
HAL Id: hal-00391935
https://hal.science/hal-00391935

Preprint submitted on 9 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A MODELLING OF SPRINGING, WHIPPING AND
SLAMMING FOR SHIPS.
Philippe Destuynder, Caroline Fabre

To cite this version:
Philippe Destuynder, Caroline Fabre. A MODELLING OF SPRINGING, WHIPPING AND SLAM-
MING FOR SHIPS.. 2009. �hal-00391935�

https://hal.science/hal-00391935
https://hal.archives-ouvertes.fr


A MODELLING OF SPRINGING, WHIPPING AND SLAMMING FOR SHIPS

PHILIPPE DESTUYNDER

Chaire de Calcul Scientifique, Conservatoire National des Arts et Métiers

292 rue Saint Martin, Paris 75003, France

CAROLINE FABRE
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ABSTRACT. The slamming phenomenon is a violent impact of the hull of a ship on the

free surface of the sea. This loading case is particularly difficult to modelize for several

reasons: first of all, the wet surface of the hull is an unknown; then a coupling with the

springing (flexibility of the ship) is very complex and finally the interaction with the waves

(even if the eigenfrequencies of the structure and the one of the waves are very different)

which can be at the origin of important damage mechanisms, involves pointwise effects.

This paper aims at giving a simple mathematical model which enables one to simulate the

full coupling between these phenomena.

1. Introduction. Several kinds of ships are concerned by the slamming-springing effect

coupled with waves. Two of them are particularly sensitive to this phenomenon. They are

on the one hand flat bottom boats like barges or supertankers and on the other hand, the

slender hull ships like the fregates or the racing sailing boats. The energy of the movement

comes from the waves which is nevertheless a low frequency excitation. But the slam-

ming is a non linear phenomenon which spill over energy from the low frequencies onto

much higher ones. One mentioned consequence in maritime reports is an early damage of

super-structures even after a restricted number of loading cycles. Recently, this damaging

event has been introduced in the building rules for ships. A lot of works have been pub-

lished through out the scientific journals [23], [22], thesis [19], [33] and congresses [21],

[18], for tackling this particularly important problem. But the coupling between waves,

slamming and springing is barely considered. As it has been mentioned previously, this

decoupling can be fully justified in a linear formulation but the slamming which is highly

non-linear, destroys completely such a justification. This is the reason why a first attempt

for a fully coupled model is suggested in this paper. It rests on physical assumptions which

can certainly be criticized. Nevertheless, it enables one to suggest a mathematical frame-

work which leads to several meaningful results concerning the engineering point of view

and to point out major difficulties arising in the analysis.

There are several steps in the approach suggested in this paper. The first one, given in sec-

tion 2, consists in a description of the three media which appear in the physical modelling:

the flexible ship, the free surface of the sea and the sea itself. The coupling between the

three media requires two relations between each couple in contact. Generally one is the
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stress equilibrium and the other is the velocity continuity. This is discussed in section 3.

The global formulation is then explicited in section 4 and the treatment of the interface

between the water and the ship is taken into account through a penalty technique in section

5. Unfortunately, this model is not standard and the already known results (see J.L.Lions

[26]) doesn’t apply. The reason is that the contact forces are measures in space and time

variables. Therefore a regularization method based on a time integration enables to over-

come this new difficulty. This is explicited in sections 3 and 4. Finally a series of comments

concerning the validity of the model, the unstabilties and the numerical scheme which can

be used, are presented in section 6.

2. Modelling of the three media. The geometrical notations used in the text are defined

on figure 1. The fluid occupies the open and bounded set Ω in R
3. The boundary of Ω

U
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e

e
e
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FIGURE 1. Geometrical notations (Γc ⊂ Γ00 is the contact area). It is

time dependent.

assumed to be smooth enough, contains two or three main parts, depending on the value of

the ship velocity U which is assumed to be constant in all the paper : Γ1 (the free surface),

Γ0 (the bottom) and Γ3 (the latteral edge) which can be empty if U = 0 (intake and/or

outflow). The set Γ1 is divided into two portions: Γ00 where the contact between the water

and the ship is possible (see figure 1), and Γ2 which is always free. Furthermore, let us point

out that all the equations of the coupled model are written in the reference configuration

which is the frame of the ship moving forwards at the velocity U . The gradient in R
3 of

a function f is denoted by ∇f and the tangential component on Γ1 is ∇sf . Finally, the

laplacian in R
3 is denoted by ∆ and on Γ1 it is denoted by ∆s; the scalar product between

vectors of R
3 is denoted by (., .).

2.1. The steady flow around the ship. The water surrounding the ship is assumed to be

incompressible and unviscid. Therefore the flow velocity can be modelled by a potential
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function -say ϕ0 - which satisfies the following set of equations:


































−∆ϕ0 = 0 in Ω,

∂ϕ0

∂ν
= −Uν.ex on Γ0 ∪ Γ3 and

∂ϕ0

∂ν
= 0 on Γ1 = Γ00 ∪ Γ2,

∫

Ω

ϕ0 = 0.

(1)

The existence and uniqueness of a solution to (1) are classical (P.A. Raviart and J.M.

Thomas [30] and G. Duvaut [14] for instance). It simply requires that the Fredholm condi-

tion should be satisfied. In this particular case, it can be written as follows:
∫

∂Ω

∂ϕ0

∂ν
= 0, (2)

or else, using the boundary condition satified by ϕ0:
∫

Γ0∪Γ3

ex.ν = 0. (3)

There is a simple way to establish this property. Let us consider the plane open set Γx

orthogonal to ez containing Γ2 and the open set interior to Γ0 ∪ Γ3 ∪ Γx denoted by Ωx.

From:
∫

Γx∪Γ0∪Γ3

ex.ν =

∫

∂Ωx

ex.ν =

∫

Ωx

div(ex) = 0,

and since
∫

Γx

ex.ν = 0,

one can conclude that the Fredholm condition is satisfied.

Remark 1. The solution ϕ0 is proportional to U . Hence one can set:

ϕ0 = Uϕ̃0. (4)

In the following it will be assumed that the the function ϕ0 is smooth enough in order to

justify the computations. For instance ϕ0 ∈ W 2,∞(Ω) is sufficient and realistic from the

general regularity results for elliptic PDE’s (see P. Grisvard [20]).

2.2. The flow model due to the ship movements. Due to the ship movements the velocity

in the fluid is modified. Hence, the new velocity potential can be written:

ϕT = Uϕ̃0 + ϕ. (5)

The general equation satisfied by ϕ in the open set Ω is the following one ([12]) where

the upper dot stands for the partial time derivative, cf is the wave velocity in the fluid and

T > 0 is the time delay :

ϕ̈+ 2U∇ϕ̃0.∇ϕ̇+ U2∇ϕ̃0.∇(∇ϕ̃0.∇ϕ)− c2f∆ϕ = 0, in Ω×]0, T [. (6)

When the fluid is assumed to be incompressible, this equation is reduced to the following

one:

−∆ϕ = 0 in Ω×]0, T [. (7)

This is the case that we consider in this paper but one must notice that it is clearly an

approximation. Concerning the boundary condition on Γ0 ∪ Γ3 that one can prescribe for

ϕ, there are several possibilities. When U = 0, the most simple case is
∂ϕ

∂ν
= 0. It

corresponds to a boat floating in a tank with rigid walls. From Fredholm analysis [30], a
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necessary condition in order to define ϕ is

∫

Γ1

∂ϕ

∂ν
= 0. This implies a restriction (the

average is zero) on the normal displacement to the free surface of the sea. When U 6= 0
the portion Γ0 ∪ Γ3 of the boundary ∂Ω can not be made of walls because the water gets

in through one side and get out on an other one. In this case, one can adopt for instance

the condition ϕ = 0 on these parts denoted by Γ3. Let then us set, for U 6= 0 Γ3 =
∂Ω − (Γ0 ∪ Γ1). The mechanical interpretation is that on Γ3 the velocity is normal to the

boundary Γ3. These boundary conditions should be modified for the compressible case

which is discussed [10].

2.3. The free surface of the sea. The whole free surface of the sea at rest is denoted by

Γ1 (figure 1). The normal displacement of the fluid to this boundary denoted by η. On the

part Γ2, with Γ2 ⊂ Γ1, the movement of the free surface is governed by the equilibrium

between the gravity, the capillarity force and the pressure in the fluid. The unit normal

to Γ1 outwards Ω is denoted by ν. Because at rest, the portion Γ2 is horizontal, one has

ν = ez (hence νz = 1) on it. But on the part of Γ00, with Γ00 ⊂ Γ1, which can be in

contact with the boat, the inclination of the surface Γ1 should be considered. Concerning

the free surface which can be in contact with the boat, one also has to take into account the

pressure due to the ship. If N is the unit inwards normal to the hull, the pressure applied

on the free surface of the sea by the ship, is:

F = λN. (8)

Conversely the one applied on the structure by the fluid is −F . Because the water doesn’t

stick on the hull, one has the condition:

λ ≤ 0. (9)

Let us point out that λ = 0 where the hull is not in contact with the sea. The equilibrium

of the forces applied on the free surface Γ1 leads to: (σ is the capillarity constant, ̺f is the

mass density of the fluid, g is the gravity and the tangential displacements are neglected

because the viscosity is not taken into account):

− σ∆sη + gηνz + ̺f ϕ̇+ ̺fU∇sϕ̃0.∇sϕ+ c(t) = λ(N, ν), (10)

where the constant c(t) depends on the choice of the constant ϕ depends on (it is a potential

function).

In order to complete the model, one should prescribe boundary conditions on ∂Γ1. Several

possibilities occur. When U = 0 one can set for instance:

σ
∂η

∂νΓ1

= 0,

which means that the water glides perfectly on the lateral boundary of Ω (far away from

the ship). If U 6= 0 the perfect gliding is more complicated to write. One can adopt the

following boundary condition (see [12]):

σ
∂η

∂νΓ1

= ̺fU
∂ϕ̃0

∂νΓ1

ϕ.

In order to simplify the characterization of the constant c(t) one can prescribe the additional

condition which enables to separate the computation of the constant c(t) and the function

η in (10):
∫

Γ1

η(s, t)ds = 0. (11)
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Let us point out that when U = 0 this is a necessary condition due to the incompressibility

of the fluid and to the Neumann homogeneous boundary condition satisfied by ϕ on Γ0.

For sake of brevity this relation is kept for all cases in the following. More generally, the

following functional spaces are used (< ., . > is the duality between the spacesH−1/2(Γ1)
and H1/2(Γ1)):































L2
0(Γ1) = {v| v ∈ L2(Γ1),

∫

Γ1

v(s)ds = 0}

H
−1/2
0 (Γ1) = {v| v ∈ H−1/2(Γ1), < v, 1 >= 0},

V = H1(Γ1) ∩ L2
0(Ω).

(12)

Let us recall that c(t) can not be prescribed a priori. It appears as the Lagrange multiplier

of the relation (11). Finally the equation which traduces the equilibrium of the free surface

can be written in a variational form as follows, making use of the boundary conditions

satisfied by η on ∂Γ1 and because of (11) the constant c(t) which is not zero, nevertheless

disappears:































































∀t ∈]0, T [, η ∈ V is such that: ∀v ∈ V :

asf (η, v) + ̺fU [

∫

Γ1

(∇sϕ̃0.∇sϕ)vds−
∫

∂Γ1

∂ϕ̃0

∂νΓ1

v] +

∫

Γ1

̺f ϕ̇vds

= asf (η, v)− ̺fU

∫

Γ1

[(∆sϕ̃0 ϕ v + ϕ (∇sϕ̃0,∇sv)]ds+

∫

Γ1

̺f ϕ̇vds

=

∫

Γ1

λ(N, ν)vds,

(13)

where the bilinear form asf (., .) is defined by:

∀η, v ∈ V, asf (η, v) =

∫

Γ1

[σ∇sη.∇sv + gνzηv]ds. (14)

The mathematical properties of this bilinear form are classical (see J. Necas [28] or P.A.

Raviart and J.M. Thomas [30]). But it should be worth noting that because νz can be

negative, one has to use an extension of the regular ness property.

Let us summarize this in the following statement which is sometimes called Garding’s

coerciveness. It is a consequence of the compact embedding from H1(Γ1) into L2(Γ1);

therefore, the one from V into H
−1/2
0 (Γ1) is also compact.

Theorem 2.1. Let asf the bilinear and symmetrical form defined on the space V at (14).

There exists a real number a0 ≥ 0 such that:

∀v ∈ V, asf (v, v) + a0||v||2−1/2,Γ1
≥ ||v||21,Γ1

,

where ||.||1,Γ1
is the norm in the space H1(Γ1) and ||.||−1/2,Γ1

the one in H
−1/2
0 (Γ1).

The result is obvious if νz > 0. But it can happen, for a large class of hull, that νz < 0
on a part of it (see figure 2 below).
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FIGURE 2. Case of a hull with negative values of νz

2.4. The flexible structure. The ship is a flexible structure the movement of which can be

modelled by a standard hyperbolic system which can be written in a variational formulation.

Let us denote by q the generalized displacement field of the surface ω which represents

the hull of the ship. A dynamical shell model can be used. Let us denote by mh(q, p)
the bilinear form representing the inertia and by ah(q, p) the one for the stiffness. The

functional space in which q and p are chosen is denoted by W . For a standard Koiter

[8] or Budiansky [9] shell model, it is isomorphic to [H1(ω)]2 ×H2(ω) up to rigid body

modes (P.G. Ciarlet [8]). The time derivatives of the displacements denoted by q̇ belongs

for classical shell or even 3D structural model, to a space denoted by H and which is

isomorphic to [L2(ω)]3. If inertia terms are considered in a shell model, one should use for

H the space [L2(ω)]2 × H1(ω). But one can also use a three dimensional model on the

structure occupying the open set S. Then, the components of q are in the space [H1(S)]3

and the trace on ω are only in the space [H1/2(ω)]3. In this case, the velocities q̇ are in the

space [L2(S)]3. Because the ship is free, there are no prescribed kinematical conditions

in W . Assuming that the boat is in equilibrium (the weight is compensated by the static

Archimede force), the movement of the hull is governed by the variational model where λ
is in fact the transient pressure applied by the ship on the surface of the sea:















∀t ∈]0, T [, q(t) ∈W such that:

∀t ∈]0, T [, ∀p ∈W, mh(q̈, p) + ah(q, p) = −
∫

Γ00

λ(N, p)ds.
(15)

Furthermore, initial conditions should be prescribed at t = 0: q(0) = q0 and q̇(0) = q1.

In a large number of applications it is sufficient to restrict the previous model to a finite

dimensional one by considering only a finite number of eigenmodes for the ship (which can

be represented by a more complete model than a shell one). But one meaningful advantage

of the shell model compared to the three dimensional model (even if only few eigenmodes

are kept) is that the deformed configuration avoids angles ((q,N) ∈ H2(ω)) which can

induce new singularities in the distribution λ (the pressure).
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3. The coupling relations. There are three mechanical models which interact: one is the

ship assumed to be flexible, the second one is the free surface of the sea and finally, the sea

itself. The coupling between the three media is derived from continuity conditions for the

kinematics and for normal pressure (continuities of tangential components are omitted in

our formulation as far as the fluid is assumed to be unviscid and therefore the boundary lay-

ers are cancelled). The two coupling which appear in the full model are discussed herafter

but separately.

3.1. Coupling between the sea and the free surface. Let us recall that∇s is the tangen-

tial gradient of a function on the surface Γ1. The velocity of a material point on the free

surface is : U∇sϕ̃0 +∇ϕ. The unit normal to the free surface in the deformed configura-

tion can be approximate by the following expression as far as the curvature of this surface

is small enough (P-G. Ciarlet [7],[8]) ν′ = ν+θ where θ = −∇sη. Hence the normal fluid

velocity is up to second order terms:

u ≃ (ν′, U∇sϕ̃0 +∇ϕ)

and keeping only the first order terms (with respect to the perturbation ϕ or η), one obtains:

u ≃ (∇ϕ, ν)− U(∇ϕ̃0,∇sη).

This is the normal velocity of the free surface which is also equal up to second order terms

to η̇. Finally, one has the following boundary condition on Γ1:

∂ϕ

∂ν
= η̇ + U(∇sη,∇sϕ̃0). (16)

This boundary condition enables one to write the variational formulation for the fluid as

follows. First of all, let us define the functional space for ϕ at an instant t by:

V = {ψ| ψ ∈ H1(Ω), ψ = 0 on Γ3 if U 6= 0 and

∫

Γ1

ψ = 0 if U = 0}. (17)

The velocity potential ϕ has to satisfy the variational model:














∀t ∈]0, T [, ϕ(t) ∈ V, such that : ∀t ∈]0, T [, ∀ψ ∈ V,

∫

Ω

(∇ϕ(t),∇ψ)dx =

∫

Γ1

η̇(t)ψds+ U

∫

Γ1

(∇sη(t),∇sϕ̃0)ψds.
(18)

It clearly appears that ϕ is the summ of two contributions (both linear with respect to η):

one proportional to η̇ and the other to U∇sη. But when U = 0 the average of
∂ϕ

∂ν
is zero

on Γ1 and therefore the Fredholm condition is automatically satisfied. When U 6= 0 this

condition is no more necessary because ϕ = 0 on Γ3. Hence one can set:

ϕ = Φ(η̇) + UΦ((∇sϕ̃0,∇sη)), (19)

where the linear operator Φ is defined from the functional space H−1/2(Γ1) for U 6= 0

(and from H
−1/2
0 (Γ1) if U = 0) into V by:















g ∈ H−1/2(Γ1) ( respectively H
−1/2
0 if U = 0),→ Φ(g) ∈ V such that:

∀ψ ∈ V,

∫

Ω

(∇Φ(g),∇ψ)dx =

∫

Γ1

gψds.
(20)

The restriction of Φ(g) on Γ1 is denoted by ΦΓ1
(g). It is an element of the spaceH1/2(Γ1),

(and even of H1/2(Γ1) ∩ L2
0(Γ1) if U = 0). One has the standard following statement [3].
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Theorem 3.1. There exists two strictly positive constants c0 and c1 such that (H−1/2(Γ1)

is replaced by H
−1/2
0 (Γ1) if U = 0):

∀g ∈ H−1/2(Γ1)), c0||ΦΓ1
(g)||1/2,Γ1

≤ ||g||−1/2,Γ1
≤ c1||ΦΓ1

(g)||1/2,Γ1
.

Therefore one can define a symmetrical bilinear form on the functional spaceH−1/2(Γ1)

for U 6= 0 and H
−1/2
0 (Γ1) for U = 0, which is continuous and coercive, by:

∀g, h ∈ H−1/2(Γ1), (respectively H
−1/2
0 (Γ1) if U = 0) :

msf (g, h) = ̺f

∫

Ω

(∇Φ(g),∇Φ(h))dx

def
= ̺f < g,ΦΓ1

(h) >H−1/2(Γ1)×H1/2(Γ1) .

(21)

With the previous notations, the free surface model can be written:

∀v ∈ V,

msf (η̈, v) + asf (η, v)

+̺fU

∫

Γ1

{ΦΓ1
((∇sϕ̃0,∇sη̇))v − ΦΓ1

(η̇)[(∇sϕ̃0,∇sv) + ∆sϕ̃0 v ]}ds

−̺fU
2

∫

Γ1

[(∇sϕ̃0,∇sv) + ∆sϕ̃0 v ]ΦΓ1
((∇sϕ̃0,∇sη))ds

=

∫

Γ00

λ(N, ν)v.

(22)

This equation must be discussed in the context of the full coupled model.

3.2. Coupling between the free surface and the hull. In fact, the continuity relations

have already been taken into account in the previous sections. But one is still to be dis-

cussed and it is the most important one. It concerns the non penetration of the water inside

the ship. First of all, let us introduce the gap function denoted by ψ which represents the

free space between the free surface of the sea and the hull of the boat in the stationary

configuration. It is assumed that ψ ∈ C0 ∩H1(Γ00) which is a realistic assumption. This

function is defined on the boundary Γ00 and ψ ≥ 0. One has ψ = 0 on the part of the

free surface of the sea which is in contact with the hull at rest (see figure 4). It is measured

along the direction of the vector N . The non-interpenetration of the water into the boat can

be approximately explicited by the relation:

η(N, ν) ≤ (q,N) + ψ on Γ00. (23)

A reasonable assumption is that (see figure 3):

(N, ν) ≥ n0 > 0 on Γ00. (24)
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FIGURE 3. Illustration of the condition (24)

This condition is only an approximation which is consistant up to second order as far

as the movements of the water are small enough. For instance, the couple of points on

the free surface and on the hull which can be in contact are not known a priori. A first

order approximation can be used by considering that they are on a same line parallel to the

normal N to the hull of the ship. This result can be derived from differentiable manifold

theory (see P. G. Ciarlet [9]).

Sea

N

Ship

Hull

ν

x

Contact at rest

No contact at rest

ην

  η(N,ν)

(q,N)

ψ

FIGURE 4. Geometrical approximation of the gap between the boat and

the free surface of the sea

Hence, one defines the admissible convex set K for the admissible set of the displace-

ments η and q, by:

K = {(v, p)| (v, p) ∈ V ×W, (N, ν)v ≤ (p,N) + ψ on Γ00}. (25)

This is a closed and non empty convex set of V ×W . It is assumed in all the paper that the

initial conditions are in K (see (25)). If the couple (η, q) solution of the mechanical model

is such that on a part of Γ00 one has η(N, ν) < (q,N) + ψ the water is not in contact with

the hull of the ship and therefore on the same part one also has λ = 0. Finally the coupling

condition between the hull and the free surface can be written as follows:






















i) λ ≤ 0, on Γ00,

ii) (N, ν)η ≤ (q,N) + ψ on Γ00×]0, T [,

iii) λ[(N, ν)η − (q,N)− ψ] = 0 on Γ00×]0, T [.

(26)
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But an important difficulty appears in this formulation (which is only an approximation!)

because λ is a measure and the previous characterization is difficult to handle in a mathe-

matical framework. Hence a new formulation is required in order to make sense to this non

interpenetration condition. This the goal of the next sections.

4. The global formulation. Let us begin with an important remark concerning the non

uniqueness of the dynamical model. This cornerstone remark is developed in [10]. Let us

consider a simple 0-D model as shown on figure 5. The equation of the movement is the

FIGURE 5. The spring model

following one:







ẍ+ ω2x ≤ 0, x(0) = x0, ẋ(0) = x1,

x ≤ 0 and x(ẍ+ ω2x) = 0.
(27)

This model is ill posed because there are an infinite number of solutions. The problem

comes from the lack of reflexion condition on the obstacle (x = 0). One can see several

possible solutions on figure 6. In order to select the true one it is necessary to traduce the

energy conservation (or not) when the material point touches the obstacle at an instant t0.

The energy conservation is in this case ẋ(t0 − 0) = −ẋ(t0 + 0). But this condition is

difficult to traduce for the full coupled model. Hence a strategy based on a penalty method

and a time integration technique enables one to overcome this difficulty. Nevertheless, in

case of a damping phenomenon during the contact it is possible to take it into account in

the ship model or in the free surface one. But this is out the scope of this paper. Important

contributions on these questions are given in the works of M. Schatzman [31] and L. Paoli-

M. Schatzman [29] for pointwise contacts and by A. Bamberger and M. Schatzman [32]

[2] for a vibrating string.

4.1. The variational model. Let us summarize the model which has been presented pre-

viously but which is ill posed because of the lack of information on the conservation of

energy before and after the contact. There are two unknown fields: the normal displace-

ment η of the free surface and the displacement of the boat q. One has (η, q) ∈ K and it
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FIGURE 6. Solutions to (27); top: absorption, center: conservation, bot-

tom: damping

satisfies the following variational inequation directly deduced from (26):















































(η, q)(t) ∈ K such that

∀(v, p) ∈ K, mh(q̈, p− q) + ah(q, p− q) +msf (η̈, v − η) + asf (η, v − η)

+̺fU

Z

Γ1

ΦΓ1
((∇sϕ̃0,∇sη̇))(v − η) − ΦΓ1

(η̇)[(∇sϕ̃0,∇s(v − η)) + ∆sϕ̃0 (v − η) ]

−̺fU
2

Z

Γ1

[(∇sϕ̃0,∇s(v − η)) + ∆sϕ̃0 (v − η) ]ΦΓ1
((∇sϕ̃0,∇sη)) ≥ 0.

(28)

Unfortunately the non-uniqueness remark can be applied to this model. Hence it is

necessary to select the solutions by introducing an additional information on the energy

conservation (or not) during the shock with the obsatcle (water against the hull of the ship).

4.2. The penalty strategy (energy conservation). In order to select a rebounding strategy

let us imagine that the non interpenetration method is replaced by the action of a very stiff

spring, the stiffness of which being denoted by
1

ε
, with ε << 1. The variational inequation

is then replaced by a non linear model but which has the huge advantage to be governed by
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an equation. It is explicited hereafter:














































































∀t ∈]0, T [, (ηε, qε)(t) ∈ V ×W such that:

∀(v, p) ∈ V ×W, mh(q̈ε, p) + ah(qε, p) +msf (η̈ε, v)

+̺fU

∫

Γ1

{ΦΓ1
((∇sϕ̃0,∇sη̇

ε))v − ΦΓ1
(η̇ε)[(∇sϕ̃0,∇sv) + ∆sϕ̃0 v ]}ds

+asf (ηε, v)− ̺fU
2

∫

Γ1

[(∇sϕ̃0,∇sv) + ∆sϕ̃0 v ]ΦΓ1
((∇sϕ̃0,∇sη

ε))ds

+
1

ε

∫

Γ00

[ηε(N, ν)− (qε, N)− ψ]+[v(N, ν)− (p,N)]ds = 0.

(29)

The existence and the uniqueness of a solution to this penalized model can be derived from

a Galerkin approximation method. For sake of brevity, let us just give the result for U = 0.

The case U 6= 0 is discussed in subsection 6.2 for a particular situation and more generally

in [10]. First of all, the eigenmodes {wh
k , λ

h
k} of the stucture defined by:























wh
k ∈W, λh

k ∈ R
+,

∀p ∈W, λh
kmh(wh

k , p) = ah(wh
k , p),

mh(wh
k , w

h
k ) = 1.

(30)

The six first eigenvalues are zero because of the rigid body motions of the structure. For

sake of commodity, the eigenmodes are ordered such that:

λh
7 ≤ λh

8 ≤ . . . ≤ λh
k ≤ λh

k+1 ≤ . . .
It is known that the family {wh

k} is an Hilbert basis of the space W [30],[3]. Similarly, we

introduce the eigenmodes of the fluid - say {wsf
k , λsf

k } - which are solution of:

(31)






















wsf
k ∈ V, λ

sf
k ∈ R,

∀v ∈ V, λsf
k msf (wsf

k , v) = asf (wsf
k , v),

msf (wsf
k , wsf

k ) = 1.

(32)

Here again the classical spectral theory can be applied (using the shift of the eigenvalues

due to the Garding coerciveness (see theorem 2.1). The family {wsf
k } is an Hilbert basis of

the space V (see [30], [3]) and the eigenmodes are also ordered by increasing values of the

eigenvalues.

Let us define by V J and W J the finite dimensional spaces included respectively in W
and V such that:

W J = {p| p =
∑

k=1,J

αh
kw

h
k}. (33)

V J = {v| v =
∑

k=1,J

αsf
k wsf

k }. (34)

The approximation model consists in finding (ηJ , qJ) ∈ V J ×W J which satisfies initial

conditions (for (qJ(0), q̇J(0))) and (ηJ(0), η̇J(0)), which are defined as the projection
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(with respect to msf and mh) of the true one (those of the continuous model) on the finite

dimensional spaces W J and V J and such that:







































∀p ∈W J , ∀v ∈ V J ,

mh(q̈J , p) + ah(qJ , p)− 1

ε

∫

Γ00

[(N, ν)ηJ − (qJ , N)− ψ]+(N, p) = 0,

msf (η̈J , v) + asf (ηJ , v) +
1

ε

∫

Γ00

[(N, ν)ηJ − (qJ , N)− ψ]+(N, ν)v = 0.

(35)

This is a second order ordinary differential equation (not inequation) satisfying the regular

Lipschitz assumption. Therefore, for any ε one can ensure that there is a unique solu-

tion for given initial data. The point is that one can derive an energy estimate on the

sequences (ηJ , qJ). It is necessary to assume that the initial condition which satisfy the

non-interpenetration condition (in the set K defined at (25)), are in the space of finite en-

ergy. This is obtained by setting v = η̇J and p = q̇J in the approximate model (35). One

obtains:

1

2
{mh(q̇J , q̇J) +msf (η̇J , η̇J) + ah(qJ , qJ) + asf (ηJ , ηJ)

+
1

ε

∫

Γ00

|(ηJ(N, ν)− (qJ , N)− ψ)+|2ds} = constant/time

As a consequence the sequences q̇J and η̇J are bounded in the spaces:

L∞(]0, T [;H) and L∞(]0, T [;H
−1/2
0 (Γ1)).

The sequences qJ and ηJ are respectively bounded in the spaces:

L∞(]0, T [;W ) and L∞(]0, T [;V ).

These estimates enable one to extract subsequences which converge weakly to a solution

of the following variational model:






































∀p ∈W, ∀v ∈ V,

mh(q̈, p) + ah(q, p)− 1

ε

∫

Γ00

[(N, ν)η − (q,N)− ψ]+(N, p)ds = 0,

msf (η̈, v) + asf (η, v) +
1

ε

∫

Γ00

[(N, ν)η − (q,N)− ψ]+(N, ν)vds = 0,

(36)

and satisfying the initial conditions: η(0) = η0, η̇(0) = η1, q(0) = q0, q̇(0) = q1.Details

can be found in [30], [26] and for this particular case in [10].

The uniqueness (for ε > 0!) can be obtained from the same energy estimate by consid-

ering two solutions satisfying the same initial conditions and because of the monotonicity

of the term (see J.L. Lions [26]):

(v, p) ∈ V ×W → |[(N, ν)v − (p,N)− ψ]+|2.
In order to study the limit of this model when the small parameter ε tends to zero, it is

convenient to use a change of variables based on a trajectory method. It means that the

unknown are the integrals of the displacements with respect to time. But first of all let us

point out that the solution of (29) satisfies an energy invariant property when U = 0 (the
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general case is briefly discussed at subsection 6.2). The following result proves that the

energy of the initial conditions is kept by the model for any ε.

Theorem 4.1. Let (η0, η1, q0, q1) ∈ V × H−1/2
0 (Γ1) ×W × H . The unique solution

(ηε, qε) of (36), satisfies the invariant property:

∀ε, ∀t ∈ [0, T ], E(t) = E(0),

where the energy E = E(t) is defined by:

E =
1

2
{mh(q̇ε, q̇ε) +msf (η̇ε, η̇ε) + ah(qε, qε) + asf (ηε, ηε)

+
1

ε

∫

Γ00

|(ηε(N, ν)− (qε, N)− ψ)+|2ds}

Proof. The proof is quite classical and obtained by choosing v = η̇ε and p = q̇ε in (36).

A classical consequence of this conservation property is that the penalty contact-model

doesn’t damp the energy defined in theorem 4.1. In fact, the result is obtained for U = 0
and, for U 6= 0, it can’t be obtained because the system is open since kinetical energy

enters the open set Ω and some is getting out. But nothing guarantees that this is a balanced

phenomenon. This characteristic can be at the origin of instabilities which are discussed in

subsection 6.2 and in [11]. Therefore there is not global energy conservation in this case.

4.3. The time integration technique (strong penalty model). In order to analyze the

asymptotic behaviour of this penalty model it is much more convenient to use a path method

instead of a state variable one (the path is the time integration of a state variable). The basic

reason is that a measure can appear at each contact point and the estimate are not obvious

at all as far as the state variable are kept. Let us set formally:

Hε(s, t) =

∫ t

0

ηε(s, ξ)dξ, on Γ1 Qε(s, t) =

∫ t

0

qε(s, ξ)dξ on the structure. (37)

One can check directly the following relations:

Q̈ε = q̇ε, Ḧε = η̇ε Q̇ε = qε, Ḣε = ηε. (38)

Therefore the path defined from the solution of the penalty model is also solution of:










































































































(Hε, Qε)(t) ∈ V ×W such that ∀t ∈]0, T [, ∀(v, p) ∈ V ×W,

mh(Q̈ε, p) + ah(Qε, p) +msf (Ḧε, v)

+̺fU

Z

Γ1

{ΦΓ1
((∇sϕ̃0,∇sḢ

ε))v − ΦΓ1
(Ḣε)[(∇sϕ̃0,∇sv) + ∆sϕ̃0 v ]}ds

+asf (Hε, v) − ̺fU
2

Z

Γ1

[(∇sϕ̃0,∇sv) + ∆sϕ̃0 v ]ΦΓ1
((∇sϕ̃0,∇sH

ε))ds

+
1

ε

Z t

0

Z

Γ00

[Ḣε(N, ν) − (Q̇ε
, N) − ψ]+[v(N, ν) − (p,N)]ds

= mh(q̇ε(0), p) +msf (η̇ε(0), v)

+̺fU

Z

Γ1

{ΦΓ1
((∇sϕ̃0,∇sη(0)))v − ΦΓ1

(η(0))[(∇sϕ̃0,∇sv) + ∆sϕ̃0 v ]}ds.

(39)
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In order to explain how this model can be interpreted from a mahematical point of view, let

us come back to the simple spring model. The integrated penalty model consists in setting:



























































Xε(t) =

∫ t

0

xε(ξ)dξ, where x is solution of

ẍε + ω2xε +
1

ε
ẋε = 0, xε(0) = x0, ẋ

ε(0) = x1,

therefore Xε is solution of:

Ẍε + ω2Xε +
1

ε

∫ t

0

(Ẋε)+ = x1, X
ε(0) = 0, Ẋε(0) = x0.

(40)

One can derive estimates on Ẍε Ẋε, Xε and on Λε(t) =
1

ε

∫ t

0

(Ẋε)+(ξ)dξ in the space

L∞(]0, T [) as soon as the initial condition satisfies Ẋε(0) ≤ 0 which enables to state a

convergence result to a limit model. Therefore, up to a subsequence:






















































Ẍε ⇀ Ẍ∗ in L∞(]0, T [) weak*,

Xε → X∗ in C1([0, T ]),

1

ε

∫ t

0

(Ẋε)+ ⇀ Λ∗ in L∞(]0, T [) weak * and strongly in C0([0, T ])

∫ t

0

(Ẋε)+ → 0 as ε in L∞(]0, T [).

(41)

Furthermore, as
1

ε

∫ t

0

(Ẋε)+ is bounded in the space W 1,1(]0, T [), it converges weakly*

in the space BV ([0, T ]) which ensures that Λ̇∗ is a measure on [0, T ] and it makes sense to

the term Λ̇∗Ẋ∗.

The limit (Λ∗, X∗) satisfies:

Ẍ∗+ω2X+Λ∗ = x1, X∗(0) = 0, Ẋ∗(0) = x0, Ẋ
∗ ≤ 0, Λ∗ ≥ 0, Λ̇∗Ẋ∗ = 0. (42)

In (42) the difficulty is to prove the last relation and to give a pointwise interpretation to it.

It is obtained by observing that Ẋε converges in C0([0, T ]) to Ẋ∗ when ε→ 0 because Ẍε

is bounded in the space L∞(]0, T [). Let us consider an instant t0 such that Ẋ∗(t0) < 0 (the

result is true for Ẋ∗(t0) = 0). For ε small enough, there exists a neighbourhood of t0 such

that Ẋ∗(t) < 0 on this neighbourhood. But Ẋε converges uniformly to Ẋ∗ when ε → 0.

Finally, one can define ε0 and a neighbourhood - sayO - of t0 on which ∀ε < ε0, Ẋ
ε < 0.

Therefore Λε is constant on this neighbourhood, and its time derivative is zero. Hence

Λ̇εẊ∗ = 0 on the open set O. Finally, one can prove that:
∫

O

Λ̇∗Ẋ∗ = lim
ε→0

∫

O

Λ̇εẊ∗ = 0.

Therefore:

Λ̇∗Ẋ∗ = 0 because O can be arbitrary small.
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In fact, this implies that the time derivative of X∗ is a solution of the initial model. And

from the energy conservation property of the penalty model, the limit is a solution which

keeps the energy. Unfortunately this is not always sufficient to ensure the uniqueness as far

as there are several degrees of freedom. The advantage of the integrated formulation is that

the fonctions are more regular and this enables a priori estimates and compactness results

that are not true with the initial model of the full coupled model.

4.4. A weak penalty model (energy absorption). The penalty term which appears in the

integrated model, is very stiff because it takes into account all the history of the solution.

One can weaken this penalty term by replacing it by an instantaneous one. Thus a new

integrated model which is no more equivalent to (36) - but which is mechanically motivated

- is defined by:










































































































(Hε, Qε)(t) ∈ V ×W such that ∀t ∈]0, T [:

∀(v, p) ∈ V ×W, mh(Q̈ε, p) + ah(Qε, p) +msf (Ḧε, v)

̺fU

Z

Γ1

{ΦΓ1
((∇sϕ̃0,∇sḢ

ε))v − ΦΓ1
(Ḣε)[(∇sϕ̃0,∇sv) + ∆sϕ̃0 v ]}ds

+asf (Hε, v) − ̺fU
2

Z

Γ1

[(∇sϕ̃0,∇sv) + ∆sϕ̃0 v ]ΦΓ1
((∇sϕ̃0,∇sH

ε))ds

+
1

ε

Z

Γ00

[Ḣε(N, ν) − (Q̇ε
, N) − ψ]+[v(N, ν) − (p,N)]ds

= mh(q̇ε(0), p) +msf (η̇ε(0), v)

+̺fU

Z

Γ1

{ΦΓ1
((∇sϕ̃0,∇sη(0)))v − ΦΓ1

(η(0))[(∇sϕ̃0,∇sv) + ∆sϕ̃0 v ]}ds.

(43)

In order to explain the modifications induced by this change in the penalty term, let us

come back to the simple spring model. The new weak penalty (integrated) model consists

in solving:

Ẍε + ω2Xε +
1

ε
(Ẋε)+ = x1, Xε(0) = 0, Ẋε(0) = x0. (44)

Thus, the penalty term appears as a viscous damping on Xε when Ẋε > 0 (first order time

derivative). One can check that when ε → 0 the limit of Xε denoted by X∗, is the unique

solution of the following model (see the proof for the full coupled model at subsection

5.2.3):






Ẋ∗ ≤ 0, X∗(0) = 0, Ẋ∗(0) = x0,

∀V ≤ 0, (Ẍ∗ + ω2X∗ − x1)(V − Ẋ∗) ≥ 0.

(45)

Choosing V = 1.5Ẋ∗ and V = 0.5Ẋ∗ leads to (after a time integration between 0 and t):

ω2(Ẋ∗)2(t) + ω2(X∗)2(t) = 2x1X
∗(t) + x2

0. (46)

Let us consider an instant t0 such that Ẋ∗(t0) = 0 (contact point). One has from (46):

ω2(X∗)2(t0)− 2x1X
∗(t0)− x2

0 = 0, (47)

or else:

X∗(t0) =
x1 ±

√

ω2x2
0 + x2

1

ω2
, (only + is meaningful). (48)
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Therefore X∗(tn) takes always the same value for each contact instant tn after t0. Setting

this solution in (46), one obtains that

Ẋ∗(tn) = 0. (49)

From the uniqueness result, one can claim that X∗(t) = 0 ∀t ≥ t0. Hence the solution

sticks exactly on the obstacle after the first contact. One has a perfect absorption. This is

not surprising because the damping coefficient is
1

ε
and it tends to the infinity when ε→ 0.

5. The mathematical analysis. In order to simplify the notations, the following analysis

is restricted to the case where U = 0. The extension to a more general situation (U 6= 0)

can be obtained in a similar way as far as no instability appears. Such phenomenae seem to

be similar to breaking waves problems. This is discussed in [10]. The plan of the analysis

given in this section is the following one: first of all the existence and uniqueness of a

solution to (39) or (43) is checked (in fact, for U = 0 the model (39) is equivalent to (36)).

Then several a priori estimates are derived by energy methods for both models (strong and

weak integrated penalty ones). This enables one to extract subsequences which converge

in a weak sense to a solution of a limit model in each case. Finally, the uniqueness of

a solution to the limit model is proved for the so-called weak penalty model. The time

derivative of each integrated limit model is a solution of the initial one.

5.1. Analysis of the strong penalty model (39).

5.1.1. Existence and uniqueness of a solution to (39) for U = 0. The existence of a solu-

tion is a direct consequence of the construction of the integrated penalty model. In fact, as

far as ε 6= 0 (29) and (39) are equivalent. The point is to obtain a priori estimates on the

solution (Hε, Qε) and to take the limit when ε→ 0.

5.1.2. The formulation of (39) when U = 0. There are two kinds of estimates. The first

ones are obtained by setting (v, p) = (Ḣε, Q̇ε) = (ηε, qε) in the integrated penalty model

(39) where one has introduced the restriction U = 0. The second ones come from the

initial penalty model. But both are necessary to get a convergence result. First of all, let

us introduce few notations which are convenient in the mathematical proof. The functional

space (Hε, Qε) belongs to, is denoted by V = V ×W and the time derivatives (Ḣε, Q̇ε)

belongs to the spaceH = H
−1/2
0 ×H . Two bilinear forms are defined on V by:























∀X = (H,Q), Y = (K,P ) ∈ V :

Mc(X,Y ) = mh(Q,P ) +msf (H,K),

A(X,Y ) = ah(Q,P ) + asf (H,K).

(50)

They satisfy the following properties which can be proved easily from classical results and

theorems 2.1 and 3.1:






















∃ c0, c1 > 0, s.t. ∀Y ∈ V, c0||Y ||2H ≤M(Y, Y ) ≤ c1||Y ||2H,

∃ d1 > 0, s.t. ∀Y ∈ V, A(Y, Y ) ≤ d1||Y ||2V ,

∃ d0 > 0, τ > 0 such that: d0||Y ||2V ≤ A(Y, Y ) + τ ||Y ||2
H
.

(51)

Let us point out how these properties can be used in the following analysis. First of all, the

difficulty is that one has not the coerciveness of the bilinear form A(., .). But one has the

Garding’s inequality above which is sufficient as shown in the next result.
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Theorem 5.1. Let us consider a sequence Xn ∈ C0([0, T ];V) ∩ C1([0, T ];H) which sat-

isfies the estimate:

M(Ẋn, Ẋn) +A(Xn, Xn) ≤ c0
where c0 is a constant which is independent on n. Then the sequence Xn is bounded in the

space C0([0, T ];V) ∩ C1([0, T ];H).

Proof. From Helmotz’s theorem (spectral decomposition of V using the eigenvectors of A
with respect toM), one can restrict the proof of theorem 5.1 to a finite dimensional space

of V for which A is negative.

Hence if Xn(t) =
∑

k=1,K

αk(t)wk(x), the estimate satisfied by Xn is (using the orthogo-

nality with respect to the bilinear and symmetrical formsM andA and ξ (ξ > 0) being the

opposite of the smallest negative eigenvalue of A):

∑

k=1,K

[α̇2
k − ξα2

k] ≤ c0.

But one has also:

αk(t) = αk(0) +

∫ t

0

α̇k(s)ds,

which implies:

∀t ∈ [0, T ] : αk(t)2 ≤ max(1, T )

2
[α2

k(0) +

∫ t

0

α̇2
k(s)ds].

A summation from 1 to K leads to the existence of two strictly positive constants E and F
such that:

∑

k=1,K

α̇2
k(t) ≤ D + F

∫ t

0

∑

k=1,K

α̇2
k(s)ds.

From Gronwall’s lemma (see for instance [24]), one can conclude that αk(t) is bounded on

[0, T ] and this prove theorem 5.1.

The model (39) can also be written as follows (for U = 0):















































find Xε(t) = (Hε(t), Qε(t)) ∈ V such that:

∀Y = (K,P ) ∈ V, M(Ẍε, Y ) +A(Xε, Y )

+
1

ε

∫

Γ00

{
∫ t

0

[(N, ν)Ḣε − (N, Q̇ε)− ψ]+}[(N, ν)K − (N,P )]

= mh(q̇ε(0), P ) +msf (η̇ε(0),K),

(52)

and the initial conditions are the following ones:

Xε(0) = (0, 0), Ẋε(0) = (ηε(0), qε(0)). (53)
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5.1.3. Estimates on Ẍε, Ẋε and Xε versus ε when U = 0 for the strong penalty model.

Let us consider the initial penalty model the solution of which is Xε. The energy estimate

recalled at theorem 4.1 can also be interpreted in terms of Xε (for instance (η̈ε, q̈ε) =
∂3Xε

∂t3
) such that:

1

2
[M(Ẍε, Ẍε) +A(Ẋε, Ẋε) +

1

ε

∫

Γ00

{[(N, ν)ηε − (qε, N)− ψ]+}2](t) = E(0), (54)

with (the initial condition is assumed to satisfy the non interpenetration condition):

E(0) =
1

2
[M(Ẍε, Ẍε) +A(Ẋε, Ẋε)](0). (55)

From theorem 5.1 one derives the following estimates:

∀t ∈ [0, T ], ||Ẍε||2H(t) + ||Ẋε||2V(t) ≤ c, (56)

from which one deduces that:

∀t ∈ [0, T ], ||Xε||2V(t) ≤ c′. (57)

These a priori estimates enable one to extract subsequences of Xε denoted Xε′

such that:







































Xε′

⇀ε′→0 X
∗ in L∞(]0, T [;V) weak *,

Ẋε′

⇀ε′→0 Ẋ
∗ in L∞(]0, T [;V) weak *,

Ẍε′

⇀ε′→0 Ẍ
∗ in L∞(]0, T [;H) weak *,

||[(N, ν)ηε − (qε, N)− ψ]+||2L∞(]0,T [;L2(Γ00))
≤ c0ε.

(58)

One can note that this implies:

(N, ν)η∗ − (N, q∗)− ψ ≤ 0 on Γ00.

From the equation (39) setting (let us consider for instance that the functional space for the

structure is W = [H1(S)]3, S being the open set occupied by the structure, and therefore

the trace (N, q) is onto in the functional space H1/2(Γ00)):

Λε′

=
1

ε′

∫ t

0

[(N, ν)ηε′ − (qε′

, N)− ψ]+dt ∈ L∞(]0, T [;H1/2(Γ00)),

and using (52) one has also the following estimate (the function (N, ν)v− (N, p) describes

the space H1/2(Γ00) because (N, p), p ∈W , can be an arbitrary function in this space):

||Λε′ ||L∞(]0,T [;H−1/2(Γ00)) ≤ c. (59)

This estimate enables one to extract a subsequence say Λε such that

Λε ⇀ Λ∗ in L∞(]0, T [;H−1/2(Γ00)) weak*. (60)

If a shell model is used for the structure, the function (N, q) ∈ H2(ω) and the leading term

in the estimate is (N, ν)v which belongs to the space H1(Γ00). Hence the estimate (59)

would be replaced by:

||Λε′ ||L∞(]0,T [;(H1)′(Γ00)) ≤ c. (61)
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But additional estimates on the time derivative of Λε′

are necessary in order to character-

ize the limit. Let us consider the equation of the free surface with the penalty term. By

integrating on Γ1, one obtains (the support of Λε′

is Γ00):
∫

Γ00

Λ̇ε′

(N, ν) = −̺g
∫

Γ1

νzη
ε′ − cε′

(t)|Γ1|. (62)

In order to obtain an estimate on the constant cε
′

(t) which doesn’t depend on space co-

ordinates, one can localize the equation (52) on the boundary Γ2 where Λε = 0. Again,

from (52) and with test functions v the support of which are restricted to Γ2, one obtains

(Gj , j = 1, 2, 3, 4, 5 are five constants):

|
∫ t

0

cε
′

(µ)dµ| ≤ c

|Γ2|
[G0 +G1||ηε||L∞(]0,T [;V ) +G2||ϕε′

(t)||0,Γ1
≤ G4.

Hence, from the assumption: (N, ν) ≥ n0 > 0, one gets (because Λ̇ε ≥ 0):

n0||Λ̇ε′ ||L1(]0,T [×Γ1) = n0

∫ t

0

∫

Γ00

Λ̇ε′ ≤
∫ t

0

∫

Γ00

Λ̇ε′

(N, ν) ≤ G5.

As a consequence, Λε′

is also bounded in the space W 1,1(]0, T [;L1(Γ1)). With another

respect, a sequence bounded in L1(]0, T [×Γ00) is also bounded in the space of measures

denotedM([0, T ]× Γ̄00) which is also the dual of C([0, T ]× Γ̄00).
Therefore, one can extract subsequences such that:







Λε′

⇀ Λ∗ ≥ 0 in L∞(]0, T [;M(Γ̄00)) weak*,

Λ̇ε′

⇀ Λ̇∗ ≥ 0 inM([0, T ]× Γ̄00) weak*.

(63)

From the preceding convergences one can take the limit in the model (52). Thus one ob-

tains:






































X∗(t) = (H∗(t), Q∗(t)) ∈ V, (N, ν)η∗ − (N, q∗)− ψ ≤ 0,

Λ∗ ≥ 0, Λ̇∗ ≥ 0 such that: ∀Y = (K,P ) ∈ V,

M(Ẍ∗, Y ) +A(X∗, Y )+ < Λ∗, [(N, ν)K − (N,P )] >

= mh(q̇∗(0), P ) +msf (η̇∗(0),K),

(64)

and the initial conditions are the following ones:

X∗(0) = (0, 0), Ẋ∗(0) = (η∗(0), q∗(0)), (65)

But this is insufficient for a characterization of the limit model. It is necessary to prove for

instance that:

< Λ̇∗, [(N, ν)η∗ − (N, q∗)− ψ] >= 0, (66)

where the duality has to be precised. Unfortunately this results is still out of our reach for

3-D models and furthermore, it is not obvious to make sense to it. This is possible for 2-D

models (ie. Γ1 is a one dimensional manifold) if the functions (N, q), with q ∈ W , are

for instance in the space H1(Γ00). This is the case for instance if the structure is mod-

elled by a bending shell because one has then: (N, q) ∈ C0([0, T ];H2(ω)) and (N, q̇) ∈
C0([0, T ];L2(ω)). A similar property could be drived from a finite dimensional approxi-

mation for W in case of a three dimensional modelling using smooth enough eigenvectors

of the ship-structure for instance. From the property :

C0([0, T ];H1(Γ1)) ∩ C1([0, T ];L2(Γ1)) ⊂ C0([0, T ]× Γ̄1) with compactness
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one can ensure that (N, ν)ηε′ − (N, qε′

) converges in C0([0, T ]× Γ̄00). This is due to the

compact embedding ofH1(Γ1) into C0(Γ̄1). Therefore the restriction to [0, T ]× Γ̄00 of the

sequences (ηε′

, qε′

) converges strongly to (η∗, q∗) in the space C0([0, T ]× Γ̄00).

The consequence of the preceding convergences and the meaning of (66), is such that:

< Λ̇∗, [(N, ν)η∗ − (N, q∗)− ψ] >M([0,T ]×Γ̄00)/C([0,T ]×Γ̄00)= 0. (67)

These equations (64)-(67), enable one to state that the time derivative of the limit model

(for a subsequence!) is a solution of the initial model. Furthermore, the global energy is

kept in the elementary case of the spring because of the C0 convergence of Λε towards

Λ∗. In this simple example (0 − D) the conservation of energy ensures the uniqueness

of a solution. But the uniqueness is not proved and certainly false, for the more general

situation which is discussed in this paper.

In 3-D the hypothesis of this analysis is satisfied by the components of the displace-

ments of the structure if a bending shell model is used. But an additional regularity on the

deflection η of the free surface is required. It could be obtain by a more accurate capillarity

model including the change of the curvature which require a fourth order operator (see for

instance P.G. Ciarlet [9]).

5.2. Mathematical analysis of (43) for U = 0. There are three steps:

1. Existence and uniqueness of a solution to (43),

2. A priori estimate on this solution with respect to ε,
3. Derivation of a limit model.

Let us make explicit the model for U = 0 using the notations introduced previously:















































find Xε(t) = (Hε(t), Qε(t)) ∈ V such that:

∀Y = (K,P ) ∈ V, M(Ẍε, Y ) +A(Xε, Y )

+
1

ε

∫

Γ00

[(N, ν)Ḣε − (N, Q̇ε)− ψ]+}[(N, ν)K − (N,P )]

= mh(q̇ε(0), P ) +msf (η̇ε(0),K),

(68)

and the initial conditions are the following ones:

Xε(0) = (0, 0), Ẋε(0) = (ηε(0), qε(0)), (69)

5.2.1. Existence of solution to the weak penalty model (68). The proof is similar to the one

given in J.L. Lions [26]. It rests upon the convexity of the term:

Ẋ = (Ḣ, Q̇)→ 1

ε

∫

Γ00

|[((N, ν)Ḣ − (N, Q̇)− ψ]+|2.

Therefore its weak derivative is a monotone operator. Furthermore, the uniqueness is also

a consequence of this property. The proof can be explicited using an eigenvector basis as

explained briefly in subsection 4.2. The following closed convex set is useful in the next

sections:

K1 = {Y | Y = (K,P ) ∈ L∞(]0, T [;V), (N, ν)K − (P,N)− ψ ≤ 0 on Γ00}. (70)
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5.2.2. The a priori estimates with respect to ε for (68). An estimate is needed for con-

structing the limit of the penalty term. It can be obtained by considering the time derivative

of (43) and choosing Y = Ẍ as a test function. This leads to the following upper bound

where E(0) is the energy at time t = 0 of the initial model recalled at (55):

1

2
[M(Ẍε, Ẍε) +A(Ẋε, Ẋε)](t)+

+
1

ε

∫ t

0

∫

Γ00

χẊ /∈K1
{[(N, ν)η̇ε − (q̇ε, N)]2} = E(0),

(71)

where χẊ /∈K1
= 1 if Ẋ /∈ K1 and 0 else.Therefore one gets the estimates with respect to

ε:














||Ẍε||2
H

(t) + ||Ẋ||2
V
(t) ≤ c,

∫ t

0

∫

Γ00

χẊ /∈K1
{[(N, ν)η̇ε − (q̇ε, N)]2} ≤ cε.

(72)

Let us come back to the equations (68). From the estimates (72), one deduces by a similar

method as in the previous section that:

Λε =
1

ε
[(N, ν)ηε − (N, qε)− ψ]+ (73)

is bounded in the space L∞(]0, T [;H−1/2(Γ00)) in the case where W ≡ [H1(S)]3 and in

L∞(]0, T [; (H1)′(Γ00)) if one uses a shell model for the structure. Finally, from (73) and

(72), one can deduce that there exists subsequences Xε′

and Λε′

such that:







































Xε′ →ε′→0 X
∗ in L∞(]0, T [;V) weak *,

Ẋε′ →ε′→0 Ẋ
∗ in L∞(]0, T [;K1) weak *,

Ẍε′ →ε′→0 Ẍ
∗ in L∞(]0, T [;H) weak *,

Λε′ →ε′→0 Λ∗ in L∞(]0, T [;H−1/2(Γ00)) weak * for W ≡ [H1(S)]3 for instance.
(74)

5.2.3. The limit characterization for the weak penalty model. The results recalled here are

similar to those of J. L. Lions [26]. Therefore, details are omitted. Let us now define a

linear form on V by:

∀Y = (K,P ) ∈ V, L(Y ) = mh(q̇(0), P ) +msf (η̇(0),K)− < Λ∗(t), ψ > . (75)

From (58) one can claim that Ẋ∗ ∈ K1. Let us take the limit for ε′ → 0 in (68). From the

weak convergence of the sequence Xε′

given at (74), one deduces that:

∀Y ∈ K1,

∫ T

0

M(Ẍ∗, Y ) +A(X∗, Y ) ≥
∫ T

0

L(Y )

and one can prove that:

∫ T

0

M(Ẍ∗, Ẋ∗) +A(X∗, Ẋ∗) ≤
∫ T

0

L(Ẋ∗).
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Hence X∗ is solution of the following variational equation:






























find X∗ ∈ L∞(]0, T [;V), Ẋ∗ ∈ K1 such that:

∀Y ∈ K1,

∫ T

0

M(Ẍ∗, Y − Ẋ∗) +A(X∗, Y − Ẋ∗) ≥
∫ T

0

L(Y − Ẋ∗),

X∗(0) = 0, Ẋ∗(0) = (η(0), q(0)).

(76)

The next step consists in proving that (76) has a unique solution. Let us consider two

solutions of (76) denoted respectively by X1 and X2. Let us set respectively Y = Ẋ2 and

Y = Ẋ1 in the inequations satisfied respectively by X1 and X2, one obtains after adding

the two expressions:

∫ T

0

M(Ẍ1 − Ẍ2, Ẋ2 − Ẋ1) +A(X1 −X2, Ẋ2 − Ẋ1) ≥ 0, (77)

or else, because the initial conditions are the same for X1 and X2 and because T is arbi-

trary:

∀T ≥ 0, [M(Ẋ1 − Ẋ2, Ẋ1 − Ẋ2) +A(X1 −X2, X1 −X2)](T ) = 0,

which proves the uniqueness of a solution. A classical consequence of the uniqueness of

the weak limit is that the whole sequence converges to this limit.

Remark 2. The proof for uniqueness rests on an assumed regularity of the solution. But

one can get rid of it by using the trick introduced by J.L. Lions [26] and which consists in

using another time integration in the test functions.

A natural question here again, is to prove that the unique solution of the weak penalty

model is a solution of the initial model. First of all, let us set:

∀Y ∈ L∞(]0, T [;V),

∫ T

0

Ψ∗(Y ) = −
∫ T

0

{M(Ẍ∗, Y ) +A(X∗, Y )− L(Y )}

= lim
ε→0

1

ε

∫ T

0

∫

Γ00

[(N, ν)ηε − (N, qε)− ψ]+[(N, ν)K − (N,Q)− ψ],

=< Λ∗, [(N, ν)K − (N,Q)− ψ] > .

(78)

From (76) one can claim that Λ∗ ≥ 0 because:

∀Y ∈ K1,

∫ T

0

Ψ∗(Y )(t)dt ≤ 0.

Furthermore:
∫ T

0

Ψ∗(Ẋ∗)(t)dt = 0, (79)

which implies that:

a.e. t ∈]0, T [, Ψ∗(Ẋ∗)(t) = 0. (80)

But this relation is difficult to interprete. Let us consider the two dimensional case. In this

case one has: Ẋε ∈ [C0([0, T ]; C0(Γ̄1))]
2. This is due to the inclusion: H1(Γ1) ⊂ C0(Γ̄1)

and because one has Ẋε → Ẋ∗ in the space [C0([0, T ] × Γ̄1)]
2. Let us consider a point

S0 ∈ Γ00 and an instant t0 ∈]0, T [ such that: Ẋ∗(t0, S0) < 0. The convergence of Ẋε
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to Ẋ∗ < 0 is uniform in time and space in [C0([0, T ] × Γ̄1)]
2. Hence one can find a

neighbourhoodO of t0×S0 in ]0, T [×Γ00 such that Ẋε = (ηε, qε) satisfies the condition:

∀(t, x) ∈ O, (N, ν)ηε − (N, qε)− ψ < 0 .

Therefore if we set:

Λε =
1

ε
[(N, ν)ηε − (N, qε)− ψ]+,

one first has that:

Λε ≡ 0 on O => Λ̇ε ≡ 0 on O,
and from the weak* convergence of Λε to Λ∗ in the space L∞(]0, T [;H−1/2(Γ00)), one

can deduce that

Λ∗ ≡ 0 on O. (81)

This is a way to interprete the formula (80). In the three dimensional case, a similar result

could be obtained by considering lines drawn on Γ00 and defining an approximate value

-say
˜̇Xε- for Ẋε on this line by taking (for instance) the average along a tranverse segment

L0 to this line. Then the convergence in C0([0, T ] × L0) enables to extract some interpre-

tation of (80) similar to the previous one.

Let us come back to the local equations satisfied by the time derivatives of X∗. From

(80) and (81), one can conclude that it is a solution of the initial model.

5.3. Remarks on the the limit model for the weak penalty one. The main feature of

this weak penalty model is that it can swallow the energy during the contact as it has been

shown on the spring model. In fact, this mechanical behaviour is certainly the nearest to

the physical reality. The rebounding of water on the hull is a complex phenomenon (see

the breaking wave problem [4] [21]) but which would require to model the sparkling effect

(breaking the surface into small drops) which are mainly governed by the capillarity. In our

model this aspect is not taken into account. Hence the full damping of the kinetical energy

of the water seems to be a consistant choice. Nevertheless, one can adjust a restitution

coefficient e during the contact just by combining the two model which have been described

in this paper. For instance one can consider a convex combination of the two penalty terms

but with different penalty parameters. This will be discussed in a forthcoming paper.

6. Few extensions of this study.

6.1. The quasi-variational model in case of added mass strategy. Let us discuss in

this section the numerical approximation of the coupled fluid-structure model. In fact, the

operator Φ (see (20)) which is used in the bilinear form m(., .) couples all the points of the

free surface Γ1. Therefore the inertia matrix associated tom(..), is a wide surface one. This

is due to the elliptic operator Φ which couples all the points of the free surface. Because

the movement of the global ship is obviously slower than the one of the surface of the sea

(as far as fundamental mode are concerned and mainly for the six rigid body modes), it is

a great temptation to solve the free surface model for a given movement of the boat. In this

case, the force due to the sea and applied on the ship appears as a function of its movement.

The constraint concerning the non penetration of the water into the hull can be written as:

q ∈ K(q, q̇), (82)

which is the general framework of quasivariational equations following the terminology

introduced by C. Baiocchi [1]). The solution method can be a fixed point algorithm on the
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structural movements setting (k is the iteration index):

qk+1 ∈ K(qk, q̇k). (83)

One advantage is that one can use two distinct time steps: one for the free surface movement

and the other which will be larger, for the structure (as far as rigid body modes and low

frequencies are concerned). This is the idea developed by C. Fahrat and M. Lesoine [15]

called staggered algorithm. When the contact non linearity can be omited this strategy

leads to the so -called added mass method (see J.P. Morand and R. Ohayon, [27]. Further

details are given in [10].

6.2. Influence of the ship velocity. Let us come back to the case where U 6= 0. In

order to make simple the points that we would like to emphasize, let us consider the two

dimensional case of a flat bottom barge floating on the free surface of the sea as shown on

figure 7. In this situation the solution ϕ̃0 (stationary flow) is obtained analytically and one

has (x10 is the abscissa of the middle of the rectangle Ω):

ϕ̃0(x) = −(x1 − x10), => ϕ0(x) = −U(x1 − x10), (84)

which enables one to rewrite the model (29) as follows:














































































(ηε, qε)(t) ∈ V ×W such that ∀t ∈]0, T [:

∀(v, p) ∈ V ×W, mh(q̈ε, p) + ah(qε, p) +msf (η̈ε, v)

−̺fU

∫

Γ1

[ΦΓ1
(
∂η̇ε

∂x1
) vds− ΦΓ1

(η̇ε)
∂v

∂x1
ds]

+asf (ηε, v)− ̺fU
2

∫

Γ1

ΦΓ1
(
∂ηε

∂x1
)
∂v

∂x1
ds

+
1

ε

∫

Γ1

[ηε − (qε, ez)− ψ]+[v − (p, ez)]ds = 0.

(85)

The existence and uniqueness of a solution are given in [10] following the same method

as for U = 0 explained at section 4.2. Setting

v = η̇ε and p = q̇ε,

one can observe first of all from the definition of Φ at (20), that (the first property is due to

the antisymmetry of the Corriolis term):

i) ̺fU

∫

Γ1

[ΦΓ1

(∂η̇ε

∂x1

)

η̇εds− ΦΓ1
(η̇ε)

∂η̇ε

∂x1
ds] = 0,

and (dx = dx1dx2)

ii) − ̺fU
2

∫

Γ1

∂ΦΓ1

∂x1
(
∂ηε

∂x1
)
∂η̇ε

∂x1
ds =

d

dt
{−̺fU

2

2

∫

Ω

|∇ΦΓ1

(∂ηε

∂x1

)

|2(x)dx}

such that one deduces the following energy estimate:

EU
ε (t) = EU

0 (0), (86)
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FIGURE 7. A particular case of a flat bottom ship

with the notation:

EU
ε (t) =

1

2
{msf (η̇ε, η̇ε) +mh(q̇ε, q̇ε) + asf (ηε, ηε) + ah(pε, pε)}

+
1

2ε

∫

Γ1

|[ηε − (qε, ez)− ψ]+|2ds− ̺fU
2

2

∫

Ω

|∇ΦΓ1
(
∂ηε

∂x1
)|2ds

(87)

The last term which is proportional to U2, represents the energy stored in the waves of

the fluid and due to the rotation of the unit normal to the free surface (or the inclination).

From this expression one can observe that a static instability (negative eigenvalue of the

stationary bilinear form) can occur if U is large enough. It is a so called breaking wave

instability. More precisely, let us consider the static symmetrical bilinear form defined on

the space V by:

η ∈ V → asf (η, η)− ̺fU
2

∫

Ω

|∇ΦΓ1
(
∂η

∂x1
)|2(x)dx. (88)

Let us introduce the following eigenvalue model for the free surface (gravity waves and

capillarity riddles):










find (λ, η) ∈ R× V such that:

∀v ∈ V, asf (η, v) = λmsf (
∂η

∂x1
,
∂v

∂x1
).

(89)

This eigenvalue problem satisfies the standard assumptions of a variational eigenvalue

model (see P.A. Raviart and J.M. Thomas [30]) because on the one hand, the bilinear form

asf (., .) is continuous and coercive on the space V (in our example asf (., .) is directly V -

coercive because νz = 1), and on the other hand, msf (., .) is continuous and coercive on

the space H−1/2(Γ1). Therefore:

∀v ∈ V, msf (
∂v

∂x1
,
∂v

∂x1
) ≥ cm||

∂v

∂x1
||−1/2. (90)
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But any function -say v- in the space V satisfies

∫

Γ1

v = 0. Hence one has for example,

the following generalization of Poincaré’s inequality (see J. Necas [28]):

∃cp > 0, such that ∀v ∈ V, ||v||−1/2 ≤ cp||
∂v

∂x1
||−1/2. (91)

The natural injection from V into H−1/2(Γ1) is compact. Hence, there exists a family of

eigenvectors which is a basis of V . Let us us denote by λ1 the smallest eigenvalue solution

of (89). For U larger than
√
λ0, the bilinear form (88) can become negative, and therefore

a so-called static instability (breaking wave in our terminology) can occur.

7. Comments on this study and prospect works. The method which has been used can

be summarized on figure 6. The physical model is written in terms of continuity (for the

displacements and for the normal stresses) or non-penetration (of the water inside the ship).

But if these conditions are sufficient in statics, they are not as far as dynamical models are

concerned. A constitutive relationship is necessary in order to manage the contact between

the water and the structure. One way consists in ensuring the energy conservation - but

globally - between the ship and the sea. This is done through a penalty approximation of

the unilateral contact condition. Nevertheless, the limit of this penalty model is difficult to

handle for ε→ 0 (non uniqueness). This difficulty is due to the fact that the acceleration in

the wave movement can contains mathematical measures (and therefore the contact force

between the free surface of the water and the hull of the ship also contains measures). In

particular this distribution can be supported by the line (in 3-D) separating the wet surface

of the hull and the dry one. They are clearly connected to the jet flow observed in the

slamming phenomenon. But many additional phenomena should be taken into account in

order to get clother the physical reality. For instance, the wave is a nonlinear phenomenon

(terms like
̺f

2
|∇ϕ|2 or the computation of the true points of the free surface which can be

in contact with the hull), the velocity U of the boat can reach an instability value inducing

a breaking wave phenomenon, a trapping of the air which can be compressed between the

hull and the sea are also important aspects in this challenge [21]).

The physical model

(existence but non uniqueness

if energy restitution

is not prescribed; but it is difficult to

do so)

−→
Addition of a

penalty term

The penalty model

(existence and unique-

ness)

Derivation

x













y

Integration

and

adjustment

of the penalty terms

The integrated limit model(s)

(existence and sometimes unique-

ness)

←−
ε→ 0

The integrated penalty

model(s)

(existence and uniqueness)

Figure 6. Functional scheme of the models introduced
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8. Conclusion. A quite simple model for the interaction between slamming, springing

and whipping phenomenon for ships, has been discussed in this paper. There are several

restrictive assumptions which enable one to derive a mathematical model. For instance, the

fluid is unviscid and incompressible, flow-jets are omitted, the points of the free surface

of the sea and those of the hull which can be in contact are defined a priori, everything is

linearized.... Let us underline two results which have a physical importance. First of all,

the absorption of the kinetical energy of the sea, for which the spring effect is very small,

can be modelled from penalty path models. Secondly, if the velocity of the ship is large

enough, an instability can appear on the free surface of the sea. The model that has been

suggested is mathematically well founded and reliable solution methods exist. But, the

restrictions concerning the linearization and the definition a priori of points which can be

in contact, are certainly too restrictive and future investigations should be carried out for a

non linear coupling model from both the mathematical and the numerical point of view.
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