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Modélisation Mathématique et Analyse Numérique

ON NUMERICAL SCHEMES FOR SOLVING A NONLINEAR PDE

WITH A MEAN CURVATURE TERM ON TRIANGULAR MESHES. ∗

A. Claisse1 and P. Frey2 ,1

Abstract. In this paper, we propose two numerical schemes for solving a nonlinear level set

equation on unstructured triangulations. The consistency and the stability of these schemes are

shown. In addition, we show how to compute nodewise fisrt and second order derivatives. An

application example of curve construction using these approximations is provided to demonstrate

their accuracy.

Résumé. Dans ce papier, nous proposons deux schémas numériques pour résoudre une équation

non linéaire de type ligne de niveaux sur des maillages triangulaires. Nous montrons, de plus, com-

ment calculer les dérivées premières et secondes aux nœuds du maillage. On établit la consistance

et la stabilité de ces deux schémas et on fournit un exemple d’application à la construction d’une

courbe utilisant ces approximations, pour démontrer leur efficacité.
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The dates will be set by the publisher.

1. Introduction

In [6], the authors applied the level set method to solve the classical problem of fitting a regular curve
through a set of unorganized points. This challenging shape approximation issue has many potential applica-
tions in scientific computing, interface tracking, image processing/segmentation and biomedical simulations.
However, it is mathematically an ill-posed problem, as there is usually no unique solution. Initially intro-
duced for tracking moving interfaces, the level set method is used here to deform continuously an initial
regular curve implicitly defined, until it fits at best through the given set of points. This method presents
indeed two desirable features. At first, it can deal with arbitrary points sets, including noisy and non uni-
form data. Furthermore, it can handle topological changes easily during curve evolution. Such methods
are known for developing singularities near regions of topological changes or where the gradient of the level
set function vanishes, that yield inaccurate calculations of high order terms in the equations. To overcome
this problem, essentially (weighted) non-oscillatory residual distribution schemes have been proposed on
Cartesian grids [16, 18, 23] and ultimately extended to triangular meshes [1]. Nonetheless, the accurate and
robust evaluation of curvature terms on unstructured triangulations remains important for solving this class
of problems.

Keywords and phrases: analysis of a numerical scheme, unstructured mesh, level set method, mean curvature evolution,
second order derivatives approximation, non linear PDE problem, curve reconstruction.
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1.1. Overview of the level set approach

Given a point set V , the objective is to construct a closed curve Γ passing ”through” all points of V .
This is equivalent to say that every point x in V lies on, or is very close to Γ, i.e., for ε small we have
d(x,Γ) ≤ ε, ∀x ∈ V , where d(x,Γ) = min

x̄∈Γ
‖x− x̄‖ denotes the distance function to the curve Γ. To this end,

we consider a level set formulation of a curve evolution problem. The preliminary step consists in embedding
the unknown curve Γ in the unit domain Ω = [0, 1]2, and then to consider Γ = {x , u(t, x) = 0} as the zero
isocontour of a scalar function u defined on R × Ω. The closed curve Γ allows to define a continuous level
set function u, positive on one side of the curve and negative on the other side. Next, following [26], we
introduce a general evolution Γ(t)t≥0 of an initial curve Γ(0), by representing Γ(t), for all t ≥ 0, as the zero
level set of the auxiliary function u, precisely,

Γ(t) = {x ∈ Ω, u(t, x) = 0} , ∀t ≥ 0 .

Formally, the function u, i.e., the curve Γ(t) and all the level sets, has to satisfy, for all x ∈ Γ(t), the equation
u(t, x) = u(t, Γ(t)) = 0. In our problem, the evolution of the curve Γ(t) is purely geometric and thus the
same velocity law is applied on each level set of the function u that will then follow the same equation
and move along the normal direction to the level set function. Differentiating u(t, x) = u(t, Γ(t)) = 0, with
respect to t yields the following equation:

du

dt
(t, Γ(t, s)) =

∂u

∂t
(t, Γ(t, s)) +

dΓ(t, s)

dt
· ∇u(t, Γ(t, s)) = 0 , (1)

where s denotes the curvilinear abscissa and Γ(t, s) any point along Γ(t).
Level sets techniques have been extensively studied in front propagation and interface tracking problems.

The mean curvature formulation was introduced by [22] for numerical purposes and rigorous explanations
based on the notion of viscosity solutions have been provided by [8, 17]. In our approach, the motion of the
curve Γ(t) and all the iso level sets is prescribed by the nonlinear equation and the initial condition:







∂u

∂t
(t, x) = αd(x) + d(x)κ(u)(t, x) = αd(x) + d(x)

(

∇ ·
( ∇u

|∇u|

))

(t, x) ,

u(0, ·) = u0

(2)

that relates the distance d to the points set and the curvature κ of the level sets of u, α being a positive
scaling parameter. The given data is the initial front Γ(0) which is supposed to be the boundary of an open
set and no more regularity is assumed on this curve. The function u0 is any uniformly continuous function
such that:

{u0 = 0} = Γ(0) , {u0 > 0} = Ω+ , and {u0 < 0} = Ω\(Γ(0) ∪ Ω+) ,

for instance the signed distance to Γ(0) which is positive in Ω+. The fundamental theorem of level set
method [12] states that the general evolution by mean curvature Γ(t)t≥0 of the couple (Γ(0),Ω+) is well-
defined in the sense that Γ(t) depends only on the initial data (Γ(0),Ω+), and not on u0. Choosing another
function u0 may affect the solution but not its zero level set.

Using the same approaches and relying on assumptions described in the papers [3, 15], the existence and
uniqueness of a viscosity solution for the Equation (2) can be established. Details about this proof can be
read in [7].

The formulation (2) shows a good balance between the attraction term αd and the scaled surface tension
term dκ. The coefficient α can be chosen accordingly to obtain the desired regularity related to the curvature
term. Furthermore, it has numerous advantages, among which two are especially interesting here: it can
be computed numerically [25] and it is defined for all times regardless of the regularity of the initial curve.
In addition, geometric quantities such as normal and curvature can be calculated directly from the level set
function u, but require accurate and robust numerical schemes.
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1.2. Problem statement: numerical difficulties

In most problems that require the discretization of the computational domain, the accuracy of the solution
and its quality (e.g. its overall regularity) are intrinsically related to the quality of the mesh as well as to its
adaptation to the problem at hand. With the type of discontinuities developing in level set methods, standard
centered finite difference schemes for computing the curvature term become inaccurate and unstable, i.e., lead
to spikes in the curvature error. Refining locally the Cartesian mesh may only postpone the problem without
eliminating it [20]. Furthermore, the mesh cannot be refined indefinitely to capture vanishing gradients as
it will lead to restrictive time steps with explicit schemes.

On the other hand, the finite element method has become eminently popular in engineering applications
as it involves a variational formulation of the problem and looks for solutions in suitable functional spaces. It
offers the flexibility of dealing with an unstructured triangular mesh of the domain, possibly adapted to the
geometry of the domain boundary as well as to the solution variation. However, the approximation of second
order derivatives is related to the degree of the polynomials associated with the shape functions. Obtaining
an accurate nodal value (at the mesh vertices) of the second order terms in Equation (2) would require
using at least third degree polynomials, thus leading to a substantial increase of the number of degrees of
freedom in our problem. In addition, non oscillatory schemes are sometimes relatively tedious to implement
on triangulations (see [1] for a survey).

Finally, as pointed out by [20], using a local level set function is more robust in calculating the curvature
than directly differentiating an interpolating function like a spline for instance. To our knowledge, very few
works have dealt with finite difference schemes on unstructured meshes [5, 21] and even less in the context
of level set techniques. In this paper, we propose an alternative for computing a curvature value at each
mesh vertex without having to resort on high order interpolation schemes. Moreover, this approach is easy
to implement.

1.3. Numerical resolution

The first order differential operator with respect to the time variable t in Equation (2) can be dis-
cretized using a classical upwind finite difference scheme with a time step ∆t. We introduce the notations
un

i ≈ u(xi, t
n) and di ≈ d(xi), where d(xi) is the distance function to the points of V . We propose two

schemes for solving the Equation (2):

• an explicit scheme, written as:

un+1
i = un

i + di ∆t

((

∇ ·
( ∇u

|∇u|

))n

i

+ α

)

(3)

• a semi-implicit scheme, written as:

un+1
i − di ∆t

(

∇ ·
(∇un+1

|∇un|

))

i

= di ∆t α + un
i . (4)

In Section 2, we introduce a technique for computing the approximation of the first and second order
spatial derivatives on triangulations. Section 3 and 4, analyze successively the consistency and the stability
of the proposed schemes and, Section 5, we provide an application example of curve reconstruction to
emphasize its efficiency.

2. Approximation of the spatial derivatives

As mentioned previously, our model Equation (2) involves the first (gradient) and the second (mean
curvature) order derivatives of the level set function u. Hence, it is important for the efficiency and the
robustness of the numerical method to compute these derivatives as accurately as possible. With finite
difference/element approximations, the level set function u is defined at the grid points, and so are the
spatial derivatives. Hence, we would like to define these derivatives at the vertices of a triangulation.
Next, we propose a method for evaluating the gradient and the mean curvature at each node of a given
triangulation Th.
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2.1. Gradient approximation

Introducing the barycentric coordinates ωKi2 of a vertex xi2 of each triangle K ∈ Th leads to write:

u|K =
∑

i2∈K

ui2 ωKi2 , and (∇u)|K =
∑

i2∈K

ui2 ∇ωKi2 . (5)

Then, for each vertex i in the triangulation Th, the discrete gradient is defined as:

(∇u)i =

∑

K∈Bi

AK(∇u)|K
∑

K∈Bi

AK

=

∑

K∈Bi

AK

∑

i2∈K

ui2∇ωKi2

∑

K∈Bi

AK

(6)

where AK is the area of triangle K, Bi is the support of i, i.e., the set of triangles containing vertex i.

2.2. Mean curvature approximation

Once the gradient approximation has been obtained at each mesh vertex, the same procedure can be
applied to each component of the gradient vector to supply a mean curvature value at each vertex as well.

The previous formulas allows us to write: (∇(∇u))|K =
∑

i∈K

(∇u)i(∇ωKi)
T , where we considered the raw

vector (∇ωKi)
T , in order to calculate the product. With this definition, (∇(∇u))|K is a square matrix. The

aim is to obtain the value (∇(∇u))i at each point i. Hence, using the previous formulas (5) and (6), we
compute successively the coefficients of the Hessian matrix:

(∇(∇u))i =

∑

K∈Bi

AK ∇(∇u)|K
∑

K∈Bi

AK

=

∑

K∈Bi

AK















∑

i2∈K















∑

L∈Bi2

AL

(

∑

i3∈L

ui3∇ωLi3

)

∑

L∈Bi2

AL















(∇ωKi2)
T















∑

K∈Bi

AK

(7)

and the trace of the Hessian matrix:

(∇ · (∇u))i =

∑

K∈Bi

AK















∑

i2∈K















∑

L∈Bi2

AL

(

∑

i3∈L

ui3〈∇ωLi3 , ∇ωKi2〉
)

∑

L∈Bi2

AL





























∑

K∈Bi

AK

(8)

where 〈·, ·〉 is the Euclidian scalar product. Futhermore, the local mean curvature at a mesh vertex i is then
defined as:

κi =

(

∇ ·
( ∇u

|∇u|

))

i

=

∑

K∈Bi

AK















∑

i2∈K















∑

L∈Bi2

AL

(

∑

i3∈L

ui3〈∇ωLi3 , ∇ωKi2〉
)

|∇u|i2
∑

L∈Bi2

AL





























∑

K∈Bi

AK

. (9)
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Notice that in this expression, the set Bi denotes all the triangles K containing the mesh vertex i and the
set Bi2 caracterizes all the triangles L containing i2.

From the numerical point of view, these two approximations are relatively easy to implement. The sole
difficulty is related to the fast identification of all triangles in the sets Bi, for all i. This can be achieved using
appropriate data structures, especially since Th is kept unchanged during all the evolution of the curve [13].

3. Consistency

In this section, we establish the consistency of the proposed schemes with respect to the model Equation
(2). To this end, we start by considering the Laplacian case, that leads to reduce the curvature term. We
also assume that the underlying mesh is a regular Cartesian grid. These two hypothesis will allow a better

understanding of the proof. In a second stage, we will analyze the general case, where κ(u) = ∇ ·
( ∇u

|∇u|

)

.

3.1. The Laplacian case

We consider a Cartesian grid Th of generic size h and we denote K a square cell of Th, (i, j) being the
point at wich we calculate the Laplacian. Let Bi,j be the ball of the point (i, j), i.e., the set of the cells
containing (i, j). By analogy with the formulas (5) and (6), we write the expressions of the gradient at (i, j):

(∇u)|K =
∑

(i,j)∈K

ui,j∇wK,i,j , (∇u)i,j =

∑

K∈Bi,j

AK(∇u)|K
∑

K∈Bi,j

AK

=

∑

K∈Bi,j

∑

(i2,j2)∈K

ui2,j2∇ωK,i2,j2

4

where the value 4 at the denominator of the last fraction corresponds to the number of cells sharing (i, j).
By extension, the curvature evaluation yields:

(∇ · (∇u))i,j = (∆u)i,j =
1

4

∑

K∈Bi,j

AK

















∑

(i2,j2)∈K

















∑

L∈Bi2,j2

AL





∑

(i3,j3)∈L

ui3,j3〈∇ωL,i3,j3 ,∇ωK,i2,j2〉





∑

L∈Bi2,j2

AL

































∑

K∈Bi,j

AK

=
1

4

∑

K∈Bi,j

∑

(i2,j2)∈K





∑

L∈Bi2,j2

∑

(i3,j3)∈L

ui3,j3〈∇ωL,i3,j3 ,∇ωK,i2,j2〉





16
.

(10)

Here, the coefficient
1

4
in the first equation comes from the calculation of the term 〈∇ω,∇ω〉 in square cells.

Similarly, the number of cells in Bi,j × the number of squares in Bi2,j2 appears also in the denominator. The
stencil of the Laplace operator for the scheme considered is depicted in Figure 1.

After performing all the computations, the expression of the Laplacian at (i, j) finally becomes:

(∆u)i,j = − 1

64h2

(

24ui,j + 8ui+1,j + 8ui,j+1 + 8ui−1,j + 8ui,j−1

− 2ui+2,j−2 − 2ui+2,j+2 − 2ui−2,j+2 − 2ui−2,j−2

− 4ui−1,j−2 − 4ui,j−2 − 4ui+1,j−2 − 4ui+2,j−1 − 4ui+2,j − 4ui+2,j+1

− 4ui+1,j+2 − 4ui,j+2 − 4ui−1,j+2 − 4ui−2,j+1 − 4ui−2,j − 4ui−2,j−1

)

.

(11)
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−4

−2−4

i,j

Figure 1. Stencil of the Laplace operator at (i, j) and related coefficients.

It remains to be proved that this expression is consistent with the Laplace operator.
In one dimension of space, or if we assume that ui,j depends only on j, summing each coefficient of each

column in the previous expression (11) leads to write:

1

64

(

16ui+2 − 32ui + 16ui−2

h2

)

=
ui+2 − 2ui + ui−2

(2h)2
∼ ∆u.

We use classical Taylor expansions up to the order four and we are able to show that the approximation is
consistent at the order 2 with the Laplace operator in this special case. Indeed, we have:
Suppose u ∈ C4, there exists y ∈ [xi, xi+2] such that:

u(tn, xi+2) = u(tn, xi) + 2h ∂xu(tn, xi) +
(2h)2

2
∂2

x,xu(tn, xi) +
(2h)3

6
∂3

x,x,xu(tn, xi) +
(2h)4

24
∂4

x,x,x,xu(tn, y).

There exists also z ∈ [xi−2, xi] such that :

u(tn, xi−2) = u(tn, xi) − 2h ∂xu(tn, xi) +
(2h)2

2
∂2

x,xu(tn, xi) −
(2h)3

6
∂3

x,x,xu(tn, xi) +
(2h)4

24
∂4

x,x,x,xu(tn, z).

Then, we have :

u(tn, xi+2) − 2u(tn, xi) + u(tn, xi−2)

(2h)2
=

1

4h2

(

4h2 ∂2
x,xu(tn, xi) +

2h4

3
∂4

x,x,x,xu(tn, y) +
2h4

3
∂4

x,x,x,xu(tn, z)

)

= ∆u(tn, xi) +
h2

12

(

∂4
x,x,x,xu(tn, y) + ∂4

x,x,x,xu(tn, z)
)

.

If we pose εn
j (u) the consistency error then we deduce:

εn
j (u) =

u(tn, xi+2) − 2u(tn, xi) + u(tn, xi−2)

(2h)2
− ∆u(tn, xi) ≤ C h2,

where C is a constant independent of h and depends only on the four order space derivatives.

In two dimensions of space, the following values inside the bracket signs correspond to the coefficients of
the stencil (and shall not be taken as a matrix):

1

64h2













2 4 4 4 2
4 0 −8 0 4
4 −8 −24 −8 4
4 0 −8 0 4
2 4 4 4 2













.
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We split the analysis into three steps and we successively consider

• the principal cross in the stencil:

1

64h2













4
0

4 0 −16 0 4
0
4













that leads to the expression:

1

64

(

4ui,j−2 − 8ui,j + 4ui,j+2

h2
+

4ui+2,j − 8ui,j + 4ui−2,j

h2

)

∼ 1

4
∆u, (12)

• then, the terms:

1

64h2













4 4
4 0 −8 0 4

−8 −8
4 0 −8 0 4

4 4













that give:

1

64

(

4ui−2,j+1 − 8ui,j+1 + 4ui+2,j+1

h2
+

4ui+1,j−2 − 8ui+1,j + 4ui+1,j+2

h2

)

+
1

64

(

4ui−2,j−1 − 8ui,j−1 + 4ui+2,j−1

h2
+

4ui−1,j−2 − 8ui−1,j + 4ui−1,j+2

h2

)

∼ 1

2
∆u,

(13)

• and the remaining terms in the stencil:

1

64h2













2 2
0 0

−8
0 0

2 2













leading to:

1

64

(

2ui−2,j+2 − 4ui,j + 2ui+2,j−2

h2
+

2ui−2,j−2 − 4ui,j + 2ui+2,j+2

h2

)

∼ 2(2
√

2)2

64
∆u =

1

4
∆u. (14)

By summing the expressions (12), (13) and (14), we can observe that the scheme is a consistent approximation
of the Laplace operator, at the second order, using again Taylor expansions as previously shown.

3.2. The general case

In turn, we now consider the evaluation of the curvature formula κ(u) = ∇ ·
( ∇u

|∇u|

)

on a Cartesian grid.

According to the previous calculations, at each grid point (i, j), we can write the following equation:

(

∇ ·
(∇u

a

))

i,j

=
1

64

∑

K∈Bi,j

∑

(i2,j2)∈K











∑

L∈Bi2,j2

∑

(i3,j3)∈L

ui3,j3〈∇ωL,i3,j3 ,∇ωK,i2,j2〉

ai2,j2











7



i−1 i+1i

i−2 i−1 i i+2i+1

s1 s2 s3 s4

Figure 2. The one dimensional case: the classical stencil (top) vs. our stencil (bottom).

where a = |∇u|. We denote ck,l the coefficients of the points (k, l) in L ∈ Bi2 contributing to the value of

the stencil of

(

∇ ·
(∇u

a

))

i,j

. These terms can be expressed as:

ci,j =
4

ai+1,j

+
4

ai,j+1
+

4

ai−1,j

+
4

ai,j−1
+

2

ai+1,j+1
+

2

ai−1,j+1
+

2

ai−1,j−1
+

2

ai+1,j−1
,

ci−1,j−1 = 0, ci,j−1 =
2

ai−1,j

+
2

ai−1,j−1
+

2

ai+1,j−1
+

2

ai+1,j

,

ci+1,j−1 = 0, ci+1,j =
2

ai+1,j−1
+

2

ai,j−1
+

2

ai+1,j+1
+

2

ai,j+1
,

ci+1,j+1 = 0, ci,j+1 =
2

ai+1,j

+
2

ai−1,j

+
2

ai+1,j+1
+

2

ai−1,j+1
,

ci−1,j+1 = 0, ci−1,j =
2

ai−1,j+1
+

2

ai,j+1
+

2

ai−1,j−1
+

2

ai,j−1
,

ci−2,j−2 =
−2

ai−1,j−1
, ci−1,j−2 =

−2

ai,j−1
− 2

ai−1,j−1
, ci,j−2 =

−4

ai,j−1
, ci+1,j−2 =

−2

ai+1,j−1
− 2

ai,j−1
,

ci+2,j−2 =
−2

ai+1,j−1
, ci+2,j−1 =

−2

ai+1,j

− 2

ai+1,j−1
, ci+2,j =

−4

ai+1,j

, ci+2,j+1 =
−2

ai+1,j+1
− 2

ai+1,j

,

ci+2,j+2 =
−2

ai+1,j+1
, ci+1,j+2 =

−2

ai,j+1
− 2

ai+1,j+1
, ci,j+2 =

−4

ai,j+1
, ci−1,j+2 =

−2

ai−1,j+1
− 2

ai,j+1
,

ci−2,j+2 =
−2

ai−1,j+1
, ci−2,j+1 =

−2

ai−1,j

− 2

ai−1,j+1
, ci−2,j =

−4

ai−1,j

, ci−2,j−1 =
−2

ai−1,j−1
− 2

ai−1,j

.

In one dimension of space, we recall that the classical scheme involves only the grid points i − 1, i, i + 1
(Figure 2, top) and then the curvature formula becomes:

δx

(

δxu

a

)

i

=

(

δxu

a

)

i+ 1

2

−
(

δxu

a

)

i− 1

2

∆x
=

1

h2

(

ui+1 − ui

ai+ 1

2

− ui − ui−1

ai− 1

2

)

.

If the grid points i+ 1
2 and i− 1

2 are not defined, we could use instead an average value, ai+ 1

2

=
1

2
(ai+1 +ai).

With the proposed scheme, the curvature expression reads as follows:

δx

(

δxu

a

)

i

=
ui+2 ω′

s4,i+2 ω′
s3,i+1

ai+1
+

ui ω′
s3,i ω′

s3,i+1

ai+1
+

ui−2 ω′
s1,i−2 ω′

s2,i−1

ai−1
+

ui ω′
s2,i ω′

s2,i−1

ai−1

=
1

h2

(

ui+2 − ui

ai+1
− ui−2 − ui

ai−1

)

∼ δx

(

δxu

a

)

,

where ω′
sp,j denotes the derivative of the barycentric coordinate of the point j in the element sp. We observe

that this approximation is consistent with the classical scheme.
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In two dimensions of space, the derivatives are simply written as:

∇ ·
(∇u

a

)

=
∂

∂x

(

∂u
∂x

a

)

+
∂

∂y

(

∂u
∂y

a

)

,

and thus the approximation of the curvature at the grid point (i, j) becomes:

∇ ·
(∇u

a

)

i,j

=

(

∂u
∂x

a

)

i+ 1

2
,j

−
(

∂u
∂x

a

)

i− 1

2
,j

∆x
+

(

∂u
∂y

a

)

i,j+ 1

2

−
(

∂u
∂y

a

)

i,j− 1

2

∆y

=
1

h2

(

ui+1,j − ui,j

ai+ 1

2
,j

− ui,j − ui−1,j

ai− 1

2
,j

+
ui,j+1 − ui,j

ai,j+ 1

2

− ui,j − ui,j−1

ai,j− 1

2

)

.

Like we did previously with the Laplacian, we split now the analysis of our scheme into several steps, and
we consider namely:

• the coefficients of the principal cross in the stencil:

1

64h2













4
0

4 0 −16 0 4
0
4













that leads to:

1

64h2

(

4ui,j+2 − 4ui,j

ai,j+1
− 4ui,j − 4ui,j−2

ai,j−1
+

4ui+2,j − 4ui,j

ai+1,j

− 4ui,j − 4ui−2,j

ai−1,j

)

=
4

64
× 1

(2h)2

(

ui,j+2 − ui,j

ai,j+1
− ui,j − ui,j−2

ai,j−1
+

ui+2,j − ui,j

ai+1,j

− ui,j − ui−2,j

ai−1,j

)

∼ 1

4
∇ ·
(∇u

a

)

,

(15)

• the coefficients of the second and fourth columns of the stencil:

1

64h2













4
0
−8
0
4













and
1

64h2













4
0
−8
0
4













leading respectively to:

1

64h2

(

2ui−1,j+2 − 2ui−1,j

ai,j+1
− 2ui−1,j − 2ui−1,j−2

ai,j−1
+

2ui−1,j+2 − 2ui−1,j

ai−1,j−1
− 2ui−1,j − 2ui−1,j+2

ai−1,j+1

)

and

1

64h2

(

2ui+1,j+2 − 2ui+1,j

ai,j+1
− 2ui+1,j − 2ui+1,j−2

ai,j−1
+

2ui+1,j+2 − 2ui+1,j

ai+1,j+1
− 2ui+1,j − 2ui+1,j−2

ai+1,j−1

)

,

(16)
• the coefficients of the second and fourth raws:

1

64h2













4 0 −8 0 4













and
1

64h2











 4 0 −8 0 4












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leading respectively to:

1

64h2

(

2ui+2,j+1 − 2ui,j+1

ai+1,j

− 2ui,j+1 − 2ui−2,j+1

ai−1,j

− 2ui+2,j+1 − 2ui,j+1

ai+1,j+1
− 2ui,j+1 − 2ui−2,j+1

ai−1,j+1

)

and

1

64h2

(

2ui+2,j−1 − 2ui,j−1

ai+1,j

− 2ui,j−1 − 2ui−2,j−1

ai−1,j

+
2ui+2,j−1 − 2ui,j−1

ai+1,j−1
− 2ui,j−1 − 2ui−2,j−1

ai−1,j−1

)

.

(17)

One can easily observe that: (16) + (17) ∼ 1

2
∇ ·
(∇u

a

)

.

• the remaining coefficients:

1

64h2













2 2
0 0

−8
0 0

2 2













corresponding to:

1

64h2

(

2ui+2,j−2 − 2ui,j

ai+1,j−1
− 2ui,j − 2ui+2,j+2

ai+1,j+1
+

2ui−2,j+2 − 2ui,j

ai−1,j+1
− 2ui,j − 2ui−2,j−2

ai−1,j−1

)

(18)

∼ 1

4
∇ ·
(∇u

a

)

.

Then, by summing (15), (16), (17) and (18), we deduce that our scheme is consistent with the

operator ∇ ·
(∇

a

)

.

In this section, we have shown that our schemes are both consistent with the differential operators of the
model Equation (2). These results have been obtained on Cartesian grids for clarity purpose. Moreover, there
is no canonical discretization of the Laplacian (or the general curvature term) on arbitray triangulations.
Nonetheless, there is no obvious reason for which the consistency would not be verified in such configuration.
In the next section, we will establish a stability result for the numerical schemes.

4. Stability issues

In this section, the stability of the numerical schemes, with respect to the L2-norm, is established. Indeed,
we found that none of the schemes is stable for the L∞-norm. This may not be a drawback however, since
all calculations are based on triangulations. In the type of application envisaged, the stopping criterion in
the algorithm is based on the L2-norm and it seems thus more pertinent to use this norm for showing the
stability of the numerical schemes.

We present the L2-stability for the explicit and semi-implicit schemes, like previously, first by considering
the case of the Laplace operator and then by dealing with the general mean curvature case. A general
stability criterion for the time step (CFL condition) is given on any type of mesh and the constant involved
in this condition is explicited in the case of Cartesian grids.

4.1. The first order explicit scheme

We recall that the first order explicit scheme we consider for solving the Equation (2) is defined as follows:

un+1
i = un

i + ∆t di

((

∇ ·
( ∇u

|∇u|

))n

i

+ α

)

. (19)

10



By introducing the discretization matrix M of the operator ∇ ·
( ∇
|∇|

)

and D the diagonal matrix with di

as diagonal coefficients, Equation (19) becomes:

un+1
i = ((I + ∆t D M) u)n

i + ∆t di α.

4.1.1. Laplacian case

For the sake of understanding, we consider first the case of the Laplacian. The L2-stability property is
equivalent to showing that ||I +∆t D M ||2 ≤ 1. To this end, we write the L2-norm of I +∆t D M as follows:

||I + ∆t D M ||2 = ||D Λ−1(Λ D−1 + ∆t Λ M)||2

where Λ is a diagonal matrix such that (Λ)i,i =
∑

K∈Bi
AK and thus we obtain:

||I + ∆t D M ||2 ≤ ||D Λ−1||2 ||Λ D−1 + ∆t Λ M ||2.

In order to ensure ||I + ∆t D M ||2 < 1, it is sufficient to show that ||Λ D−1 + ∆t Λ M ||2 ≤ 1

||D Λ−1||2
. At

first, we show that the matrix ΛM is symmetric, i.e. that: 〈Λ M u, v〉 = 〈u, Λ M v〉, for all u and for all v.
Indeed, using (10), we have:

(∆u)i =

∑

K∈Bi

AK

∑

i2∈K

〈(∇u)i2 ,∇ωK,i2〉
∑

K∈Bi

AK

with (∇u)i2 =

∑

L∈Bi2

AL

∑

i3∈L

ui3∇ωL,i3

∑

L∈Bi2

AL

,

and thus, we write:

〈Λ M u, v〉 =
∑

i

(Λ M u)i vi =
∑

i

vi

∑

K∈Bi

AK (∆u)i

=
∑

i

vi

∑

K∈Bi

AK

∑

i2∈K

〈(∇u)i2 ,∇ωK,i2〉

=
∑

i

∑

K∈Bi

∑

i2∈K

viAK〈(∇u)i2 ,∇ωK,i2〉.

Using a renumbering procedure, (K ∈ Bi ⇒ i ∈ K) and (i2 ∈ K ⇒ K ∈ Bi2) we obtain :

〈Λ M u, v〉 =
∑

i2

〈(∇u)i2 ,
∑

K∈Bi2

AK

∑

i∈K

vi∇ωK,i2〉.

The next step in order to have ΛM symmetric is to show that, for all i2:

∑

K∈Bi2

AK

∑

i∈K

ui ∇ωKi2 = −
∑

K∈Bi2

AK

∑

i∈K

ui ∇ωKi

i.e., for all i2:

∑

K∈Bi2

AK

∑

i∈K

ui(∇ωKi2 + ∇ωKi) = 0 ⇔
∑

i∈Bi2

∑

K∈Bi2
∩Bi

ui AK(∇ωKi2 + ∇ωKi) = 0. (20)

It is sufficient to show that for all i2,
∑

K∈Bi2
∩Bi

AK(∇ωKi2 + ∇ωKi) = 0, ∀i ∈ Bi2 . This condition is also a

necessary condition, for the equality (20) to be satisfied for all ui. We deal with two cases:
11



• if i = i2, the same term ∇ωKi2 appears twice in the previous sum. We define ω =
∑

K∈Bi2

ωKi2IK ,

and thus we have:
∑

K∈Bi2

AK∇ωKi2 =

∫

∪K∈Bi2
K

∇ω =

∫

∂(∪K)

ω · ~n = 0, this term is vanishing since

w = 0 on ∂(∪K). And hence the result follows:

∑

K∈Bi2

AK ∇ωKi2 = 0,

• if i 6= i2, the sum becomes:

∑

K∈Bi∩Bi2

AK(∇ωKi2 + ∇ωKi) = AK(∇ωKi2 + ∇ωKi) + AL(∇ωLi2 + ∇ωLi),

where K and L denote the two triangles sharing the edge (i, i2), Figure 3.

L

K

l

i
k

i2

Figure 3. The configuration of two triangles sharing the edge (i, i2)

Since
∑

i2∈K

∇ωKi2 = 0 for all i2, then ∇ωKi2 + ∇ωKi = −∇ωKk and ∇ωLi2 + ∇ωLi = −∇ωLl.

Considering the two points opposite to the edge (i, i2) in K and L, we like to show that:

AK∇ωKk = −AL∇ωLl.

We notice that ∇ωKk is orthogonal to the edge (i, i2), as well as the term ∇ωLl. Moreover,

|∇ωKk| =
1

hk

where hk is the height of K emanating from k and AK =
hk

2
× |(i, i2)|, where

|(i, i2)| denotes the length of the edge (i, i2), we conclude that |AK∇ωKk| =
|(i, i2)|

2
. Likewise, on

the triangle L, we obtain a similar relation: |AL∇ωLl| =
|(i, i2)|

2
. Notice that the vectors ∇ωKk and

∇ωLl have the same direction but opposite sign. Hence, AK ∇ωKk = −AL ∇ωLl and the results (20)
follows.

We have just shown that:

∑

K∈Bi2

AK

∑

i∈K

ui ∇ωKi2 = −
∑

K∈Bi2

AK

∑

i∈K

ui ∇ωKi. (21)

On the other hand, we have the following equality:

∑

K∈Bi2

AK

∑

i∈K

vi ∇ωK,i2 = −
∑

K∈Bi2

AK (∇v)i2 ,

12



and then, we obtain the identity:

〈ΛMu, v〉 = −
∑

i2

〈(∇u)i2 , (∇v)i2〉
∑

K∈Bi2

AK . (22)

Now, we have to compare 〈ΛMu, v〉 with 〈u, ΛMv〉. Replacing u by v and v by u in (22), leads to write:

〈u, ΛMv〉 =
∑

i2

〈(∇v)i2 , (∇u)i2〉
∑

K∈Bi2

AK = 〈ΛMu, v〉.

Hence, the matrix ΛM is symmetric. Consequently, the matrix Λ D−1 + ∆t Λ M is also symmetric and, in
order to have ||I + ∆t D M ||2 ≤ 1, it is sufficient to show that:

ρ(Λ D−1 + ∆t Λ M) ≤ 1

||D Λ−1||2
=

1

ρ(D Λ−1)
, (23)

where ρ(P ) is the spectral radius of the matrix P .
In a second step, we like to show that the inequality (23) holds and then, that all the eigenvalues of M

are negative. To this end, we consider the simplified parabolic model ∂tu = ∆u. We have then:

u ∂tu = u ∆u ⇔ ∂t

u2

2
= u ∆u ⇔ ∂t

∫

u2

2
=

∫

u ∆u,

that leads to the following inequality:

∫

u ∆u = −
∫

|∇u|2 ≤ 0. (24)

Hence, we have to show that the numerical scheme satisfies such an inequality, for all eigenvalues to be
negative. Using the previous formulas given in Section 2, we write:

∑

i

ui (∆u)i =
∑

i

ui

∑

K∈Bi

AK

∑

i2∈K

〈(∇u)i2 ,∇ωKi2〉
∑

K∈Bi

AK

,

and thus we have:

∑

i

(

∑

K∈Bi

AK

)

ui (∆u)i =
∑

i

∑

K∈Bi

∑

i2∈K

ui AK 〈(∇u)i2 ,∇ωKi2〉 =
∑

i,K,i2
K∈Bi,i2∈K

ui AK〈(∇u)i2 ,∇ωKi2〉.

Using a renumbering procedure, (K ∈ Bi ⇒ i ∈ K) and (i2 ∈ K ⇒ K ∈ Bi2), we obtain:

∑

i

(

∑

K∈Bi

AK

)

ui (∆u)i =
∑

i,K,i2
K∈Bi2

,i∈K

ui AK〈(∇u)i2 ,∇ωKi2〉 =
∑

i2

∑

K∈Bi2

∑

i∈K

ui AK〈(∇u)i2 ,∇ωKi2〉,

and thus:
∑

i

(

∑

K∈Bi

AK

)

ui (∆u)i =
∑

i2

〈(∇u)i2 ,
∑

K∈Bi2

AK

∑

i∈K

ui ∇ωKi2〉. (25)

Using the identity (21), we have:

∑

K∈Bi2

AK

∑

i∈K

ui ∇ωKi2 = −(∇u)i2

∑

K∈Bi2

∑

i∈K

AK .

13



Hence, combining the last two results leads to a discrete Green formula:

∑

i

(

∑

K∈Bi

AK

)

ui (∆u)i = −
∑

i2





∑

K∈Bi2

∑

i∈K

AK



 |(∇u)i2 |2 (26)

in which, obviously, the right-hand side term is negative. Given the Laplacian matrix M , we have shown
that:

∑

i

(

∑

K∈Bi

AK

)

ui (Mu)i ≤ 0.

Introducing the notation λi =
∑

K∈Bi

AK , yields:
∑

i

∑

K∈Bi

AK ui (∆u)i ≤ 0 ⇔
∑

i

λi ui (Mu)i ≤ 0 and

consequently
∑

i

(
√

λi ui)(
√

λi (Mu)i) ≤ 0. Defining the diagonal matrix Λ with λi as diagonal coefficients,

leads to rewrite the inequality as follows:

∑

i

(
√

Λ u)i(
√

Λ Mu)i ≤ 0 ⇔
∑

i

(
√

Λ u)i((
√

Λ M
√

Λ
−1

)
√

Λ u)i ≤ 0

⇔
∑

i

(
√

Λ u)i(B
√

Λ u)i ≤ 0,

where B =
√

Λ M
√

Λ
−1

. Let v ∈ R
N be such that u =

√
Λ
−1

v, then
∑

i

vi(Bv)i ≤ 0, and thus, B is

a semi-negative definite matrix. Since the spectrum Sp(M) = Sp(B), M is also a semi-negative definite
matrix. We have then uT Mu ≤ 0 for all u and if (λ, u) are pairs of eigenvalues and eigenvectors of M , then
uT Mu = uT λu = λuT u ≤ 0. However, since uT u ≥ 0, then λ ≤ 0 and thus : Sp(M) ≤ 0. Moreover, this
result directly implies the inequality (23). In order to have the stability of the scheme, we have to satisfy a
condition on the time step, i.e. we look for ∆t such that:

ρ(Λ D−1 + ∆t Λ M) ≥ − 1

||D Λ−1||2
= −ρ(Λ D−1).

Hence, the expected value of ∆t is such that:

ρ(Λ D−1 + ∆t Λ M) + ρ(Λ D−1) ≥ 0 ⇔ ρ(2Λ D−1 + ∆t Λ M) ≥ 0

⇔ uT (2Λ D−1 + ∆t Λ M)u ≥ 0 ∀u

⇔
∑

i

ui((2Λ D−1 + ∆t Λ M) u)i ≥ 0

⇔ ∆t
∑

i

ui(Λ M u)i ≥ −2
∑

i

ui(Λ D−1u)i.

Using identity (22), we deduce the following stability criterion for the time step:

∆t
∑

i

|(∇u)i|2 λi ≤ 2
∑

i

λi

di

u2
i . (27)

In order to give a explicit expression for this criterion, on Cartesian grids, we need to find now an upper
bound for

∑

i |(∇u)i|2 λi. To this end, according to (6), we recall that:

(∇u)i =

∑

K∈Bi

AK

∑

i2∈K

ui2∇ωK,i2

∑

K∈Bi

AK

.
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And thus, we deduce that:

|(∇u)i|2 ≤

∑

K∈Bi

A2
K |
∑

i2∈K

ui2∇ωK,i2 |2

(

∑

K∈Bi

AK

)2 .

Consequently, we have:

λi|(∇u)i|2 =
∑

K∈Bi

AK |(∇u)i| ≤

∑

K∈Bi

A2
K |
∑

i2∈K

ui2∇ωK,i2 |2

∑

K∈Bi
AK

≤ max
K,i2

|∇ωK,i2 |2

∑

K∈Bi

A2
K

(

∑

i2∈K

ui2

)2

∑

K∈Bi

AK

≤ n max
K,i2

|∇ωK,i2 |2

∑

K∈Bi

A2
K

∑

i2∈K

u2
i2

∑

K∈Bi

AK

,

where n denotes the number of vertices in a cell (here n = 4). Hence, we obtain, by summing on the index i:

∑

i

λi|(∇u)i|2 ≤ n max
K,i2

|∇ωK,i2 |2

∑

i

∑

K∈Bi

A2
K

∑

i2∈K

u2
i2

∑

K∈Bi

AK

.

Using a renumbering procedure: (K ∈ Bi ⇒ i ∈ K) and (i2 ∈ K ⇒ K ∈ Bi2), we write then:

∑

i

∑

K∈Bi

A2
K

∑

i2∈K

u2
i2

∑

K∈Bi

AK

=
∑

i2

u2
i2

∑

K∈Bi2

∑

i∈K

A2
K

∑

K∈Bi2

AK

.

On Cartesian grids, if h denotes the size of the cells, we have:

∑

i

∑

K∈Bi

A2
K

∑

i2∈K

u2
i2

∑

K∈Bi

AK

≤ 4h2
∑

i2

u2
i2

and thus

we obtain the following estimate:

∑

i

λi|(∇u)i|2 ≤ 4 max
K,i2

|∇ωK,i2 |2 × 4h2
∑

i2

u2
i2

.

We recall that |∇ωK,i2 |2 =
1

2h2
and then the time step ∆t must be such that:

8
∑

i2

u2
i2

≤ 2

∆t

∑

i

λi

di

u2
i ≤ 2

∆t

∑

i

1

di

(

∑

K∈Bi

AK

)

u2
i ≤ 2

∆t

∑

i

4h2

di

u2
i .
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Then, the stability (CFL) condition consists in writting that ∆t shall be such that:

max
i

di 8
∑

i2

u2
i2

≤ 2

∆t
4h2

∑

i

u2
i .

Hence, the CFL condition to ensure the stability of the explicit scheme is finally:

8β ≤ 2

∆t
4h2 ⇔ ∆t ≤ h2

β
,

where β = maxi di. In the applications envisaged, the coefficients β is bounded since the domain is an open
bounded set.

4.1.2. General mean curvature case

By analogy with the Laplacian case, we consider here the matrix M of the operator ∇ ·
( ∇
|∇|

)

. Like

previously, we need to show that ||I + ∆t D M ||2 ≤ 1. We use the same steps as previously that is, first we
have to show the symmetry of the matrix ΛM . Using Equation (9) we recall that:

(

∇ ·
( ∇u

|∇u|

))

i

=

∑

K∈Bi

AK

∑

i2∈K

〈 (∇u)i2

|∇u|i2
,∇ωK,i2〉

∑

K∈Bi

AK

with |∇u|i2 = |(∇u)i2 |. Let αi2 = |∇u|i2 then, if αi2 6= 0:

(

∇ ·
( ∇u

|∇u|

))

i

=

∑

K∈Bi

AK

∑

i2∈K

〈 (∇u)i2

αi2

,∇ωK,i2〉
∑

K∈Bi

AK

.

Like previously we show the symmetry of the matrix ΛM as follows:

〈Λ Mu, v〉 = −
∑

i2

〈(∇u)i2 , (∇v)i2〉

∑

K∈Bi2

AK

αi2

= 〈u, Λ Mv〉.

To show the L2-stability of our scheme, we proceed as for the Laplacian case, the restriction on the time
step comes here from the inequality: ρ(2Λ D−1 + ∆t Λ M) ≥ 0.

This strong numerical restriction on the time step reinforces even more the need for a semi-implicit
time-stepping scheme on unstructured triangulations.

4.2. First order semi-implicit scheme

We recall that the first order semi-implicit scheme, for the Equation (2), we use, is defined as follows:

un+1
i − di ∆t

(

∇ ·
(∇un+1

|∇un|

))

i

= di ∆t α + un
i . (28)

Introducing the discretization matrix M of the operator ∇ ·
( ∇
|∇|

)

, Equation (28) becomes:

((I − ∆t DM)u)n+1
i = un

i + ∆t di α.
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At first, we show that the matrix (I − ∆t D M) is invertible. We have already established that Sp(M) ≤ 0,
and thus Sp(ΛM) ≤ 0.

To this end, we want to show that Ker(I − ∆t D M) = 0. We suppose that there exists u 6= 0, such
that (I − ∆t D M)u = 0. Introducing the diagonal matrix Λ, we have (I − ∆t D Λ−1 Λ M)u = 0, then
(D Λ−1 − ∆t Λ M)u = 0. Hence, uT (D Λ−1 − ∆t Λ M)u = 0 and uT D Λ−1u = ∆t uT Λ M u, which is
impossible because uT D Λ−1u > 0, if u 6= 0 and Λ M is a symmetric negative semi-definite matrix. Thus,
we conclude that Ker(I − ∆t D M) = 0 and that (I − ∆t D M) is invertible.

We have now to show that ||(I − ∆t D M)−1||2 ≤ 1 ⇔ ||I − ∆t D M ||2 ≥ 1. For all u, we have:

||(I − ∆t D M)u||22 = uT (I − ∆t D M)T (I − ∆t D M)u

= uT (I − ∆t MT D)(I − ∆t D M)u

= uT u − ∆t uT (MT D + D M)u + ∆t2 uT MT D D Mu

≥ uT u − ∆t uT (MT D + D M)u

as uT MT D D Mu = (D Mu)T (D Mu) ≥ 0. Next, we show that uT (MT D + D M)u ≤ 0. The matrix Λ M

being symmetric negative semi-definite, we have:

uT (MT D + D M)u = uT ((ΛM)T Λ−1 D + D Λ−1 Λ M)u = uT (ΛM Λ−1 D + D Λ−1 Λ M)u

= (
√

D Λ−1u)T (
√

D Λ−1)−1 Λ M (
√

D Λ−1)(
√

D Λ−1u)

+ (
√

D Λ−1u)T (
√

D Λ−1) Λ M (
√

D Λ−1)−1(
√

D Λ−1u)

= (
√

D Λ−1u)T ((
√

D Λ−1)−1 Λ M (
√

D Λ−1) + (
√

D Λ−1) Λ M (
√

D Λ−1)−1) (
√

D Λ−1u).

We denote N = (
√

D Λ−1)−1 Λ M (
√

D Λ−1) + (
√

D Λ−1) Λ M (
√

D Λ−1)−1. The matrix N is symmetric,

since the matrices Λ M and (
√

D Λ−1) are symmetric. Then uT (MT D+D M)u ≤ 0 if and only if Sp(N) ≤ 0
but Sp(N) = 2 × Sp(ΛM) ≤ 0. We have then the expected result ||(I − ∆t D M)−1||2 ≤ 1. It is important
to notice here that this semi-explicit scheme is stable without any restrictive CFL condition on the time step
(unconditionally stable).

These explicit and semi-implicit schemes are both consistent with the model Equation (2), cf. Section 3,
and stable with respect to the L2-norm. To emphasize their efficiency we propose an application example in
the next section.

4.3. Convergence

In the linear case, that is, the Laplacian case, the Lax-Richtmyer theorem [19] can be directly applied to
both our schemes. It states that a consistent scheme, for a well posed linear problem, is convergent if and
only if it is stable. On the other hand, in the general mean curvature formulation, there is no equivalent
result. The only work the authors are aware of is the paper of Barles and Souganidis, [3], that proves
that any monotone, consistent and stable scheme converges in the context of fully non linear elliptic or
parabolic second order equations provided that there exists a comparison principle for the limiting equation.
In particular, this last point remains to be established in our case, to be able to invoke this result and to
conclude about the convergence of our schemes.

5. Application to curve fitting

In this section, we present an experimental example of construction of a smooth curve approximating a
given set of points V . This data set has been sampled from the analytical curve Γ corresponding to the
implicit equation: x4 × y4 + sin(4x) × sin(4y) − 0.8 = 0.

We started from an initial sufficiently smooth level set function u defined over a square unit domain enclosing
all points of V . For simplicity purposes, u was defined such that all level sets correspond to concentric circles,
and we focus on the evolution of the zero level set of u, supposed to contain all points of V initially. The
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evolution problem was solved for the general Equation (2) (without assuming |∇u| = 1). We considered the
numerical solution to be achieved (convergence of the algorithm) when the zero level set of u is sufficiently
close to the points.

To illustrate the main features of our schemes, we performed the calculations on four triangular meshes
representing the various connectivity and refinement types: two structured meshes of different mesh sizes
M1 and M2, an unstructured uniform mesh M3 and a mesh M4 locally adapted to the zero level set of the
distance function d to the data set (with a high density of elements in the vicinity of the points set [6]).
Notice that in all meshes, the points of V are not mesh vertices and that the mesh size is here independent
of the sampling of these points.

Table 1 reports the L2 error err related to each mesh, computed as the absolute value of the level set
function u at each point of V and expected to be close to zero. This value is obtained using an L2 projection
scheme on the current mesh. For the explicit scheme, we have prescribed a time step dt = h2 as dictated by
the most restrictive CFL condition. For the implicit scheme, the time step has been fixed as dt = 10×h. Here,
the mesh size h corresponds to the minimal radius of the incircle of each triangle in the mesh. Finally, the
number of vertices np and the number of iterations nit required to achieve convergence have been reported
in this table.

meshes M1 M2 M3 M4

np 7,773 27,133 8,964 17,275

h 1.1 × 10−2 5.5 × 10−3 1.05 × 10−2 1.06 × 10−3

explicit nit 150 340 160 1500
err 1.01 × 10−2 5.17 × 10−3 9.36 × 10−3 1.12 × 10−3

implicit nit 11 21 12 144
err 8.13 × 10−3 4.19 × 10−3 8.43 × 10−3 9.17 × 10−4

Table 1. Statistics related to the convergence of the algorithms on different meshes.

From the table, we can conclude that the numerical results are in good accordance with the theoretical
expectations and we can see that the L2 error is of the order of the mesh size h. The numerical schemes
scale well linearly as the number of mesh vertices increases. Moreover, the advantages of the implicit scheme
over the explicit one are twofold: first, it converges much faster (the large time step doesn’t impact the
overall stability of the scheme) and second it is more accurate. In addition, we observe also that the pa-
rameters of the mesh (connectivity and density) have no influence on the convergence of these two algorithms.

Figure 4 shows the regular final curves (zero level set of u) obtained at convergence of the implicit scheme
on the different meshes and a local enlargement to emphasize the efficiency of this scheme.

Additional examples of curve reconstruction on different points sets can be found in [6].

6. Conclusions

In this paper, we have proposed and analyzed two finite difference schemes for solving a PDE containing
a mean curvature term on triangular meshes. The consistency and the stability of the schemes have been
established both in the Laplacian case and in the general mean curvature formulation. An example of a curve
reconstruction has been provided to illustrate the efficiency of the schemes on a points set corresponding
to an analytical curve. This analysis can be naturally extended to the three dimensions and such schemes
could be potentially applied to other Hamilton-Jacobi equations as well as to more general PDEs involving
second order terms.
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Figure 4. Curve reconstruction: zero level set of u at convergence on the four meshes
(left hand side) and local enlargement (right hand side).
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