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A two voltage level electronic device is interesting because the clock frequency and the supply voltage level could be reduced in order to decrease the energy consumption. However, these two quantities have to be controlled respecting certain rules, and decreasing them leads to a reduced computational speed. In this paper a control architecture is proposed to deal with this power-performance tradeoff. First, a fast predictive control technic gives the best computational speed set point to minimize the penalizing high voltage running time. Then, the frequency and the supply voltage are controlled together in order that the measured speed tracks this set point. Finally, the proposal clearly gives an important reduction of the energy consumption. Moreover, the control strategy is robust to process variability and therefore suitable for 45nm, 32nm or smaller implementations.

I. INTRODUCTION

An energy-performance tradeoff is required in many embedded electronic systems. Actually, three power consumption sources exist in CMOS circuits [START_REF] Chandrakasan | Minimizing power consumption in digital cmos circuits[END_REF], which could be sorted into a dynamic consumption from switching of electrical gates and a static consumption from short circuit and leakage currents:

P = P switching + P short circuit + P leakage P = K dyn f clk V 2 dd + K sc f clk V dd + K leak V dd (1) 
From this relation, it seems that the consumption could be reduced by decreasing V dd , i.e. the supply voltage, or f clk , i.e. the clock frequency. However, decreasing only the frequency will decrease the power consumption and results in a slower running task but the total energy consumption will remain unchanged [START_REF] Varma | A control-theoretic approach to dynamic voltage scheduling[END_REF]. The voltage has hence to be reduce in order to decrease the energy consumption. Furthermore, the supply voltage is the dominant term especially because the dynamic power is the most important part in [START_REF] Albea | Control and stability analysis for the vdd-hopping mechanism[END_REF]. In other words, decreasing the voltage will almost quadratically decrease the energy consumption. Unfortunately, this drop will decrease the computational speed because of the propagation delay of transistors, i.e. T d , which is seriously increasing as V dd approaches the threshold voltage of the device V t :

T d ∝ V dd (V dd -V t ) 2
Controlling the supply voltage is hence a power-delay tradeoff: the power consumption decreases while the delay increases. That is why the supply voltage and the clock frequency have to be controlled together to guarantee the S. Durand is with NeCS Project-Team, INRIA -GIPSA-lab -CNRS, Grenoble, France, sylvain.durand@inrialpes.fr N. Marchand is with NeCS Project-Team, INRIA -GIPSA-lab -CNRS, Grenoble, France, nicolas.marchand@gipsa-lab.inpg.fr critical path (the longest electrical path a signal can travel to go from a point to another of the circuit): if the frequency is not sufficient the signal could not travel between two clock signals and the result of the calculation made by the system may be wrong. Therefore the critical path delay has to be lower than the inverse of the clock frequency else the system will not correctly work [START_REF] Pouwelse | Dynamic voltage scaling on a low-power microprocessor[END_REF]:

T d critical path < 1 f clk
Clearly, it is required to decrease the clock frequency before decreasing the supply voltage and, respectively, increase the supply voltage before increasing the clock frequency. This principle is needed in all systems to guarantee the critical path: either with an hardware solution like some delay lines [START_REF] Dhar | Switching regulator with dynamically adjustable supply voltage for low power vlsi[END_REF], [START_REF] Dhar | Closed-loop adaptive voltage scaling controller for standard-cell asics[END_REF], or with a software technic at least.

A good consumption-performance tradeoff could be achieved using a commonly used approach in embedded systems: the Dynamic Voltage and Frequency Scaling (DVFS or DVS). This method consists in adapting the voltage and the frequency to the computational load and leads up to an important energy consumption reduction (regarding the application) [START_REF] Pering | Voltage scheduling in the lparm microprocessor system[END_REF]. Furthermore, it turns out that different kinds of tasks exist, such as intensive computational tasks, background tasks or processor idle [START_REF] Burd | Processor design for portable systems[END_REF] and it seems that most of the applications could run with a reduced voltage [START_REF] Burd | A dynamic voltage scaled microprocessor system[END_REF].

Several behaviors are accepted to minimize the energy consumption. Firstly, each task has to be considered independently and its execution time has to fit with the deadline. Moreover, selecting some suitable voltage levels leads to a drastic energy reduction even if the number of levels is very small [START_REF] Ishihara | Voltage scheduling problem for dynamically variable voltage processors[END_REF]. The supply voltage has to be reduced as much as possible and the frequency clock adapted to the computational load to minimize the energy consumption [START_REF] Pouwelse | Dynamic voltage scaling on a low-power microprocessor[END_REF].

In this paper, a control strategy that minimizes the energy consumption as much as possible while guaranteeing a computational speed performance is proposed. In the following section, the system architecture of a micro-controller is given. Its model is the derived recalling elementary relationships in electronic devices. In section III, a predictive control technic is detailed to build a computational speed set point in order to minimize the energy consumption of each task. Then, in section IV a simple frequency and voltage level control is presented to track this reference. Finally the controller is simulated in section V and the robustness is tested in particular in the case of high dispersion phenomena like the one arising in 45 nm and smaller technologies.

II. SYSTEM ARCHITECTURE

The system architecture is shown on Figure 1. Device is the system to control (a processor or a system on chip for example). It usually runs at nominal supply voltage and constant clock frequency but these quantities will now dynamically vary in order to reduce the energy consumption. That is possible introducing a closed-loop with a controller to monitor the activity of the device (its computational speed ω) and to adapt the supply voltage and the clock frequency regarding the computational load ref provided by the operating system for each task. The equation used for this block is

ω = α(V dd ) • f clk + β(V dd )
, which can be simplified as ω = α • f clk + β due to the small impact of the voltage on the variables [START_REF] Zakaria | Integrated asynchronous regulation for nanometric technologies: Application to an embedded parallel system[END_REF]. Oscillator & Vdd-hopping are the two actuators used in some DVFS systems. They respectively provide the clock frequency and the supply voltage to the device.

• The oscillator could be a ring oscillator with the relation

f clk = γ • f • V dd [8].
• The Vdd-hopping principle is described in [START_REF] Albea | Control and stability analysis for the vdd-hopping mechanism[END_REF]. Two voltage levels are available (V low and V high ) and the one or the other could be achieved (with a certain transition time and dynamics that depends upon the internal controller of the Vdd-hopping, see [START_REF] Albea | Control and stability analysis for the vdd-hopping mechanism[END_REF] for further details) regarding the V level input signal: V level = level low to require the low voltage and respectively level high for the high voltage. To sum up, V dd = f (V level ). Afterwards, the group "oscillator + Vdd-hopping + device" will be called the system. The system model is given by ω

= α • γ • f • V dd + β,
which can finally be approximated by an affine function, as depicted with the following equation:

ω = σ • f • V dd with σ α • γ (2) 
Energy controller has to provide the control signals to the actuators. Actually, the energy controller can be divided into two parts, as depicted on Figure 2: • A computational speed controller which provides the computational speed set point ω sp . Thus, from some task information given by the operating system, this controller chooses the best speed reference in order to minimize the energy consumption while guaranteeing the computational performance.

• A frequency and voltage level controller which fits the measured speed ω with the desired one ω sp , by adapting the frequency f and the voltage level V level . The control strategy consists in a feedback loop with the measured computational speed ω for both parts of the controller (see [START_REF] Durand | Dispositif de commande d'alimentation d'un calculateur[END_REF] for different architectures). In the next two sections, we will first deal with the computational speed controller and describe the predictive control law used to build an energy efficient speed set point and then we will detail the frequency and voltage level controller. 

III. COMPUTATIONAL SPEED CONTROL

To define the speed set point ω sp (in number of instructions by second) some task information are required. Indeed, for each task T i the operating system provides data to the controller: the computational load and the time before the task has to be executed, which are respectively the number of instructions C i and the deadline N i (i.e. the inputs on Figure 2). In fact, the remaining available time to execute the task, i.e. the laxity L i , would be used instead of the deadline which is an absolute time. An example of these data for three tasks is shown on Figure 3.

time time instruction number deadline C2 C1 C3 N2 N1 N3 T 1 T 2 T 3 T 2 T 1 T 3 (laxity) t 1 t 2 t 3 t 1 t 2 t 3
Fig. 3. Set points sent by the operating system for each T i : the instruction number C i and the deadline N i (or the laxity L i )

A. Speed Set Point Building

An intuitive speed set point is the average one: for each task T i , the average reference is the ratio between the instruction number to compute and the time to do it, i.e. C i /N i . But this intuitive set point is not energy efficient. Indeed, on Figure 4 one can see the maximum computational speed when the system is running at high voltage, that is 2), and respectively the maximum possible speed at low voltage, that is ω max = σ • F V low max • V low . Note that we will explain in section IV how to compute σ, thanks to [START_REF] Dhar | Switching regulator with dynamically adjustable supply voltage for low power vlsi[END_REF]. It is easy to imagine that for all tasks with an average speed set point upper than ω max , the system will run at high supply voltage. Therefore it will consume a lot because of the (quasi)-quadratic relationship between the supply voltage and the energy consumption.

ω max = σ • F V high max • V high from (
A solution to avoid running the whole task at the penalizing high supply voltage as soon as the average speed set point is higher than ω max is to schedule the tasks, as shown on Figure 4 (bottom plot):

-If the average speed set point of the current task T i is lower than ω max , the system could run at V low with this average speed set point, as for the tasks T 1 and T 3 . -On the other hand if the average speed set point overshoots ω max , as for the task T 2 , the system has to run at V high to perform the task before its deadline. However, instead of executing the whole task with the high supply voltage (as done with the intuitive method), the task can be executed at V high during a certain time and then it would be finished at V low . In order to minimize the high voltage running time, the system has hence to run at maximum speed when the supply voltage is V high . Thus, after a certain high voltage and maximum speed running time, the voltage level could drop to perform the end of the with a speed lower than ω max . To sum up, an energy efficient method would perform a task by running the shortest possible time at high voltage. In other words, a task with an important computational load (such as T 2 ) will be executed at V high and maximal speed from its beginning (t 2 ) until a certain time (k). Then the task could be finished at V low and a speed under ω max , which will be enough to fit it with its deadline (t 3 ). However, the time k could not be a priori known, therefore a predictive control law is designed to dynamically calculate it. average computational speed set point

ω max C2 N2 ωmax C1 N1 C3 N3
energy efficient computational speed set point

ω max C2 N2 ωmax C1 N1 C3 N3 T 1 T 2 T 3 T 1 T 2 T 3 t 1 t 2 t 3 time t 1 t 2 t 3
time Fig. 4. Different speed set point building: an intuitive vs. an energy efficient computational speed set point behavior

The task information given by the operating system are not enough anymore and we now also need some information about system resources, such as the maximum speed for the different voltage levels (ω max and ω max ). Moreover, we need to know what it has already been done in order to predict the minimum high voltage running time, and for this reason a computational speed feedback loop is required.

B. Fast Predictive Control

To minimize the energy consumption the system has to run the shortest possible time with the penalizing high supply voltage (and at maximum speed). Thus, the controller dynamically calculates if the system needs to run at V high (and at ω max ) or if the low voltage level (and a speed lower than ω max ) will be enough to compute the task before its deadline. This principle could be formulated as a predictive control problem: for each task T i , what is the speed set point which will minimize the high voltage running time t V high while guaranteeing that the executed instruction number is equal to the number of instructions C i to do:

min t V high / Ni ω dt = C i
Nevertheless, the speed set point can be obtained in an easier and faster way. We simply need to know i) what the processor has to do and ii) how much time is available to do it. As the speed set point is dynamically calculated, i.e. at each sampling time, the remaining time before the end of the task is necessary. This is why the laxity L i will be used instead of the deadline N i .

Firstly, the predictive average speed required to perform the task exactly on its deadline, i.e. δ, is calculated at each sampling time T s . The value of δ can be easily described as the ratio between what the processor has to do to compute the task minus what it has already done (that is corresponding to what it remains to do) and the remaining time before the end of the task. This principle can be mathematically expressed as following (where t i is the beginning of the task T i ):

δ(t + ) = C i (t) - t-ti ti ω(t) dt L i (t) (3) 
One could note that C i , N i and L i are piecewise defined because they change for each task and, furthermore, the operating system could decide to modify them during the running time of a task. The equation (3) has to be implemented and the discretization leads to (4), where Ω is the integration of the computational speed ω.

Ω(t k ) = Ω(t k-1 ) + T s ω(t k ) δ(t k+1 ) = C i (t k ) -Ω(t k ) L i (t k ) (4) 
A conditional instruction is added to be coherent: indeed, the computational speed ω is integrated on the running time of each task and so when a task is executed, i.e. in the last sampling time before its deadline, the variable Ω is reset. More precisely, Ω is not set to zero to prevent the case when the task is not completely executed at its deadline. For this reason we adjust Ω with the difference between what it has already been done and what it was required to do:

if L i (t k ) ≤ T s , Ω(t k ) = Ω(t k ) -C i (t k )
The set point is finally deduced from the value of δ:

-If the predictive average speed is higher than the maximum speed at low voltage, i.e. δ > ω max , then the system has to go to the high supply voltage and so to the maximum speed. -On the other hand, as soon as δ becomes lower than ω max , the system could switch to the low voltage level because it will be able to finish the task without going back to V high (if the instruction number and/or the deadline do not change). Regarding the speed set point, the δ value will allow to fit the task with its deadline. The following equation summarizes this behavior:

ω sp (t k ) = ω max if δ(t k+1 ) > ω max δ(t k+1 ) otherwise
Thereby, an energy efficient computational speed set point is achieved with this control law. Moreover, one can guarantee that the number of instructions to do will be done because, if the system is slower than required, ω sp will be adjusted thanks to the measurement speed feedback loop.

IV. FREQUENCY AND VOLTAGE LEVEL CONTROL

The aim of this second part of the controller is to track the speed set point ω sp by adapting the frequency f and the voltage level V level .

Regarding the frequency, as ω sp is already adjusted to what it has been done, the simplest set point tracking will be enough. The controller hence needs an integral at least to guarantee a null static error. We chose the discret time controller described by [START_REF] Dhar | Switching regulator with dynamically adjustable supply voltage for low power vlsi[END_REF], where K is a gain.

ε(t k ) = ω sp (t k ) -ω(t k ) σ(t k ) = ω(t k ) f (t k-1 )V dd (t k ) f (t k ) = f (t k-1 ) + T s σ(t k )Kε(t k ) (5)
Note that the system model can be approximated as a variable gain σ, as shown by [START_REF] Burd | Processor design for portable systems[END_REF]. We propose to use it in the frequency control law because in practice, nothing more than this gain can be measured -when measured -due to space and time dispersion of behavior. Moreover, to simplify the identification, we simply use the previous calculated frequency f (t k-1 ). The voltage level is then deduced from the frequency according to the hysteresis behavior represented on Figure 5: V level can change only when the frequency is larger than the maximum frequency at low voltage level, i.e. F V low max . So if the frequency is increasing then the voltage level is set to the high level, i.e. level high (in order that the Vdd-hopping increases the supply voltage), and respectively level low if the frequency is decreasing:

not functional V high V low voltage frequency F Vlowmin F Vlowmax F Vhighmax (f clk ) (V dd )
∆f = f (t k ) -f (t k-1 ) if f (t k ) > F V low max V level (t k ) = level high if ∆f > 0 level low if ∆f < 0 else V level (t k ) = V level (t k-1 ) end
Moreover, when the supply voltage is higher than V low then f is forced to the maximum possible frequency (approximated by a linear function on the hysteresis):

f (t k ) = a • V dd (t k ) + b if V dd (t k ) > V low with a = F V high max -F V low max V high -V low b = F V high max -a • V high (6)
This last step is needed in order to i) minimize the energy consumption by reducing the high voltage running time and ii) guarantee the critical path by controlling the frequency during transitions to not go to the not functional area.

V. PERFORMANCE EVALUATION

This section presents the simulation results of the energy controller depicted on Figure 1. Three tasks to execute are proposed for the benchmark test: the first task starts with 4 instructions to do in 0.5µs, then a 65 instruction task has to be executed in 2.5µs and the last one has to compute 10 instructions in 1µs. These data (usually provided by the operating system) are shown on Figure 6. Note that the laxity could be simply built as following: at the beginning of the task, the laxity is equal to the deadline and then, at each sampling interval the laxity is decreased of the value of the sampling time T s in order to be null at the end of the task. The simulation results are shown on Figure 7. The top plot shows the average speed set point (for guideline), the speed set point ω sp calculated by the computational speed controller and the measured speed ω. The bottom plot shows the supply voltage V dd . One can verify that ω and V dd are proportional when the voltage is upper than V low , due to [START_REF] Dhar | Closed-loop adaptive voltage scaling controller for standard-cell asics[END_REF].

The clock frequency f clk , the frequency f and the voltage level V level are not plotted because they do not provide relevant information: the frequencies are proportional to the speed and the level can be deduced from the voltage (as soon as the supply voltage increases, respectively decreases, the voltage level goes to level high , respectively level low ). Simulation results: energy consumption of 1.24 • 10 -5 J and computational needs of 1.43•10 5 f lops, that is 20% of energy consumption less and 10% of computational needs more than a controller without DVS

The results are quantified in term of energy consumption and computational needs: Energy consumption of the system: The energy consumption is calculated in order to have an idea of the reduction achieved thanks to our proposal. Thus, the relation ( 1) is used and a ratio of this power consumption is added due to the Vdd-hopping principle: 20% more during the voltage transition time and 3% more during the steady state [START_REF] Miermont | A power supply selector for energy-and area -efficient local dynamic voltage scaling[END_REF]. Finally, an integration during the whole running time gives the total energy consumption. Computational needs of the controller: The control law is compared in term of computational needs, i.e. the number of instructions required to calculated the computational speed set ω sp , the frequency f and the voltage level V level . To do that, we use the Lightspeed Matlab toolbox proposed by T. Minka [START_REF] Minka | The lightspeed matlab toolbox v2.2[END_REF], which provides a number of flops for each instruction.

The controller is compared with a system without Dynamic Voltage Scaling (DVS): in this case the intuitive average speed set point building principle (depicted in section III) is used and the supply voltage is fixed to the penalizing high voltage, i.e. V level = level high . However, the frequency is controlled in order to guarantee that what the system has to do is really done, which implies a more complex control than ours with (5) because there is no feedback loop for the computational speed controller: a double integration is hence required to track the integral of the error. Finally, the system runs during more than 60% of the simulation time at low voltage and a reduction of the energy consumption of about 20% is achieved. Moreover, the control law requires a low computational needs because the number of flops is only 10% more than for a system without DVS mechanism (because of its complex frequency control law).

Note that the computational speed set point adapts itself regarding what it was really done. Indeed, one can see at time 1.8µs and 3µs on Figure 7 that the set point ω sp decreases because the measured speed ω is upper than required during the voltage transitions. For this reason, the controller adapts itself to a variation of the reference, such as a modification of the deadline shown on Figures 8 and9 or a modification of the number of instructions shown on Figure 10. 

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposes an architecture to control a two voltage level electronic device with a power/performance tradeoff. A fast predictive control technic gives the best computational speed set point to apply in order to minimize the penalizing high voltage running time. Then, the clock frequency and the supply voltage are controlled together in order that the measured speed tracks this set point while guaranteeing the computational performance and the critical path. The control strategy is robust and gives an important reduction of the energy consumption and a low computational needs in comparison with a system without DVS mechanism.

Next steps in this research is to test this controller in practice and develop different control strategies.
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