-
ponents, n̂ ×E, which must remain continuous across a material interface endowed
with the outward pointing normal vector, n̂. The tangential field vanishes along a
perfectly electrically conducting metallic wall. For the magnetic field, the tangential
components n̂×H likewise remains continuous across material interfaces while at a
perfectly electrically conducting wall, n̂ ·H vanishes.
The natural space for solutions to Maxwell’s equations is Xe = H(curl), defined as

H(curl) =
{
v ∈

(
L2(Ω)

)d
|∇ × v ∈

(
L2(Ω)

)d}
.

If we define the standard L2-inner product and norm as

(u,v)Ω =

∫

Ω

u · v∗ dx, ‖u‖2 = (u,u)Ω,

the natural norm associated with Maxwell’s equations is

‖v‖2
H(curl) = ‖v‖2 + ‖∇× v‖2.

The problem can be further simplified to recover the second order curl-curl formulation

∇× µ(x)−1∇×E − ε(x)ω2E = iωJ = f , x ∈ Ω. (2.2)

Naturally, an equivalent equation can be obtained for the magnetic field.
If we define the bilinear form a(u,v) : Xe ×Xe → C as

a(u,v) =
(
µ−1∇× u,∇× v

)
Ω
− ω2 (εu,v)Ω , ∀u,v ∈ Xe,

then the variational statement for the curl-curl equation is: find E ∈ Xe such that

a(E,v) = f(v),

provided we consider the simple case of perfectly electrically conducting walls for
x ∈ ∂Ω. Here,

f(v) = (f ,v)Ω =

∫

Ω

f · v∗ dx, ∀v ∈ Xe,

More general situations and the general question of well-posedness of Maxwell’s equa-
tions are discussed at length in [17].
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The dual problem for this case reads as follows: find ψ ∈ Xe such that

a(φ,ψ) = `(φ) ∀φ ∈ Xe.

Here,

`(φ) = (φ, l)Ω.

In the simpler case where the materials in Eq.(2.2) can be assumed homogeneous in
Ω we can use the solenoidal nature of E; that is, ∇ · E = 0, to recover the wave
Helmholtz equation

∇2E + εµω2E = f , x ∈ Ω.

Imposing simple homogeneous conditions of either Dirichlet or Neumann type we
recover the classic wave equation for acoustic waves with hard or soft boundaries,
respectively. In these latter cases, the solutions are more regular, the natural space is
the standard H1(Ω) Sobolev space, and the variational statement and bilinear form
follow from standard arguments. While we focus on applications driven by Maxwell’s
equations, the methods apply also to this simpler case of harmonic wave propagation.

3. The discontinuous Galerkin approximation. To solve the equations in-
troduced above, we employ a discontinuous Galerkin method [11]. To get started,
assume that Ω is represented by a set of non-overlapping elements, D

k, as

Ω =

K∑

k=1

D
k,

and on each of these elements, often of a simplex type, we assume that we can ap-
proximate the solution, E ∈ Xe, by a pth order polynomial; that is we assume

x ∈ D
k : E ' Ek

h ∈ [Pkp(x)]d,

where P
k
p is the space of pth order complex-valued polynomials defined on D

k. The

global space of solutions, Xe, is thus approximated by Xe
h = ⊕k[P

k
p ]
d and we seek

(qh,Eh), approximations to (µ(x)−1∇×E,E), that satisfy the following elementwise
statement

(qh,∇× vh)Dk − ω2 (εEh,vh)Dk +
(
(n̂× qh)

∗ ,vh
)
∂D

k = (fh,vh)Dk , ∀vh ∈ Xe
h,

(µqh,wh)Dk = (Eh,∇×wh)Dk +
(
(n̂×Eh)

∗ ,wh

)
∂D

k , ∀wh ∈ Xe
h,

where we denote the piecewise polynomial representation of f as f h.
We have introduced the numerical fluxes, (n̂× qh)

∗
, and (n̂×Eh)

∗
, which enforce

connectivity between the elements and give stability of the discrete problem. Among
several possibilities for the fluxes, we use stabilized central fluxes as

(n̂× qh)
∗

= n̂× {{qh}} − τ [[Eh]]T ,
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(n̂×Eh)
∗

= n̂× {{Eh}}.

Here we have used the standard notation of

{{u}} =
u− + u+

2
, [[u]]T = n̂

− × u− + n̂+ × u+,

as the local average and tangential jump, respectively, across an interface between
two elements. Here u− refers to the interior solution and u+ to the exterior solution.
This choice of flux allows one to locally compute qh, i.e., expressing the problem as a
system is done merely for notational convenience. Furthermore, one easily sees that
the system is symmetric for real valued materials but the general problem is indefinite
for high-frequency problems, i.e., when ω is large.
We can use different meshes for the primal and dual problems to respect their specific
natures. As a result, the approximation spaces (denoted by Xp

h and Xd
h) are not the

same. Neither are the bilinear forms, denoted by aph(·, ·) and adh(·, ·).
If we further reduce the problem by exploring the local nature of the formulation, the
problem of finding Eh ∈ Xe

h is given as

aph(Eh,vh) = (fh,vh)Ω,h, ∀vh ∈ Xe
h,

where we have defined the discrete bilinear form aph : Xe
h ×Xe

h → C as

aph(uh,vh)Ω,h =
(
µ−1∇h × uh,∇h × vh

)
Ω,h

− ω2 (εuh,vh)Ω,h

− ([[uh]]T , {{∇h × vh}})F,h − ([[vh]]T , {{∇h × uh}})F,h
+ (τ [[uh]]T , [[vh]]T )F,h .

We have defined ∇h× as the local discrete curl-operator and the broken norms

(uh,vh)Dk =

∫

D
k

uh · v
∗
h dx, (uh,vh)Ω,h =

∑

k

(uh,vh)Dk ,

and

(uh,vh)F,h =

∫

F

uh · v
∗
h dx,

where F represents all faces in the triangulated grid.
The parameter τ is introduced to control the large null-space and is generally taken
to be τ ∝ p2/h, with h being a measure of the local grid spacing and p the order
of the local approximation. Spectral properties and error analysis of this scheme is
discussed in detail in [11] where also further references can be found. The extension
to the adjoint problem is straightforward.

4. The certified reduced basis method. In the following we discuss in some
detail the construction and analysis of the certified reduced basis method, combined
with the discontinuous Galerkin approximation, of the primal (1.2) and dual problem
(1.3). The reliability of the formulation is secured via the construction of a posteriori
error estimators.
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4.1. Some notation and basic assumptions. Let Xp
h (resp Xd

h) be a dis-
continuous Galerkin approximation space well adapted to the primal problem (1.2)

(resp. to the dual problem (1.3)) and letXpd
h be a third approximation space satisfying

Xp
h ⊂ Xpd

h , Xd
h ⊂ Xpd

h . Associated with these spaces we introduce the corresponding
discrete norms and linear and bilinear forms

‖ · ‖Xm
h

: Xm
h −→ R+,

fmh (·, ν) : Xm
h −→ C, lmh (·, ν) : Xm

h −→ C,

amh (·, ·, ν) : Xm
h ×Xm

h −→ C.

(4.1)

We assume throughout that the approximations fmh (·; ν), lmh (·; ν), m ∈ {p, d, pd} are
linear operators that are uniformly continuous for ν ∈ D and that amh (·, ·; ν), m ∈
{p, d, pd} are bilinear operators uniformly continuous for ν ∈ D; that is,

γm(ν) := sup
vh∈X

m
h

sup
wh∈X

m
h

|amh (vh, wh; ν)|

‖v‖Xm
h
‖w‖Xm

h

< +∞, ∀ ν ∈ D. (4.2)

We furthermore assume that the discrete inf-sup parameters, defined as

∣∣∣∣∣∣∣∣∣

βp,m(ν) := inf
vh∈Xm

h

sup
wh∈Xm

h

|amh (vh, wh; ν)|

‖vh‖Xm
h
‖wh‖Xm

h

, m ∈ {p, pd},

βd,m(ν) := inf
ψh∈Xm

h

sup
φh∈Xm

h

|amh (φh, ψh; ν)|

‖φh‖Xm
h
‖ψh‖Xm

h

, m ∈ {d, pd},
(4.3)

are uniformly bounded away from zero
∣∣∣∣∣

0 < βp,m0 ≤ βp,m(ν), ν ∈ D, ∀ m ∈ {p, pd},

0 < βd,m0 ≤ βd,m(ν), ν ∈ D, ∀ m ∈ {d, pd},

which suffices to guarantee existence and uniqueness of the solution to the discrete
problem. It is worth noting that for Maxwell’s equations, this assumption is vio-
lated for certain parameters corresponding to pure resonances and we will see the
consequence in the section of numerical experiments.
It will furthermore be assumed that for m ∈ {p, d} we have

∣∣∣∣∣∣∣∣∣∣∣

‖uh‖Xm
h

= ‖uh‖Xpd

h

, ∀ uh ∈ Xm
h ,

amh (uh, vh; ν) = apdh (uh, vh; ν), ∀ (uh, vh) ∈ Xm
h ×Xm

h ,

fmh (uh; ν) = fpdh (uh; ν), ∀ uh ∈ Xm
h ,

lmh (uh; ν) = lpdh (uh; ν), ∀ uh ∈ Xm
h .

(4.4)

Denote Nm = dim(Xm
h ), m ∈ {p, d, pd}; that is, Nm represents the total number of

degrees of freedom for the discrete approximation.

4.1.1. The truth approximation. The approximate primal and dual problems
are defined as

∣∣∣∣∣
Find umh (ν) ∈ Xm

h such that (m ∈ {p, pd})

amh (umh (ν), vh; ν) = fmh (vh; ν), ∀ vh ∈ Xm
h ,

(4.5)
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∣∣∣∣∣
Find ψmh (ν) ∈ Xm

h such that (m ∈ {d, pd})

amh (φh, ψ
m
h (ν); ν) = lmh (φh; ν), ∀ φh ∈ Xm

h .
(4.6)

We call umh (ν) (resp. ψmh (ν)) the primal (resp. dual) truth approximation computed
on Xm

h , m ∈ {p, pd} (resp. m ∈ {d, pd}).
The truth approximation of the output of interest is computed as

spdh (ν) := lpdh (updh (ν); ν) = fpdh (ψpdh (ν); ν). (4.7)

The approximation spaces are assumed to have been chosen such that ∀ m ∈ {p, pd},
∀ n ∈ {d, pd}

‖umh − ue‖ ≤ ε, ‖ψnh − ψe‖ ≤ ε, ∀ ν ∈ D. (4.8)

This implies in general that Nm will have to be large, resulting in a significant com-
putational cost for problems where many instances of ν must be evaluated. One of
the goals of this work is to significantly reduce this cost.

4.2. The reduced basis method. The primary goal here is to reduce the di-
mension of the approximation spaces to speed up the computations without impacting
the accuracy. To facilitate this we introduce nested sets of samples

∣∣∣∣∣
SpN = {νpi ∈ D, 1 ≤ i ≤ N},

SdM = {νdj ∈ D, 1 ≤ j ≤M},
(4.9)

and the associated Lagrangian reduced basis spaces

∣∣∣∣∣
Xp
N = span{uph(ν

p
i ), 1 ≤ i ≤ N},

Xd
M = span{ψdh(ν

d
j ), 1 ≤ j ≤M}.

(4.10)

By solving the primal and dual reduced basis problems

∣∣∣∣∣
Find uN(ν) ∈ Xp

N such that

aph(uN (ν), vN ; ν) = fph(vN ; ν), ∀ vN ∈ Xp
N ,

(4.11)

∣∣∣∣∣
Find ψM (ν) ∈ Xd

M such that

adh(φM , ψM (ν); ν) = ldh(φM ; ν), ∀ φM ∈ Xd
M ,

(4.12)

we define the reduced basis approximation of the output as [21]

sN,M (ν) = lp(uN (ν); ν) − apd(uN (ν), ψM (ν); ν) + fd(ψM (ν); ν). (4.13)

We will observe numerically that when the sets of samples, Eq. (4.9), are carefully
chosen, this reduced basis output converges toward the truth approximations of the
output at an exponential rate [16].
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4.3. The affine assumption and off-line/on-line strategies. One might
expect a reduction of the numerical cost as soon as the computation of uN (ν) (resp.
ψM (ν)) involves the solution of an N × N (resp. M ×M) linear system. However,
the total computational cost still depends on Nm, m ∈ {p, d, pd} as for each ν, the
linear systems have to be assembled and (4.13) has to be evaluated. This bottleneck
can, however, be removed in many situations.
Let us assume that the operators fmh (·; ·), lmh (·; ·) and amh (·, ·; ·) m ∈ {p, d, pd} can be
expressed as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

amh (uh, vh; ν) =

Qa∑

q=1

Θa
q (ν) a

m
q,h(uh, vh), ∀ (uh, vh) ∈ Xm

h ×Xm
h ,

fmh (uh; ν) =

Qf∑

q=1

Θf
q (ν) f

m
q,h(uh), ∀ uh ∈ Xm

h ,

lmh (φh; ν) =

Ql∑

q=1

Θl
q(ν) l

m
q,h(φh), ∀ φh ∈ Xm

h ,

(4.14)

where the amq,h(·, ·) (resp. fmq,h(·) and lmq,h(·)) are ν-independent discrete operators and
the functions Θs

q(·) depend only on ν. We generally assume that Qs, s ∈ {a, f, l} is
small although this is not an essential assumption.
Equations in (4.14) are called the affine assumptions for fmh (·; ·), lmh (·; ·) and amh (·, ·; ·)
m ∈ {p, d, pd}. As we will see shortly, this enables the development of an attractive
off-line/on-line strategy. The off-line part of the computation, being ν independent,
can be done entirely in a preprocessing stage. The computational cost of the on-line
part is Nm-independent and thus, very small.
To further emphasize this, we write the reduced basis solutions as linear combinations
of the elements of the reduced basis:

uN (ν) =

N∑

i=1

uiN(ν)ξpi , ψN (ν) =

M∑

j=1

ψjM (ν)ξdj . (4.15)

Here we have introduced the basis elements, ξpi , and ξdi , which, in the simplest case, are
ξpi = uph(νi) and ξdi = ψdh(νi). However, as we will discuss later, it is computationally
advantageous to require the basis elements to be mutually orthogonal.
In this way, solving (4.11) and (4.12) reduces to

∣∣∣∣∣∣∣∣

Find ujN(ν), j ∈ {1, ..., N} such that

N∑

j=1

[
Qa∑

q=1

Θa
q(ν) a

p
q,h(ξ

p
j , ξ

p
i )

]
ujN (ν) =

Qf∑

q=1

Θf
q (ν) f

p
q,h(ξ

p
i ) , i ∈ {1, . . . , N},

∣∣∣∣∣∣∣∣

Find ψjM (ν), j ∈ {1, ...,M} such that

M∑

j=1

[
Qa∑

q=1

Θa
q(ν) a

d
q,h(ξ

d
i , ξ

d
j )

]
ψjM (ν) =

Ql∑

q=1

Θl
q(ν) l

d
q,h(ξ

d
i ) , i ∈ {1, . . . ,M}.

where we have assumed (4.14). The framed terms are all ν-independent and can
be precomputed off-line. Once these computations have been done, the number of
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operations to be performed in the on-line procedure is proportional to

#Op ≈ N2 Qa + M2 Qa + (assembling of the matrices)

N Qf + M Ql + (assembling of the right hand sides)

N3 + M3, (solving the full linear systems)

and it is therefore very fast since it does not depend on the dimension of the truth
approximation spaces, Nm.
Using the affine assumption, the reduced basis output can be expressed as

sN,M(ν) =
N∑

i=1

Ql∑

q=1

uiN (ν)Θl
q(ν) l

p
q,h(ξ

p
i ) +

M∑

j=1

Qf∑

q=1

ψjM (ν)Θf
q (ν) f

d
q,h(ξ

d
j )

−
N∑

i=1

M∑

j=1

Qa∑

q=1

uiN (ν)ψjM (ν)Θa
q (ν) a

pd
q,h(ξ

p
i , ξ

d
j ) .

The framed terms can be computed in preprocessing as they are independent of ν.
The number of operations depending on ν is of order

#Op ≈ N Ql + M Qf + N M Qa,

which is again independent of Nm.

4.4. A priori estimates. In this section we discuss the stability of problems
(4.11) and (4.12) and the convergence of the reduced basis approximations toward the
truth approximations for increasing N and M .
We begin by pointing out that stability of the reduced basis problem is not implied
by the assumptions on (4.3). It will be satisfied only for certain sets of samples (4.9).
Let us therefore consider stability of the reduced basis problems.

Theorem 4.1 (Stability of (4.11) and (4.12)). Assume that the discrete inf-sup
parameters satisfy

∣∣∣∣∣∣∣∣∣

0 < β̃p0 ≤ inf
vN∈Xp

N

sup
wN∈Xp

N

|aph(vN , wN ; ν)|

‖vN‖Xp
N
‖wN‖Xp

N

, (a)

0 < β̃d0 ≤ inf
ψM∈Xd

M

sup
φM∈Xd

M

|adh(φM , ψM ; ν)|

‖φM‖Xd
M
‖ψM‖Xd

M

. (b)
∀ν ∈ D.

(4.16)
Then, (4.11) and (4.12) are stable.

Proof: The existence and uniqueness of solution of problem (4.11) (resp. (4.12)) are
given by assumption (4.16(a) (resp. (4.16(b)). Moreover, we deduce from the same
assumption that, for any ε ∈ (0, β̃p0 ), there ∃ wN ∈ Xp

N such that

(β̃p0 − ε)‖uN(ν)‖Xp

N
‖wN‖Xp

N
≤ |aph(uN (ν), wN ; ν)| = |fph(wN ; ν)|.

This implies

‖uN(ν)‖Xp

h
≤

1

β̃p0 − ε
‖fph(·; ν)‖(Xp

h
)′ .

We prove the continuity of the solution with respect to the data by taking ε =
β̃

p
0

2 . A
similar proof can be done for the dual problem. 2
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Theorem 4.2 (A priori primal and dual estimates). Under the same assumptions as
Theorem 4.1 we have
∣∣∣∣∣∣∣

‖umh (ν) − uN(ν)‖Xm
h

≤ Cp,m(ν) inf
vN∈Xp

N

‖umh (ν) − vN‖Xm
h
, m ∈ {p, pd},

‖ψmh (ν) − ψM (ν)‖Xm
h

≤ Cd,m(ν) inf
φM∈Xd

M

‖ψmh (ν) − φM‖Xm
h
, m ∈ {d, pd}.

(4.17)
where

Cn,m(ν) = 1 +
γm(ν)

β̃n0
, n ∈ {p, d}, m ∈ {p, d, pd}.

Proof: Using assumption (4.16) we know that, for any ε > 0 and any vN ∈ Xp
N ,

there ∃ wN ∈ Xp
N such that

(β̃p0 − ε)‖uN(ν) − vN‖Xp
N
‖wN‖Xp

h
≤ |aph(uN (ν) − vN , wN ; ν)|

= |amh (umh (ν) − vN , wN ; ν)| ≤ γm(ν)‖umh (ν) − vN‖Xm
h
‖wN‖Xp

N
.

Thus, we prove the result for the primal problem, Eq.(4.17(a)), by using triangle
inequality. The result for the dual problem, Eq.(4.17(b)), is obtained in a similar
way. 2

Before giving a similar result for the output we note that

spdh (ν) − sN,M (ν) = apdh (updh (ν) − uN (ν), ψpdh (ν) − ψM (ν); ν), (4.18)

due to linearity.

Theorem 4.3 (A priori estimate on the output with respect to spdh (ν)). Under the
same assumptions as Theorem 4.1 we have

|spdh (ν) − sN,M (ν)| ≤ γpd(ν) Cp,pd(ν) Cd,pd(ν)×

inf
vN∈Xp

N

‖updh (ν) − vN‖
X

pd

h

inf
φM∈Xd

M

‖ψpdh (ν) − φM‖
X

pd

h

,
(4.19)

|spdh (ν) − sN,M(ν)| ≤ γpd(ν)×
[
‖updh (ν) − uph(ν)‖Xpd

h

+ Cp,p(ν) inf
vN∈Xp

N

‖uph(ν) − vN‖Xp

N

]
×

[
‖ψpdh (ν) − ψdh(ν)‖Xpd

h

+ Cd,d(ν) inf
φM∈Xd

M

‖ψdh(ν) − φM‖Xd
M

]
.

(4.20)

Proof: Using (4.18) and the continuity of amh (·, ·; ν) we obtain

|spdh (ν) − sN,M(ν)| ≤ γpd(ν)‖updh (ν) − uN (ν)‖
X

pd

h

‖ψpdh (ν) − ψM (ν)‖
X

pd

h

.

Then we use inequalities (4.17) with m = pd to obtain (4.19). To prove (4.20), we
employ the triangle inequality on the last expression and apply the first (resp. second)
inequality on (4.17) with m = p (resp. m = d). 2
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4.5. A posteriori estimates. We are now in a position to provide a posteriori
error estimators that certify the reduced basis approximation with respect to the
truth approximation. The evaluation of these estimators will be done following an
off-line/on-line strategy similar to the one presented in Section 4.3.
We start by introducing some helpful notation. For each wN ∈ Xp

N (resp. ηM ∈ Xd
M ),

we define the residual for the primal (resp. dual) problem by
∣∣∣∣∣
Rph(vN , wN ; ν) = fpdh (vN ; ν) − apdh (wN , vN ; ν), ∀ vN ∈ Xpd

h ,

Rdh(φM , ηM ; ν) = lpdh (φM ; ν) − apdh (φM , ηM ; ν), ∀ φM ∈ Xpd
h .

(4.21)

We also introduce their dual norms on the spaces (Xm
h )′, m ∈ {p, d, pd} as

∣∣∣∣∣∣∣∣∣

εp,mN (ν) := ‖Rph(·, uN (ν); ν)‖(Xm
h

)′ = sup
vh∈Xm

h

|Rph(vh, uN(ν); ν)|

‖vh‖Xm
h

,

εd,mM (ν) := ‖Rdh(·, ψM (ν); ν)‖(Xm
h

)′ = sup
φh∈Xm

h

|Rdh(φh, ψM (ν); ν)|

‖φh‖Xm
h

.

. (4.22)

Note that εp,mN (ν) also depends on uN and εd,mM (ν) on ψM but we have left out this
explicit relationship to simplify the notation.
We assume that we can construct a lower bound for the inf-sup parameters (4.3)

denoted by β
p,m

(ν), m ∈ {p, pd} and β
d,m

(ν), m ∈ {d, pd} such that
∣∣∣∣∣

0 < β
p,m

0 ≤ β
p,m

(ν) ≤ βp,m(ν), ∀ ν ∈ D, ∀ m ∈ {p, pd},

0 < β
d,m

0 ≤ β
d,m

(ν) ≤ βd,m(ν), ∀ ν ∈ D, ∀ m ∈ {d, pd}.

These lower bounds are assumed to be computable at a low on-line computational
cost independent of the dimension of the truth approximation spaces. We explain in
Section 5.3 one technique to effectively compute this quantity, but for now we simply
assume it is available.

4.5.1. A posteriori estimators for the reduced basis solutions. Let us define
the a posteriori error estimators for the solution of the primal and dual reduced basis
problems as follows:

Definition 4.4 (Primal and dual estimators). The primal and dual estimators are
defined by

∣∣∣∣∣∣∣∣∣

∆p,m
N (ν) :=

εp,mN (ν)

β
p,m

(ν)
, m ∈ {p, pd},

∆d,m
M (ν) :=

εd,mM (ν)

β
d,m

(ν)
, m ∈ {d, pd}.

(4.23)

We have the following theorem concerning their efficiency

Theorem 4.5. The efficiency of the primal estimators, m ∈ {p, pd}

ηp,mN (ν) :=
∆p,m
N (ν)

‖uN(ν) − umh (ν)‖Xm
h

, (4.24)

satisfies, m ∈ {p, pd}

1 ≤ ηp,mN (ν) ≤
γm(ν)

β
p,m

(ν)
; ∀ ν ∈ D, ∀ N ∈ {1, . . . , Nmax}. (4.25)
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We have a similar result for the dual estimator.

Proof: This result comes from the following set of inequalities

β
p,m

(ν) ≤ inf
vh∈Xm

h

sup
wh∈Xm

h

|amh (vh, wh; ν)|

‖vh‖Xm
h
‖wh‖Xm

h

= βp,m(ν)

≤ sup
wh∈Xm

h

|amh (umh (ν) − uN (ν), wh; ν)|

‖umh (ν) − uN(ν)‖Xm
h
‖wh‖Xm

h

= ηp,mN (ν) β
p,m

(ν)

≤ sup
vh∈Xm

h

sup
wh∈Xm

h

|amh (vh, wh; ν)|

‖vh‖Xm
h
‖wh‖Xm

h

= γm(ν).

(4.26)

Dividing by β
p,m

(ν) we obtain (4.25). 2

4.5.2. A posteriori estimator for the reduced basis output. We recall that
our goal is to estimate the output s(u) rather than the solution of the problem. Using
(4.18) we obtain

spdh (ν) − sN,M (ν) = Rdh(u
pd
h (ν) − uN (ν), ψM (ν); ν) (4.27)

= Rdh(u
p
h(ν) − uN(ν), ψM (ν); ν) + (4.28)

apdh (updh (ν) − uph(ν), ψ
pd
h (ν) − ψM (ν); ν),

which is useful for constructing the estimators. We have the following result

Theorem 4.6 (Estimator for sN,M(ν) with respect to spdh (ν)). The following in-
equalities are satisfied

|spdh − sN,M | ≤
εp,pdN (ν) εd,pdM (ν)

β
p,pd

(ν)
, (4.29)

|spdh − sN,M | ≤
εp,pN (ν) εd,pM (ν)

β
p,p

(ν)
+ εd,pdM (ν) ‖updh (ν) − uph(ν)‖Xpd

h

, (4.30)

|spdh − sN,M | ≤
εp,pN (ν) εd,pM (ν)

β
p,p

(ν)
+ γpd(ν) ‖updh (ν) − uph(ν)‖Xpd

h

×

[
εd,dM (ν)

β
d,d

(ν)
+ ‖ψpdh (ν) − ψdh(ν)‖Xpd

h

]
.

(4.31)

Proof: We use the (4.27) to write

|spdh (ν) − sN,M (ν)| = |Rdh(u
pd
h (ν) − uN(ν), ψM (ν); ν)|

≤ εd,pdM (ν)‖updh (ν) − uN(ν)‖
X

pd

h

.

We obtain (4.29) using (4.25) with m = pd.
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For (4.30) we use (4.28) to have

|spdh (ν) − sN,M (ν)| ≤ |Rdh(u
p
h(ν) − uN(ν), ψM (ν); ν)| +

|Rdh(u
pd
h (ν) − uph(ν), ψM (ν); ν)|

≤ εd,pM (ν)‖uph(ν) − uN (ν)‖
X

pd

h

+

εd,pdM (ν)‖updh (ν) − uph(ν)‖Xpd

h

.

We conclude with the same argument as above with m = p.

To prove (4.31), we use (4.28) combined with the continuity of the operator apdh (·, ·; ν)

|spdh (ν) − sN,M(ν)| ≤ εd,pM (ν)‖uph(ν) − uN(ν)‖
X

pd

h

+

γpd(ν) ‖updh (ν) − uph(ν)‖Xpd

h

‖ψpdh (ν) − ψM (ν)‖
X

pd

h

.

We employ the triangle inequality and Theorem 4.5 to write

‖ψpdh (ν) − ψM (ν)‖
X

pd

h

≤
εd,dM (ν)

β
d,d

(ν)
+ ‖ψpdh (ν) − ψdh(ν)‖Xpd

h

,

to recover the result. 2

The quantity on the right hand side of (4.29) can be used as a rigorous upper bound
of the actual error on the output and can be computed using an off-line/on-line
strategy. However, the off-line part of the computations involves the solution of linear
systems and eigenvalue problems based on the larger space Xpd

h , and may, thus,
become unnecessarily expensive.

On the right hand side of (4.30) and (4.31) there are some terms that are not easily
computable (for example γpd(ν)). For the other terms, we can use a crude estimation

‖updh (ν) − uph(ν)‖Xpd

h

≤ 2ε, ‖ψpdh (ν) − ψdh(ν)‖Xpd

h

≤ 2ε,

to provide a rigorous upper bound of the error. Here ε estimates the approxima-
tion error associated with the truth approximation. However, both quantities are in
practice very small and it is reasonable to use

∆s
N,M :=

εp,pN (ν) εd,pM (ν)

β
p,p

(ν)
, (4.32)

as an estimator of the error, keeping in mind that this does not in general provide a
rigorous upper bound. In this case, the off-line part of the algorithm involves only the
solution of linear systems and eigenvalue problems based on Xp

h which is likely more

affordable when compared to the approach based on Xpd
h .

5. Computational Aspects. In the discussions so far, we have laid out the
analysis of the reduced basis method but we have paid no attention to the implemen-
tation of the method. In the following we address this central issue in more detail.
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5.1. Construction of the reduced basis. An essential point in the construc-
tion of the reduced basis spaces is the selection of the sets of samples (4.9). All
well-posedness and convergence properties depend on this choice. Below we present
two algorithms for the construction of the primal and the dual reduced basis sets
that generally provide good results. Both methods are based on a greedy approach
in which we build a mesh S of the set of parameters D, and recursively choose the
parameters νmj ∈ S, m ∈ {p, d} in such a way that a distance between the reduced
basis approximation and the truth approximation is minimized.

5.1.1. First algorithm. The first algorithm builds the reduced basis spacesXp
N

and Xd
M separately. With both constructions being similar, we present the one for

the primal problem:

• Choose a q-dimensional mesh S of the set of parameters D.
• Choose the first parameter νp1 among the elements of the mesh S (randomly

for example).
• Compute uph(ν

p
1 ).

• Initialize the reduced basis space Xp
1 = span{uph(ν

p
1 )}.

• For j = 2, . . . , N
– Choose the next sample as

νpj := argmax
ν∈S

∆p,p
j−1(ν). (5.1)

where ∆p,p
j−1(ν) is defined in Def. 4.4.

– Compute uph(ν
p
j ).

– Update the reduced basis space: Xp
j = span{uph(ν

p
i ), i ∈ {1, ..., j}}. The

dimension of the updated reduced basis is j.

Let us make a few comments regarding criteria (5.1) which is used to select the samples
νpj . Clearly, we seek to add those values of the parameters for which the error between
uph(ν) and uN(ν) is maximized. This means choosing

ν̃pj := argmax
ν∈S

‖uph(ν) − uN (ν)‖
X

p

h

.

To accomplish this we would need to compute the primal truth approximation for
all ν ∈ S, leading to an expensive procedure. However, as soon as the estimator
∆p,p
j−1(ν) is accurate, it enables a rigorous upper bound of the actual error with a low

evaluation cost and we use it as

‖uph(ν) − uN (ν)‖
X

p

h

≤ ∆p,p
j−1(ν).

In this way, the primal truth approximation is just computed for the N selected
parameters. As a consequence, the numerical method is much cheaper while resulting
in a basis of comparable quality.
As mentioned previously, it is important to choose a suitable basis for the represen-
tation of the space Xp

N to avoid stability issues. If we use the native basis given as
{uph(ν

p
1 ), . . . , uph(ν

p
N )} the condition number of the matrix associated with problem

(4.11) grows exponentially with N . However, this is easily overcome by using an or-
thogonalization process such as the Gram-Schmidt method. After this, the condition
number of the reduced basis problem inherits the properties of the matrix associated
with the truth approximation (4.5).
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5.1.2. Second algorithm. The second method builds the two basis sets simul-
taneously by directly minimizing the error on the output rather than the errors in the
primal and dual basis. We could therefore expect a reduction in the dimension of the
reduced basis spaces in order to obtain a prescribed accuracy on the output.

• Choose a q-dimensional mesh S of the set of parameters D.
• Choose νp1 = νd1 among the elements of the mesh S (randomly for example).
• Compute uph(ν

p
1 ) and ψdh(ν

d
1 ).

• Initialize the reduced basis spaces

Xp
1 = span{uph(ν

p
1 )} and Xd

1 = span{ψdh(ν
d
1 )}.

• For j = 2, . . . , N
– Choose the next sample as

νpj = νdj := arg max
ν∈S

∆s
j−1,j−1(ν). (5.2)

where ∆s
j−1,j−1(ν) is defined by (4.32).

– Compute uph(ν
p
j ) and ψdh(ν

d
j ).

– Update the reduced basis spaces:

Xp
j = span{uph(ν

p
i ), i ∈ {1, ..., j}},

Xd
j = span{ψdh(ν

d
i ), i ∈ {1, ..., j}}.

The dimension of the updated reduced basis is j.

We note that in this case, the dimension of the primal and the dual basis coincides.
The criteria used to select the parameters is based on the estimator for the output
using the same dimension for the primal and dual basis. This may offset some of the
advantages of working directly on the output of interest.

5.2. Computing εp,mN (ν), m ∈ {p, d, pd}. In this section we discuss how to
compute εp,mN following an off-line/on-line strategy. Recall that these quantities, in-
troduced in (4.22), are nothing but the dual norms of the primal residual on the space
Xm
h . Using the Riesz theorem we know that

∃ χ
Xm

h

R
p

h
(·,uN (ν);ν)

∈ Xm
h such that εp,mN = ‖χ

Xm
h

R
p

h
(·,uN (ν);ν)

‖Xm
h
. (5.3)

Here, χXf(·) ∈ X denotes the Riesz representation of any continuous linear form f(·)

defined on X . Moreover, χ
Xm

h

R
p

h
(·,uN (ν);ν)

is characterized by

(χ
Xm

h

R
p

h
(·,uN (ν);ν)

, vN )Xm
h

= Rph(vN , uN(ν); ν), ∀ vN ∈ Xm
h . (5.4)

Inserting (4.15) into (4.21) and using the affine assumption (4.14) we obtain

(χ
Xm

h

R
p

h
(·,uN (ν);ν)

, vN )Xm
h

=

Qf∑

q=1

Θf
q (ν)f

pd
q,h(vN ) −

N∑

j=1

Qa∑

q=1

ujN (ν)Θa
q (ν)a

pd
q,h(ξ

p
j , vN ).

By superposition we have

χ
Xm

h

R
p

h
(·,uN (ν);ν)

=

Qf∑

q=1

Θf
q (ν) χ

Xm
h

f
pd

q,h
(·)

−
N∑

j=1

Qa∑

q=1

ujN(ν)Θa
q (ν) χ

Xm
h

a
pd

q,h
(ξp

j
,·)
. (5.5)
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Clearly, the terms in the rectangles can be computed off-line. Each Riesz representa-
tion element needs the solution of a linear system of size Nm.
Finally

(εp,mN (ν))
2

=

Qf∑

q=1

Qf∑

q̃=1

Θf
q (ν) Θf

q̃ (ν) (χ
Xm

h

f
pd

q,h
(·)
, χ

Xm
h

f
pd

q̃,h
(·)

)Xm
h

+

Qa∑

q=1

N∑

k=1

Qa∑

q̃=1

N∑

k̃=1

ukN (ν) Θa
q (ν) u

k̃
N (ν) Θa

q̃(ν) (χ
Xm

h

a
pd

q,h
(ξp

k
,·)
, χ

Xm
h

a
pd

q̃,h
(ξp

k̃
,·)

)Xm
h

−

2

Qf∑

q=1

Qa∑

q̃=1

N∑

k=1

<

[
Θf
q (ν) u

k̃
N (ν) Θa

q̃ (ν) (χ
Xm

h

f
pd

q,h
(·)
, χ

Xm
h

a
pd

q̃,h
(ξp

k̃
,·)

)Xm
h

]
.

(5.6)

The quantities in the rectangles can be precomputed in the off-line part, once and
for all. The number of operations in the on-line part is independent of the dimension
Nm of the truth approximation spaces and scales as

#Op ≈ Q2
f + Q2

a N
2 + Qf Qa N.

The computation of εd,mM (ν) can be done in a similar way.

5.3. Computing β
p,m

(ν),m ∈ {p, pd}. The off-line construction of the lower
bound of the inf-sup parameter is currently the most expensive part of the algorithm,
particularly for non-coercive problems with resonances such as Maxwell’s equations.
There are several algorithms to achieve this goal and we refer the readers to [12, 5] for
the most recent successive constraint method (SCM). It finds, through a greedy algo-
rithm, K points ν1, . . . , νK in the parameter domain D. The exact inf-sup numbers
at these K points are found by solving the corresponding eigenvalue problems. Then,
a rigorous lower bound β

p,m
(ν) for any ν ∈ D is obtained by solving a local linear

program. This on-line procedure is independent of the dimension of the truth approx-
imation spaces resulting in a low computational cost for β

p,m
(ν). In the following, we

describe SCM for a general affine bilinear form denoted by

aN (w, v; ν) ≡

Q∑

q=1

Θq(ν) aNq (w, v), ∀ w, v ∈ XN .

The methodology is defined for the coercive and then the non-coercive case.

5.3.1. Coercive case. The coercivity constant is

αN (ν) ≡ inf
w∈XN

aN (w,w; ν)

‖w‖2
XN

= inf
w∈XN

Q∑

q=1

Θq(ν)
aNq (w,w)

‖w‖2
XN

= inf
w∈XN

Q∑

q=1

Θq(ν)yq(w).

Here, we set yq(w) =
aNq (w,w)

‖w‖2

XN

. Obviously, (y1(w), . . . , yQ(w)) belongs to the following

set

Y ≡
{
y = (y1, . . . , yQ) ∈ R

Q | ∃ w ∈ XN s.t. yq = yq(w), 1 ≤ q ≤ Q
}
.

Having defined the set Y , our coercivity constant can be found by solving the following
minimization problem:

αN (ν) = inf
y ∈Y

J (ν; y), (5.7)
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where, the objective function J : D × RQ → R is defined as

J (ν; y) =

Q∑

q=1

Θq(ν)yq .

Problem (5.7) appears like a minimization problem of a linear functional over a com-
pact subset of RQ.
We only need to characterize the set Y now. The idea of SCM is to build two sets YLB
and YUB over which the minimization of J is feasible and satisfy YUB ⊂ Y ⊂ YLB .
Therefore, we can perform the minimization on these two sets to obtain an upper
bound and a lower bound for αN (ν). For this purpose, we define

σ−
q ≡ inf

w∈XN
yq(w), σ+

q ≡ sup
w∈XN

yq(w), 1 ≤ q ≤ Q,

and let BQ ≡ ΠQ
q=1[σ

−
q , σ

+
q ] ⊂ RQ. Obviously, Y ⊂ BQ.

To properly define YLB and YUB , we also need to introduce two parameter sets
Ξ ≡ {ν1 ∈ D, . . . , νJ ∈ D} and CK ≡ {w1 ∈ D, . . . , wK ∈ D}. Ξ is a (rather large)
sample set of grid points in the parameter domain (e.g. defined from a mesh) and CK
is any subset of Ξ. Let PM (ν;E) denote the M points closest to ν in E with E being
Ξ or CK .
We are now ready to define YLB and YUB : For given CK (and Mα ∈ N, M+ ∈ N,
and Ξ), we define

YLB(ν;CK) ≡

{
y ∈ BQ |

Q∑

q=1

Θq(ν′)yq ≥ αN (ν′), ∀ν′ ∈ PMα
(ν;CK);

Q∑

q=1

Θq(ν′)yq ≥ αLB(ν′, CK−1), ∀ν
′ ∈ PM+

(ν; Ξ\CK)

}
,

(5.8)

and YUB(CK) ≡ {y∗(wk), 1 ≤ k ≤ K} for y∗(ν) ≡ argminy∈YJ (ν; y). We then define

αLB(ν, C0) ≡ 0; αLB(ν;CK) = inf
y∈YLB(ν;CK)

J (ν; y) for K > 0, (5.9)

and

αUB(ν;CK) = inf
y∈YUB(CK)

J (ν; y). (5.10)

We can prove [6] that, for given CK (and Mα ∈ N, M+ ∈ N, and Ξ), αLB(ν;CK) ≤
αN (ν) ≤ αUB(ν;CK), ∀ν ∈ D; and, for any ν ∈ Ξ, αLB(ν, CK) is nondecreasing,

αUB(ν, CK) nonincreasing and αUB(ν,CK)−αLB(ν,CK)
αUB(ν,CK) nonincreasing as K increases,

Note that (5.8), (5.9) is in fact a Linear Program (LP); Our LP (5.9) contains Q
design variables and 2Q+Mα+M+ (one-sided) inequality constraints: the operation
count for the on-line stage ν → αLB(ν) is independent of N .
It only remains to determine CK . It is constructed by an off-line “greedy” algorithm.
Given Mα ∈ N, M+ ∈ N, Ξ, and a tolerance εα ∈ [0, 1], the algorithm reads:

(1.) Set K = 1 and choose C1 = {w1} arbitrarily.

(2.) Find wK+1 = argmaxν∈Ξ
αUB(ν;CK)−αLB(ν;CK)

αUB(ν;CK) .

(3.) Update CK+1 = CK ∪ wK+1.

(4.) Repeat (2) and (3) until maxν∈Ξ
αUB(ν;CKmax )−αLB(ν;CKmax )

αUB(ν;CKmax ) ≤ εα.
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5.3.2. Non-coercive case. For the non-coercive case, we need to find a lower
bound of the inf-sup number,

βN (ν) ≡ inf
ω∈XN

sup
v∈XN

|aN (ω, v; ν)|

‖ω‖XN ‖v‖XN

.

If we define an operator T ν : XN → XN as (T νw, v)XN = aN (w, v; ν), ∀v ∈ XN , it
is easy to show that

βN (ν) = inf
w∈XN

‖T νw‖XN

‖w‖XN

,

which means

(βN (ν))2 = inf
w∈XN

(T νw, T νw)XN

‖w‖2
XN

.

To expand it, we need to define operators T q : XN → XN as

(T qw, v)XN = aNq (w, v), ∀v ∈ XN , 1 ≤ q ≤ Q.

Realizing T νw ≡
∑Q

q=1 Θq(ν)T qw, we can expand (βN (ν))2 as

(βN (ν))2 = inf
w∈XN

Q∑

q′=1

Q∑

q′′=1

Zq
′

q′′(ν)
(T q

′

w, T q
′′

w)XN

‖w‖2
XN

= inf
w∈XN

Q∑

q′=1

Q∑

q′′=q′

Zq
′

q′′(ν)

1 + δq′q′′

(T q
′

w, T q
′′

w)XN + (T q
′′

w, T q
′

w)XN

‖w‖2
XN

.

(5.11)

Here, Zq
′

q′′(ν) = Θq′(ν)Θq′′ (ν), δq′q′′ is the Kronecker delta. Next, we identify

Zq
′

q′′(ν)

1 + δq′q′′
, 1 ≤ q′ ≤ q′′ ≤ Q 7−→ Θ̂q(ν), 1 ≤ q ≤ Q̂ ≡

Q(Q+ 1)

2
,

(T q
′

w, T q
′′

w)XN + (T q
′′

w, T q
′

w)XN , 1 ≤ q′ ≤ q′′ ≤ Q 7−→ âNq (w, v), 1 ≤ q ≤ Q̂,

and obtain

(βN (ν))2 ≡ inf
w∈XN

bQ∑

q=1

Θ̂q(ν)
âNq (w,w)

‖w‖2
XN

. (5.12)

Hence (βN (ν))2 can be interpreted as the coercivity constant for the bilinear form

α̂N (ν) ≡ inf
w∈XN

bQ∑

q=1

Θ̂q(ν)
âNq (w,w)

‖w‖2
XN

.

And we may then directly apply the SCM procedure defined above to (5.12).
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Before extending this to the complex case, we interpret the expansion above in terms
of matrices: if we let w denote the vector of degrees of freedom for w ∈ XN and
MT q′ ,T q′′ denote the matrix corresponding to (T q

′

w, T q
′′

w)XN , we rewrite (5.11) as

(βN (ν))2 =

Q∑

q′=1

Q∑

q′′=q′

Zq
′

q′′(ν)

1 + δq′q′′

wT
(
MT q′ ,T q′′ +MT q′′ ,T q′

)
w

‖w‖2
XN

.

When Θq(ν) is complex, we have

(βN (ν))2 = inf
w∈XN

Q∑

q′=1

Q∑

q′′=1

Zq
′

q′′(ν)
wHMT q′ ,T q′′w

‖w‖2
XN

= inf
w∈XN

Q∑

q=1

Zqq (ν)
wHMT q ,T qw

‖w‖2
XN

+

Q∑

q′=1

Q∑

q′′=q′+1

Zq
′

q′′(ν)w
HMT q′ ,T q′′w + Zq

′′

q′ (ν)wHMT q′′ ,T q′w

‖w‖2
XN

= inf
w∈XN

Q∑

q=1

Zqq (ν)
wHMT q ,T qw

‖w‖2
XN

+

Q∑

q′=1

Q∑

q′′=q′+1

wH
(
Zq

′

q′′ (ν)MT q′ ,T q′′ + Zq
′′

q′ (ν)MT q′ ,T q′′
T
)
w

‖w‖2
XN

.

Here, Zq
′

q′′(ν) = Θq′(ν)Θ̄q′′ (ν) = Z̄q
′′

q′ (ν).
Note that, when z is a complex number, X is a complex vector and A is a real matrix,
we have that

XH
(
z A+ z̄ AT

)
X = 2<z

(
<XT=XT

)( A 0
0 A

)(
<X
=X

)

+ 2=z
(
<XT=XT

)( 0 −A
A 0

)(
<X
=X

)

= 2<z
(
<XT=XT

)
(

A+AT

2 0

0 A+AT

2

)(
<X
=X

)

+ 2=z
(
<XT=XT

)
(

0 AT −A
2

A−AT

2 0

)(
<X
=X

)
.

Here, < and = indicate real and imaginary parts, respectively. We can then obtain
an expansion similar to the real case.

6. Numerical examples. After having laid out the theoretical foundation and
the computational implications of the proposed methods, we now demonstrate the
validity and efficiency on the following cavity problem associated with the solution
of Maxwell’s equations. We consider the two-dimensional Maxwell’s equations on
TE-form as
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Fig. 6.1. Sketch of the geometry of the electromagnetic cavity problem.

iωεE = −σ∇Hz + J , iωµHz = (∇×E) · ẑ, σ =

[
0 −1
1 0

]
,

where E(x, y) = (Ex, Ey) and Hz(x, y) is the magnetic component pointing out of
the (x, y)-plane along ẑ. Expressing this using the second order form yields

σ∇

(
1

µ
(∇×E) · ẑ

)
− ω2εE = iωJ .

The equations are solved using the discontinuous Galerkin method discussed in Sec.
3 with τ = 0 and the spaces Xm

h (m ∈ {p, d, pd}) containing piecewise polynomial of
degree 4 on the meshes shown in Figure 6.2.
We seek the solution to this problem in the closed geometry, illustrated in Fig. 6.1
where we assume all exterior boundary to be perfectly electrically conducting with
vanishing tangential electric fields. The cavity is loaded with two materials, each
occupying half of the cavity. For simplicity we assume that Ω1 of the cavity is vacuum
filled in which case ε1 = µ1 = 1 while the material parameters in Ω2 are the parameters
of the problem.
As a source, we consider a simple dipole antenna, modeled with a current

Jx = 0, Jy = cos

(
ω

(
y −

1

2

))
δΓi

,

where Γi reflects the antenna. We use ω = 5π/2.
Without any special significance, we choose the functional of interest to be

s(E) =

∫

Ω2

Ex +Ey dx.

6.1. Computational Tests – first algorithm. We show numerical results for
the first algorithm with ε2 ∈ [2, 6], µ2 ∈ [1.0, 1.2] as two parameters. We use a
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Fig. 6.2. The three grids used in the computational example, defining Xp, Xd, and Xpd,
respectively

Fig. 6.3. Contour plot of the logarithm of the lower bound of the square of the inf-sup constant
computed by the SCM.

Cartesian grid of 512 × 33 as the set S. The lower bound β
p,p

(ν) is provided by
the SCM as shown in [6], see Figure 6.3. Recall that we assume that the inf-sup
numbers (4.3) are uniformly bounded away from zero for the problems to be well
defined. However, there are 12 lines in Figure 6.3 along which the lower bound is
extremely small, indicating the assumption is violated. These particular parameters
configure Maxwell eigen-problems, and we call these lines resonance lines.

We take N = M = 50 and build Xp
N and Xd

M . See Figure 6.4 for the sets SpN =
{νp1 , . . . , ν

p
50} and SdM = {νd1 , . . . , ν

d
50} chosen by the greedy algorithm.

Then, we use these two spaces to compute the reduced basis solution for any param-
eter in [2, 6] × [1, 1.2]. See Figure 6.5 and 6.6 for sample primal and dual solutions
at (ε2, µ2) = (2, 1). Here, we show the truth approximation and the RB solutions
with the dimension of the RBM spaces being 10, 20 and 30. We observe that, as we
increase the dimension of the RBM space, the RB solution converges to the truth ap-
proximation exponentially in the H(curl) norm. We also see that, in the last column,
the relative CPU time to obtain these RB approximations is essentially negligible
compared to that of the truth approximation.

Next, we test our error estimate on a set of 1300 points away from the resonance
lines in the parameter domain, see Figure 6.7 for the set, Ξt,1 ⊂ S\

(
SpN
⋃
SdM
)
. We

compute, for any ν ∈ Ξt,1, the truth approximation and the reduced basis primal/dual
solutions for N = 10, . . . , 30 and evaluate the H(curl) norms of the errors uph(ν) −

uN(ν) and ψdh(ν) − ψM (ν), the error estimates ∆p,p
N and ∆d,d

M . In the first two rows
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Fig. 6.4. The points selected by the RBM to build the bases for the primal (top) and dual
(bottom) problems using the error estimate for the solutions.
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of Figure 6.8, we plot the maximum, median, and minimum of these values over Ξt,1

and observe that all basically decrease exponentially with respect to N .

Finally, we sort Ξt,1 according to the corresponding lower bound and let Ξkt,1 be the
set of the first k points in Ξt,1 for k = 1, . . . , 1300. The last row of Figures 6.8
represents the the maximum effectivity indices over Ξkt,1 versus k for reduced basis
spaces of dimension 10, 15, 20, 25. We see that the error estimate is in general sharp
and particular sharp when k is small, that is, when the parameter stays far away from
the resonances. The error estimates deteriorate as we get closer to the resonances, but
they are still legitimate convergence indicators. It is interesting however to note that
the effectivity indices are rather independent of the size of the reduced basis that is
used for the computation. That is, the effectivity indices remain of the same magni-
tude when the errors becomes many magnitudes smaller as we increase the dimension
of the reduced basis space. To show that our result above is not a coincidence of the
fact Ξt,1 ⊂ S, we perform the same test on a set, Ξt,2, that contains 1000 centers of
the rectangle cells of S. See Figure 6.9 for Ξt,2. Note that, for Ξt,2, we exclude more
points in the neighborhood of the resonance lines. This is a consequence of the SCM,
which provides more conservative lower bound for ν /∈ S than for ν ∈ S. Thus, more
points are considered to be “too close” to resonance and excluded from the computa-
tion. Addressing this shortfall of SCM is one of our ongoing works. Figure 6.10 shows
that our method performs equally well on the set Ξt,2. We conclude that the method
provides a reliable a posteriori estimator for both primal and dual problems.

Recall that the quantity of our interest is the output. There are two ways to compute
the output. One is done similarly to Eq (4.7) where only the primal or dual solution

is used, that is, SN (ν) = lpdh (uN (ν)). The other is by Eq (4.13) where both the primal
and dual solutions are included. Figure 6.11 shows the histories of convergence. We
see that the latter converges much faster. In fact, the rate is quadratic with respect
to that of the error of the solutions [15].

6.2. Computational Tests – second algorithm. Here, we test our second
algorithm with the same settings. We build Xp

N and Xd
M simultaneously according

to the error indicators for the output. See Figure 6.12 for the points selected to build
the two reduced basis spaces. Figure 6.13 shows that this algorithm produces roughly
the same result as the first algorithm. However, we remark that it is essential to have
this algorithm available which concentrates on the quantity of interest – the output.
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It is one of our future works to explore the advantages of the second algorithm over
the first one, for example, when the output involves averaging which does not see
oscillations which may be present.

7. Concluding remarks. Certified reduced basis methods for the harmonic
Maxwell’s equations are developed. We examine several essential ingredients such as
the a posteriori error estimates for the solution and output, off-line/on-line computa-
tion procedure, two different greedy algorithms to build the reduced basis spaces. We
have applied the method to a challenging electromagnetic cavity problem. The rigor
and high efficiency of the method are confirmed by the numerical results. Exponential
convergence of the reduced basis approximation to the truth finite element approxi-
mation is observed. The reduced basis output also converges exponentially. Future
work includes efficient extension to many-parameter problems, and investigation of
reduced basis element method for electromagnetics.

Acknowledgments. This work was partially supported by AFOSR Grant FA9550-
07-1-0425.
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plications. Collège de France Seminar, Vol. XIV (Paris, 1997/1998), volume 31 of Stud.
Math. Appl., pages 533–569. North-Holland, Amsterdam, 2002.

[16] Yvon Maday, Anthony T. Patera, and Gabriel Turinici. A priori convergence theory for
reduced-basis approximations of single-parameter elliptic partial differential equations. In
Proceedings of the Fifth International Conference on Spectral and High Order Methods
(ICOSAHOM-01) (Uppsala), volume 17, pages 437–446, 2002.

[17] P. Monk. Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and
Scientific Computing. Oxford University Press, Oxford, United Kingdom, 2003.

[18] N. C. Nguyen. Reduced-Basis Approximations and A Posteriori Error Bounds for Nonaffine
and Nonlinear Partial Differential Equations: Application to Inverse Analysis. PhD thesis,
Singapore-MIT Alliance, June 2005.

[19] A. K. Noor and J. M. Peters. Reduced basis technique for nonlinear analysis of structures.
AIAA Journal, 45(172):487–496, April 1980.

[20] Janet S. Peterson. The reduced basis method for incompressible viscous flow calculations.
SIAM Journal on Scientific and Statistical Computing, 10(4):777–786, 1989.

[21] Niles A. Pierce and Michael B. Giles. Adjoint recovery of superconvergent functionals from
PDE approximations. SIAM Review, 42(2):247–264, 2000.

[22] T. A. Porsching. Estimation of the error in the reduced basis method solution of nonlinear
equations. Math. Comp., 45(172):487–496, 1985.

[23] C. Prud’homme, D. Rovas, K. Veroy, Y. Maday, A. T. Patera, and G. Turinici. Reliable real-
time solution of parametrized partial differential equations: Reduced-basis output bound
methods. Journal of Fluids Engineering, 124(1):70–80, March 2002.

[24] Werner C. Rheinboldt. On the theory and error estimation of the reduced basis method for
multi-parameter problems. Nonlinear Anal., 21(11):849–858, 1993.

[25] G. Rozza. Shape Design by optimal flow control and reduced basis techniques: Applications to
bypass configurations in haemodynamics. PhD thesis, EPFL2005.

[26] S. Sen. Reduced Basis Approximation and A Posteriori Error Estimation for Many-Parameter
Problems. PhD thesis, MIT, 2007.

[27] K. Veroy. Reduced-Basis Methods Applied to Problems in Elasticity: Analysis and Applications.
PhD thesis, MIT, June 2003.

[28] K. Veroy, C. Prud’homme, and A. T. Patera. Reduced-basis approximation of the viscous
burgers equation: Rigorous a posteriori error bounds. C. R. Acad. Sci. Paris, Série I,
337(9):619–624, November 2003.

[29] K. Veroy, C. Prud’homme, D.V. Rovas, and A.T.Patera. A posteriori error bounds for reduced-
basis approximation of parametrized noncoercive and nonlinear elliptic partial differential
equations. AIAA, 2003.



26 Y. CHEN, J.S. HESTHAVEN, Y. MADAY, AND J. RODRIGUEZ

Fig. 6.5. Sample solutions of the primal problem from truth (first row) and reduced basis
approximations with 10 (second), 20 (third) and 30 (last) bases. Error denotes the H(curl) difference
from the truth approximation; Time means the relative on-line computation time.
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Fig. 6.6. Sample solutions of the dual problem from truth (first row) and reduced basis approx-
imations with 10 (second), 20 (third) and 30 (last) bases. Error denotes the H(curl) difference from
the truth approximation; Time means the relative on-line computation time.
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Fig. 6.7. Ξt,1 contains 1300 points.
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Fig. 6.8. Results for the primal (left column) and dual (right column) problems on Ξt,1: Plotted
on the first row is the dimensions of the reduced basis space versus the H(curl) norm of the errors of
the solution. The second row is the dimensions of the reduced basis space versus the H(curl) error
estimate. The last row is the size of the test set versus the maximum effectivity index of the error
estimates.
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Fig. 6.9. Ξt,2 contains 1000 points.
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Fig. 6.10. Results for the primal (left column) and dual (right column) problems on Ξt,2:
Plotted on the first row is the dimensions of the reduced basis space versus the H(curl) norm of
the errors of the solution. The second row is the dimensions of the reduced basis space versus the
H(curl) error estimate. The last row is the size of the test set versus the maximum effectivity index
of the error estimates.
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Fig. 6.11. Comparison of histories of convergence for the two ways to compute the output.
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Fig. 6.12. The points selected by the RBM to build the bases for the primal and dual problems
using the error estimate for the output.
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Fig. 6.13. Comparison of the two different methods to build the reduced bases.
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