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AVANT PROPOS

FOREWORD: report of the international conference:™*Perspectives in Mathematical Physics":
Conference in the honor of Alexander Grossmann*, Marseille, CFML-Luminy, July 28th to
August 1st 1997. Organized by M. Holschneider (UPR-7061, Centre de Physique Théorique -
Marseille) and G. Saracco (UPR-4661, Laboratoire de Géophysique - Rennes). Scientific
committee: Section I: JP Antoine, Y. Avron, R. Seiler. Section 2: I. Daubechies, Y. Meyer,
Section 3: JL Risler.

La conférence internationale ““Perspectives in Mathematical Physics", en ['honneur
d'Alexander Grossmann*, a eu lieu & Marseille - Luminy du 28 juillet 1997 au 1¢f aofit 1997.
Elle a réuni pendant une semaine, dans une atmosphére amicale et détendue, une soixantaine
d'amis chercheurs qui ont tous connus Alex pendant des années de travail commun. La diversité
des intéréts scientifiques d'Alex Grossmann se retrouvait naturellement dans le large spectre des
origines scientifiques des personnes présentes, ainsi que dans leurs exposés. Ceux-ci se

regroupaient en trois sections.

La premiére était la Physique Mathématique, champ d'activité le plus ancien d'Alex, et
regroupait un fort potentiel d'amis et collaborateurs de longue date, ainsi qu'une nouvelle
génération de scientifiques. Intervinrent, dans l'ordre: D. Kastler, J. Madore, H. Borchers, J.
Marion, R. Stora, P. Hislop, S. Graffi, J. Zak, Y. Avron, Th. Paul, A. Tip, A. Martin et H.
Bacry. Albeverio S. et dell Antonio G.F. n'ont pu étre présents au dernier moment pour cause de
santé. Les themes couvraient une grande part de la physique mathématique actuelle: allant de la
géométrie non-commutative 2 Ia théorie des champs, de la théorie des milieux désordonnés  ['effet

Hall quantique,...

La deuxieéme section fut consacrée a I'Analyse en Ondelettes: domaine ot les contributions
d'Alex Grossmann et de son école sont internationalement reconnues. Les intervenants ont montré
l'expansion des activités dans ce domaine, touchant la turbulence, l'acoustique, la théorie de
l'information, le traitement d'images, la résolution d'équations aux dérivées partielles, la
géophysique,... Ainsi nous eurent respectivement des exposés de: Ph. Tchamitchian, G. Beylkin,
R. Setler, J.C. Risset, M. Farge, C. R. Handy, J-P. Antoine, I. Daubechies, P. Flandrin, M. V.
Wickerhauser, F. Geshwind, R. Murenzi et P. Frick. Les thémes trés variés reflétaient ainsi la
diversité des domaines d'applications de la transformation en ondelettes, ainsi que ses différents
développements (bases d'ondelettes continues, orthogonales, bi-othogonales, frames, etc...). A
noter en particulier, sur un sujet peu commun pour son auditoire, 'exposé de Jean-Claude Risset
qui monfra comment les travaux d’Alex Grossmann ont servi dans la recherche et composition
musicale, ainsi que dans le domaine de la psychoacoustique.



La troisiéme et dernitre section: la Biologie et, plus précis€ment la Génétique, actuel
domaine d'intérét d'Alex Grossmann et de ses collaborateurs, donna lieu a deux exposés
fondamentaux. Jean-Loup Risler montra comment les travaux d'Alex ont permis, dans ce
domaine, de micux estimer les générateurs infinitésimaux de I'évolution protéique. Alain Arnéodo
montra comment I'analyse multifractale basée sur la transformation en ondelettes continues permet

de mettre en évidence des corrélations a longues portées dans des parties codantes d'un géne.

Mais ce qui caractérisa le plus cette conférence, lui rendant un charme particulier tout au
long de cette semaine, fut son atrhosphére non solennelle, chaleureuse et naturelle: Conférence a
l'image méme d'Alex, ou discussions scientifiques, culturelles et rives florissaient, catalysés par sa
propre personnalité généreuse et chaleureuse. Il y eut dés le premier soir, un vernissage des
peintures de J. Mandelbrojt que l'on pouvait admirer durant [a semaine. Le mardi, J. C. Risset
nous donna en soirée, une démonstration musicale alliant piano acoustique, ordinateur, et
synthéses numériques. Quelques oeuvres dtaient justement obtenues grice i la transformation en
ondelettes dans sa forme développée par Alex Grossmann. Un banquet nous réunit le mercredi
soir, ot C. Korthals-Altes grice 4 la complicité de Carlo Becchi, intervena délicieusement en
relatant avec finesse et humour les paralléles de la vie d'Alex avec celle de la "Divine comédie” de

A. Dante, sous les gravures visionnaires de G. Dorée.

Le point fort de cette conférence fut le non-traditionnel hommage dédié€ a fa non moins
traditionnelle carriere d'Alex, illustrée par I. Daubechies et si déliciensement "anecdotée” par Th.
Paul. Ii nous restera encore longtemps en mémoire leurs "surprise talk" sur ce que c'est que de

travailler avec Alex.

Ce congrés a pu étre organisé grice aux aides financiéres du CNRS, du Conseil Général
(PACA), de U'Association Grand Luminy, et du Center for Theoretical Studies of Physical
Systems (Clark Atlanta University, Georgia, USA). Nous les en remercions vivement, ainsi que le
personnel du Centre de PhysiqueThéorique (N. Catrain , N. Lambert, D. Roche, M. Rossignol, et
A. Sueur) et celui du CFML. Un grand Merci & J.B. Erismann sans qui ce livre n'aurait pas vu le
Jour, ainsi qu'a P. Chiappetta (CPT) et merci encore au Laboratoire de Géophysique de Rennes 1,
notamment D. Gibert et A. Le Solliec.

G.S. & M. L

* Rappelons qu'Alexandre GROSSMANN est le premier Lawrdat du Prix spécial créé en 1997 par la Société Frangaise de
Physique et a obtenu cette méme année par les instances du CNRS les Eméritats.
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Quantification des mathemathues et intéractions fondamentales les .
efforts Marseillais o

Daniel Kastler
Centre de Physique Théorique ~
CNRS-Luminy-case 907
F-13288 Marseille cedex 09

Abstract: Since82 Alain Connes carries out a global recasting of Mathematics (by now
largely accomplished!) amounting to a "quantization” analogous to the quantization of
) Physzcs half a century ago. Conceptually, this is a replacemént of the "mathematics of
spacees” by the "mathematics of non-commutative algebras”, technically a combination
of operator algebras and differential geometry-topology thereby becoming universal:
rélevant to manifolds (usual and conformal), foliations, groups (discrete and contin-
uous), fractals, prime numbers. The entergence of this new paradigm closer in spirit
- to physics has begun since 81 to underspan the physics.of fundamental interactions
(lagrangian aspects of elementary particles and gravitation). We attempt to sketch
this development with its Marseille episodes, showing how the successive discovery of
two Pandora boxes (the "quantum Yang-Mills” and the "heat- -equation expansion” -
amazingly yielding the phenomenological lagra,ngmns - the latter in combination with
gravitation)-in fact monitored thie construction of "non-commutative manifolds” for
which the microworld has stood model! - the deep reason for that being that the'stan-
dard model worked out by the high-energy phenologists is the only genuinly ”quantal”
man-made object. The historical corpus of mathematics is too "classical”.

Non commutative geometry and the structure of space - time

John Madore -
Université de Paris Sud
. France
e-mail: mador@qed. th.u-psud.fr

Abstract: It is argued that space-time should be more properly described by a non~
commutatwe s-algebra Az over the complex numbers with four hermitian generators
. The parameter & is a fundamental area scale which is presumably of the order of
the Planck area GH. A review will be made of recent efforts to add a gravitational field
to this noncommutative model of space-time. 1f thereis a gravitational field then there
must be some soutce, of characteristic mass u. If p?k tends to zero with k then the
limiting ‘classical’ space-time will be without curvature. We are interested here in the
case in which p?% tends to some finite non-vanishing value as %k — 0. It is claimed that
there is then a rigid relation hetween the noncommutative structure of the space-time
on the one hand and the nature of the gravitational field which remains as a ‘shadow’




in the commutative limit on the other. This claim is entirely based on analogy with
* the results of simple models. : '

The modular theory as a tool in quantum field theory

Hans Borchers
Institut fiir Theoretische Physik
Universitdt Gottingen -
. Germany
e-mail: borchers@theorie.physik.uni—goettz’ng‘en.de

Abstract: These investigations will use the quantum field theory in the frame of Araki,
Haag and Kastler (see the textbook of R. Haag for details). Due to the Reeh-Schlieder
property of quantum field theory every algebra M(D) associated with a domain D,
which has a spacelike complement with interior points, has cyclic and separating vec-
tors. The vacuum vector is an example. Therefore, we obtain by the Tomita—T akesaki _
theory for every of these algebras a symmetry group '

oL (M(D)) = AL M(DYAR = M(D).

Since all these local symmetry groups are present one should use them for the struc-
ture analysis of quantum field theory. In some cases the modular groups have been
computed. Bisognano and Wichmanu have calculated the action of the group for the
wedge domain. -This computation was done under the assumption that the algebras
are generated by finitely many Poincaré covariant Wightman fields. In this sifuation
the modular group coincides with the Lorentz boosts which map the wedge onto itself. -
For a massless Bose particle, not interacting with other massive particles, the vacuum
vector is also cyclic and separating for the algebra M(V*) associated with the forward
lightcone V'*. For this situation Buchholz has shown that the modular group coincides
with the dilatations of this theory. In conformal field theory one can use the result of
Bisognano and Wichmann or that of Buchholz to compute the modular group for the
algebra M(D) of a double cone D. This has been done by Hislop.and Longo.

In all the examples one dealt with special field theories. For the general field theory our
knowledge about the informations one can extract from the modular groups is limited.
The situation will be better if also half-sided translations exist besides the modular
group. These are unitary groups with positive generators which map the algebra into
itself but only for positive arguments: '

U(syM(D)U(s) © M(D),  for s >0,

These groups must also leave the vacuum vector unchanged. Also the relations of the
half-sided translations with the modular gronp will be discussed. Hall-sided trans-
lations appear for instance with the algebras associated with wedges. In addition we
will investigate the two-parametric group defined by hall-sided translations and the



“modular group. This group is not unimodular. It will also be shown that half-sided
translations can only occur if the algebra M(D) is of type I1[;. Closely connected
with the half-sided translations is the principle of half-sided modular inclusions which

~ has been introduced by H.-W. Wiesbrock. This principle is interesting because of the -

natural order which comes with it. We will discuss the meaning of this order in terms
of half-sided translations. At the end examples will be presented where half-sided
translations have been used. Finally, indications of problems will be given which seem
to be solvable with help of the half-sided translations.

Point interactions.

(Gian Fausto dell’Antonio
e-mail; gianfo@sissa.it

Abstract: 1 will present recent results in collaboration with R. Figari and A. Teta,
on the problem of a quantum particle interacting with N point sources moving along
preassigned trajectories (nd whose strength may depend on time). We prove that a
solution exists and is unique in the sense of quadratic forms and the corresponding flow
is unitary; we also give rather explicit solutions for smooth initial data. The solution
of this problem may be regarded as a fist step in the analysis of non-linear coupled
equations, in which the motion of the sources depends on the local behaviour of the
wave function, or in problems of homogeneization. From the mathematical standpoint
tha novelty of the problem consists in the fact that the form domain of the Schroedinger
operator varies in time. ‘

La symétrie de Slavnov des théories de jauge du point de vue de la
coliomologie équivariante

Raymond Stora
LAPP
BP110 Chemin de Bellevue
F-74941 Annecy-le-vieux

Abstract: The Faddeev Popov gauge fixing procedure and the ensuing Slavnov sym-
metry will be quickly reviewed. The geometrical set up will be reanalyzed and the
cohomological character of the gauge fixing procedure will be established. The Slavnov
symmetry will then emrge as a quotient of the equivariant cohomology construction.
This geometry will be presented in a finite dimensional set up. A few remarks will be
made about the infinite dimensional case.




Generalized Lie group structure associated with regular spectral triples in
non-commutative geometry.

Jean Marion
CNRS-Centre de Physique Théorique de Marseille
Campus de Luminy, Case 907
163, Avenue de Luminy
F-13288 Marseille cedex 9, France
e-mail: marion@cpt.univ-mrs.fr

Abstract: Let (4, (#, 1), D) be a spectral triple over a unital *-algebra such that 7©(A4) is
contained in the domain of all positive powers of the derivation & on £(H). For a large class of

such objects (4, (#, m), D), called regular spectral triples, we prove that A has a natural
structure of unital multiplicatively convex Fréchet *-algebra, and that the group Inv(A) of its
invertible elements in an open subset of 4 having a natural structure of generalized Lie group in
the H. Omori's sense, with Lie algebra 4 and usual exponential mapping. This the case for

instance of the algebra C*°(M ; A) where M is a spin® manifold and A a finite-dimensional
multimatrix C-algebra, and of the algebra of the non-commtative 2k-dimensional tori. An
important consequence is that A4, as well as some associated unital *-algebras such that the
matrix algebras Mp(A) and the path algebra C(I ; 4) have a holomorphic functional calculus



Recent progress in random system

Peter Hislop
Mathematics Department
University of Kentucky
Lexington, KY
i USA
e-mail: hislop@ms.uky.edu
Abstract: This tall will present an overviewof recent results of the speaker, in collab-
oration with J.-M. Barbaroux, J. M. Combes, E. Mourre, and A. Tip, on localization
for electrons and for classical acoustic and electromagnetic waves propagafing in dis-
ordered media. These results include localization near band edges of the spectrum of
the unperturbed system, and the regularity of the integrated density of states at those
energies. Some of the open problems in the field will be discussed. '
Quantization of chaotic toral symplectomorphisms and deterministic spin
models with glassy behaviour

Sandro Grafii
Dipartimento di Matematica
Universitd di Bologna
40127 Bologna

Ttaly )
e-mail: groffi@dm. unibo.it

Abstract: There is a formal algebraic identity between two apparenbly unrelated sys-
tems, the quantized symplectomorphisms of the torus on one side and the deterministic

spin models with glassy behaviour recently introduced by Parisi and coworkers on the
— N

other side. The coupling matrix J},f) defining the energy H = — > ooy of the N
1k

spins oy : L= 1,..., N does actually coincide with the (real part) of the unitary prop-

agator quantizing the unit symplectic matrix on T2 this is a N x N matrix with
N = . so that the thermodynamic and classical limits formally coincide. Some statis-

tical mechanics results are reviewed here which are.based on the arithmetic techniques
employed to prove the convergence of the scalar oroducts of the quantum observ-
ables among eigenfunctions to the corresponding classical ergodic means. One of them
concerns the asymptotic degeneracy of the ground state of the Marinari-Parisi-Ritort
model; another one deals with the introduction of a similar class of models hased upon
the quantization of a chaotic map instead of a periodic one. Unlike the fizst one, in
this second class of models the critical temperature for the glassy transition can be
computed by linearizing the TAP (mean field) equations, which are 1 turn obtained
by explicit summation of the high-temperature expansion.



The square root problem

Philippe Tchamitchian
département de mathématiques
faculté des seiences de Saint Jérome-

case cour A -
Avenue escadrille normandie-niemen
~ F-13397 Marseille cedex 20
e-matl: tchamphi@math.u-3mrs.fr

Abstract: The square root problem was raised by T. Kato in the 60’s, . motivated by
perturbation theory for some hyperbolic partial differential equations. The question
is whether the domain of the square root of a divergence form operator is the natural
Sobolev space or not. While it is trivial in the self-adjoint case, it turned out to
be a profound problem in the general case, connected to abstract operator theory,
modern harmonic analysis and the study of elliptic partial differential equations. The
conference will describe a new approach to this problem {still unsolved in general),
due to P. Auscher and the speaker, which takes advantage of recent developments in -
tunctional calculus and in harmonic analysis. This approach allows to unify previous
results and to obtain new ones. In particular, it sheds light on relations between the
study of the square root of an operator L and the properties of weak solutions to the
inhomogeneous equation Lu = 3D f with nice f. '

A new class of stable discretization schemes for the solution of non-linear
PDES

Gregory Beylkin
University of Colorado
Department of physics campus box 390
Boulder CO 80309-0390
USA
e-mail: beylkin@boulder.colorado.edu

Abstract: We describe a new class of time-discretization schemes for solving nonlinear
evolution equations, '

w; = Lu + N{u),

. where £ represents the linear and A/(-} the nonlinear terms, respectively. A distinctive
feature of these new schemes is the exact evaluation of the contribution of the linear
part (we call such schemes exact linear part (ELP) schemes). Namely, if the non-linear
part is zero, then the scheme reduces to the evaluation of the exponential function of
the operator (or matrix) £ representing the linear part. We show that such schemes




have very good stability properties and, in fact, describe explicit schemes with sta-
bility regions similar to those of typical implicit schemes used in e.g. fluid dynamics
applications. )

Computing and applying exponential or other functions of operators in the usual man-
ner typically requires evaluating dense matrices and is highly inefficient. An exception
is the case where there is a fast transform that diagonalizes the operator. For example,
if £ is a convolution (or a circulant} matrix which is diagonalized by the Fourier Trans-
form (F'T') (or discrete FT), then computing functions of operators can be acomplished
by a fast algorithm, e.g. the FFT. It turns out that the wavelet transform may be
“used in a similar manner for computing functions of operators from a wide class, in
“particular, elliptic operators with variable coefficients~In the wavelet system of coordi-

nates computing exponentials of such operators always results in sparse matrices and, -

therefore, presents an eflicient option.

We study the stability of ELP schemes and show that these schemes have distinetly dif-
ferent stability properties as compared with known mixed (implicit-explicit) schemes.
For example, the stability properties of time-discretization schemes for advection-
diffusion equations are controlled by the linear term and, therefore, require implicit
treatment. Using an explicit ELP scheme, it is possible to achieve stability usually
assoclated with implicit predictor-corrector schemes.

~ This is a joint work with J. Keiser and L. Vozovoi.
Factorisation of loops, a full parametrisation of biorthogonal wavelets

L Ruedi Seiler ‘
Fachbereich Mathematik MA 7-2
Technische Universitat Berlin
Strasse des 17 juni 136
- D-10623 Berlin -
e-mail: seiler@math. tu-berlin.de

Abstract: Parametrization of biorthogonal Wavelets is conveniently done in terms of
Birkhoff factorization of loops in the group of 2x2 matrices with determinant of modulus

one. -

Connection to the lifting concept of Daubechies and Sweldons and to the theory of
surfaces is discussed. '



Musik: a time-scale game?

Jean-Claude Risset
Laboratoire de Mécanique et d’Acoustigie
Informatique Musicale
31, chemin J. Aiguier

13420 Marseille -
France
‘e-mail: jerisset@alphalma.cnrs-mers. fr

Abstract: This pi‘esént&ﬁiml will be illustrated with sound examples.

Parly lithophones may be the first instance of a log frequency scale. Music is "ars bene
‘movandi”, and it involves time. Western musical scores and musical automata seem to
have examplified cartesian coordimates long before Oresmus and Descartes.

The Fourier representation of signals abtempts to represent finite duration signals in
terms of infinite duration. It does not allow a.proper display of changes in the course
of sound. The aural importance of changes can be demonstrated by synthesis. Ad
hoc modifications of the Fourier representation have been proposed for some time.
Clearly, the granular approach adopted by Gabor, with the Gabor representation, and
by Morlet and Grossmann, with the wavelet transform, are in prineiple much more
satisfactory. In fact, they are very effective for sound. One will hear ome of the earliest
sound examples of wavelet reconstructions and intimate sound modifications using
transformations of the time-scale image, produced by Richard Kronland-Martinet in the
Equipe Informatique Musicale (IM) of the Laboratoire de Mécanique et d’Acoustique:
Richard collaborated with Alex Grossmann in early explorations of the continuous
wavelet transform. In fact, many early examples of wavelet trasforms were generated
then, using a special digital audioprocessor, Syter.

The validity of representing sounds by grains, suggested by Gabor, was in fact first
demonstrated by Bacry, Grossmann, and Zak in the context of quanturny mechanics,
five years before the work by Bastiaans in the field of signal processing. The first Gabor
transforms were also realized at IM. Some transformations are easier to perform with
a Gabor representation, as will be shown by examples of sound stretching realized by
Daniel Arfib. : '

The wavelet transform provide useful representations. One can go beyond by stipulat-
ing specific types of processing. For instance, one can attempt to extract a model of a
given sound. This is helped by the possibility of extracting ridges in a time-frequency
or time-scale representation, investigated by the late Bernard Escudié, Grossmann and
others: this permits to extract modulation parameters. Some examples of model ex-
traction and sound reconstruction performed by Philippe Guillemain will be heard.

A musical demonstration will be given in the evening. One will hear music demonstrat-
ing movements of virtual sound sources in illusory space - the space here is not a priori,




it is generated by the music, or rather by the interaction of the signal with the auditory
perceptual organization (perhaps similarly to models originating in the algebra of non-
commutative operators). A short metaphoric event realized for the inauguration of the
LEP in Genéve will be presented - it includes the voice of Alex Grossmann. The fol-
lowing demonstration will then feature a piano duet with a single pianist, accompanied
by a virtual-partner adding (on the same acoustic piano) a musical part that depends
upon what the pianist plays and how he plays - with several types of relation between
the pianist and his illusory partner. The presentation will be concluded by a tape
where a soprano speaks and sing, in dialogue with sounds from an "invisible” partner,
sounds produced by synthesis or processig using Gabor and wavelet transforms.

Are statistical and deterministic approaches compatible for
fully-developed turbulence?

= Marie Farge
ENS
.24 rue lhomond
F-75005 Paris
Irance
e-matl; farge@lmd.ens.fr

Abstract: Fluid mechanics is governed by the Navier-Stokes equations, which are de-
terministic, but whose solutions are chaotic, namely sensitive fo initial conditions.
Pully-developed turbulence (corresponding to high Reynolds pumbers) is the limit where
the nonlinear advective term strongly dominates the linear dissipative term. In this
limit we are unable to integrate the Navier-Stokes equations, even with the largest
computers presently available or proposed for the future. Therefore in order to com-
pute fully-developed turbulent flows we use a combination of numerical integration and
statistical modelling.

The present state of the art, so called Large Eddy Simulation (LES), consists of inte-
grating the dynamics of the large-scale motions (corresponding to the scales resolved by
the computational grid) and of modelling statistically the behaviour of the small-scale
motions (corresponding to the subgrid-scales). But this programme is not adequate
for fully-developed turbulence because it requires a spectral gap, namely a decoupling
between large-scale and small-scale dynamics. Such a decoupling may exist between
the inertial range scales and the dissipative scales, which therefore allows the numerical
simulation of weakly nonlinear flows {corresponding to low Reynolds numbers). How-
ever, if we want to compute fully-developed turbulent flows, we should find a another
way to separate the modes to be deterministically computed and those which can be
modelled statistically.

For the last ten years we have proposed wavelet representation to analyze, mode} and
compute bwo-dimensional turbulence, which is relevant for geophysical flows due to the
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combined effect of stable stratification and rotation of the reference frame. In 1988 we
found that the strong wavelet coefficients correspond to the coherent structures, while
the weak wavelet coefficients correspond to the background flow. We have also shown
that both components are multiscale and therefore cannot be separated by Fourier
filtering. We then proposed a new method to compute fully-developed two-dimensional
turbulent flows based on wavelet phase-space segmentation. In this method we compute
the dynamics of the coherent structures using a limited number of wavelet modes,
keeping only the most excited ones and remapping the wavelet basis at each time step.
We then statistically model the background flow, corresponding to the discarded wavelet .
modes, which are replaced by a stochastic forcing having the same statistical behaviour.
The justification for this procedure is that the coherent structures are not numerous
_enough to reach a statistical equilibrium state, and therefore we have to compute their
dynamics with a deterministic method. On the contrary, for the background flow,
which is well mixed, we can assume ergodicity and thus define a statistical equilibrium
which allows us to design an appropriate stalistical model.

This work has been developed during the last len years in collaboration with Eric
Goirand, Matthias Holschneider, Nicholas Kevlahan, Kai Schneider, Thierry Philipovitch
and Victor Wickerhauser. It is a direct consequence of the inspiring discusions I had
since 1984 with Alex Grossmann, to whom I want to express here oll my gratitude.

On the equivalence of moment quantization and continuous wavelet
transform analysis for Schrodinger Hamiltonians

Carlos R. Ha.ndy and Romain Murenzi
Center for Theoretical Studies of Physical Systems
and Physics Department!*

Clark Atlanta University
James P. Brawley Drive at Fair Street, S.W.
- : Atlanta, GA 30314
- e-nail: handy@pioneer.cau.edu

Abstract: We have developed a new qua,ntizatioﬁ formalism based on the use of appro-
priately rescaled and translated power moments. This approach defines a multiscale
quantization procedure in which infinite scale information {i.e. the energy and certain
moments) is used to systematically generate smaller scale quantities, including the
recovery of the wavefunction. The latter results from solving a finite set of coupled,
. linear, first order differential equations in the inverse scale variable. This formalism
eriables the exact transformation and inversion of Schrédinger Hamiltonian problems
into an equivalent continuous wavelet transform (CWT) representation, without the
need for any Galerkin type of approximation. Application of the method to rational
polynomial pbtellﬁial problems leads to excellent results. Our formalism is a direct
consequence of CWT theory; although the particular representation adopted is un-
“precedented. The rationale for the simplicity of our formalism lies in the fact that the



space of polynomials (of degree no greater than N) maps info itself under affine trans-
formations. As.such, given the importarnce of affine transformations in CW'T analysis,
it is to be expected that the effective use of a moments representation should lead to a
significant simplification in analyzing Sturm-Liouville quantum problems with rational -
polynomial potentials. This is confirmed by our theory. :

* Supported through the U.S.A.2s National Science Foundation as a Center for Research
Excellence in Science and Technology (CREST)

Uncovering hidden symmetries with directional wavelets

_ Jean-Pierre Antoine
Universit Catholique de Louvain -
~ Institut de Physique Thorique
Chemin du Cyclotron 2
B-1348 Louvain la nguve .
e-mail: anfoine@fyma.ucl.ac.be

Abstract: It is well-known that theé two-dimensional continuous wavelet transform
(CWT) is a powerful too! for detecting various features in a picture or a paltern, as
opposed to the discrete WT, which is the prime choice for data compression. If the
relevant features have a p1efeued direction, the tool analysis necessary for detecting
them must fulfill two conditions: (i) One must use the full 2-D CWT, including the
rotation parameter, in addition to the usual translations and dilations; (ii) One must
choose a wavelet with some dircctioﬁal selectivity, such as a Morlet or a Cauchy wavelet.
This is standard, for instance, in directional filtering or edge detection, two classical
problems in image processing. In this talk, we will describe a novel application of such
directional wavelets, namely the determination of the symmetries of a pattern, even
approximate or local ones.

After a brief reminder of the 2-D CWT, we will first describe the class of Cauchy
wavelets, which are parbicularly well-suited for the problem at hand, as shown by
various calibration tests. Then we turn to the symmetry problem. Given a 2-D signal
(an object, a pattern,...), let S(a,@,l_;) be its wavelet transform with respect to a
Cauchy wavelet. Our main tool for analyzing the symmetries of the signal is its scale-
angle measure, defined as the positive-valued, bounded function:

pola,0) = [ F18(a,0,0)0
" which may also be viewed as a partial energy density in the scale and angle variables,
that 1s, in spatial frequency space

We begin with a simplified version and eliminate the scale dependence by integrating
over a, thus ending with a function cs of the rotation angle only, called the angular
measure of the object. In general, as(8) is 2x-periodic. But when the analyzed object




has 1otational symmetry n, that is, it is invariant under a rotation of angle 2%, then

as is in fact *E-periodic. Thls is illustrated on simple geometrical figures, such as a
square, a rectangle and a regular hexagon.

If the object has not only a rotational symmetry, but a combined rotation-dilation
symmetry, one has to use the full scale-angle measure ps, which is then a doubly-
periodic function of ¢ and §. This is exernplified on several types of pictures: a ‘twisted
snowflake’, a Penrose tiling with local 10-fold symmetry, an octagonal dot pattern. The
latter is particularly interesting. It has in fact two distinct combined rotation-dilation
_symmetries, one exact, the other one approtlma,te In each case, one gets a semigroup,
with seemingly mﬁnltely many orbits, and some defects in the second case. This
. example suggests a systematic wavelet analysis of 2-D lattices, which often show rich
geometric and arithmetic properties. The technique could also be used for uncovering
hidden symmetries of physical objects, such as quasicrystals or nanotubes, through
" their X-ray diffraction patterns. For instance, the helical structure of some nanotubes
might be studied in this way.

On Darwinian evolution of proteins

Jean-Loup Risler
Université de Versailles
Laboratoire Génome et Informatique
45 Avenue des Ltats-Unis
78035 Versailles Cedex
e-mail: risler@genelique.uvsq.fr

Abstract: As (almost) everybody knows, all the information that is required for build-
ing a living cell is entirely contained into the chromosome(s), and is "coded” in the
form of some ”"text” -called sequence- with an alphabet of only four "letters”.

Other indispen;sa,ble macromolecules in the cell are the. proteins, that are translated
from the sequences of the chromosomic genes into sequences of a twenty letters alpha-
bet.

It is also well known that the chromosomes are prone to suffer from modifications in
their sequence that are called "mutations”. In many cases, these mutations will result
in modifications of some protein sequence. -

The proteins are highly structured macromolecules whose proper functioning requires
a precise three-dimensional atomic arrangement. It is now clear that the sequence of a
protein is severely constrained by the necessity of building the proper structure. Hence
a mutation in the coding chromosomic gene, resulting in a modification of the protein
sequence, can have different consequences : - the mutation is "neutral”, that is to say,
the three-dimensional structure of the protein can accomodate it. Such a mutation
can be transmitted to the future generations without any modification of the protem



specificity. - the mutation is totally incompatible with the 3-D structure of the protein
. it will often be lethal and, consequently, will be eliminated. - the mutation results
in some modification of the structure, that will modify the properties of the protein :
this is how a new function or specificity can appear. i

During this talk, I shall discuss the structural constraints that severely limit the mu-
tability of protein sequences, and will give some examples showing how the evolution
cleverly gets round them to create the necessary variability of living organisms. ;

What can we learn about DINA éeque_nces from wavelet analysis

‘Alain Arneodo
Centre de Recherche P. Pascal
N Avenue Schweitzer
' 33175 Pessac
e-mail: arneodo@crpp.u-bordeauz.fr

Abstract: The fractal scaling properties of DNA sequences are analyzed using bhe
wavelet transform. Because the wavelet transform microscope can be made blind to the
"patchiness” of genomic sequences, we demonstrate and quantify the existence of long-
range correlations in both the (protein) coding and the noncoding regions of the human
genome. Moreover, the fluctuations in the patchy landscapes of DNA walks are found
to be homogeneous with Caussian statistics. When looking at the introns, one notices
some significant tendancy to the long-range correlation exponent H to increase with
the percentage of GC content of the sequence, In particular, a few introns with a low
percentage of-GC content do not display long-range correlations (H=1/2) and therefore
cannot bé distinguished from actual exons. We show that long-range correlations also
exist in exons when undersampling these coding sequences by retaining the third base
of each codon only. This observation seems to corroborate the attractive biological
conjecture that the correlations in coding DNA sequences could be attained through
the degeneracy of the genetic code (most of the synonyms are due to change in the
third base in the codon). Finally, we comment about the possible understanding of the
origin of the observed long-range correlations in terms of the nonequilibrium dynamical
processes that produce the "isochore structure” of the human genome.



Balian - Low theggém for Landau levels

Joshua Zak
) Department of physics-
Technion-Israel Institute of Technology .
Technion city
Haifa 32000
~ Israel
e-mail: zak@physics.technion.ac.il

Abstract: The Balian-Low theorem relates to a set of orthogonal states on a von
Neumann Lattice. This is a rectangular lattice in the phase plane with a unit cell
of area h. Such a lattice was first introduced by von Neumann in the zy-plane and
independently by Gabor in the time-frequency plane. The Balian-Low theorem can
be formmilated the following way. Given a square integrable-function (z), one builds
out of it the by translations in the phase plane a von-Newmann set ¥, (2), where the
indices m, n label the number of the unit cell on the von Neumann lattice in the pahse
plane [thoo(z) = 9(x)]. m and n assume all integer values 0, &1, .... The theorem then
claims that if 9..,(z) are orthogonal to Pumm(z) for all m, n # m’, n’ it follows that at
least one of the two quantities {z?) or {p?) in the state 1(z) diverges (The triangular
bracket denote the expectation value). Although discovered by physicists, the Balian-
Low theorem has become of wide-spread interest in the Engineering literature of signal
processing.

The Balian-Low theorem is applied the motion of an electron in zy-plane with a mag-

netic field B perpendicular this plane. The energy spectrum for this. ploblem are the
Landau levels. It is shown that the eigenfunctions for the Laundau levels cannot be
chosen sufficiently localized in order to make both uncertainties Az and Ay finite. A
simila result holds for the coordinates of the orbit center. With this restriction on the
localization, complete orthonormal sets are defined on von Neumann lattices.

The integral quantum Hall effect

Yosi Avron
Department of physics
Technion-Israel Institute of Technology
Technion city
Haifa 32000
Israel
e-mail: avron@physics.technion.ac.il

Abstract: In an experimental work that won a Nobel prize, von Klitzing discovered that
the Hall conductance of certain two dimensional electronic systems in strong magnetic



fields is quantized.-to be an integer with great accuracy. This discovery was partially
explained by Laughlin who related the quantization to gauge invariance. It gave birth

- to an extensive body of theoretical and mathematical understanding to which Thouless
and Bellissard, among others, made seminal coatributions. I shall review a geometric
a geometric point of view which focusses on families of Schrodinger operators. I shall
explain two relations for such famnilies: T

Conductance = Curvature

and . _ .
- Conductance = Relative Index.

In sorze special but still important cases the family that enters is associated with direct
integrals-something I first learned about from Alex. )

The lecture is based on works done with Ruedi Seiler over a period of more than ten
years and to a lesser extent on works with Barry Simon and Peter Zograf. -

Semiclassical methods and coherent states -

Thierry Paul
Université de Paris Dauphine
Paris
France
e-mail: paulth@ceremade. douphine.fr

Abstract: We will review some recent results concerning the semiclassical approxima-
tion of the Schrédinger equation obtained by using coherent states. Included will be
the following topics: propagation of coherent states, trace formula "a la Gutzwiller”
and a local version of it, and construction of quasi-modes associated to periodic tra-
jectories. We will emphasise the situations where the underlying classical dynamics
is chaotic and consider the "scaring phenomenon”, that is the possibilty for unstable .
periodic trajectories to support bound states.
Some recent developements in infinite dimensional analysis and quantum
’ fields

Sergio Albeverio
Rhur-Universitat Bochum
Posifach 10 21 48
D-44780 Bochum
e-mail: sergio.albeverio@rz. rubr-uni-bochum.de

Abstract: Recent developments in infinite dimensional analysis concern integration
with respect to probability measuves as well as infinite dimensional osciilatory integrals.



Applications are given to the construction of stochastic dynafnics of various systems of
classical and quantum statistical mechanics, of quantum fields models and of Chern-
Simon’s model of topological quantum fields. '

~ Canonical formalism and quantization for a class of classical field equation

Adrian Tip
FOM-Instituut voor Atoom- en Molecuulfysica
) Kruislaan 407
~ Amsterdam
the Netherlands
e-mail: tip@amolf.nl

_Abstract: The research reported here is about physical problems related to photonic
crystals; dielectric media with a periodic electric permeability ¢(x). Such systems
have a band structure similar to that encountered in solid state physics. In particular
bandgaps may occur and, if some randomness is introduced (Anderson) localisation
intervals may occur within the original gap. Suppose an atom is introduced into such
a systermn. If one of its transition frequencies w; falls into a gap one expects the corre-
sponding atomic decay to be inhibited since there are no propagating field modes with
frequency in the gap. But what happens if w; is in a localisation interval?

In order to treat such problems properly, the electromagnetic field must be quantised
and a further complication is a possible frequency dependence of €(x). The latter leads
" in a natural way to consider the quantisation of evolution equations of the form '

BF(t) = NF() ; fa “dsM(t — 5)F(s),

acting in a separable, real, Hilbert space and where N is anti-selfadjoint. Thus we have a

~_unitary time evolution for vanishing M . But also, if M(¢) has a Fourier transform having
suitable positivity properties we can embed the problem in a larger space where the
time evolution is once more unitary. Applied to Maxwell’s equations for an absorptive
dielectric this gives rise to an interesting continuity equation.

The second step is to construct a suitable Lagrange-Hamilton formalism starting from
a unitary time evolution. A fundamental point is here that if the generator has a non-
emnpty null space, then we are led in a natural way to the gauge concept. In this setting
the well known gauges (Coulomb, Lorentz) of electrodynamics have their counterparts.
Quantisation then offers no further problems.

In the application to the quantised electromagnetic field coupled to material particles
the usual divergencies turn up but the methods of non-relativistic renormalisation
theory apply leading to a proper formalism. However. the renormalised mass 15 in-
general no longer a scalar.




A number of physical processes can already be described by replacing an atom by a
two-level system and to truncate the field Fock space after the one-particie layer. This
results in a precise mathematical model possessing a superselection law. Within this
model it is directly clear that if the original atomic transition frequency wo is in a gap of
the classical dielectric, then the perturbed atomic eigenvalues remain real and isolated.
In addition a new eigenvalue, not analytic in the atom-field coupling constant, appears.
We end with a few notes upon the situation where wp is in a localisation interval’ '

Regge poles 38 years later

André Martin . -
CERN
CH-1211 Geneve 23
- e-mail: martina@cern.ch

Absiract: We decribe the evolution of the use of Regge poles, which, in the mind of
their inventor, Tullio Regge, were designed to study the scattering amplitude at fixed
physical energy, in particular for ¢ going to infinity, and became quickly used to describe
high energy scattering near the forward direction. We show that the postulate that
Regge trajectories are approximatively linear becomes natural if hadrons are made of
confined quarks and can even explain the fact that baryons and meson trajectories are

paraliel.

Arguments de symétrie en faveur d’une réinterprétation d’une gravure de
Diirer - '

Henri Bacry
Centre de Physique Théorique
- CNRS-Luminy-Case 907
F-13288 Marseille cedex 09
e-mail: bacry@cpt.univ-mrs.fr

Abstract: T'une des plus célebres gravures de Diirer, connue sous le nom de la melancolie
a fait 'objet de trés nombreuses interprétations au cours d’études qui, bien que con-
tradictoires, sont extrémement précieuses car richement documentées.

Par tant d’arguments de symétrie nous somimes progressivernent condult vers une nou-
velle interprétation, qui a 'avantage d'étre confortée par des éléments tirés du contexte
culturel de 'époque, faisant une large part au fait que Diirer fut I'un des plus grands

humanistes de la Renalssance.



Subdivision algorithms and smoothness

~ Ingrid Daubechies
Princeton University
USA )

e-mail: ingrid@math.princeton.edu

Abstract: Wavelet bases are usually defined so that their centers lie on regularly spaced
grids. For some applications, including compression of irregularly spaced data, it is
useful to have wavelet bases localized around wequally spaced points. These can still be
defined in association with a multiresolution analysis, and in association with unequally
spaced scaling functions, defined by subdivision scemes. The question then arises how
to prove or derive smoothness for these scaling functions.. This talk will show how
communication rules can still be used in the irregular setting to discuss smoothness
questions; in particular, for a generalization of the cubic Deslauriers-Dubuc scheme to
unequally spaced grids, one can prove that the subdivision limit is as smooth as in the
equally spaced case. '

Time-frequency localization, symmetries and generalized means

Patrik IMlandrin
CNRS-ENS
Lyon
France
e-mail: flandrin@physique.ens-lyon.fr -

Abstract: (talk based on joint work with P. Goncalves, published in Appl. Comp.
Harm. Anal., vol. 3, pp. 10-39, 1996)

In 1976, A. Grossmann first showed that the Wigner function is intimately connected
to a symmetry operator in phase-space. This interpretation is indeed a key for under-
standing the localization of the Wigner function on lines in the plane, as well as for
predicting its behavior when applied to any chirp in time-frequency analysis. The talk
- will discuss an extension of the original approach to the more general class of affine
Bertrand distributions, which are known to perfectly localize on power-law curves in
the plane. Emphasis will be put on geometrical interpretations and on a discussion of
Stolarsky’s generalized means, which happen to play a natural role in this context.




Designing a custom wavelet packet image compression scheme, with
applications to fingerprints and seismic data

Mladen Victor Wickerhauser ' B}
Washington University
StLouis
- USA

e-mail: victor@kirk. wustl.edu

Abstract: We present a meta-algorithm for designing a transform coding image com-
pression algorithm specific to a given application. The goal is to select a decorrelating
transform which performs best on a given collection of data. The method consists
of conducting experimental trials with adapted wavelet transforms and the best basis
algorithm, evaluating the basis choices made for a training set of images, then selecting
a transform that, on average,.delivers the best compression for the data seb.

The meta-algorithm has been applied to two classes of data. A crude version of the
method was used to design the WSQ fingerprint image compression algorithm. A more
refined version was used with raw seismic data as the training set. The parameters
of filter length, depth of decomposition, and quantization method were varied through
36 parameter settings and the rate-distortion relation was plotted and fitted with a
line. The lines are compared to judge which parameter setting produces the highest
quality for a given compression ratio on the sample data. It was found that long filters,
moderate decomposition depths, and uniform variance-adjusted quantization yield the

best results.

Multiscale processing, nonlinear wavelet transforms, noiselets and fast
rotations

Ronald Coifman and Frank Geshwind .
Yale Universitx
USA

e-mail: coifman@math.yale.edu

Abstract: A general method to generate adaptively orthogonal transformations with a
multiscae FFT structure will bescribed. In particular a nonlinear version of the Haar
transform, as well as noiselet transforms will be constructed, these are connected to

celiular automata and various paper folding mechanisms.



Spatio-temporel wavelets: application to tracking of moving targets in
noisy environment '

Romain Murenzi _
Center for Theoretical Studies of Physical Systems
and Physics Department?
- Clark Atlanta University
James P. Brawley Drive at Fair Street, S.W.
- Atlanta, GA 30314
e-mail; murenzi@hubble. cau. edu -

Abstract: In this work we apply the spatio-temporal continuous wavelet transform
to tracking moving targets in noisy environment. We focus our attention on handling
‘more general classes of motion, such as acceleration. To accomplish this task the spatio-
temporal wavelet transform is adapted to the motion parameters on a fram-by-frame
basis. Three different energy densities, associated with velocity, location, and size, are
used to determine motion parameters. Tracking results on synthethically generated
images sequences demonstrate the capabilities of the proposed methods.

This work is partially supported by ONR (Office of Naval Research), Grant N00014-
93-1-0561, BMDO (Ballistic Missile Defense Office), Grant DAAH04-95-1-0650 , and
ARL (Army Research Laboratory), Grant DAALOI-96-2-0001 . '

Wavelet analysis of observational data with gaps

B Peter Frick
Institute of Continuous Media Mechanics
Korolyov 1
614061 Perm
Raussia

e-mail: frick@icmm.perm.su

Abstract: In many domains of science, there are inevitable gaps in the time {or space)
domains at which data can be recorded. When one applies spectral methods to such
- data, one is faced with the problem of separating the spectral properties of the signal
from the spectral properies of the set of gaps. This situation is typical, e.g. for
astronomy, where the gaps are caused by seasonal windows of observation, cloudy
skies, telescope maintenance etc. In order to overcome these problems, different kinds
of interpolation are currently used. However, extended gaps in time series are difficult
to fill by interpolation (in some cases the total size of gaps is comparable with the
duration of observations) and, secondly, any interpolation also introduces additional
artifacts, leading at least to smoothing of the higher frequencies of the signal. These
problems appear in Fourier analysis-as well as in wavelet analysis. An extension of




Fourier transform to an uneven data set is known in astronomy as the Lomb-Scargle
_periodogram. The idea of this technique is to correct the basic functions cos{wt) and

sin(wt) by a phase shift and a mean value subtraction to preserve their normalization
conditions on a given set of observations. '

We consider here a technique for the wavelet transform of signals with gaps. The main
idea of this method, called the adaptive wavelet transform, is to considere the wavelet
‘transform not as a convolution of. signal with gaps with a given analysing wavelet,
but as the convolution of a signal and of the wavelet with gaps. Transfering the gap
problern from the unknown signal function to the known wavelet function, one tries to
correct the broken wavelet in a way to provide at least the admissibility condition for
any dilation and translation of analyzing wavelet. The properties of proposed method
are illustrated by artificial examples and by the results of study of stellar chromospheric
activity variations.







it is a joy, and a scaring honor, to be entrusted with opening the

celebration of Alex Grossmann - a privilege, I think, bestowed upon me by my priority in
meeting him, Qur first encounter was in the summer 1954: we were both students of the
Les Houches school, the then newly founded Abbaye de Théléme of theoretical physics,
where Cecile Morette arranged for the best teachers to deliver crash courses to audiences
destined to become the future elite of european theoretical physics. At first glance 1 would
detect in Alex a profound thinker - he was evidently afflicted - or blessed, whatever you
may say - by the heaviness of thougt - die Schwere des Gedankens - this was so-to-speak
written on his forefront. Still more than by his superior american education in theoretical
physics, Alex impressed the lonely autodidact 1 was by a unique style in his scientific
statements - he spoke with a kind of slow penetration obviously stemming from
profound independant thought - a sober seriousness high above my own frivolous fits of
enthusiasm.

Qur next encounter occurred a few years later in the second Abbaye de
Théleme of theoretical physics: the I.H.I.S. where he was a guest, at a time when
Visconti had already laid the foundations of our own wishfully delicious cloister. Right
away I decided that we should get Alex to Marseille, proposing him to come (with Toni's
telephonic assent) and simultaneously applying for a position - a kind of gambling which
has allowed C.P.T. to emerge out of nothing in this republic of overcautious beaurocrats.
As the time approached when Alex should rally Marseille, my application was rejected,
throwing me into one of the worst squeezes of my otherwise quite bumpy gambling
career: all T could possibly do was throw myself in desperation into the train for Paris,
looking for a saver, whom I providentially found in the person of Prof. Maréchal, a nice
optician who was in charge of an agency converting military money into funds for

scientific research: Maréchal generously granted us a one-~year position yielding the initial



condition for Alex's later stable settling to CPT. I was immensely relieved to be spared
the extremity of telling my wife Lisl that we should halve my salary to share it with Alex,
a proposal which might have put a temporary strain on the instinctive great sympathy she
felt for him! By the way ~ and this might be interesting to hear for the fans who ignore it -
Alex is genetically - as is also my wife Lisl - a grandchild of the double-headed eagle
monarchy - the alas defunct great empire that was more liberal towards his subjects than
our rationalistic republic towards her citizens. Alex is de facto a K-und-K aristocrat with a
unique persenal blend of the traditional K-und-K beautiful combination of noblesse and
simplicity!

Dear Alex! - now time has passed! Although still stacked with juvenile
projects for the future, we old men reached the age of critical weighing of our life-
experience. Looking down at my early gambling for acquiring you, I am rejoicing in self-
gratifying contentment! What a brilliant idea I had to ask you to join us - what a poetical
anticipation of the glory you would win for Marseille. Your profound thought and
untiring [abour has procured a major drive of our development: besides a bulk of versatile
contributions ranging from gravitation to solids (a germinal work of yours was e.g. a
starling point for Jean Bélissard) your audacious departing from crowded roads for
launching the wawelets with your friend Motlet was epoch-making! You have made
C.P.T. the mother-house of what is now a world-wide multinationale in science, owning
two house-periodicals and a rainbow of departments ranging between extremes Jike
mathematical music and mathematical genetics! You propulsed the reputation of C.P.T to
all four corners of the world on the crest of your wawelets! What an accressment of our
reputation! - we, your friends, are happily splattered by this glory!

Mon cher Alex, permets-moi au nom de tous de t'exprimer notre profonde
reconnaissance - je te dis cela avec la gravité de I'admiration et le sourire de I'amitié.

Daniel Kastler.







NONCOMMUTATIVE GEOMETRY AND FUNDAMENTAL
PHYSICAL INTERACTIONS.

(HISTORICAL SKETCH AND DESCRIPTION OF THE PRESENT SITUATION).

These notes consist of two heterogeneous parts. The descriptive section [I] - a
(dispensable) frontispiece to Thomas Schiicker's lectures - is a tale of the history of the subject
written by a witness of the first hour, showing how physics and mathematics interwove t
develop a mathematical concept of quantum manifold relevant to elementary particle theory. The
second, more technical, section {II] provides independant access to the present doctrine of the
"universal spectral action”.

Alain Connes successively proposed two Pandora boxes: "quantum Yang-Mills"
and "spectral action", both miraculously spilling {granted the required computational work) all
the complicated terms of the bosonic lagrangian of the standard model of elementary particles -
the spectral action even in combination with the lagrangian of gravitation (Einstein-Hilbert-
Glashow-Salam-Weinberg - with some admixture of Weyl - in a thimble!). These lagrangian-
creating paradigms are so far both confined to the classical ("tree"-) level of the theory,
stopping short of field quantization, hence without firm physical predictions - however
seriously hinting at a potential capacity to compute masses, e. g. the ratio of the Higgs to the
top mass.

The relationship between both schemes is for the moment unclear. The question of
wether and to which extent the second (carrying the "primal matter" philosophy, with
renormalization-group "descent" to accelerator energies) rejegates the first (mainly studied in
view of (hints of) realistic predictions), 1s open.

We conciude these notes with a short evocation of perspectives.




[I] NONCOMMUTATIVE GEOMETRY AND BASIC PHYSICS (SKETCH AND
GLIMPSE TROUGH HISTORY).

After a study, now appearing as a detour, of the noncommutative geometry of C*-
dynamical systems based on their (plentiful) derivations (1], Alain Connes realized the
inadequacy for noncommutative geometry at large of the Koszul-complex-context and its
wedge-product (Grassmann algebra of a Lie algebra of derivations) 1. Inspired by Atiyah's
"Global elliptic operators” {2] and Kasparov's work [3] (see also Mishenko and Fomenko
[4]), he discovered cyclic cohomology as the right conceptual backbone of noncommutativity -
the habitat, in duality with K-theory, of the index theorems [Sa][5]. In his hands the abstract
equipment of cyclic cohomology and K-theory has stragegic importance for checking the
fundamentality of supposedly basic physical concepts. However physics requires concreter

ground for its computational practice {differential operators rather than homology classes).

The equipment for physics comes with the "metric geometry” [61(7] [0,Chapter V1]
originating in the crucial recognition that all the information of a (compact closed) spin manifold
M lies in its Dirac operator D 2 - a profound truth borne out by the fact that D probes the
geodesic distance between points x,y&M as the sup of la(x)-a(y)l for all lipshitzian functions
fulfilling I[D,a]ll<l. 3 Since the constitutive properties of the Dirac operator do not mention
commutativity (cf. footnote 2), they still make sense in a non-commutative (or, for that matter,
discrete) context. This suggests to define the differential geometry of noncommutative and/or
discrete algebras as the existence of a generalized Dirac operator formalized as follows: aa
(even, d-swmmable} K-cycle (H,D) of the *.algebra A is the data of a Zi2~graded Hilbert
space W carrying a (faithful) *-representation of A by even bounded operators, moreover
endowed with an odd self-adjoint operator D such that: all commutators [D,a], acA, are
bounded, the resolvent (D+i)-lis compact; and one has pg= O(n"1/d) for the nth characteristic
value of D. We call (even, d-dimensional) speciral triples the "metric quantum spaces"
(A, H,D) obtained in this way, defining the gauge group of the triple (A, H,D) as the group of
unitaries of A (note that the relevant algebras are #*_subalgebras of C*-algebras "small" in the

sense that their "cohomological dimension” d is finite). As an important consequence of "d-

! 1 happened to be at THES at the very moment of discovery: he would pop out of his office like an out-of -the-
nox-devil, exclaiming: "The wedge product is no good! the wedge product is no good!". It took me months to
realize why!

2 We denote by D the Atiyah-Singer-LichnérowicZ-Dirac operaior 5:?“:&# acting on 1.2 of the spin bundle
811 (we affect with ™ the items pertaining to the spin-structure)  Identlying the (smooth) functions on M
with their multiplicative action, we recall that [ﬁ,a}:y”a_ua is a bounded operator for cach fuaction a, that the
resolvent of Dis compact and that the characteristic values ug are Oty d the dimension of M.

3 Thix fael was known o Caratheodory, and rediscovered by Conies who cealized itx huge implications



dimensionality” [7], one has the existence of a quantiun integration D-4.) + stemming from
Y q 8 g

a quantum volume-form § , (constructible) common value on "measurable operators" of all
Dixmier traces Try, (non-constructive) w-limits of the renormalized logarithmically divergent
traces of discrete-spectrum operators with characteristic values pp= O(n'l) (D+D)< is an
example, more generally any PDO of order -d, on which f reduces to the Wodzicki residue).
This notion of spectral triple evidently encompasses the ‘"classical case"
(C®(M)=A H=1%Sy),D=D) which served as a model, and whose features should now
proceed from the (archetipical) "Dirac K-cycle" as a first test of the theory. We now show how
one actually constructs the DeRham complex (M) of M and the Yang-Mills action (physically
= classical electrodynamics) by means of the Dirac operator D;
- (1): DeRham complex: we proceed as follows: first construct a differential algebra (RA,d) of
"formial forms" by symbols a, da, a€A and relations stating whatever should be the c_aée:
linearity of a and da w.r.t. a, and product ab in QA, reducing to those in A, d1=0, and the
Leibniz rule for d(ab) - this allows to write any "word" as a linear combination of words of the
type w=agda;...da,, ag,..,a,EA. The (coherent) requirement dw=agda;...da, then yields a
differential algebra (2A,d) which by itself carries little information (e.g.it is acyclic), however

becomes richly informative when represented on H as follows:
(D np{agda...da,)=ap[D.a(]...[D,a,s].

(np 1s a representation of the algebra QA because the substitution d~=[D,] replaces a
derivation by another one, the multiplication algorithm in S2A essentially proceeding from the
derivation rule). Note that, since ([D, )20, tp(£2A) is not a differential algebra (the kernel K
of mp is not a differential ideal), however one easily checks that K+dK is a differential ideal,
making d to pass to the quotient QpA=QA/(K+dK) to yield a differential algebra (RpA.,d). It
turns out now that in the case A=C®(M) (QpA.d) is somorphic 1o (Q(M),d): we thus
reconstructed the DeRham complex of M via the Dirac operator! - this moreover by means of a
construction valid for general spectral triples (A H,D), thus producing their "quantum DeRham

complex" (Qp,A,d).

- (11): Yang-Milils action [6]: given a connexion V of a smooth bundle over A {acting on tis A-
module E of smooth sections) > we should "integrate the square of the curvature”. Looking at
connexions V in the guise of their covariant exterior derivatives, these are grade-one d-
derivations of the A-module E®@3QnA=E® w0, Q2(M) (of E-valued dilferential forms), the

+ [nterpret D4 a3 an y {D+ia)‘d, =R (choice of « indifferent).
3 Nole thal the "quantum Yang -Milis" needs as dala a spectal triple (AHD) plus a projective finite module E
ax Lhe receptacle of connexions. In most of our cases however E will be A ttsell taken as a right A-module (as

15 the case for electradynamics).




corresponding curvature being the endomorphism (=two-form) © representing the square V2.
Note that these items exclusively usc the differential algebra QpA constructed via D, thus

persist in the non-commutative and/or discrete case. The "quantum integration” then allows to
define the "quantum Yang-Mills action" as f (D4 @2) (valid for general spectral triples
(AH,D), and merging as it should in the classical case E=A=C%®(M) into the usual classical
Yang-Mills action). Note that, to achieve manifest gauge-invariance, D-d has to be replaced in
the integration by the equivalent (D+A)-d - the difference is absorbed by the Dixmier trace).
Where are we now? We have constructed generic "quantum versions” (using the spectral
triples (A,H,D) embodying our "quantum geometries") of both the DeRham complex and the
Yang-Mills action, these quantum objects merging into the customary items in the case of a
classical even-dimensional spin manifoid.® We now ook for a non- classical example to
inaugurate our "metric quantum geometry”. At this point something remarkable happens: the
simplest possible choice (derisively simple! - still commutative, but discrete) turns out to be
(germinally) of the highest significance for elementary particle physics! This examptle is as
follows: the algebra is the "two-point algebra" A=T@®C; the Z:2-graded Hilbert space

H=CN@CN NEN (with grading involution 16-1) is acted upon by {(p.q)EC®C as pl@&ql ;
EH
the Dirac operator 1s D:(IO\,[MO) , M a NxN matrix (note that, as should be the case, the

algebra is even and the Dirac operator is odd). Working out the DeRham complex, the

hermitean connexions of the (right) A-module A, their curvatures, and the Yang-Milis action is

an easy exercise. The connexions are parametrized by a complex number ¢ in terms of which
the Yang-Mills action turns out as (1612-1)2 - an expression which a physicist recognizes with

gleaming eyes as the typical expression of the Higgs potential! 7 We find the Higgs in a
nutshell, the "embryonal Higgs"! This at once enlightens our physical picture: the world is two-
sheeted, the mysterious Higgs is nothing but a gauge boson, however needing noncommatative
geomelry to be recognized as such because the corresponding potential is not a connection
within the realm of classical differential geometry, but a discrele connection (so-to-speak with

parallel transport jumping from oae world-sheet to the other).

6 e somewhal wronged history by presenting the quanturm DeRham complex prior to Yang-Miils. The order
of discovery was [irst Yang-Mills, performed with the formal (QA,d} instead of (RDA.d), thus dragging along
the "junk” (K+KI in second order) as "adynarnical fields" (not figuring in the action) to be eliminated by
minimization of the action, a procedure subsequently streamlined by QDA

7 The standard model of elementary particles is a puzzling object in that its pheaomen(ologiclal success -
secking deviations from it is a thoroughy frustrating sport! - scems in total conirast with the completely ad hoc
way in which it was historically constructed: namely through heurstical "symmetry -breaking” of the esthetical

TDxSU()xSU(3) gauge theory (unphysical because leading o massless particles) by a mysterious "Higgs

boson” scalar field subject to a double-well potential. This model glonousiy survives in contrast with the

waste-basket-destiny of hundreds of other models! Fishing out th



This tempting insight provided by the "embryonal Higgs" (inner degrees of freedom)
made us already extrapolate towards a multisheeted space-time combining space-time with the
“inner space". We now need for describing the space-time Higgs to perform the actual
construction of such a compound object At this point mathematics plays into our hands. Alain
Connes' "quantum Yang-Mills" indeed allows a natural teasoring of two spectral triples
(AH'.D") and (A"H",D") yielding a compound triple (A,H,D) as follows: one has
A=A'®A";, H=H'®OH", y=y'@y";, a=a'®a",aEAa'€A'a"€A"; and D=D'®@1"+y'®D": 8
This general procedure applied to the classical space-time Dirac-K-cycle as the primed K-cycle
and the embryonal Higgs as the double-primed now produces a sensible toy-model: the
electroweak sector of the (simplified) standard model of a fictitious word with N generations of
a single fermion. We are thus on the right track, but need a more elaborate spectral triple to
become realistic. In their original paper @ {9] Connes and Lott first considered the case of the
bipoint algebra C®C endowed with a K-cycle featuring a projective-finite module generated by
a projection tailored hto feature the leptons- a rather complicated formalism which they then
traded, whilst appending the quarks, for a simpler and more natural scheme based on the
algebra CBH (dictated by the electroweak gauge-group U{(1)xSU(2)) serving also as a right
module over itsell [or accomodating connections (as was above the case for the pure
electrodynamics in the quantum Yang-Mills guise). The inner Hilbert space H is then chosen so
as to fit phenomenology (with a basis indexed by the fermions - leptons and quarks - as we
know them; with the action of the algebra dictated by the gauge-group behaviour of the
fermions; and the inner Dirac operator D a couple of finite matrices, the "Cabibbo-Kobayashi-
Maskawa" matrix and its hermitean conjugate acting in an odd way (for details which would
encumber this historical sketch we refer to Schiicker's lectures or to [II]C below). The
involved computation of the quantum Yang-Mills action {(elimination of the junk somewhat
nightmarish!) then yields the bosonic electroweak sector of the standard model (Glashow-
Salan-Weinberg) - a hardly fortuitous "miracle"!. There follows another striking situation:
whilst we got above the correct action, the fermions come out with wrong hypercharges. On the
other hand, to describe physics (full standard model), we have to append the chromodynamics
sector to the previously constructed electroweak sector, knowing that the gluon-field is a
"vectorial field" producing no Higgs particles. We achieve this by tensoring the previous "inner
clectroweak spectral triple" by a "inner chromodynamics spectral triple" made up of the algebra
CHM3(C) and a vanishing Dirac (the compound Dirac of the tensor-product triple is thus
entirely on the electroweak side). Now, providentialiy, the "modular adjustment” collapsing the

three U(1)'s into a single one effected 1o obtain the right gauge group {mathematically coherent
g gnt gauge group

8 This procedure is in fuct the exterior muitiphicution of Kasparov K-cycles.
9 The program was annonced by Connes verbally in Sept 1929 at the Coclona meeting on Quantam groups

and in writing at the 1990 Oxdord Conlerence (8]




using the DeLaHarpe-Skandalis determinant [10] - but physically heuristic) 10 can be achieved
in such a way as to correct for the wrong hypercharges. Non-commutative geomelry refuses to
treat the electroweak sector in isolation (wrong hypercharges), and so-to-speak asks (even
exactly! cf. [12]) for tensorization by the gluons for their hypercharge-correcting virtue! There
is more to this: this electroweak-chromodynamics "duality” (structureless in the usual theory) is
recognized by Alain Connes as a manifestation of a mathematically canonical noncommutative
Poincaré duality : a novel concept of pure mathematics monitored by the inner space of the full
standard model of elementary particles! 11, It seems extremely rewarding that the combimation
of the electroweak and chromodynamics sectors be required by non-commutative geometry for
a basic mathematical reason. We formalize generically the concept we needed for the Connes-
Lott inner space: our electroweak, resp. chromodynamic inner algebras are the archetypes of

pairs A,B of the following type: A metric dual pair 12 is a spectral triple (A®B,H.D) fulfilling

the first-order condition:
(2} [[D.a],b]=0 , 4EA bEB.

(symmetric in A and B owing to the Jacobi identity). Moreover the metric dual pair fulfills
Poincaré dualiy whenever its intersection form is nondegenerate 3

Up to now we mentioned only the bosonic part of the action. The fermionic part of the
standard-model action is, on the other hand, compactly expressed (third "miracle” 1) as
(3) (b, (D+aYY),

4 in the compound Hilbert space (indexed by the fermions, asked to be chiral), D+A the

compound covariant generalized Dirac opeator (A is the potential).
The Connes-Lott model based on the metric dual pair (CEH)ECEM3(C),H.D)

accumulates an impressive amount of coherence! Contact with the traditional standard-model

lagrangian of elementary-particle (both bosonic and fermionic) is perfect. The generic "Connes-

19 Modular adjustment corrects for the fact that the SU(3) gauge group of the gluons is imperfectly represented
by the algebra M3(C) with unitary group U(3), whence the necessity to assign to the giuons the algebra
CEM3 () and then collapse the three ambient U(1)'s into one. Interestingly this “modular adjustment” is
precisely required by anomaly-freeness {18].

LU This generalization features a couple of Poincaré dual algebras sitling in a bimodule (K-homology of the one
mapped on the K-cohomology of the other). [n our case the bimodule is the tensor-product spectral triple where
* one of the algebras is replaced by its opposite.

12 personnat terminology: this concept will later turn up lo coincide with the Sp-real specialization of real
spectral triples -see below.

13 The first definition of noncommutative Poincaré duality [0] incorporated the first-order condition. The more
recent usage {cf. definition below of "spectral geometries”) defines Poincaré duality as the nondegeracy of the

imtersection Form, mapping K-homology of A on K-cohology of B




Lott {=quantum Yang-Mills) models" are in fact much more constraining than the comparatively
loose traditional Yang-Mills models {11], thus entail more information. The above Connes-Lott
model describes the Higgs in a much tighter way than the traditional standard model which
features the Higgs mass as a totally loose parameter. Noncommutative geometry implies

constraints allowing a tree-approximation computation of the Higgs mass in terms of the top

mass (for what such calculations are worth in absence of renormalization, but any indication of
a possible all-important computation of masses 1s worth investigating). This aspect has been
intensively studied. Early investigations using a one-parameter coupling constant had revealed
for the most symmetric choice a situation reminiscent of grand unification [13]f14]. Alain
Connes later advocated [9a] an oppositely maximally uncommitted choice of the coupling
constant (matricial, within the commutant of algebra and Dirac)!4, a prescription which was
noticed by Thomas Schiicker [16][16a]{17] to lead to very coherent tree-approximation-
constraints practically fixing the tree-level Higgs mass irrespective of the possible choices 15,
Interesting as it is, the Connes-Lott theory has however imf}erfections:

- the notion of metric dual pair pertains only to inner space {since one does not wish to
tensorially double space-time).
- the relevant connections are not all the connections, but the "biconnections” ("remembering"
the tensorial splitting (COH) ® (CAOM3(L)).t6
- the theory understresses particle-antiparticle (=charge-conjugation) symmetry.
- "modular correction” is heuristic, not conceptual, thus insufficiently understood despite the
link with anomaly-freeness [18].
- the elimination of the "junk" may appear unesthetically complicated.

In May 1994 in Tre¢ Alain Connes proposed his notion of "real spectral triple" [20]
which removes the two first drawbacks and halves the third. The concept originates in a
combination of the Tomita-Takesaki-theory [21], KGC-theory {22] and the idea of charge-
(particle-antiparticle-) conjugation. Two distinct things have to be considered:
(1) - the general mathematical notion of real spectral triple - along with its Sg-real specialization.

(2) - the Sp-real "spectral triple of the standard model" replacing (and constructed from) the

I This attitude is opposite to the one lately advocated by Chamseddine-Connes, claiming that the universal
action {as can also be done for the Yang-Mills action, cf. [13]) pertains to "primal matter” (replacing the
traditional grand vnification).

13 Once again, these results are dubious because they are non-renormalized and upset {18] - but slowly - by the
renormalization grodp. Such dubicus expioratory computations are worth doing owing to the tremendous
physical importance of the Higgs mass, but the results must be considered with due care. The universal action
proposes a different scheme for calculating the Higgs mass (see below, and Schiicker's course).

1 Connes motivated the use of biconnections by a gauge-group argument [14]. We altempted  a more basic

justification [19). The problem evaporates whilst passing o the redl spectrad triples.




above dual metric pair. |7

(1) - A d-dimensional real spectral wriple (AH,D,J} is a d-dimensional even spectral triple
(AH,D) with a real structure, i.e. an antilinear operator J of H fulfilling the following
properties: J¥J=1 (antiunitarity); J commutes with D; JAJ* commutes with both A and [D,A]
("order one™); J2=¢l; Jy=g'xJ (x the grading involution of H) with the signs € and ¢' as

follows:
d mod8 0 2 4 6
(4) ‘ g 1 -1 -1 1
g' 1 -1 1 -1
Definitions:
~ we sel:
) a&b=alb*J-1E (=Jb*J-1at ) , a,bEA, E&H.

- the elements u of the gauge group G of the spectal triple (unitaries of A) act on H by the

adjoint representation:.
(6) £ Ug=wlu*J-IE (=ufu¥),

- the covariant Dirac operator Dy, indexed by:AEQp(A), is defined as;

(N Da=D+A+JAT L

- the fermionic action is defined as:

® TECA )=(. D) , YEH, AEQD(A).
Resuits:

- H acquires by (5) the structure of a A-bimodule such that JaJ-t=-a*, a€A, where -a*
denotes multiplicaton in H by a* from the right (as in (5)).
- (6) defines a unitary representation of ¢ on H, such that J(uE)=UY(JE), EEH, uEg.
- for each AEQR(A), (AH,Da ) is a d-dimensional even spectral triple.
- the fermionic action is gauge-invariant: one has
) [R(UA, Wj)=Ip(A ) , YEH, AERD(A), 1&g,
where YA=A+u*du.
~ The (euclidean) "charge conjugation C (such that C*=C-1=-C, Cy>=y3C, Cy¥*=y"C,
u=1,23.4} is a real structure of the classical spectral triple (Cm(i\/I),LZ(SM),f)).
- Tensoring as above as spectral triples the d'-, fesp. d"-dimensional real spectral triples
(ALIDUIY and (A" H",D"J") yields a (d'+d")-dimensional real spectral triple with real
structure J'GJ"

The following specialization of real spectral triples arises in a one-to-one fashion from

17 The general notion arose as a generalization of both the “classical cxample” and the "spectral triple of the

stondard moded



"metric dual pairs": A Sp-real spectral triple (2,4,D0,],P) with grading involution ¥) is a real
spectral tniple (A,.4,D,J) (with grading involution ) together with an hermitean projection
P(=1-P) of H fulfilling: PJ+JP=J(«PJ=IP=PJ=]P); Py=xP(=PxP), PD=DP(=PDP);
Pa=aP{=PaP), acA.

Proposition: (1): Sg-real spectral triples (4,4,9,J,P) are one-to-one with metric dual pairs
(A'®A" H,D,J}, bijection specified in both ways as follows:

(10)

[A=A'@A", ~H=P#H

H=H@ﬁ, A'=PaP

B - A"=PapP

J IE=(n,e5), EmEH, |, 4 x=restr. to H of PyP=Px=xP,

x=(xBeY), D=restr. to H of PODP=Pp=DP,

D=(D@&D), a'=restr. to H of (a',0)P=P(a',®)=(a', )P,
L(a’,a“):(a'@&") .__3.":{{35{1'. to H of PJ(O,B.")*I*P:PJ(O,QN)*:(O,ﬂ.ﬂ)*J*P

(here H is the conjugate Hilbert space of H, and the shorthand aS@FT, S, T&EndH, o,paER,

means the prescription (cS@BTH(EM)=(aSE,BT*1), EMEH). |
(i1): A Sp-real spectral triple (Ag@A'@A'GPA" H,D,JP) with A'p=Ag can be "cut down" to
(Ao@PA'BA" #,D,JP) by identifying A'g with Ap.

(2) - 18 The Sg-real “inner spectral triple of the Connes model" (CEH®Ma(C).A,2,J) then
arises by applying the above procedure (1), and (i) {with Ap=C), to the "inner dual metric pair
(CHHNGCO®M3(C),H,D) of the Connes-Lott model". The Sg-real "(full) spectral triple of
the Connes model” is then the compound real spectral triple (3, (H=H®H 5.9).J) obtained
by tensorizing the space-time real tensor tripie (C%(M),(LAS(M)), v, 5),(?) by the inner real

spectral triple (AJ{:H@)ﬁ 20.D.J):

The passage from the Connes-Lott model based on a metric dual pair to the Connes real
spectral triple standard model achieves a threefold progress: (1): particle-antiparticle symmetry is
now duly emphasised, (ii): the "biconnections” come automatically with one-forms the éharge
conjugation-symmetrized A+JAJ, (iii): half of the modular adjustment is automatic (reduction
by 1 of the number of plethoric U(1)'s). One shows that the passage from the definition-
representation to the adjoint representation of the gauge-group does not alter the hypercharges
of the fermions.

For a time we believed hat trading the Connes-Lott model based on a metric dual pair for

the Connes real spectral triple standard model would not change the action. That this was false

I8 described in detail in [11C below - see also Thomas Schiteker's teciures. There should be no confusion

between the particle- | resp. anti purticie-! lithert space 2, resp = L and the quaternion algebra 7




was recognized by Lionel Carminati (the point is that for the junk-computation the simplifying
use of the tensor structure [25] is no longer available): this slightly upsets the conclusions on

tree-level mass constraints mentioned above - the problem was reexamined in (23] [24] - for

details see Thomas Schiicker's lectures.

The notion of real spectral triple leads to the following notion of "noncommutative
spin manifolds”. A spectral geomerry is the specification of a d-dimensional real spectral triple
(AH,D.D), even or odd, thus (in both cases) fulfilling:

- ("reality"): existence of an antiunitary J as above in the even case, for the odd case we refer to
[26) |
_ ("dimension"): (D+i)lis compact; and pp=0(n"4) for the n characteristic value of D.
- ("first order™): JAJ commutes with both A and [D,A}

moreover endowed with the following properties:
- ("regulariry") for each a€A, a and [D,a] belong to Npey Domain 67, &=[1DI, .1.
- ("finitude"): the A-module E=NpeyDomainD" is projective-finite with hermitean structure:
(11) (a&, =T 1e(Dda(Em)) . ENEE, a€A.
- ("orientability": there is a Hochschild cocycle c=agda;...da, such that sip(c)=y (even case) or
mp{c)=1 (odd case) where ap(c)=ag[D,2,]...[D,as}.
- ("Poincaré-duality"): the intersection form: Kx(A)xKs(A)—Z composition of the Fredholm
index of D and the diagonal Kx(A)xK:(A)—>Ks(A®A)—K+(A) 1s invertible.

These axioms are comforted by the remarkable fact that their abelian version
(where the algebra A is abelian and the bimodule H has the natural real structure Jat=a% ac&A)
goes far towards an axiomatic characterization of classical spin manifolds [26] (the gap in the
proof seems essentially technical). In spite of this undubiiable progress over a traditional
definition {assembling flat neighbourhoods) which falls regrettably short of the ideal persuit of
axiomatic definitions as clearcut frames for a subsequent search of invariants, a mathematician
ignorant of physics is likely to be puzzeled by a system of axioms seeming strange if one does
not know their genesis as features shared by the "classical example" and the (densively minute?
- however revealing) inner spectral triple of the Conaes standard model of elementary particles:
the latter is apparently the only man-made object "quantal” enough to monitor the search for
"moncommutative manifolds” (the rest of mathematics is too "classical")! Here mathematics and
physics beautifully interwove their strides towards the exploration of the right
(noncommutative) space! 1?

An exhaustive classification of the finite Poincaré-dual real spectzal triples has been

perf&rrmed {2771 - see also [28].

9 Aluin Connes claims that the rote of the CERN accelerator is “expionag the dght space”



[II] THE SPECTRAL ACTION,

A - PREHISTORY. | may evoque personal recoliections illustrating the course of discovery. In
the spring 92, whilst bringing me to the airport in his car on his way home from a Collége de
France fecture, Alain Connes asked: "did you notice that the Dirac operator contains the
information of gravitation?" - stating that Einstein-Hilbert sticks in the Wodzicki residue of
(Dirac). 1 was fascinated: so the wondrous Dirac operator, in addition to producing
electrodynamics (even, if decorated, the standard model) generated alsc general relativity!
Wishing to know the details, I performed the computation (prelty nasty, one has to dive by two
levels of PDO-indices!), actually finding: enst x scalar curvature [29]. Was there more to it? -
unfortunately not: replacement of the nacked Dirac by the Dirac plus y*A,, ends in frustration:
one gets no coupling with electrodynamics, the six additional terms cancel each other. Since,
conversely, the spin connection drops out of the Connes-Lott computation, I sadly concluded
that " the two theories seem to repell each other at that level". Wolfgang Kalau and Markus
Walze reported about identical results in a Marseille talk [30]. On the other hand I knew that
resw(D-2) equals the second coefficient a2(D?) of the heat expansion up to a constant - but alas I
neglected this aspect, that dispensed me of looking at the third coefficient &;(53). The shock
came with a telephone call of Alain in the early spring of 96 reporting that he had found a
formalism yielding jointly gravitation and the standard mode! and synthetizing diffeomorphisms
with the gauge group - he was then alarmed to get the right relative signs, particularly of a term
which he hoped coherently tractable by the renormalization group as prescribed by Wilson.
Shortly afterwards, we Jearnt more from Ali Chamseddine who was spending three weeks in
Marseille before going to IHES for the final writing of their spectral action paper {32]. 1
decided to perform-independently the computation of the spectral action, asking my friends to
do the same for the renormalization group corrections: this resulted in the papers [33] [34]
continuing our Marseille tradition of performing computations indepéndently for seff-education

and expounding them in detail. 20

20 tronically: I was asked to referee the Chamseddine-Connes paper which they submitted to a supposedly
serious physics magazine in an attempt to break out of the noncommutative club. My enthusiastic
recommendation - competent to the extent that I had just independently checked the action computation - was
willingly ignored by the editor of the magazine who rejected a "paper without experimental confirmations” {in
contrast with the rest of the mathematical physics literature, including the strings abounding in this

magazine!?). Regunt sacerdotes ad majorem ecelesiae glonam!,




B - DEFINITION AND RESULTS. The spectral action 2! is the following functional of the

metric g of M and the one-form A

(12) I(g.A p)=(4m)2Tr F(-i; DA,

where B ,=D+A+JAJ is the "covariant Dirac operator” of the standard model in the spectral

formalism, and v an element of E=S(M)@#. F is a function: R}->R such that F(i Dp) is

trace-class, where A is a cut-off parameter = the inverse of the Plank length: A:lp'l.

The required trace-class property, as well as positivity of the bosonic action are achieved
by choosing for F: [0,11[0,F(0)] a positive smooth function decreasing from a positive value
F(0) to the value O at I mimicking the characteristic function %o, of the interval [0,1].
Remark: Call an endomorphism X of % an observable whenever X has discrete spectrum,

leaves I and M stable, and fulfills X=JXJ-1. Functions of observables are observables. The

operators ¢, D+A+JAJ, ACQA)!, and F(i: 0 4?) are observables. One sces immediately

that, for X an observable, one has TrgX=TrgX=1/2TryX: thus restricting the trace in (12) to

either the particle or the antiparticle Hilbert space just looses a factor 1/2. Further, since the
cuclidean y=y*-- commutes with J, TrgX=Trgl(*+%)X] equals Trpg{(z X+ Trig(% X,
a welcome sum over chiral pasticles and antichiral antiparticles refuting the a priori objection
that one "doubles the fermions® by defining H as the tensor product of a spinor space with
7/2-grading and an inner space with R-L Z/2-grading

Results:
(1): The three first terms of the asymptotic development in A-2 of the spectral action-density
rcad:
(13) Ip(x,2,A)=90(2f0) A*-[,A2{15s-BAIDI}
: 2 9
+f4{%Qprvf-‘“-*'gNhswhs“‘%gNgawgaﬂ"+4AID®!2+§ASI(I>I2+4BICDE4— 3(32}

4
+ the surface terms {4{111537(,;% As+§AA(I<I>l?)}.

21 bosonic part of the action, The fermionic action is {Y,WaY). W a acts oN the Hilbert space H@®H direct

sum ol a particle- and an antiparticle Hibert space (no confusion with the symbol X denoting the quatienions}.

22 after modular adjustment. This is an asymptotic development, up 1o negligible terms (negative powers ol

A). This developement is obuwined from the heat-kernel expansion via Laplace transform of T, (23) stemming

from

oo 1 e ar e 3w Ao o e e n T N
I II([‘:} F"\'I\\.h):/\";)“‘lw)("};;).")'h'\hl2."‘_‘,(59,{-‘.\")‘}‘&‘“4{;;&") whett ii}'::‘-o _.\‘)"j.‘r{ ‘1;(-\:3—'9'_.\ W



where fo={F(u)udu, fr=/F(u)du, [5=F(0) (note that for F=y[0.1) one has 2fp=ly=fy), ¥adv is
the Euler form, and:
A=trn[3(My My+Ma " Ma)+Me *Me],

(14)
B=try[3(My " MuM "M+ Mg *MaMg " M)+ Me “MeMe " Me].

(ii): (tree-level computation): Identification of the corresponding terms in (23) with the bosonic

action-density of the standard model:

SN L .
(19) Lotana=; GG+ WS Wik 4By BE+(Dy)*(D40)- [5(0%0)2+u20%9,

where
C My=v2u
, 1
G, =0,,G2-0, G+ g3fapc G, GEy, Mz=5vg
i6 V= S - S oaga W, WL .
" E%V Su—aaﬁ“.rav §VWSP+OEEbrtW wWhe 9 Mw=Mzcosew=?l)'ng
pv=Op oy -0y Dy, -
_&1
gtgew—gz
yields ©=2A-12g,¢, ‘LL?-:ZA,VE;)-E%WM, thus the relations: 23
~ 82783
sin Bw-——g
(17) J My=2A
V3
M\,V:%vgzr A A, under top dominance My=-—A
q “ 2v(2B) 2V72

These results show that the spectral action pertains to very high energies - or early times
(primal matter). Realistic results are expected to result from a renormalization-group treatment.

for which we refer to {32][33][34], and to Thomas Schiicker lectures.

The spectral action depends only upon the eigenvalues of the covariant Dirac operator 24
(spectral invariance principle , a strengthening of the Einstein equivalence principle, implying
invariance under the automorphism group of the tensor-product algebra Z=C¥(M)@A semi-

direct product of the dffeomorphisms and the gauge transformations}.

5]
wd

dominunce ef the lop muss implies A VB=v3,




The rest of this section, devoted to a description of the spectral action computation, is
organized as follows: C describes in detail the Connes spectral standard model outlined in [1].
D displays the covariant {generalizes) Dirac operator £, as a classical Dirac operator of a
twisted Clifford bundle E displays the canonical decomposition of the generalized laplacian
242 as the sum of connection-laplacian AY and an endomorphism E. The remaining sections

F, G treat the routine evaluation of the heat-expansion coefficients as given [35] in terms of ¥

and E.
C - THE CONNES SPECTRAL MODEL.

The input of the spectral action formalism is the same as that of the Connes-Yang-Mills
model evoqued earlier, viz. the So-real inner spectral triple (CANOM;3(C)AH,D,J), derivate of
the inner dual metric pair (COH)@CO®M3(C),H,D) of the Connes-Lott model. We now need
a detailed description of these objects. We recall our euclidean frame: M is a 4-dimensional
smooth compact oriented spin manifold without boundary, with algebra of smooth functions
C®(M), volume element dv, and Levi-Civita connexion VM 24§y denotes the spin-bundle of
M, Z/2-graded by v3, with module of smooth sections S(M), the latter a Clifford-module
under the action y of the (archetypical) Clifford module CI(¥M) of M. The C®{M)-module

§(M) is acted upon by the spin connexion ¥M=V . the Atiyvah-Singer-Lichnérowicz- Dirac
operator D and the (euclidean) charge-conjugation C=-C!. These data are subsumed by the

"space-time real spectral triple” (C2MD (LS M), v D),C). We recall that in our euclidean
setting S(M) is endowed with a hermitean scalar product for wich the y# and y> are hermitean
and commute with C.

The metric dual pair {(COH)®CO®M3(C),H,D). We recall that there are 45 types of
fermions coming in 3 analogous generations (the e-, u-, and t-generation) and 2 chiralities
(right and left): the leptons eg vi e and the quarks: vgdz W d; (u stands for: upper, d for:
Jower) 25 The fermions are acted upon by SU(2), the right-handed particles as singlets (eg)
{ug) (dr) {acted upon by the representation Dyg), the left-handed particles as doublets {(viepL)

(upd;) (acted upon by Dy). The (inper) Hilbert space H=Hq@H] is thus the direct sum of a

quark summand:

(18g) He@C o ¢) ® o & 7° (dim Hq=12N=36),

2
L.
- ug dp up di generations  color

and a lepton summand:

24 with sealur curvature and Ricei-teasor denoted s, resp. R
25 the subscripts q and | stand for quark, resp. lepton, the subseripts R and L stand for nght, resp. left, N is the

number of eenerations (experimentally N=3), the quarks have a thresfold colour whilst the leptons are

colouriess. There are no right-handed neutrinos (right-lefCasymmetry - puii “breaking!).



(181) H=(C ® C) ® N @ ¢ (dim Hj=3N=9),

er YL €L  generalions no color

themselves direct sums of a right-handed and a left-handed part yielding the Z/2-grading of
(right-left) parity  (+ at right, - at left). Denoting the endomorphisms of Hg, resp Hj, by 4x4
matrices with eatries in My{C) tensorized by M(C(?O[our), resp by 3x3 matrices with entries in
Mn(C), we then have the algebra C®H acting as (p,q)=(p,q)q@(p,q), the algebra CEM;(C)
acting as (p,m)=(p,m)q®(p,m)| , and the Dirac operator D=Dy®D; given as follows:

UR dR UL d]__

. Ug
[P 0 0 0\
(199) Y I S B Ca=(* "))
q P-qiq= 43 q= )
q LO 0 a bJ ” (0 é)
0 0 -b a 4
Cr VL €L
p 0 =
(191 =] ¢ & b oo,
o -b a e
g dp oy dp
100 0
Ug
20 _(O 1 00 dq ®
(200) Pme= 5 g 1 g w O
ko 00 1) a4
€q VL €
1 00 R
(201) (p,m>1=p( 01 0] v
\o 0 1
€L
Uy dp oy d,
Ug
0 0 MF 0
4 = iz
q TiM, 0 0 0 J o
0 My 0 0
4
€r Vi Gy
0 0 M, *
(211 D;:( o 0 0 } vio,




R R R e O B R i

with My=M,*, My, Mc=M.*EEndC the fermion mass-matrices. 2

Inner-space one-forms.Since the inner Dirac operator D (21gl) commutes with the
chromodynamics part (20q.1) of the inner algebra A, the latter does not contribute to the inner
one-forms which thus exclusively stem from the electroweak part (199,1) of A (as the linear

combinations of the commutators of D with the latter). They are thus of type A=Aq+A| with:

ug 1 U, d.
{ 0 0 ht®@My*  h''e@My* \ Ug
| o 0 -h ®Mg* heMe* de
(229} Ag= ®13
h2@My hi®Mg 0 0 ug
-h @My h2®OMy 0 0 &
] YL €L
( 0 -h' @Mg* h7?@My* \ r
(221) Alz\ h,®Mg 0 b J v o,
0 h,®Ma { e,
h'y h'! h'; h'!
expressions indexed by a pair of qnatemions( ) , ( ) which should be taken
__hfl hlz _h!l h|2

hermitean-conjugate of each other to get hermitean one-forms.

The Sg-real inner spectral triple (C@HO®M3(C).7,D,J) is then obtained as in (2) above
by the procedure (i) with A'=C@®H, A"=COM3(L), cf. (10), followed by the compression (ii)

where Ag=C. Specificaily the inner real spectral triple is as foliows: the "inner Hilbert space”,
direct sum H=H®H of the "particle inner Hilbert space" H and the "antiparticle inner Hilbert

space” H (taken as the conjugate Hilbert space of H) 27 is acted upon as follows by the chirality
+, the element (p,q,m) of A, the Dirac operator ©, and the charge-conjugation J=J-4 28

26 We comply to the common usage of choosing our fermion mass-matrices such that Me and N are diagonal
positive matrices, whilst Mg=CIMdl, with C unitary and M strictly positive. Furthermore we assume that all
fermion masses are different (the eigenvalues of Me, My and N\l consists of positive numbers {the masses of

leptons and quarks)-alt iffereat [rom one another - expedment!), We further assume that no eigenstate of Mgl is

an eigenstate of C (experiment)).

£, whenee ME=ME, M a matnx, M the

o} . . . . - . . . ) e -
27 with conjugation denoted - &, and mutiplication by a&Lr S o

complex-conjugate matns.

By (pgum) and D preserve Hand 1 whilst ) exchanges them




(3 (ER=(EXm),

(p.q.m)(E,m)=((p.q)E.(p,m)M), (p.q.M)EA,
(23) J = e |
D(E,M=(DE,Dv), (EmeEH

LI(EM=(m,8),

The compound real spectral triple (2, (=E®H, x.®)J). We now tensorize as

follows the space time real tensor triple (C®(M), (LAS(VD),¥3, D),0) by the inner real

spectral triple (A, (HxH@gI KDY

A=COM)®A
H=LAS(M))®H ( H=L*(S(M))®H )

A= O
D=DRidg+y5+@D

. (24)

Note that whilst J exchanges the "particle space” H and the "antiparticle space” H, all other

operators X of the theory leave K and H stable. Denoting the endomorphisms of Hq. resp H,
by 4x4 matrices with entries in  EndS{M)@MN(C) tensorized by M(Cgom), resp by 3x3
matrices with entries in EndS(M)@Mn(C), the compound Dirac operator #=0@%1 is then

specified by the matrices:

Ug dg Uy dr.
D@1y 0 y@Mz* 0 Ug
0 D®in 0 yOMg* dy
(25q) D= @13,
yoM, 0 D®1y 0 up
0 ‘{5®Md 0 DOy 4.
resp.
er vL gL
(D®1N 0 y5®Me*) ep
(251) D= 0 D®ly O Vi

POM, 0 D@Ly ) e

The compound one-forms have the tensorial decomposition {23
(26) QA =Q(MYI@AB{ay + B ICTF(MHBQUAY,

vielding in combination with (16,1} the form A =d+a; with:



Ug dr U dy

()@l 0 2S@Myu* -HY @M * Ug
0 y(@)®@1y HiY?@Mg* Hoy?®Mg* dg
(27q) Ag= ®ij
LHZYS@MU HiyS®Mg v(b!)®@In y(bl)®@1y J ug,
-Hiv9@My HH9@Mg v(b?2)®@Ly v(b3)®1x d
€p VL 53
( y(a)@1n  Hiy OM.* H2Y5®Me$) &g
(27 Al HWIOM, v(b!'D®@1y y(bh)®1y VL
HYS@M, v(p2)®1x v(b22)®@1y / &
where Hi, Hi=HieC®(M,(); 29
Up dR ug, d[..
(y(co)@itN 0 0 0 \ tR
Y(co)®1N 0 0 ‘R
(289 (AN ®13
0 0 Wep)®1y O U
0 0 0 V()@ d
HY dg ug, de
/T(Co)@)ﬁN 0 0 0 \ i
. 0 ylep®iy 0 0 dr ®%
0 0 Y(C0)®-(-.\' 0 Uy -
0 0 0 ee®Bin 4
€r VL €L
y(ay O 0 ®
(28[0) (CFAE)F( 0 v(a) 0 \ vy ,
0 0 =)
Gy

Remark: Note that the operators pertaining to the leptons are obtained from the corresponding
operators pertaining te the quarks by the following process of lepronic reduction: (3): suppress

the first row and the first column of the matrix (ii): effect the changes: My— 0, My— M..

gy s . (H, H!
29 Note that H .:(_}} HE ECFMED.
L



C - CONVERSION INTO CLASSICAL OBJECTS: THE COVARIANT DIRAC OPERATOR
Da=D+A+TAT AS A DIFFERENTIAL OPERATOR. From now on we shall use instead of the

particle Hilbert space JH 30 its smooth dense sub-C®(M)-module E=S(M)®H, lelt invariant by

ali the operators under consideration. We have the following situation:
(1): H is a finite-projective C*®(M)-module, expressible as the tensor product
(29) E=S(M)®cewnpnE with E=C®(M)®H,

becoming a Clifford module (IE,c) under the Z/2-grading % and the Clifford action

(30) : c=y®idg,

and split in a direct sum of a quarkonic and the leptonic C*(M)-module according to the

decomposition E=Eq@E|, where Eq=C*(M)®H, and Ej=C*(M)®H,;
(i) We have Da=D¥+®=ichV +®, direct sum (D a)q®(B )1 of the quark and the lepton

parts:

31) @D 0qrdg (Dv)q:_i “Vau
@ AN=(DV )+, (DY y=ichtV¥y,

where:

- the endomorphisms @4 .9 of E respectively act on the quark and lepton subspaces as the

|
)

matrices; 31
UR dR UL dL
( O O (D?«‘\{S@Mu:k —(Dl‘\(S@Mu:k
(32q) dby= ) )
‘(Dl“{5®Mu (D2Y5®Md 0 0
and
GR VL eL
( 0 P IOM* D SOM,*
G2 S= PIOM, 0 0

OHIOM, 0 0

where ®;=PIEC(M.C). .= H.+1 32

- the connection ¥ of Z is the tensor-product:

30 which it suffices to consider by charge-conjugation symmetry

FENole that 72 anticommuies with the ¢, whilst 3 commmutes with the o

M, P! R
1 (Dz)i:(. (VLD

22 Note that <D'.:(_([;

|
)

Ug

U,

®is




(33) ¥=V@idg+idsap®VE,

of the spin connexion ¥ of S(M) by the connexion VE of E specified as follows: VE is the

direct sum VEG@VE of aquark and a lepton connexion acting respectively on the guark and

lepton subspaces as the sum of the exterior derivative and the matrices:

Ug dp g dy
(-a,+c0 @1y 0 0 0 R
, . 0 (a,+c0)®LN 0 0 dp
(34q) idgn®(VEq-d)y=i \ PR ®15
O O bll!i-®ﬂ'N bh.y@l[\i g
O O b:"ly@ﬁ{\j b?‘:M@ﬂ'N dL.
Ug dg U, dy
0@y 0 0 0 'R
i 0 @iy 0 0 b Mg
k 0 0 O@ix 0 J u 2
and
€r A8 €.
( 2au®‘i.\- 0 0 1 Er
(341) idg(-@{)@(VE[—a)u:—i 0 bi Ip®1;~q b illu@l_\s Vi
0 b1, @1y b22,@iN e
Here: 3

_a and ¢ are classical U(1)-vector-potentials: a=a,eQ(M O,
bi,=b!1 bly=b1
31 b'lz:_bl 1

L C=(e¥)=1. gis 2 SU(3)-vector-potentials (the .y are the eight Gell-Mann matrices).

b is a classical U(2)-vector-potentials: b‘.:( )EQ{M,iHUaceless)‘,

Note that ¥ is a Clifford connection, thus fulfills:

(35) [V e(M)]=c(VI) . AEQ(M)L

Proof: E"——S(M)(@H is the finite-projective C%(v)-module puli-back of the C-module H by
the A-C-bimodule S(M), thus obviously expressible as the tensor product of C®(M)-modules
H=8(M),®E. The. action (27) of Ci(M) on % then makes it a Clifford module (Z.c): indeed
T g a Z2-graded CI(M)-module owing to the Clifford relations cheY+cver=ghv., The
remaining claims follow from the matrix form of the Dirac operators Hg, ) and of the vector-
potentials Aq, &1, ef. (18q.D), (20q,1) and (21a.l).

33 Pollowing the physicisty’ usage we multiply by 1 our conpevion vne-forms Lo make them sell-adjoint

{"veclor polentials”). Note that 2 qualernion is antinermitean i s raociess.



E - CANONICAL DECOMPOSITION OF .2 The generalized Laplacian 2,2 has the
canonical spltting D42 =AV+E into the connection-Laplacian A¥=-ghv (¥, ¥,.T ﬁvi\?a) plus

the endomorphism: 34
(36) Ezésll— %—c(RE)Hc-‘*[V“,@H@? with C(RE)m—‘(“*{V@RE(e‘u,ev),
where s is the scalar curvature of M, and RE is the curvature of VE, and we have the following

matrix expressions:

(37q) C'U'[Vq.u,,@q]?“

0 0 V(DO AM* (DD BM,*
2( 0 0 DO PPBM*  y(DD)y>OM )@13
YDDYEM,  y(DPHy @My 0 0
k"Y(D(DI)YS@Mu V(DO @My 0 0 J
0 VDO HYIROM* (DD @M *
(37D c*L[Vm,@l]J V(DO HyS®M, 0 ]
Y(DD)Y @M, * 0 0 )

where

D&=dd +i(a-bi) @
=12, (ie 2

(38 {D(Djzd<bj+i{a<DJ-ka<Dk)
DD.=dd-id.(a-ba Y

D<Dj:d(Dj—i(a(D}'—bk}‘CDk)

Proof. We have
(39) D, =(IchY @) (icVT o+ P )=-cV (VT +1CHT 8D +IG T | +4D2

=D2CH [V, 1+ D2=AT 451 -c(RE Jich[V, B1+652,
where we plugged in the Lichnérowicz formula for the square of I, ¢f. App.1:
(40) 2 A\?+§is§!.— %C(RE).
The expressions (37ql) are computed using (32ql) and (34ql) (details in [33] - observe that €
commutes with the spin-connection one-form since the latter commutes with vy°, It also
commutes with the gluon-connection one-forms whose matrices are diagonal with entries
Clifford scatars. Thus it suffices to compute {idgng,@(V'Eq-0),, @], with V'E obtained from

VE by deleting the gluon-connection).

HCE App. 1 Note that [F,.38] lies in Enda(E) as the commutator of & dg-derivation and a 0-derivation.




We now have all the ingredients to compute the heat-expansion coefficients:
ao(%,D 2 ?)=(4w) 2try(1)
(41) az(x,ﬂDA?-):(éLfc)'?trx(“ési-E)

34(X,@A3)=(4x)'%~ijotrx{5521 -2r21 +2R?1 -60sE+ 180E2+30R R4V}

where s, r, R are the Levi-Civita scalar curvature, Ricei tensor, and Riemann curvature tensor
of M, with rzzrm’rw, R2=RIVR,,y, and R is the Riemann curvature tensor of the connection

VYV of E.

¥ . COMPUTATION OF FIBER-TRACES.

[E.1] Lemma. We have the following traces on the fiber ¢ of x&EM. 33

trx]]. = 14‘4
(42a) , trxl=36
trxﬂ. =180
(42b) trx@)q:trx @iztfx @20
trx(@g?)=8A DR with Ag=3rn (e ig)
(42¢) tr(@12)=8A1PI2 with Aj=trylie
tro(BH=8AIDI? with Astry Byt )+ el
(=M *My, ng=Mg*My, pe=Mc*Me)
trx($q*)=8B4 D1 with Bg=3tr(wy?+1d?)
(42d) tr (@ H=8B | dit= with B=tryie? i,
trx(@H=8BIDI* with B=try[3(1y 2+ gt +iet]
(42e) tr:\'(cuf.vq,u:@q] )=trg (R [V A=t (e @ ])=0

tr‘({(lC!'E'[Vqlu_,@q])z}-:SA\qlD(sz
(428) tre{ (icH[ ¥, B 2=8AIDDE
trg{(ict[ V., @0 ])?}=8AID I

(428) T Je(RE=BIE(REREWY),
(42h) -UE(RE‘LWRI‘ZHV):Z(%QNfluvf_f,wu:" Nh""luyhsn“v-i- Ng"‘uvga-‘“’),

after modular adjustment {here:

13 41r . . . , . =
42 3We use the shorthand ey Tor the trace on the fiher 7y, and denote the trace on the Tiber By by trg



- fand gg are classical U(1)-curvatures: f=f,&Q(M,C)?2 ,
hi;j=hli hi,=h2,

- h'. is a classical U(2)--curvatures: h'.:(
h?‘l h23=—hll

}@Q(M,iﬁtrace[ess)z,
. M . .
- g'=(g% 1s a SU(3)--curvatures (the A4, a=1,...,8, are the Gell-Mann matrices) ).

Proof: We refer to [33] for the routine matrix computations. 3¢ Check of (42g):

43 [ (RB) 2t [((YAVORE ey 00)) T=try (141 P ORE ey 00 R e )]
24(g-‘;“"gaﬁ+g“ﬁg"a-g“agv5)trE(REwREag)
:4(g‘u'ﬁgva-g‘uagvﬁ)t‘n’E(RE‘;WREC{B)=4ffE(REBVREV§-REC"VREaV)
=dirg(REgyREVB.RE,, RE®V)=-8irp(RE,, REW)

Check of (42h):

(44) ’ trx[RyyR¥)=tr, [(Ry @idg+idg ORE,, ) (RWVOidg +idg OREW) |
:trx(‘Rva‘R!iV@idE)*‘trx(idBM®RE;4VRE-LW)+2HK(‘RILW®RE.u\’)
=(rankE)trs, (R o RW)+4trg(RE,REY)

=- —i—(mnkE)R3+4trE(REWREPV),

G - GATHERING THE PIECES.

Computation of ag(x,@a2): we have (4t)2ag(x, 90 4 2)=tr (1)=4rankE.
Computation of a(xB42): we have to compute (4n)2ag(x,@A?-):trx(és-E), recalling that we

i

found E”——isfi +%C(RE)+EC“[VM,<@]+@2 (cf.(36)). With = denoting equality under tr,, we have

rar;kEsi—SAld)I?R

Computation_of a,(x#,2): We have, with the shorthands r2=ry,ri¥, R2=R yag RV
(45) 360(4m)%ay(X. D 22)
=try {5521 -2r21 +2R?1 -60sE+180E2+30R ,,,R MV}
:trx{(gsz—2r?-+2R3)}l+305@>2+i80f®4+1SO(icP‘[V“,@J)3+4SC(RE)2+BOERMR-LW}

ésil-Es é—s— i—sib@z, whence (470)2a(X, D A2)=-

=(rankE)(5s2-8r2-TR2)+240AsID12+ 1 440BIDI*+ 1 440 AIDBI%+ 1 20try (RE,, REAY)
= 18(rankE)C2+240AslDI2+ 144081 D1+ 1440 AIDDI2-240tr (RE,, REEY),

We {irst took account of the fact that we have;

(46) -6@513;180525-60&521 5@ 2]+A5[ (52 +0(RE)2+4(IcH T, &]) 2+ 48442557

=- %§s31+3056{§ 2+ 18063+ 180(1cH[7 1,82 1)2+45¢(RE)?,

ncglceting the cross-terms in E2 involving o(R¥) orfand %7, $8] (these vanish under try,
36 18 act Tormuta (303 of [33] is crroneous; the Tower right 2x2 sub maliy has nog-vanishing off-diagonal

entries which however do not attect the computation of traces.




owing to try#=0 and try"yV=try¥y"), We then plugged into (45) the values (43) and (44), and
finally effected the replacement:
(47) 552-8r2.7R?=88x%y,-18C2,

where C2=R2—2r2+§s2 is the square of the Weyl tensor, and ysdv=2(4m) 2(R2-4r+s?)dv

is the Euler charactenistics. We found, neglecting the latter:

(4m)%an(x,D"'32)=180
(47)2a5(x, D', 2)=-15s51 -8AIDI?
o)
(48) (4n)2a4(x,@*A2):%(5s2-8r2-7R2)+~3"1Asicb|2+4B|<1>|4+4A:D®|2
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Sticking this into:
1 fo=fF{u)udu
(49) TI’F(K; Fib g D)= A0a0(D 22+ A2 lap(Da?)+[124(2'0 %) {fg: [F(uydu
i f4=F(0)

yields the two first lines of the spectral action (12). The surface terms in the third line stem

from x4 and the surface-term géw@trx{l?,s;aall —6GE.,°‘C,,} in a4 [35] which we ignored .

H - A VARIANT OF THE ACTION. [ had the perverse curiosity to look at what happens il

otte suppresses the y3 in the definition of the Dirac operator (tensoring the space-time and the

inner K-cycles as odd K-cycles) 37. In fact it is just as simple to treat the convex combination:

(50 ' =D®idg+( oy +B2)RD, , o,BER, a+p=1,

all other items being unchanged. The interpretation of 2’4 as a generalized Clifford operator is

analoguous to the previous case, yielding #'=D7+ul+B¥. But the canonical decompusition

@'Az.zf&‘_’uE of its square is now more subtle, using the fuil force of the theory, C[. App 1:

one finds the horizontal connection \V‘uz\vg—iﬁ'ﬁ?cu (with an accordingly modified curvature

R'yw) and the endomorphism:

(51) E':%sll- %C(RE)+(Q2-353)W2+2a6(y5+idE)'-}”3+iac-"~{Vu®],

now leading to the heat equation expaasion coefficients:

r(4m)2ag(x, D3 =180

{(4m)2as(x, B3 2)=- 1551 -8(«2-3HAlDI

(52) 2 (4m)2a, (X, D' D)= é{§53«8r3-7R3)+§(a3~3BZ)AS!<D12+%1{33AR3I(Di3

T d(at-202B S BIBHRA(-BAID I
RN NRS h s Ngiy gt ]

L
reducing, as it should, to {48) in the "cum v3 case” w=1, $=0, and viclding in the "sine ¥

case” =0, B=1 to the same type of terms plus a RIMPIZ-term, but with the sign of the Higgs

37 The non-perverse reader is invited W sKip this paragraph’



kinetic and potential term reversed (thus unstable) - these terms curiously stemming now, from
the Ry R"™-term rather than the E%-term of ay.

OUTLOOK.

The spectral action rests on the combination of a general conceptual apparatus (non-
commutative spin manifolds, alias spectral geometry), and a heuristically constructed object: the
real spectral triple (described in [II}C above) patterned after phenomenology. Now, as signaled
by Alain Connes in [20], the quantum group Slg(2) for q=e™%/3 (a covering of Si(2) [36]) has
its quotient by its nilradical isomophic to the algebra M (C)®Ma(C)BM3(C), thus almost
coinciding with the inner algebra M{C)@H®Ma(C) of the standard model {371[38][39][401!
This quantum group or some analogue may thus play a fundamental role in the basic structure of
the fermions - hopefully ultimately providing a first-principle construction of the so far heuristic
real spectral triple: this would make the theory entirely conceptual. The perspective of such a
development would raise the hope for two major advances. On the one hand a first-principle
Dirac operator would procure a theoretical Cabibbo-Kobayashi-Maskawa matrix, therefore
theoretical (primal) fermion masses hopefully yielding realistic masses via renormalization group
- at last a prospective scenario for the computation of fermion masses! Second, it would be
tempting to try and base the theory on the full root-of-unity-quantum group rather than on its
semi-simple quotient, hoping to obtain a sensible (generalized, possibly ternary?)
supersymmetric model. 38 Other interestig questions and perspectives:

- one wishes to understand the deeper relationship between the present spectral action and the
former quantum Yang-Mills (also for gravitation, cf. [41]).

- would a theory of "non-commutative spin structures" and accompanying Dirac operators
obtain the standard model as one of the first non-classical examples lying around?

- are the physical notions of anomalies and BRS in fact general items of spectral geometries?

- can one work out a minkowskian version of the theory (as suggested in [42])7

- more ambitiously: could one reach a further level of the theory by basing it on a more deeply
noncommutative algebra? - seeking inspiration in the fascinating "fuzzy sphere” modification of
gauge field theories [43][44] - see also the attempt [45]. ] heard Alain Connes say that one gels 2

deep hint from algebraic K-theory (impenetrable to me!) that the ultimate non-commutative

38 Quite génerally, one should probably try to evade from the (protective, since hilbertian and semu-simple)
ghetto to investigate interesting and mysterious non-semi-simpie environments (which we call "medusae", we
presume Lhat they act on Hitbert spaces with indefinite metric, possessing at feast semipositivity synonimous
with semi-simplicity - this holds for electrodynamics in Lorentz gauge, with the longitudinal photens the null-
space - and also for Slg(2) at cubic (and at fourth) root of unity where the radical is the null-space - the trace of
the adjeint representation having the nilradical as s kernel, inducing the matrix-trace on the semi-simple

quotient [38][38al.
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algebra might be of the nature of the discrete C*-algebras considered by logicians - in our case
coding the procedures at the accelerator 39 - a landscape clearly more fundamental than the
kantian space we learn to know in the cradle!

- progress is expected in the important (largely open) direction of "differentiai calculi" on
modules, bimodules, quantum groups... etc, related to gquantum principal bundles ..etc.- a
subject worthy of more than this furtive reference and arbitrary quotations amongst a wealth of
contributions [46][47] [48]{49][50][51]{52][53] (see the monographs [54][55]).

One of the main future concerns is of course the passage to the (field-theoretic)
quantum level - functional integration... and all that, Here, owing to formal beauty and apparent
fundamentality of the spectral action, one is tempted to try and quantize directly from there rather
than from the asymptotic approximation through the heat expansion. Such a program would
require phrasing physics in temms of the eigenvalues of the Dirac operator - a program which
already started [56].

Carried by enthusiasm, I once mythologized the standard model as a shakspearian
king disguised as a beggar (no mediocre role!). Alain retorted that he preferred more soberly to
consider him as a beggar carrying diamonds in his pockets. So far he has tricked the beggar to
show us some of the diamonds %0 - but there should be more of them!

I end up with an anecdote. Long before the standard model project [8], Alain
Connes was trying to dress electrodynamics in noncommutative guise. Having realized the
importance of the Dirac 4!, he showed me an essay featuring a sum of two Hilbert spaces, the
first with the Dirac acting as d=[D, -], the second with a kind of a screwed action in order to
fight the annoying feature d2=0. I studied this conscientiously and was happy to provide a
lemma removing an obscurity. The kind of electrodynamics thus concocted had two exciting
features: sorts of non-local kernels (improving divergencies?), and curious objects floating
around which vagely resembled Higgs particles! When Alain discovered the embryonal Higgs
we understood what was actually happening: the Higgs aspect came just from doubling the
space! - and the non local kernels were a sort of a lame (?) "junk"!... The Gods must smile

when watching the halfgods stumble (- stumbling of ordinary mortals is not worth their

attention).

2 . . . -
39 congruuous with Binstein-Podolsky-Rosen?
0 See [57] for a physicist's coroment,

1 Dirae reached a Torm of immortality where he becamue an operzior’




APPENDIX 1. Generalized Laplacians and their canonical decomposition.

{Appl.1] Definitions. Let £ be a smooth vector-bundle over M, with C®(M)-module of

smooth sections E.

(i): A generalized laplacian of E is a second-order differential operator H of E with
principal symbol: 42

(App11) Sx(H)(AD)=- {116 H]l= {[f 1= fEC2(WD,

(implying by polarization via Jacobi identity:
(Appl,1a) [[H,f1.g]=([H.g].f1=-2(df dg) , [,gEC2(M)).
Local formulation: AEDIf2E is a generalized laplacian iff one has for the coordinate patch (xy)
of M and the trivializing frame (¢)) of E

(Appl,1b) A=-ghVg,dy+4 with AEDIfFIE.
The set of generalized laplacians of E is denoted LaplE.
(ii): With V a connection of E, the following composition of R-linear maps:

v idev+vMeid ~g(.,.)®id
(Appl,2) E - QM) \®E i QUM IRQUM) I®E —

defines the connection-laplacian AV of V , locally given as follows in the coordinate patch

{x.} of M and the trivializing frame {e;} of E: with Vo=V;, and I“ffv are the Christoffel

symbols:

(Appl.22) AV=-g™ (V,Vy-T iV o).

(i1): One has:

(Appl,3) g (@v)=[v, AV]=2Vgrdy -Av , veE CE(MD,
i.e. AV determines in turn V as follows:

(Appl 32) Vugrady =5 u{[v. A¥}+AV}  LYE CEMD),

thus the connections and the connection-laplacians are one-to-one: we have a bijection:
ConnE3V<AV&ConnlaplE.

[Appl.2] Proposition. Let  be a smooth vector-bundle over M, with C%(M)-module of
smooth sections E. And ler HELaplE. Then, identifying elements of C®(M) with their
multiplicative action on E :

(1): H determines both:

_ a connection VB of E called the horizontal connection of H, specified by:

(Appl,4) ::%— u{[V,H]+AV}('—‘;)I‘ u{-iga{H){(dv)+Av} , wveE CF(M),
where A denotes the scalar faplacian. 2
_a n element PUEERAA called the endomorphism of H, given by the difference:

(Appl,5) ®l=H-A7"

- ugrady

- . N P
42 3o recall the definitions o p(FAD=4[{ ], oa(Tidn=- 5{L{IEH]]

—_

3 In what follows we conststently identify elements of C0M with their multiplicative acaon on B



(ii): In fact the splitting H= AVPLH i unique: one has the implication:

(Appl,6) H= A+® with AEConnlapE, PEEndA = A=AV, p=oH.

(i1): Consequently LapE is a fiber-space with basis ConnE=ConnlapE~G»(LapE), and fiber
End C®(M) acting on LapE by translations: LapE3A~»A+®.

APPENDIX 2 Lichnérowicz formula.

We first have the Bochner formula valid for any Dirac operator on a Clifford bundle associated

with a Clifford connection ¥ with curvature R

(AppZ,1) ?“rAv-i-,}lc(R) where c(R)=crcYRyv,
Proof:
(App2,2) 2=(eHY (VT )=tV T+ ch [V wCVIF y=cteVY W, -TY cheoV

:é—( cheV+cheV)V V+%(c-“'c"-c eIV LV - %{c-“c"v;-c 0} W
=gV, VT8 J4ache (V¥ -, 7))
=~gPW(V“VV~ng&?a)+%chV[‘i?{aan}+é-c!‘cVR(a‘u,av)},

where we took account of the fact that:
(App2.3) [V .cV]=c (8, y(dxv)=(coy(VdxY)=-(coy)(I" ¥ dx®)=-T ¥ c®.

For the Dirac operator I, acting on the twisted bundle S{M)®E, associated to the
compound connection ‘\T;’:V@idgﬂdg(m}@VE, VE a connection of E with curvature R

we have the Lichnérowic: formula:
(App2.4) D= &V+%fsﬂ~ %C(RE) , *(iyJ®RE(ei,ej)

where s is the scalar curvature, and {ei,si}izl,___‘d a local orthonormal frame.
Proof:. Plugging R=RE+R in (App2,1), we get:

(App2.5) D2= ,&% c(R)zm% C(FE)+3 ¢(RE) = &+ o(FE)- éRijmncmC”Cic.i

taking account of the fact that:

(App2,6) Rmnz;}RUmneiAsjzle-U-mn(si®si-ej®ei)=jomnsi®ai

whence ¢(Rmn)=Rijmac'c), whence “7C(RE)=:§“RijmnCanCiCj. Now, owing to the

orthonormality of the ¢l and to the Clifford relations we have that: +

H One verifies that this holds (i) for mun, © all difTerent {rhs reducing to its first termy); () for men=i (ths,
reducing to its second term), (i) for nem=1 (rh.s. reducing o ns third termy; (L% for i=m=n {r.h.s. reducing to

its fourth term).




(App2.7) CmC“Ci=ézoeS3X(G)ComCU“CGi S§Ricm 4 ymicn _gmnel
implying

(App2.8) Rijmn cmc“cicszmmj cmc“cici=Rmmj‘{-5“icm+5mic“]cj=2Rmmj6m5c”cJ'
=Rpmnij0™i(chcl+cem)=-2RmpijgMig =-2Rljj=-2s

which turns (App2,3) into (App2,4) (we took account of the relations
Rmnij+tRuimj+Rimnj=0 and Rmpjj+Romij=0 making the first, resp. the last term of

(App2.,8) meffective; and also of the fact that Riyjj is symmetric in n and j).
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Gravity on Fuzzy Space-Time

J. Madore

Simply stated, ‘fuzzy space-time’ is a space-time in which the ‘coordinates’ do not
commute. One typically replaces the four Minkowski coordinates z* by four generators
¢* of a noncommutative algebra which satisfy commutation relations of the form

¢, ¢"] = kg™,

The parameter % is a fundamental area scale which we shall suppose to be of the order
of the Planck area: & ~ u3* = Gh.

Perhaps not the simplest but certainly the most familiar example of a ‘fuzzy space’
15 the quantized version of a 2-dimensional phase space, described by the ‘coordinates’
p and g. This example has the advantage of illustrating what is for us the essential
interest of the non-vanishing commutator as expressed in the Heisenberg uncertainty
relations. Since one cannot measure simultaneously p and ¢ to arbitrary precision
quantum phase space has no longer a notion of a point. It can however be thought of
as divided into cells of volume 27/i. If the classical phase space is of finite total volume
there will be a finite number of cells and the quantum system will have a finite number
of possible states. A ‘function’ then on quantum phase space will be defined by a finite
number of values and can be represented by a matrix.

By analogy with quantum mechanics we shall suppose that the generators ¢* can
be represented as hermitian operators on some {complex) Hilbert space. The ¢* have
real eigenvalues but they cannot be simultaneously diagonalized; points are ill-defined
and space-time consists of elementary cells of volume (27%)2. Now when a physicist
calculates a Feynman diagram he is forced to place a cut-off A on the momentum
variables in the integrands. This means that he renounces any interest in regions of
space-time of volume less than A=%. As A becomes larger and larger the forbidden
region becomes smaller and smaller but it can never be made to vanish. There is a
fundamental length scale, much larger than the Planck length, below which the notion
of a point is of no practical importance. The simplest and most elegant, if certainly
not the only, way of introducing such a scale in a Lorentz-invariant way is through
the introduction of the ‘coordinates’ ¢*. The analogs of the Heisenberg uncertainty
relations imply then that

- AL

~ The existence of a forbidden région around each point in space-time means that the
standard description of Minkowski space as a 4-dimensional continuum is redundant.
There are too many points. Heisenberg already in the early days of quantum field




theory proposed to replace the continuum by a lattice structure. A latfice however
breaks Poincaré invariance and can hardly be considered as fundamental. It was Sny-
der [5] who first had the idea of using non-commuting coordinates to mimic a discrete
structure in a covariant way.

We argued above that the noncommutative structure gives rise to an ultraviolet
cut-off. This idea has been developed by several authors since the original work of
Snyder. It is the right-hand arrow of the diagram

4 ) (1.4)
Cut-off Gravity '

The top arrow is a mathematical triviality; the Q*(A4;) is what gives a differential
structure to the algebra [1, 2, 3]. We have argued [4], not completely successfully, that
each gravitational field is the unique ‘shadow’ in the limit £ — 0 of some differential
structure over some noncommutative algebra. This would define the left-hand arrow
of the diagram. The composition of the three arrows is an expression of an old idea
due to Pauli that perturbative ultraviolet divergences will one day be regularized by
the gravitational field.
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The Modular Theory as Tool
in Quantum Field Theory

H.J. BORCHERS

Institut fiir Theoretische Physik der Universitat Gottingen
Bunsenstrasse 9, D 37073 Gottingen

These investigations will use the quantum field theory in the frame of Araki, Haag and
Kastler (see the textbook of R. Haag [Ha] for details). Due to the Reeh~Schlieder property
of quantum field theory every algebra M(D) associated with a domain I, which has a
spacelike complement with interiour points, has cyclic and separating vectors. The vacuum
vector is an example. Therefore, we obtain by the Tomita-Takesaki theory [Tak] for every
of these algebras a symmetry group

ot (M(D)) = AEM(D)AL = M(D).

Since all these local symmetry groups are present one should use them for the structure
analysis of quantum field theory. In some special cases the modular group has been com-
puted. For the general field theory our knowledge about the informations one can extract
from the modular groups is very limited. The situation will be better if also half-sided
translations exist besides the modular group.

Definition 1.:

Let M be a von Neumann algebra acting on H with cyclic and separating vector € H.
The modular operator and the modular conjugation of this pair will be denoted by A and
J.

1. Hstr(M)"1 denotes the set of one-parametric continuous unitary groups U(t), t € R
with the properties:

a. U(t) has a positive generator, i.e. we can write
U(t) = exp{iHt}, with H>0.

B.U=0 V telR.
v. AdURGM C M for allt > 0.
We call the groups belonging to Hstr(M)™ +half-sided translations associated with M.

One also can define Hstr(M)™ if one replaces R* by IR™.
The importance of the concept of half-sided translations are given by the following
result:

Theorem 1:
Let U{s) be a continuous unitary group fulfilling U(s)MU(=s) C M for s > 0. Then any
two of the three conditions imply the third

a. U(s) = #% with H > 0.

b. U(s)Q2 = Q for all s € IR.




c. AdAY(U(s)) = Ule™27ts),
JU(s)J = U(—s).

That a and b imply ¢ has been shown in [Bch92]. The lmplication 8 +¢ — a is
a result of H.-W. Wiesbrock [Wie92]. The implication @ + ¢ — b has been shown by
Borchers [Bch97]. The last implication can be strengthened.
Lemma:
Assume U(s) fulfils the conditions a. and c. of Thm. 1.

a. If Ey denotes the projection onto the eigenspace to the value 0 of H then Ey commutes
with A,
b. If F\ denotes the projection onto the eigenspace to the value 1 of A then Fy < FEy.

As a consequence of Thm.1 and the commutation of Ey with Fy one finds:

Proposition:

Let U(s) € Hstr(M)™ be a half-sided translation with U(s) = et H > 0. Let be
the projection onto the U(s) invariant vectors. Then A" commutes with Ey. A and H'®

fulfil the Weyl relation
AitHis — e—27ritsHisA_it

on (1 Eg)H.
(From this result one can conclude:

Theorem 2:
Assume M is a factor. If there exists a non-trivial group U(s) € Hstr(M)t or U(s) €
Hstr(M)~ then M is of type I11;.

Closely related to the half-sided translation is the concept of half-sided modular
inclusions introduced by Wiesbrock [Wie93].
Definition 2:

Let M be o von Neumann algebra acting on H with cyclic and separating vector 0 € H.
The modular operator and the modular conjugation of this pair will be denoted by A and

J.
By Hsmi(M) ™ we denote the set of von Neumann subalgebras N of M with the properties:
a. § is cyclic for N'. It is also separating for N since N' C M.
B. ABPNATE = AdAYN C N for t<0.
The elements of Hsmi(M)™ will be called the von Neumann algebras fulfilling the condition
of —half-sided modular inclusion.

The set Hsmi(M)™ can be defined correspondingly. The relation between the half-
sided translations and the half-sided modular inclusions is given by the following result:

Theorem 3: i
Let N € Hsmi(M)~. Then there exists a group U(t) € Hstr(M)™" such that the equation

N = AdU ()M



holds.

The set Hsmi{M)~ consists of von Neumann subalgebras of M. Hence it is serni-
ordered (by inclusion). This order can be transported to Hstr(M)™ by the following
result:

Theorem 4:

Let N1, Ny € Hemi(M)™ and Uy (s), Ua(s) be their associated half-sided translations. Then
N1 C Ny iff et < emHat for all t > 0. Hence the bijection between Hsmi(M)~™ and
Hstr(M)T preserves the order.

Applications:
A wedge in Minkowki space can be characterized by two different lightlike vectors
£1, £, belonging to the boundary of the forward lightcone V.

Wl 82) = {My — ply + €50, 1> 0, (41, 8) = 0,0 =1,2}.

If M(W (£1,45)) is the algebra of this wedge then U (M) belongs to Hstr(M{W (£1,45)))7F.
This example led to the concept of half-sided translations.

If we assume that the modular groups of the wedges act geometric (they do it always
in the plane spanned by the two lightlike vectors) then the algebra associated with the
intersection W (£y, ) MW ({1, £3) fulfils the condition of half-sided modular inclusion with
respect to the two wedge algebras. This has been used in order to construct the whole
Poincaré group starting from the modular group of the wedges [Bch96].

Recently H.-W. Wiesbrock has used these intersection of wedges with a common ligh-
tray in order to give an algebraic characterization of quantum field theories on the three—
dimensional Minkowski space [Wie97].
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SCHROEDINGER EQUATION WITH MOVING POINT SOURCES

G.F.Dell’Antonio
Dipartimento di Matematica, Universitd di Roma I

Dedicato ad Alex Grossmann, con affetto e stima

I shall describe recent results, obtained in collaboration with R.Figari and A.Teta, on the
theory of point interaction, one of the fields on which Alex has left his inprint.

Point interactions are useful in case of short range potentials when the wave length of the
quantum particle is very long compared with the range of the potential. One expects then
that the detailed shape of the potential be irrilevant and only the effetive parameters (typ-
ically the scattering lenght) come to play. A point interaction, properly defined, can then
be used instead of the potential, with the advantage that the resolvent of the Schroedinger
operator (and therefore the propagator and the scattering matrix} has an expicit form
which lends itself to detailed calculations.

Examples of this procedure are the analysis made by E.Fermi of the scattering of slow
neutrons and the Kronig-Penney model of a cristal. The results I describe are preliminary
steps towards a more general theory in which the effect of the quantum particle on the
motion of the point source is taken into account.

A mathematical study of point interactions, with applications, were made by A.Grossmann
and other Authors [1].

For dimension d = 1 a point interaction is a small form perturbation of the Laplacian. For
d 2 4 there is no point interaction. For d = 2,3 point interactions are best described using
the theory of selfadjoint extensions of symmetric operators.

The Schroedinger operator with a point interaction of strenght & € R placed in the point
y € R? is a selfadjoint extension of the Laplacian A defined on smooth functions of compact
support and vanishing in some neithborhood of 3.

Its domain is

D(Hay) = {u € IARY) [u = dr+ qGa( — 1), éx € HA(RY),

litnj—yjo(u() — qGolz — ) = ag)

where G'a(z — z') is the free Green’s function with parameter . On D(Ha,y) one has
(B + Ny = (=5 + N

We refer to [1] for a complete study of this operator, and for the case on N points.

We consider the Schroedinger equation with a point interaction of constant strenght moving
on a preassigned path y(t) of class C?. Along the same lines one can treat the case of varying
strenght and of N points moving on nonintersecting paths.

Consider therefore the initial value problem

du(?)
bt

2

= Hﬂ’:y(t)u(t)a u,(O) = g 1

The problem is far from trivial because the form domain of the generator depends strongly
on time and therefore the standard theory of non-autonomous evolution equations cannot



be applied. In fact we show that if y(2) is not constant (1) cannot have a strong solution
even for a smooth intial datum, and we must therefore look for weak solutions.

Notice that the situation is entzrely different for the heat equation with point interactions
[2]; for that case, exploiting the smoothing propert1es of the heat kernel, we proved exis-
tence and uniqueness of a strong solution, i.e. a function w(t) which for all ¢ belongs to
D(H, 1)) and satifies in the L? sense the corresponding parabolic equation.

Let, @a}y be the bilinear form associated to the selfadjoint operator H o y(e); One has

D(®a,) = {u € L(R) [u=¢r+¢Gr(- —y), ¢x€ H*(R®)}

buni) = [ @V 43 [ drlbs@) - [ a4 (et a2

It is easily seen that (2) is indipendent of A,
To specify in which sense the solution we find is weak, let Vyy be the Hilbert space
D(@4,y(1)) equipped with the scalar product @, ,n(u,v) + A(u,v) with A > o? and let
Vy*(t) be its dual with respect to L%, with pairing <, > .
We prove
Theorem 1

Let y(t) be a curve of class C? in R® and ug € C®(R® — {y(0)}). Then there exists
a unique u(t) € Vi), t € R such that the Bochner derivative di‘l(tt) is in Vi, and for all

v(t) € Vy(y the following identity is satisfied

i < v(t), ‘h;(:) S>= 3, (), ult))  Vt 3

Moreover u(t) has the following representation

¢
u(t) = Ugug + z/ dsUs—s(- — y(8))q(s) 4
0
where U, is the free Schroendiger propagator and the charge ¢(f) satisfies a Volterra equa-
tion
';f (v suo)(y(s
C(t
() ] e J/ dsq()C(t, ) = / aa
where the kernel C(t,s) is given explicitely in terms of y(s) and y(s). @

Using the representation of the solution given in Theorem 1 one can moreover prove
Theorem 2
For any ¢ the map up — u(t) extends uniquely to a unitary map in L*(R*). Y

The proof of Theorem 1 is given in several steps. Ilirst one proves that if y(t} is of class
C? and
q(t) € Cloey 9(0) =0, §(0) =0 5

then u(t) given by (4) belongs to V.



Then one verifies that such u(t) solves the problem (3) if and only if q(t) satisfies and
Abel-type integral equation of the form

agt) + fo dsé(s)B—?’r%_i O dsq(S)Agt,_S)

with suitable kernels A, B.
Using the smoothing properties of the Abel kernel it is possible to prove that (6) admits a
unique solution ¢(t) which satisfies (5).

Remark 1
In Fourier trasform the solution we obtain has the following form

= (Usno )(y(t)) 6

&

g{t)e v

Grimres (o0 e EE) 7

u(kvt) = ‘s(kat) +

It should be remarked that in the case y(t) = y(0) + wt, w € R? the solution (7) can be
obtained from the case y(f) = yo V¢ through a Galilei transformation.

Pictorially, one may interpret (7) as the fact that the structure of the solution is best
described in the inertial reference frame in which the point source is ab rest. &

Remark 2

One can think of applying the techniques described here to the case of a wave equation
with a point interaction. This has been already considered in [3] in the dipole approxima-
tion, clarifying in this case the role of the operator H @,0-
A straighforward application does not seem to be possible in the fully covariant case:
indeed the integration by parts which is used to isolate the most singular terms, fail to do
so in the relativisic case. A possible way out could be to use Remark 1 bub this has not
been attempied so far.
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Résumé

La fixation de jauge est définie comme opération permettant ’exprimer une intégrale
sur un espace d’orbite comme intégrale sur le fibré principal correspondant. Quand la fibre
est non compacte cette opération mef en jeu nue classe de coliomologie a support compact
-ou a décroissance rapide- de celle-ci. La symétrie de Slavnov est Pexpression algébrique de

Pambiguité de cette construction.
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1 Intégration de certaines classes
de cohomologie équivariantes™

La fixation de jauge est I'un des détails techniques inévitables qui embarrasse le paysage des
théories de jauge. Sa nécessité est dile a la non compacité du groupe de jange. La situation est
la suivante : soit A un fibré principal de fibre G, un groupe de Lie connexe non compact. On
supposera A non trivial, en général. Par exemple, A sera 'espace des connexions principales
a sur un fibré principal P{M, @) ot M est une variété compacte, ¢ un groupe de Lie compact,
et ol G est le groupe de jange de ce fibré défini de sorte que A soit un fibré principal. Les
difficultés lies & la dimension infinie sont rappelées dans appendice B.

Soit © un représentatif d’une classe de cohomologie équivariante de A de dimension |A/g|
et O la forme basique obtenue en choississant une connexion & sur A, de courbure Q. De facon
générale, soit © une forme basique sur A, de dimension [A/G]. On cherche une représentation
intégrale sur A de Dintégrale IA/GO oit, par abus de notation, on a confondu @ avec la
forme qu'elle définit sur A/G. Dans le cas des théories de jauge, on part d’'une forme ©
G invariante sur A, de degré maximum et on construit la forme de Ruelle Sullivan Ors [
associée A une forme volume invariante sur Lie G, définie & un scalaire multiplicatif positif
prés (cf. paragraphe 2). Pour exprimer Vintégrale sur A/G, on peut choisir, en supposant
A/G pancompacto un recouvrement {{/;,¢ € [} localement fini et une partition de 'unité
{0:(d;),% € T} ot {&;} désigne un choix de coordonnées dans Iouvert U;, ainsi que des sections
locales o; an dessus des [/, représentées par des équations locales gi(«;) = 0 ot les «; sont des
coordonnées locales de A au dessus de U/;. On peut alors écrire

IR > Lag @8 [ da)nia) (1.1)
oit on a inséré intégrale sur la fibre d’nn représentatif du dual de Poincaré de Pimage 3, de
o, au dessus de U;, 6 dénote la différentielle siw A. Les ¢; sont des fonctions a valenr dans un
espace vectoriel de dimension |G| égale & la dimension de G, et d(¢;)(Adg:) est par construction
indépendant du choix d’une base dans cet espace,

Comme O est de degré maximrun, on peut restreindre Adg; & la fibre en utilisant une
connexion & arbitraire sur A en écrivant

difs

09 4y = e (/ + @) a) (1.2)

dgi =
Y Aar;

oll 7 est la partie horizontale de du; pour la connexion @, £(©) désigne la dérivée de Lie le
long du champ de vecteur fondamental correspondant & Pélément & de Lie G, La restriction a
la fibre consiste & oublier 1, autrement dit & travailler modulo Pidéal différentiel Z;} engendré
par les formes horizontales. Du méme coup le choix de @ wimporte pas, la chﬂerence de deux
connexions étant horizontale. Introduisant une fonction § fermionique” an moyen d’une
intégration de Berezin, on peut récrire

./A/g &= / / DB (A&)y(a,w) ” (1.3)

*Les notions yelatives a Véquivariance sout rappelées dang Pappendice A



avec

(o, w) = Z O:(a)d(gi) A mw (1.4)
ol 5
1w S tew)a; (1.5)

v(a,w) représente la projection sur la fibre de la forme

(o, @) = Z 0i (i} {g:) A i (1.6)

indépendamment du choix de &,
Les volumes utilisés dans Dw et dans AD sont duaux 'vo de Pautre.

Par construction, y(a,®) est de degré |G| puisque, les sections X; étant transverses aux

fibres, les opérateurs m; sont inversibles. De plus, indépendamment de la fibre
/ y(e, &) =1 (1.7)
 fitwe:

On peut prendre v & support compact ou & décroissance rapide le long des fibres.

Il est clair que, dans le caleul précédent, on aurait pu vemplacer v par une forme de
(fixation de) jauge avec les propriétés suivantes: v représente la projection sur la fibre d’une
forme de degré |Gl d’intégrale sur la fibre égale & 1 quelque soit la fibre. Il s’ensuit que si
s dénote la différentielle induite par projection sur la fibre (*(A) — Q*(A)/IT), ot I} est
'idéal engendré par les formes horizontales de degré strictement positif)

S = m%[w,w]
sa = lw)a (1.8)

on reconnait ici la partie géométrique de la symétrie de Slavnov[?] qui, ainsi qu’on le voit, est
géométriquement naturelle.

La différentielle s est bien la projection snr la fibre de Popération %7 dérivée de la dif-
férentielle de I'algébre de Weyl et de celle liée & laction de G sur A (cf. Appendice A)

Sto;r;&') —_ ﬁ - %[&’aj} ﬁim)”‘ = J; —+ ()(-':))(I

- Al ~ - ~ 1.9
§ry = 1,0 §90h = —L()a -~ D) (1.9)
puisque 4, {1, (@,9), (&) appartiennent & I3
Comme 7 est de degré maximuim on a trivialement
sy(a,w) =0 (1.10)

De plus, comme v représente une classe de cohomologie & support compact (ou & décroissance
rapide) de G (qu’on a supposé connexe), ¥ est défini & un cobord preés :

7= v+ sy (1.11)




ou x est la projection sur la fibre d’une forme a support compact ou a décroissance rapide.
Si G était compact, on pourrait choisir v = § (la jauge nnitaire des physiciens), mais dans
le cas non compact ce choix est impossible.

Remarque

La construction ci-dessus, qui préconise I'intégration sur la fibre comme elle est esquissée
dans le livre de J. Zinn Justin[?], fournit une alternative a la méthode initiale de Faddeev et
Popov[?] basée sur la factorisation du volume du groupe de jauge qui n’est pas adaptée au cas
d’un groupe G non compact, méme en dimension finie.

L’espace des formes de jauge est non vide, par construction, convexe. Reste a construire
des formes de jauge "commodes” et respectant la géomeétrie. A ce point, faute de mieux, on
conjecture l'existence de formes de jauge du fype

[DLDDI) ({3(03(u.,&)-«}-i@:p(h,(})) (112)

oit Popération s est étendue aux variables 'lutégration selon
50 = 4

b = (1.13)

ot g(a,é) est une fonction A jauge telle que mi(a, ) est partout inversible, et ot bp(b, i)
est positive croissante a I'infini. Si cetle classe de formes de jange est non vide, elle conduit
vraisemblablement a des cliolx de jauge non renormalisables et on non locanx, a moins qion
ne réussisse a simuler les effets non locanx an moyen de U'introduction de champs locaux
auxiliaires.

2 Le cas des théories de jauge

On se donne sur A mne forme © G invariante de degré maxinuun. Si on se donne une forme
volume g invariante sur @, il hi correspond une forme volume duale sur Lie G 7. On définit

Ops = '.i(ﬂ)(’) (2.1)
ol le symbole de contraction :(ji) est défini en représentant Lie G par les champs de vecteur
fondamentaux appropriés. L'invariance de © assure que Qpg est lermée, et, Opg est horizon-

tale, par construction. On se ramene ainsi an probléme décrit dans le paragraphe 1 avec

Ops N = 6. (2.2)
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Appendice A

On rappelle la terminologie classique relative a la cohomologie équivariante.
Soit M une variété sur laquelle opére wn groupe de Lie connexe G d’algébre de Lie Lie G
représentée par des champs de vecteurs sur M

relieG - reVerd M (A.1)

tels que le crochet de Lie G soit représenté par le crochet de Lie de Vect M.
Soit (M) lalgébre des formes extérienres sny M mnmnie de la différentielle dyy.
On définit sur (M)
in(A) = tar() (A.2)

le produit intérieur par A € Vect M
Cae(A) = Car(A) = [ia(A), dag] (A.3)

la dérivée de Lie le long de A.
Les formes horizontales wy, sont celles pour lesquelles

i Nwy, =0 Ve Lie @ (A.4)
Les formes invariantes w;,, sont celles ponr lesquelles
Loy (Wi =0 YA E Lie§ (A.5)

Les formes qui sont a la fois horizontales ef invariantes sont appelées hasiques. La colo-
mologie basique de M est la cohomologie des formes basiques pour la différentielle da;. Ces
notions se généralisent & toute algebre différentielle gradude commutative (£, dg) avec une
action de Lie G : ig(A), dérivation graduée de degré —1,€g(\) = [ig(A), dg]y telles que

s\, in(M)] = 0
60,20 = in(\,X) (A6)




Par exemple, 'algébre de Weil de Lie G W(G) est définit an moyen des générateurs w, §2 &
valeur dans Lie G, de degrés respectifs 1 et 2 avec les équations de structnre
I
(fp[fw = {1 — E[w,w]
dw§l = —[w, ]
tw(Mw = A  iw(MNQ=0 (A.7)

La cohomologie équivariante de M est la cohomologie basique de Q*(M) ® W(G) munie
de la différentielle dps + diw et de Paction 4a7(A) + in(A).

Appendice B

+Nous rappellerons brievement quelques-unes des difficultés bien connues que Pon rencontre en
dimension infinie par exemple dans le cas des théovies de jauge 4 la Yang Mills. Le point de
départ, ¢’est-a-dire la forme invariante sur A

O = e~ S, (B.1)

n’existe pas pour Ja méme raison que la meswre de Haar sur le groupe de Jange n'existe
pas. La forme de Ruelle Sullivan a des chances dexister, modulo les problemes ultraviolets
que, précisément, on ne sait pas régler sur Pespace des orbites, mais on n'en a pas de forme
explicite. Le point de départ est donc remplacé par une classe d’équivalence dont 'unicité
n’est pas garantie. Il est concevable qiil en résulte I'unicité pour les observables locales
mais pas pour des "observables & Piufini”. Il ne reste plus qu'a donner un sens i des formes
diflérenticlles de dimension infinies et & leurs intégrales qui font apparaitre les comportements
wltraviolets usuels qu’on ne sait maftriser que grice & la localité dans espace des champs.
Quant & leur existence, basée sur Pexistence de partitions de Punité sur A/G, il fant se rappeler
que ce dernier espace n’est métrique que ponr la topologie L2 [?]. Le probleme de réconcilier
des fixations de jauge géométriquement licites avec la localité de la théorie des champs reste
donc ouvert,




Regular spectral triples and good algebras
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1. Regular spectral triples

a) Let us recall that, according to the terminology initiated by A. Connes [3], a smooth unital
spectral triple is a triplet K= (ﬂ, (H, 1), Q)) in which : :
(1) : 4 is a unital involutive algebra, with unit denoted by 1 and involution denoted by * ;
(2) : 7 is a faithful *-morphism from 4 into the *-algebra L(H) of bounded linear operators
on some separable Hilbert space H,
(3): Dis an unbounded self-adjoint operator on H with compact resolvent, and such that
for any element a in D the operator [D, ()] = Dat(a) - m(a). Dlies in L{HY;
(4): the unital *-subalgebra (A4} of L{H) is contained in the domain Dom(d™) of the n-th
power of the derivation d = [ DI, -]on L(FH) for every nin N, where 1D =AD.D*.

Conditions (1) and (2) are the properties required in order that the triple K is a K-cycle over 4 ;
the smoothness condition (3) ensures that for any a in A4, and for any n = O the n-th derivative
of 71(a) with respect to the derivation d = D, -1is well defined.

b) Given a smooth unital spectral triple K= (ﬂ, (H, 1), l)) we shall denote by Il 1l the C*-
norm operator on L(#), and for each n in N, by T the family : T = (T o<ken’ where T,

denotes the seminorm defined on 4 by Ty(a) = lim(a) It and Ty (a) = ElT" (m(a) i, 1=k=n.

Endly, we shali we let: I} iy = z T,. One easily proves (Cf : [1] and [4]) that :
0O<k=<n

Lemma. (/) For any natural integer the followig properties hold :

(1) :For any pair (a, b) of elements inin Aonehas: lab H(n) < |l all(n). ¥7 il(n).

(ii) : For any element ain A onehas : | atll,,=lall,.

(iii) : For any element ain A one has :\lall,, ;) =lall,, + -n—fﬁ 19 mH (mfa) .
(2) : For any natural integer n, let A, be the completion of Aw.r.1. Wt Then :

(i) : A, is a unital Banach *-algebra, ne N and Ay is a unital C*-algebra ;

(ii): A(K) = Lim A, = (14, isa unital Fréchet *-algebra .

_{_._.

nzl)

The topology of A(XK), that we shall called the K-topology, is of course given by the increasing
countable family of *-norms (F Ny Ynemn .




¢) Definition . A smooth unital spectral triple K= (4, (¥, m), D) such that 4 = A(K) will
be called a regular spectral triple.

It is easy to checks that, given any smooth unital spectral triple K= (4, (#, ), D), the triplet
K = (A(K), (H, m), D) is a regular unital spectral triple. Replacing 4 by A(X) if necessary,
we can then deal only with regular spectral triples. A first resuit is ([4])

Proposition : Let K= (A4, (H n), D) be a regular spectral triple. Provided with the X:
topology, A is a unital Fréchet *-algebra. Morover, the group Inv(4) of invertible elements in

A is a generalized Lie group (in the Omori's sense given in {Omo]) with Lie algebra A .

2. Regularity of Inv(4) and goodness of 4

A new and important result is the following ([4], Theorem 1) :

Theorem. Let K= (A4, (X, n), D) be aregular spectral triple.The topological group.Inv( A )
is open in A, and for any integer k= 0 one has : Inv(A4 ;)= A £Inv( A4 ).

Let us recall now the notion of good algebra developped by J.-B. Bost [2] : a topological unital
algebra A is a good algebra if the group Inv(A4) is open in A and if the mapping u ulis
continuous on Inv(4). One deduces important consequences of our theorem, in particular :

Corollary. Let X=(4, (# n), T} be aregular spectral triple. Then :
(i} : For any integer n > 0 the matrix algebra M (A) of n by n matrices over A4 is a good unital
Fréchet *-algebra, and Inv(M,(A)) is a generalized Lie group with Lie algebra M,( ).

(ii) : The path algebra C(I, A) provided with the pointwise defined operations and the uniform
convergence topology is a good unital Fréchet *-algebra. Moreover, at the level of the

topological K-theory, one has an isomorphism from KJ( C(I, A)) onto Ki( A)j=1 2
(iii) : One has an isomorphism from K A)) onto Kj(ﬂo Lhi=1 2.
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SOME RECENT RESULTS ON RANDOM OPERATORS
Dedicated to Alex Grossmann

P. D. Hislop

ABSTRACT., We outline some recent developments in the theory of random op-
eralors concentrating on the spectral properties of additive and multiplicative
random perturbations. These models describe the propagation of electrons
and of classical waves in randomly perturbed media, respectively. The results
presented concern the localization of states and the behavior of the integrated
density of states at energies in interval§ near the band edges of the spectrum
of the unperturbed Hamiltonian. '

1. Introduction

This is an overview of some recent results in the spectral theory of random oper-
ators obtained in collaberations with Jean-Marie Barbaroux, Jean Michel Combes,
Eric Mourre, and Adriaan Tip. One of the goals of the study of randomly per-
turbed operators is to describe the propagation of quantum and classical waves in
media which is randomly perturbed. One is particularly interested in the condi-
ticns under which random perturbations cause localization. Often, the background
or uaperturbed system is described by an operator Hy which has only absolutely
continuous spectrum. The spectrum is usually semibounded with a lower bound
Ey > —oco. In the half-line [Ep, o00), the spectrum of Hy, consists of a union of
closed intervals o(Hp) = UN [a:, b5, where N < oo and a; = Fy. The energies
satisfy a; < b; and b; < a;p1. We call the interval B; = [ay, bs], the #** band. In the
case that b; < a;y1, we say that the i** gap is open. A bounded perturbasion of
Hy will broaden the bands B;, adding energy levels in a neighborhood of the band
edges a; and b;. If the perturbation is random, the almost sure spectral type near
the band edges may be quite different from that of Hy. In particular, randomness
tends to localize the states. Much recent work has been directed toward proving
the assertion that randomness causes the states with energies near the band edges
to localize almost surely, and that the corresponding eigenfunctions decay expo-
nentially. We will discuss many of these results below. We are also interested in
the integrated density of states for these models at energies near the band edges.

Key words and phrases. random operators, Wegner estim’z‘xtes,-localization.
The author is supported in part by NSF grants INT 90-15895 and DMS 93-07438 and NATO
Grant CRG-951351.
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1.1. Additive Perturbations. Additively perturbed families of random op-
erators on L?(R%), for d > 1, have the form

(1.1) H,=Hy+V,,

where the random potential V,,(z) is a stochastic process on B?. These families of
operators describe the propagation of single electrons through a randomly perturbed
meadium.

1.2, Multiplicative Perturbations. The wave equation for acoustic and
electromagnetic waves lead us to families of operators having the form

(1.2) Hy = AN H AZV,

where A, (z) belongs to a permissible class of stochastic processes.

In the discussion to follow, we will assume that the background operator Hy has
an open spectral gap G = (B_, By), with B_ = b; and B, = a4, with b; < a4
for some %, in its spectrum.

2. Single Electron Transport

There are several maodels of physical relevance which describe the behavior of a
single electron in randomly perturbed media. We have the choice of the background
operator and of the random potential. The most well known situation is when the
background operator Hy = —~A + Vjer, where Vi, is a periodic function on RY.
This unperturbed operator describes a single electron moving in an infinite, periodic
lattice. The basic random perturbation is the Anderson-type potential described by
a family of functions u;, with i € 49, called the single-site potentials, and coupling
constants {A\;(w) | i € Z?¢}. The potential is defined by

(2.1) V(@) = ) Mlwhuila).
ez

The family of coupling constants {\;(w) | ¢ € Z%} forms a stochastic process on
Z®. In the simplest model, the coupling constants form a collection of independent,
identically distributed (#id) random variables. In the iid case, the random operators
are ergodic if 1;{2) = u(z —4), for all i € Z% More complicated models treat the
case of correfations between the random variables. We can also introduce another
family of vector-valued random variables {&;(w)|7 € Z} with &(w) € Br(0), 0 <
R < % We assume that the random variable & has an absolutely continuous
distribution, for example, a uniform distribution. These random variables will
model thermal Auctuations of the scatterers with random strengths about the lattice

points Z<¢. The random potential has the form

(2.2) V() = > Nlwhu(z — &).
44

The Anderson model on the lattice has been extensively studied. We refer to the
books by Carmona and Lacroix [6] and by Pastur and Figotin [38] for the references.
The basic papers, of relevance to the approaches described here for the continuous
cases, include [26, 27, 41, 42, 48]. There are now many results on localization
at the bottom of the spectrum and at the band edges for the continuous Anderson
model. These include [3, 7, 33, 30, 31, 32]. The case of correlated random
variables for lattice models is described in [49] and for the continuous models in
[10, 11].
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In general, the background operator for electrons may have the form
(2.3) Ho = (p~ A)° + Vb,

where p = —iV, the vector-valued function 4 is a reasonable magnetic potential and
Vb is a backgreund potential, cf. [3]. The Landar Hamiltonian is in two dimensions
is a special case with a constant magnetic field B generated by the potential A =
{B/2){~z2,%:), and ¥y = 0. Localization and the integrated density of states for
this model have been extensively studied, see [4, 8, 14, 15, 50, 51], because of
the role it plays in the theory of the integer quantum Hali effect. (cf. [37]).

There are other models of randomness of physical interest. We give a brief
description of them here. In sections 35, we will concentrate on results for the
Anderson-type potential, although they also hold for some of the other models.

2.1. Breather Model. Let u > 0 be a single-site potential of compact sup-
port. We require a repulsive condition on w: —z - Vu(z) > 0, and a relative
boundedness condition on the Hessian of ©. We assume that the random variables
A; are iid with a common density supported some positive interval. The breather
potential has the form

(2.4) Vo) = 3 ul(w)(@ —1)).
i€z
One can show that the random family H, = —A + V,, has an interval of localized

states {01, E;], almost surely, for some E; > 0 [9].

2.2. Random Displacement Model. The random potential for this model
has the form

(2.5) Va(@) = > u(z —i- &),
e

where the vector-valued random variables {&;{w)} are distributed in a ball of radius
R < 1/2, as above. This model was studied in the case of v < 0 so that the
single-site potential represents a potential well. Klopp [34] showed that in this
case the model exhibits localization at negative energies provided the semiclassical
parameter h, appearing in the Hamiltonian as H(h) = —h?A + V], is sufficiently
small. Quantum tunneling plays a major role in the localization of states for this
model. Localization in the general case is an open problem.

2.3. Poisson Model. One of the most realistic models of impurities randomly
distributed in a perfect crystal is given by a Poisson potential. Let X;(w), 1 € Z,
represent the points of a Poisson process in R?, Suppose that w > 0 is a single-site
potential of compact support. The Poisson potential is given by

(2.6) Vo(2) = > _ule — Xs(w)).

i€Z
Surprisingly, very little is known about these potentials except in one dimension.
Stolz [45] recently proved that all states are localized for the one-dimensional model.
In arbitrary dimensions, Tip [46] has proved that for a class of repulsive potentials
u, the integrated density of states is absolutely continaous at high energies. As
above, localization in the general case is an open problem.
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2.4. Gaussian Models, This random family of Schridinger operators has
the form (1.1), with Hy = —A and the random potential V,(x) a Gaussian process
indexed by IR?. This model has been recently studied [24, 25]. The authors prove
a Wegner estimate and show the absence of absolutely continuous spectrum.

3. Classical Wave Propagation

The localization of acoustic waves and of light is of theoretical and practical
importance. Because of the absence of the electron-electron interaction, which
might tend to obscure localization effects, it may be easier to detect the localization
of light experimentally. For a review of these questions, we refer to [5, 28]. The
techniques used to prove band-edge localization for electrons can alse be used for
various models of classical waves propagating in inhomogeneous media. Some of
the early work on localization for lattice models describing waves was done by Faris
[18, 17] and Figotin and Klein [19]. We describe here the models studied in [12].
(1) Acoustic waves. The wave equation [or acoustic waves propagating in a medium
with sound speed C and density p is

(3.1) i+ Hop = 0,
where the propagation operator His given by
(3.2) H=-C?pVp-tv.

By a standard unitary transformation, it suffices to consider the operator H, uni-
tarily equivalent to H, given by

2 2 2
H = —OAC——E{OAPMEJ’-G Vel }
2 p 2 2
(3.3) = —(C%)EV . pIV(C?p)t,

acting on the Hilbert space H = L*(RY), d > 1. We consider perturbed sound
speeds of the form

(3.4) Culg) = (1 + gC,) 20,

for ¢ > 0. To relate this to (1.2), we factor out the unperturbed sound speed Cj
and define the unperturbed acoustic wave propagation operator Hy by

(3.5) Ho = —CopiV - p~'Vp2Cy.
The coefficient 4,, appearing in (1.2) is given by
(3.6) As = (1+4C,)-

(2) Electromagnetic waves. The wave equation for electromagnetic waves can be
written in the form of equation (1.2) for vector-valued functions . In this case,
the operator H describing the propagation of electromagnetic waves in a medium
characterized by a dielectric function ¢ and a magnetic permeability ¢ = 1 is given
by

(3.7 H = g V2ATI Y2,

acting on the Hilbert space H = L2(R*,€3). The matrix-valued operator II is the
orthogonal projection onto the subspace of transverse modes. We consider random
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perturbations of a background medium described by a dielectric function ey and
given by
(3.8) eulgy = 1+ e + ge,,

where €, is a stochastic process. The unperturbed operator describing the back-
ground medium is defined by

(3.9) Hy = ~(1+ e} M2 ATI(1 + 65) "1/,
and the coefficient A, in (1.2) is given by
(3.10) Ay =L+ g(1 +e0)7 ).

We note that A, is the velocity of light for the realization w.

There have been several recent papers proving band-edge localization for these
and related models. Figotin and Klein [20, 21} have results on band edge localiza-
tion quite similar to ours. Stollmann [43] recently studied random perturbations
of metrics. The random processes C,, and €, can be of any of the type described
in section 2.

4. The Main Results on Band-Edge Localization

We now list our hypotheses necessary to prove localization at energies near the
unperturbed band-edges B... We will begin with conditions of the deterministic
operator Hy.

Hyroruesis H1. The self-adjoint operator Hy is essentially seif-adjoint on
C§°(IR%). Tt is semi-bounded and has an open spectral gap. That is, there ex-
ist constants —oo < —Cy < B.. < By < oo so that

o(Hy) C (+-Co, B-]U By, 00).

HyproTHrsis H2. The operator Hy is strongly locally compact in the sense that
for any f € L*(IR?) with compact support, the operator f(Ho)(Ho+Co+1)"" € Ty,
for some even integer ¢, with 1 < ¢ < co. Here, 7, denotes the ¢**-Schatten class,
cf. [40}.

HypoTHESIS H3. Let p(x) = (1 + |iz||?}*/?. The operator
Hola) = empHoe—mp s

defined for o € IR, admits an analytic continuation as a type-A analytic family to
a strip

Slag) = {z+iy e C | |yl < an},
for some ag > 0.

Schrédinger operators with periodic potentials provide examples of operators
Hoy with open spectral gaps, ¢f. [39]. As for classical waves, certain models of
phatonic crystals are known to have open gaps, cf. [22, 23, 47]. Hypothesis (H3)
is satisfied for a large class of operators Hy, see [3, 12].

We now give hypotheses on the random potential given in (2.1), which are
conditions of the single-site potentials w; and the coupling constants Aj. We wiil
use the following notation. We denote by B.(z) the ball of radius r centered at
x € IR?. A cube of side length £ centered at = € IR? is denoted by Ag{z). The
characteristic function of a subset A C IR? is denoted by ..
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HypoTHES:S Hd. The single-site potentials u; > Cixa,, (o) for some constant
C; > 0 and some radius r; > 0. Furthermore, we assume that

Lfp
4.1 wi{2)|? 0,
(11) J.;{fm)' ()l} <

forp>dwhend>2and p=2 whend=1

We will assume that the random variables ;{w), appearing in the Anderson-
type potential (2.1), form a stationary stochastic process indexed by Z®. The
probability space for this process is 0 = [—m, M 12 * for some constants m # M and
0 < m, M < co. In the case that the range of the random variables is unbounded,
we will need to control some of the moments of A;.

HyroTaesis H5. The random variables A; have p finite moments:
(4.2) E{y <o, k=12,...,p
where p is the dimension-dependent constant given in (H4).

We refer to the review article of Kirsch [29] for a proof of the fact that hy-
potheses (H4)-(H5) imply the essential seif-adjointness of H, on C§o (IRY).

HypoTHESIS H6. The conditional probability distribution of A, conditioned
on Ao = {A; | ¢ # 0}, is absolutely continuous with respect to Lebesgue measure.
It has a density ho satisfying {|hollee < 00, where the sup norm is defined with
respect to the probability measure I°.

Hypothesis (H5) implies that the correlation function C(z, 7y = BN}~
E{)\}IE{\;} exists and is finite. An example of a process satisfying (H5) is a
Claussian process on Z¢ with each local covariance function C'(i,7},4,7 € A being a
bounded, invertible matrix. In the case that the random coupling constants are tid
random variables, hypothesis (H6) reduces to the usual assumption that a density
exists.

HyroTHESIS H7. The density h decays sufficiently rapidly near —m and near
M in the following sense:

0 < P{{A+m| <e} <X/,

0 < P{A— M| <&} <™/
for some 3 > 0.

Recent work of Klopp {35] on the existence of internal Lifshitz tails may allow
us to remove hypothesis {H7).

We need to assume the existence of deterministic spectrum ¥ for families of
randomly perturbed operators as in (1.1)-(1.2} with Iy satisfying (HD-(H7). If
H, is periodic with respect to the translation group Z*, and for Anderson-type
perturbations described above, the random families of operators H,, are measurable,
self-adjoint, and Z%ergodic. In this case, it is known (cf. {6, 38]) that the spectrum
of the family is deterministic.

HypoTHESIS HS. There exists constants BY, satisfying B.. < B! < B < B,

such that
SN{(B_,B )U(B,, B} #8.
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In light of hypothesis (H8), we define the band edges of the almost sure spec-
trum  near the gap G, as follows: ‘

B.z=sup{E< B |Eex},

and
By =inf{E> B} |E e},
Examples of operators satisfying these conditions may be found in [3, 12, 20,
21]. The main results are the following two theorems.

THEOREM 4.1. Assume (HI) - (H8). There ewist constants Ei satisfying
B. < E_ < B. and By < Ey < By such that TN (E. E,) is pure point
with exponentiolly decaying eigenfunctions.

THEOREM 4.2. Assume (H1) - (H8). The integrated density of states is Lips-
chitz continuous on the interval (B.., B..).

5. Basic Ideas: Local Hamiltonians and Wegner Estimates

A key aspect of the proof of localization is the analysis of local Hamiltonians
which describe a local, compactly supported perturbation of the background op-
erator Hp.. To unify notation, we let ¥, denote the additive random potential or
the random variables C,, or €, in the multiplicative cases. The local potential is
defined by

{5.1) Valz) = Vo (z) | A.

The local Hamiltonian associated with A is defined by

(5.2) Hy = Ho + Vi,

in the additive case, and by

(5.3} Hy = (14 gVa)"V3HG (1 + gVa) V2,

in the multiplicative case, where Hy is the deterministic background operator ap-
pearing in (1.1} and (1.2). We remark that if the single-site potential « has non-
compact support or if the coupling constants A;{w) occurring in (1.1)-(1.2) are
correlated, the local Hamiltonians associated with two disjoint regions are not in-
dependent. In these cases, one has to modify the usual arguments (cf. [32] and
(10, 11]). Let us assume here that the local Hamiltonians for two disjoint regions
are independent.

We want to emphasize that the choice of a local Hamiltonian of the form (5.2)-
(5.3) has many advantages over the choice of a self-adjoint extension of H,, | A,
which depends on the boundary conditions. First among them is the fact that the
essential spectrum of the unperturbed operator Hy is preserved under the relatively-
compact perturbation V4. This allows one to work at energies in the spectral gap
G of Hy. All known models for which localization has been proved are of this type
(cf. [3, 8, 12, 20, 21, 31, 33, 34]). Secondly, the resolvent Ry (E) = (Hy — E)~?,
for I € G, decays exponentially in the distance (cf. [3, 18]} when localized between
two functions with separated supports. This fact contributes significantly to the
proof of the Wegner estimate which has a |A| volume dependence.

There are two main estimates on the local Hamiltonians which are necessary
for the multiscale analysis: a Wegner estimate, and an exponential decay estimate
(cf. [7, 26, 41, 42, 48]). A Wegner estimate is a measure of the probability of
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resonance between the spectrum of a local random Hamiltonian and a fixed energy
E. Tt is an upper bound on the probability that the distance ¢ from the spectrum
of & local Hamiltonian Hy, associated with a region A, to a fixed energy E, is less
than a specified value depending on the volume |A} and the distance «.

The main theorem on the eigenvalue distribution of the finite volume Hamilto-
nianps is the following. The Lipschitz continuity of the integrated density of states
follows from this result. For other versions of Wegner’s estimate, see [20, 33, 30,
31, 44]

THEOREM 5.1. Assume (H1)-(HG). Let A be a bounded, open region in IRY.
For any E € G = (B-,By) C p(Hp), and for any e < Ldist (F,o(Hy)), there
exists a finite constant C'g, depending on d, |hy||ce, and dist (E,o(Hp)), such that

(5.4) P{dist{(c(Hp), F) < €} < Cgeld|.

The proof of this theorem follows the lines of that given in [3] and [4]. The
integration-by-parts used in the proof of the speciral averaging theorem is possible
due to hypothesis (HS) on the absolute continuity of the conditional probahbility
distribution.

The second main result on the local Hamiltonians is partly probabilistic. We
show that there exists § > 0 such that the probability that H, Ay » Das no eigenvalue
in [B.. — 4, B_]U[By, By + 4] is greater than 1 — £5°%, for some ¢ sufficiently large
and some ¢ > 2d. An application of the Combes-Thomas argument [3, 13] shows
that the Green’s function for Hy, , at energies in [B.. -6/2,B_|U[B,, B, +4/2]
decays exponentially in |z ~y| with the same probability. These results, the Wegner
estimate, and the multiscale analysis allow us to prove almost sure exponential
decay of the resolvent of the Hamiltonian F,, for all energies in an interval {f?_ -
6/2, B_]U[By, By + /2], near the edges of the spectral gap of £. This estimate
has the form

(5.5) P{supeso e B (B +ie)xyll < e7melvl} = 1,

for a constant g > 0, and for all =,y € IR? such that |z — y| is sufficiently large.
The functions x, and x, are compactly supported in a small neighborhood of z
and y, respectively.

The proof of localization is competed using a result of the perturbation of
singuiar spectra, see (7, 9, 27, 36, 41].

5.1. Acknowledgment. I would like to thank the Organizing Committee,
and especially Ginette Saracco and Matthias Holschneider, for organizing this won-
derful conference in the summer of 1997 in the honor of Alex Grossmann, and for
inviting me to give a talk.
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Deterministic spin models with glassy behaviour
and quantized toral symplectomorphisms

Sandro Grafh
Dipartimento di Matematica, Universitad di Bologna (Italy)
(graffi@dm.unibo.it)

Roughly speaking, the spin glasses are spin systems not ferromagnetic (or anti) on

1 N
any scale, non translation invariant. The ground state(s) oriented so that N > 0y =0;
=1

1 & 1 & ,
N Y m, =0but g= N S " m2 > 0 (BA order parameter). o; = &1
o=1 =1

and m; = (o;) are spin and magnetization at site 4, respectively. The systems freezes
and settes into the ground state{s) through a complex low temperature phase (there
are many pure magnetization states in competition).

To reproduce glassy behaviour, one assignes a "random potential” J,, to the spins.
"The simplest ”solvable” case is (Sherrington-Kirkpatrick 1975): d = 1, J,, 1.i.d. (Gaus-
sian), mean 0, variance J/N (infinite-range).

"Solution” 1 (Thouless-Anderson-Palmer, 1977): The Gibbs free energy ®(my, ..., my; §)
is computed in closed form. Its stationarity conditions (TAP equations)

at T =T,: M =

N
My = tanh (ﬂ Z J:c,ymy - ﬁmi(l - (JEA)) (1)

y=1

yield the pure magnetizetion states. Linearization and spectral theory of J yield 8, = J
(variance). Howver, in the temperature phase, the number of solutions (=pure states)
increase exponentially. What is the order parameter?

" Solution” 2 (Parisi, 1980-1983). How to decompose the Gibbs state on the pure ones?
Set:

1N
Gaf = 77 > mem? overlap
=1

P(q) = Py(q) = > wlwld(qas — q)
a3

(overlap probability distribution)

wy s e Iy, = free energy of m,

2(@) = [ Plwdu, =q()




q(z) € C{0,1)],¢(1) = gp, is the Parisi order parameter describing the glassy phase.
Computation of ¢(z): replica method-+broken replica symmetry.

Problem: is there a deterministic interaction J reproducing (at least partially) the
glassy behaviour of SK? Prerequisites: J should oscillate, and be of ”size” 1/V/N.
Marinari-Parisi-Ritort 1994:

7 1 i 2 2)
= e 8111 —-101
Y AN+1 N
Ground-state: for 2N + 1 = 4p + 3,
/(N [ +La=p’mod N
O = (W) ‘“{ 1,z #p* mod N )

Glassy behaviour detected by numerical implementation of the replica method; the
average i performed over the Haar measure of the orthogonal group.
Now, remark:
Juy = ImV,, Vy- unitary propagator quantizing the unit symplectic matrix on 7°2:
27i

Valz,y) = et

VN

Recall the quantization procedure for any symplectomorphism A = ( i Z ), a,b,¢c,a €
4, ad — bc =1 of T? through representations of the discrete Weyl-Heisenberg group
(Degli Esposti 1991). Forn € Z%, ¢ € T? set t(n) = e'™? and look for all unitary
representations in L2{S") of the discrete Weyl-Heisenberg algebra,

2ri

Op" ((m))OpY (t(m)) = &*#etrmn
w(m,n) = My — Moy

For i = 1/N, 0o N-dimensional representations indexed by 8 € [0,27[2. Hence
OpW(t(n)) = Ty(n). Now Ty(An) = Tap{n) = 3 Vyy such that VagT(n)Vi; =

. ‘ _ [ 29 1
T3(An). This defines Va(8). If A = ( 4 —1 2

A+ V3 is metaplectic representation; moreover

), we can take 8 = 0.

1 2ri, 2 ,
y = o eXp X (gg? L
V(A)ay 7% Py (927 — zy + gv/*) (4)
1 Al 2mizy
For g = 0, we get the discrete Fourier transform: (V(A o= = > exp— b,
or g we get the discrete Fourier transform: (V(A4)y) \/Nyzo Xp ~ Py

APPLICATIONS OF THE FORMAL IDENTITY.

1. What happens to the ground state for general N7

Reply {I.Borsari,F.Unguendoli, $.G., J.Phys.A, 1996): it disappears for N even, while
it becomes asymptotically degenerate (~ N* states with energy differing by less than
N~ from the minimum) for N odd.



Does it imply the existence of two thermodynamic limits? This is an open question
(related to the thermodynamic chaos).

Proof. Explicit construction of an eigenvector set through the Gaussian sums containing
primitive multiplicative characters of the ring Zy.

2. TAP (or mean field) equations:

m, = tanh (ﬁ zN: Jrymy — 20m,G'(B(1 — q))) (5)
G(B) = —%[In VITIE 1411 a2 — 1 ()

(Parisi-Potters (1996) through Legendre transform of the resummation of the high
temperature expansion for the Helmholtz free energy: TAP G = z%/4). # of solutions
exponentially increasing ; the linearization however does not determine the critical
temperature numerically detected.

Consider the models whose coupling is defined by (Re or Im of) quantized hyperbolic
(hence chaotic) maps: example, (4) with g # 0:

1 27

A AT e 2
Joy = TR (92° — zy + gy°) (7)
Then (I.Borsari, M.Degli Esposti, F.Unguendoli, S.G, J.Phys.A 1997) (6) becomes

G(8) = B°/(8 +467) (8)

TAP-PP linearized yield a "glassy” (staggered total magnetization 0, g > 0) critical
temperature at 7' = 0.8.

Proof: resummation of the high temperature expansion for the Helmholtz free energy
BF(f) through the Gaussian sums estimates.

3. Simplified models (spherical, XY, etc.).

In the random case they show glassy behaviour. In the deterministic case, numerical
evidence (Parisi and coworkers): o, = %1 is necessary to have "glassy” behaviour.
This fact is actually true (I.Borsari, F.Camia, F.Unguendoli, 5.G., J.Phys.A in press):
none of the above described models has critical points when considered in the spherical
or XY case, even though their ground state is "glassy” and degenerate.

Proof: computation of the Gibbs free energy in closed form.



The square root problem
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Abstract: The square root problem was raised by T.Kato in the 60's, motivated by
perturbation theory for some hyperbolic partial differential equations. the question is whether
the domain of the square root of a divergence form operator is the natural Sobolev space or
not. While it is trivial in the self-adjoint case, it turned out to be a profound problem in the
general case, connected to abstract operator theory, modern harmonic analysis and the study
of elliptic partial differential equations. The conference will describe a new approach to this
problem (still unsolved in general), due to P. Auscher and the speaker, which takes
advantage of recent developments in functional calculus and in harmonic analysis. This
approach allows to unify previous results and to obtain new ones. In particular, it sheds light
on relations between the study of the square root of an opeartor L and the properties of weak

solutions to the inhomogeneous equation Lu = 3 D f with nice f




A New Class of Stable Time Discretization Schemes
for the Solution of Nonlinear PDEs

Gregory Beylkin

Department of Applied Mathematics
University of Colorado at Boulder
Boulder, Colorado 80309-0526

1. Sparse representations of several classes of operators in wavelet bases (up to finite but
arbitrary accuracy) lead to numerical calculus of operators [2]. What makes such calculus
possible is an algorithm for operator multiplication of order N¢, where d is the dimension
(instead of the usual multiplication of order N3). The classes of operators for which fast
multiplication algorithm is applicable are sufficiently broad and not restricted to operators
arising from problems with constant coeflicients. In this presentation we desribe several
consequences of these facts for the development of PDE solvers.

2. We restrict our attention to a class of advection-diffusion equations of the form
uy = Lu + N (u), z € QCRY, (1)
where u = u(z,t}, z € R, d=1,2,3and t € [0, 7] with the initial conditions,
u(z, 0) = ug(x), z €1, (2)
and the linear boundary conditions
Bu(z,t) =0, z €0, tel0,T] {(3)

In (1) £ represents the linear and A(-) the nonlinear terms of the equation, respectively.
We note that the incompressible Navier-Stokes equations can be written in this form (see

below).

3. We use the semigroup approach to rewrite the partial differential equation (1) as a

nonlinear integral equation in time,

w(z, 1) = ey (z) + [ EVEN (ule, 7)) dr, (4)

o



and describe a new class of time-evolution schemes based on its discretization. A distinctive
feature of these new schemes is exact evaluation of the contribution of the linear part.
Namely, if the non-linear part is zero, then the scheme reduces to the evaluation of the
exponential function of the operator (or matrix) £ representing the linear part. We show
that such schemes have very good stability properties and describe explicit schemes with
stability regions similar to those of typical implicit schemes used in e.g. fluid dynamics

applications.

4. The incompressible Navier-Stokes equations in three spatial dimensions can be written in

the form (1). We start with the usual form of the Navier-Stokes equations for 2 € Q2 C R?,

W = vAu — (u10; + sy + uzds) u — Vp, (5)
alul -+ Ootiy + 83’(.63 = (], (6)
u(z, 0) = uy, (7)

where p denotes the pressure, and the boundary condition

u(z,t) =0 z€dQ, e[0T} (8)
Uy ‘5

Here we use the following notation u = | wus y =1} xo | and Oy = é%. Let us introduce
Ug 3

the Riesz transforms which are defined in the Fourier domain as

(€)= %f(s), i=1,23, ©)

where f denotes the Fourier transform of the function f. 1t is not difficult to show that the
projection operator on the divergence free functions (the Leray projection) may be written

with the help of the Riesz transforms,

I 00 R?  RyR, R\R;
P=|01 0|~ ReRy, R} RuRy |. (10)
00 I R3Ry RsR, R2

Using projection P it is not difficult to obtain

3
W = vAu - P> 1,0,u), (11)
=]



instead of (5) and (6). Equations (11) are now in the form (1), where £ = vA and N(u) =

"P(anzl U O 11).
The transformation from (5) and (6) to (11) is well known and appears in a variety of

forms in the literature. Here we followed a derivation presented by Yves Meyer at Summer
School at Luminy, |

The apparent problem with (11) for use in numerical computations is that the Riesz
transforms are integral operators (which makes (11) into an integro-differential equation).
Let us point out that the presence of the Riesz transforms does not create serious difficulties if
we represent operators f2;, 7 = 1,2, 3 in a wavelet basis with a sufficient number of vanishing
moments (for a given accuracy). The reason is that these operators are nearly local on
wavelets, and thus, have a sparse representation. This approximate locality follows directly -
from the vanishing moments property. Vanishing moments imply that the Fourier transfom
of the wavelet and its several first derivatives vanish at zero, and therefore, the discontinuity
of the symbol of the Riesz transform at zero has almost no effect. The precise statements
about such operators can be found in [2] and [1].

Finally, in rewriting (11) as

Uy = Lu '}'N(U), (12)

we incorporate the boundary conditions into the operator £. For example, u = £7'v means
that u solves Lu = v with the boundary conditions Bu = 0. Similarly, u(z,t) = e“tuy(z)

means that u solves u, = Lu, u(z,0) = uo(z) and Bu(z,t) = 0.

5. Computing and applying the exponential or other functions of operators in the usual
manner typically requires evaluating dense matrices and is highly inefficient. If £ is a circu-
lant matrix which is diagonalized by the Fourier Transform (FT), then computing functions
of operators can be accomplished by a fast algorithm. It is clear, however, that in this case
the need of FT for diagonalization prevents one from extending this approach to the case of
variable coefficients.

Computing exponentials of strictly elliptic operators with variable coefficients in the
wavelet system of coordinates results in sparse matrices and using exponentials of operators
for numerical purposes is an efficient option [3]. Further development of the approach of
3] can be found in [4], where issues of stability of time-discretization schemes with exact

treatment of the linear part (ELP) schemes are considered. The ELP schemes are shown




to have distinctly different stability properties as compared with known implicit-explicit

schemes. The stability properties of traditional time-discretization schemes for advection-
diffusion equations are controlled by the linear term, and typically, these equations require
implicit treatment to avoid choosing an unreasonably small time step. As it is shown in
[4], using an explicit ELP scheme, it is possible to achieve stability usually associated with
implicit predictor-corrector schemes.

Even if an implicit ELP scheme is used, as it is done in [3], an approximation is used
only for the nonlinear term. This changes the behavior of the corrector step of implicit
schemes. The corrector step iterations of usual implicit schemes for advection-diffusion
equations involve either both linear and nonlinear terms or only the linear term (see [5]).
Due to the high condition number of the matrix representing the linear (diffusion) term,
convergence of the fixed point iteration requires very small time step making the fixed point

iteration impractical. Implicit ELP schemes do not involve the linear term and the fixed

point iteration is sufficient as in [3].

6. There are several possible approaches to solving (4), and for the purposes of this presen-
tation, we choose a procedure that leads to multistep schemes [4). We would like to note,
that (4) in effect reduces the problem to an ODE~type setup, and for that reason, a variety
of methods can be applied for the solution of (4). We will obtain operator valued coeffi-
cients and our main point is that these coefficients can be represented by sparse matrices
and applied in an efficient manner.

Let us consider the function u(z,t) at the discrete moments of time t, = to+nAf, where

At is the time step so that u, = u(x, t,) and N, = N (u(z, t,)). Discretizing {4) yields

M1
Un1 = ew/_\tun-l-l—i + At (’}/Nn+1 + Z ﬁmfvném) ) (}*3)

m=0
where M <+ 1 is the number of time levels involved in the discretization, and { < M. The
expression in parenthesis in' (13) may be viewed as the numerical quadrature for the integral
in (4). The coefficients v and B3, are functions of LAt In what follows we restrict our
considerations to the case | = 1.
We observe that the algorithm is explicit if v = 0 and it is implicit otherwise. Typically,
for a given M, the order of accuracy is M for an explicit scheme and A + 1 for an implicit

scheme due to one more degree of freedom, . We refer to this family of schemes as exact




linear part (ELP) schemes.

M g Bo B B2 order
1 Q2 Q1 — Q2 0 0 2
2 Q2/2+ Qs Q1 — 2Q; Qs — Qa/2 0 3
3 1 Qa/3+Qa+Qu | Qi +Q/2—-2Q3—3Qq | ~Qo+Q3+3Qs | Qu/6—-Qu ! 4

Table 1: Coefficients of implicit ELP schemes for [ = 1, where Q; = Qu(LAL)).

M Bo B Ba order
1 O 0 0 i
2 Q1 + Q2 -y 0 2
31 Qu+3Q/2+ Qs | —2(Qe + Q) | Qe/2+ Qs 3

Table 2: Coefficients of explicit ELP schemes for [ = 1, where Q; = Qi (LA%).

For implicit schemes -y 5 0 and

where

and

k=1,..

1, ...

M1
m=0
1 M1
] (’}’+ (~1F S mkﬁm) = Qg1
: =i
whereas for explicit schemes v = 0 and
M -1
Z ﬁm = Ql:
m=0
—1)k M-l
( k‘) Z mkﬁm = Qu1,
' ==l
et — Ei{L)
QL) = ——;
I=1 rj
E;(L) = T
k=0

For [ = 1 we provide Tables 1 and 2 for M = 1,2, 3 with expressions for the coeflicients of

the implicit (y % 0) and the explicit {y = 0) schemes in terms of Qp = Qr(LAL).

(14)

(16)

(17)

In Tables 1 and 2 we have presented the so-called “bare” coefficients. Modified coefficients

[3] differ in high order terms: these terms do not affect the order of accuracy but do affect




the stability properties. Modified coefficients depend on a particular form of the non-linear

term.

7. Let us describe algorithms for the evaluation of the operator-valued quadrature coefficients
as sparse matrices. The coefficients of ELP schemes are written in terms of operators Q =

Qr(LAL), where
e£A B (LAL)

Q;(LAL) = TIOI (18)
and
(LAY = § (£ALy (19)
for j =0,1,.... We have -
Qo(LAL) = &2, (20)
Qu(LAL) = (e“2 = T)(LAL)™, (21)
Qu(LAL) = (52 — T — LAH(LAL)T?, (22)

ete.

We will now describe a method that permits us to compute operators Qp, Q1, Qa, etc.
without computing (£A#)~!. The problem with using the Taylor expansion directly is that
it will results in a loss of accuracy due to possibly large singular values of LA?. To avoid this
problem in computing the exponential, g, we use the scaling and squaring method. This
method results in a fast algorithm if the evaluation is performed in a wavelet basis with a
sufficient number of vanishing moments (for a chosen accuracy) [3].

The scaling and squaring method for the exponential is based on the identity

Qo(22) = (Qo())” (23)

First we compute Qo(LA#27!) for some [ chosen so that the largest singular value of LAt2™
is less than one. This computation is performed using the Taylor expansion. Using (23),
the resulting matrix is then squared [ times to obtain the final answer. In all of these
computations it is necessary (and possible) to remove small matrix elements to maintain
sparsity, and at the same time, maintain a predetermined accuracy.

A similar algorithm may be used for computing Q;{£Af), j = 1,2,... for any finite j.
Let us illustrate this approach by considering 7 = 1, 2. It is easy to verify that

Qi(22) = 3 (Qo(2)Qu(z) + Qu(a)) (24)



Qa(27) = § (Qu(z)Qu(x) + 2Qu(z)), (25)

ete.

Thus, a modified scaling and squaring method for computing operator-valued quadrature
coefficients for ELP schemes starts by the computation of Qo(LA#27Y), Q,(L£A#27Y) and
Q2{LA27%) for some I selected so that the largest singular value of all three operators is
less than one. For this evaluations we use the Taylor series. We then proceed by using
identities in (23), (24) and (25) ! times to compute the operators for the required value of
the argument.

The speed of evaluation and application of operator valued coefficients in spatial dimen-
sions two and three is one of the important factors in practicality of ELP schemes. Although
algorithms described above scale properly with size in all dimensions, establishing ways of
reducing constants in operation counts remains an important task in dimensions two and

three. This is an area of the ongoing research.

8. Let us compare {linear) stability regions of ELP schemes with that of the stiffly stable
method of [5]. Here we provide just one example and refer to [4] for more details. The
method of [5] is of the third order and is implicit with respect to the linear and explicit with
respect to the nonlinear terms. The resulting stability regions are depicted in Figure 1 and
should be compared with those of the third order explicit ELP scheme in Figure 2. By direct
examination of Figures 1 and 2 we observe that the explicit third order ELP scheme requires

the time step only about one half of that of the implicit scheme.

9. As an example consider Burgers’ equation
Uy + Uy = Vg, 0<z<1, t>0, (26)

for v > 0, together with an initial condition,
u(z, 0) = ue(z), 0<z <1, (27)

and periodic boundary conditions u(0,¢) = u(1,¢). Burgers’ equation is the simplest example
of a nonlinear partial differential equation incorporating both linear diffusion and nonlinear
advection. In [3] a spatially adaptive approach is used to compute solutions of Burgers’
equation via

At
Unpt = Py, — TQI (LAL) [, Optinsy + Unp1Optn] (28)




where
e* —1

Qi(z) = =

In Figure 3 the number of available scales n = 15, the time step At = 0.001, v = 0.001 and
the cutoff e = 107°.
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Figure 1: Stability diagram of the third order implicit stiffly stable scheme of [KIO].
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Figure 2: Stability diagram of the third order explicit scheme with x = 1, M = 3 and
coefficients from Table 2 (stability regions are comparable with those of the implicit stiffly
stable KIO scheme)
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In terms of the polyphase matrices

_ [he(2) gel2) % o Ee{z} e(2)
P(z) = (ho(Z) go(z)) y P(z) = (ﬁo(z) dolz ) {0.2)

the condition for reconstruction is
P(2)P(z)" =1 (0.3)

where ke (2), ho(2), ge(2), g (#) denote the even and odd parts of the Laurent polyno-
mials A(z) = 3 h,z™™ and g(z) = 2. gnz”™ respectively. Hence each polyphase
matrix is a loop in the group of invertible two by two matrices G L{2, F).

We consider only the case of finite impulse filters (FIR). In this case, the entries in
both matrices P(z) and P(z) are Laurent polynomials. This implies that det P(z) is
also a Laurent polynomial and, by the reconstruction condition (0.3), it is in fact a
monomial. The problem of finding biorthogonal filters with finite impulse response is
thus equivalent to finding polynomial loops in GL(2,F).

For the purpose of classification of filters, it suffices to consider the following restricted
class of loops:

Definition 0.1. Let X be the group of Laurent polyromial loops P : T — GL(2, F)
such that the determinant is a circle map det P+ T = T. In the following we refer to
elements in X as polyromial loops.

It turns out that every polynomial toop is a product of elementary loops of three differ-
ent types which we call upper triangular, lower triangular and diagonal foops.

Definition 0.2. Letk,m,nc Zandu e R Then,

ACOPE ”fﬂ

vk = (4, )

and
z"a 1
are special loops in SL(2, F} referred to as upper and lower triangular loops, respec-
tively.
2% 0
D(m,n} - ( G Z”)

is an elementary diagonal loop.

The following factorization of polynomial loops holds

Theorem 0.1. Consider a polynomial loop P € X. There exist Jinitely many up-
per and lower triangular loops and an elementary diagonal loop such that: P =
Usity -+ UpnyD. o(1} ... 0(NV) denotes an appropriate choice of signs.
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A consequence of Theorem 0.1 is that every loop in X can be written as a product of
shifts, and of constant loops. More precisely we have:

Corollary 0.1. Consider the two subgroups of X :
1. C={C(z)=Cy e SL(2,F)}

2. S={S"|melk} (0.4)
Then X is generated algebraically by C and 8, i.e. each P € X is of the form:
P = A5G 8™ CE™ .G 8™ Cpa (0.5)

wheren; € {~1,0,+1},1 € N, m € Z,and) € T, all factors S are to the left and
the factors S™% to the right.

The computational complexity of the factorized wavelet transform is essentially deter-
mined by the number of triangular matrices in the factorization of the loop P(z). This
is because the upper and [ower shifts affect only the indexing.

Each term in the factorization adds to the total complexity C'(F) according to the fol-
lowing rule:

Cltriangulor matriz) = 2 {one muitiplication and two sums) (0.6)
C(B) =6 (four multiplications and one sum) (0.7
Clshift) = C(D) =0 (reindexing) (0.8)

A rough estimate leads to the two bounds

C(P) < 2(neys — Noy) + 2(no s — Noys) +6 0.9
C(P) < k) +1lg) +2 (0.10)

where [{h) and [(g) denote the two smallest cven numbers larger or equal to the lengths
of the two filters.

We conclude with some examples of factorisation, computed with the help of a Math-
ematica program, implementing the algorithm based on the proof, given elsewhere [1].

The first example is a biorthogonal basis having the cubic B-spline as primal scaling
function. The polyphase matrix is defined by:

1 1
g(zHl + 6 -+ 2) 55(—3.52 ~ 527 —5—3z)
-;—(I + z} %(—33“1 + 10 — 32)

The factorization of the cubic B-spline reads:

GH6IEIED6 )6

fom) S

-3
2) (0.11)




This is an instance of a filter pair with coefficients in the ring of dyadic rationals that
can be decomposed into factors with cocfficients that remain in this ring.

The second example is from an article by Vetterli and Le Gall {7]. As the two au-
thors note, it cannot be factorized into simple pseudo-unitary terms. ! it is, however,
factorizable in the sense of theorem .1. The defining polyphase matrix is:

22437 4+ 24—t - - 54+ z+142
270k 227 3 2 --T]‘Izml— 2+ i,3:-|—

The factorization of this filter is:

G )N DEDE D6 D= DE 5)-
= ) e D06 ) i DY)

The last examples is a filter pair with coefficients in Z that can be decomposed into
factors with coefficients again in Z with our algorithm:

1422 4
22 19z

(5 D6 D6 IEDE D6
66 )
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MUSIC: A TIME-SCALE GAME?

Jean-Claude Risset
Laboratoire de Mcanique et d’Acoustique, CNRS

January 25, 1998

My contribution to the conference in the honor of Alex Grossmann dealt
with digital music: digital sound, synthesized or processed, and also digital
skills - interactive piano music. The term digital is ambiguous - but musical
keyboards were the first keyboards: how would you use computers today
without a keyboard? Music was involved in a number of innovations: it was
probably the first time-scale game.

My presentation was illustrated with sound examples, and a musical
demonstration was given in the evening. The examples will be lacking in
this written version, although some are described in the text.

1  Music, numbers, time-scale

Music has a long history of relations with science. Pythagoras insisted that
numbers rule the world - the intervals in music as well as the movement of
planets. According to Jean-Marie Souriau, this was the point of departure
for modern science, and for virtual reality as well. Numbers permit to control
sound - privileged musical intervals correspond to simple ratios - and space
- one can construct a right angle by assembling three segments with lengths
proportional to 3, 4, 5.

It seems reasonable to posit that the notion of a time-frequency space or
a time-scale space first appeared in music. A musical interval corresponds to
a given frequency ratio. Early lithophones appear to be the first instance of a
log frequency scale. Scales involve specific relations between the frequencies
of the successive steps - this is the ”out of time” part of music, as Xenakis
calls it. Certain Indonesian scales are close to a division of the octave in five
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equal steps. Music involves time. According to Saint Augustinus, music is
"ars bene movandi”. In the middle ages, musical notation developed in the
western world as needed by polyphony: it uses a time-scale representation.
Musical scores and musical automata have exemplified cartesian coordinates
long before Oresmus and Descartes: in fact the British historian Geoffroy
Hindley believes that musical notation brought about the idea of representa-
tion in terms of cartesian coordinates, which played such an important role
in the explosion of western science since Newton.

2 Representations of musical sounds

The following point of view was held for a long time: musical sounds are
periodic and characterized by attributes - pitch, intensity, timbre - which
can be assigned to measurable parameters of the periodic wave - frequency,
energy, Fourier spectrum. This point of view is insufficient, but today it is
easy to understand how it developed. In the second half of the nineteenth
century, sound waves could be recorded and submitted to Fourier analysis.
It was not convenient to look at a long stretch of periods for tones with
frequencies of hundred of Hertz, and it was tiresome to extract the Fourier
spectra for many periods. Sounds with slowly evolving spectra were consid-
ered as pseudo-periodic, with a fixed spectrum modulated in amplitude by an
envelope shaping the attack, the changes in amplitude and the decay. Other
processes of analysis, such as the flame spectrum analyzer using Helmholtz
resonators, were slow and averaged variations. For each different timbre, the
analysis yielded a different spectrum, and this spectrum was considered to be
responsible for the timbre differences. There was no possibility to check by
synthesis the aural validity of this grossly simplified model; hence this view
was not questioned for many years, especially since it was advocated in the
authoritative treatise by Helmholtz, Sensations of tone.

With modern ways to transform or to synthesize sounds, however, the
simplistic view described above was recognized as inaccurate. In the fifties,
one could transform recorded sounds recorded on magnetic tape - for instance
play them backwards, as though the arrow of time was reversed. Now a pi-
ano tone reversed in time is no longer recognizable, even though it consists of
the same spectra - in a different order. Also there is no clear-cut distinction
between musical sounds and noise. One can say that, to be musical, a sound
has to deviate from strict periodicity (which means ever-lasting) or pseudo-




periodicity, corresponding to a steady spectrum modulated in amplitude.
There are changes throughout interesting sounds: the aural importance of
spectral changes is easy to demonstrate via digital synthesis. For instance
my analysis-by-synthesis of brass tones showed that such tones were impos-
sible to imitate using a fixes spectrum, since their characteristic feature is
the dependency of the spectrum upon the instantaneous amplitude - the
louder, the brighter. Thus representation by a single fixed Fourier spectrum
1s generally inadequate. The Fourier integral supposedly captures the whole
information contained in evolving sounds. However it does not provide a con-
venient display of the spectral evolution in the course of the sounds. In effect,
Fourier analysis attempts to represent finite duration functions in terms of
sine waves, that is, functions of infinite duration, which seems far-fetched
and leads to difficulties.

Ad hoc modifications of the Fourier representation have been proposed
for some time. The sound spectrograph, initially developed during the last
world war under the name visible speech, permitted to obtain so-called son-
agrams. The sonagram is probably the most useful portrayal for sound, the
closest to what might be termed a sound photograph. It is a time-frequency
representation: the sound goes through a set of band-pass filters; the time-
dependent output of each filter is rectified to control the darkness of a line,
which thus gives an indication of the amplitude. Representing the waveform
itself does not bring much useful insight on how the sound is going to sound.
Certain waves can look almost identical yet sound distinctly different. Cer-
tain waves can look extremely different, yet sound the same: this is the case
for periodic tones with the same amplitude Fourier spectrum but with dif-
ferent values for the relative phases of the harmonics. In contradistinction,
looking at sonagrams, one gets a feeling for sounds, for their behavior and
their evolution, for their figure, their gait, which is very significant to the
ear. The structure of the Corti organ, part of the inner ear, entails a fre-
quency analysis of the incoming sound, and the nervous fibers conveying the
information to the higher structures of the brain are organized tonotopically:
different frequencies trigger nerve impulses in different fibers. Hence it is
not surprising that a proper representation of musical sound should allow to
follow the variation of spectrum in time. Emile Leipp resorted a great deal
to sonagrams in his insightful acoustic studies of musical practice. In his
book New images of musical sound, Robert Cogan has compiled sonagram-
like representations for various types of music, classical and contemporary,
instrumental and electronic: on these images, one can follow many musical



features.

However the sonagram cannot provide a unique optimal representation.
If the filters are narrow, the resolution in frequency will be high, but the
ringing of the filters will smear fine temporal details. Wide filters yield a
good temporal resolution but do not allow to separate components which are
close in frequency. One cannot escape this trade-off, akin to Heisenberg un-
certainty relationsl. Hence there is no "best way” to represent sound along
these lines: it depends upon what the representation must portray best.
Wide-band sound spectrograms are useful for speech: adjacent harmonics
are not resolved, but shown as groups corresponding to the ”formants”, the
groups of harmonics reinforced by the resonances of the vocal tract - the
position of the first formants characterizes a given vowel. Narrow-band spec-
trograms are generally more adapted to music, since the representation can
then separate the notes of a scale.

One should remember that the sonagram provides a visual representation
which is useful, but not always faithful: it can even be misleading, since the
auditory result does not always correspond to what one sees on the sonagram
representation. Different frequency components, represented as separate on
the sonagram, can either be discriminated by the ear or fuse into a single
entity: this depends crucially on their frequency ratio (octave and simple
rational ratios favor fusion). This is not easily seen on a sonagram: two
simultaneous sine waves one octave apart look similar on a sonagram to two
simultaneous sine wave one octave and a semi-tone apart, but they sound
quite different!

3 Reconstruction: analysis-synthesis and wavelets

‘The sonagram basically represents a running short-term Fourier spectrum.
It does not permit to reconstruct the sound: some of the information is lost.
'To be complete, the representation should include the phase spectrum. In-
deed, a Fourier transform comprising an amplitude spectrum and a phase
spectrum can be inverted to reconstitute the original sound. However such
a representation is cryptic: it does not represent clearly the way the sound
evolves in time. The amplitude spectrum gives some kind of average dis-
tribution of energy along the frequency axis, and the time evolution is not
explicit in the phase spectrum. Our hearing, on the contrary, tracks the
evolution of sounds in time. Running Fourier analysis use time windows to



evaluate instantaneous spectra, thus taking the evolution in account2. But
it runs into certain difficulties, which seems normal considering that Fourier
analysis tries to describe signals in terms of a combination of sine waves,
with an infinite exte! nt in time: if the signal is time- limited, artifacts are
required to have this combination limit itself in time.

Clearly, the granular approach adopted by Dennis Gabor, with the Gabor
representation, and by Morlet and Grossmann, with the wavelet transform,
are in principle much more satisfactory. Gabor’s idea to represent signals
on the basis of functions limited in both frequency and time was published
shortly after the second world war. It was presented in the proceedings of a
meeting presided by Louis de Broglie in 1950 - among the participants were
Robert Fortet, Andr Blanc-Lapierre, Pierre Aigrain, Jean Ville, and Gabor
himself. These basic functions - Gabor grains, i.e. sine waves modulated
in amplitude by Gaussian "bells” - were used by Curtis Roads and Barry
Truax in their granular synthesis, but not as a way to reconstruct analyzed
sounds: rather, grains were assembled with diverse random localizations in
time and frequency to produce novel sounds. Szasz had demonstrated that
functions of time could be expanded in terms of complex exponentials {Cf.
Paley & Wiener, 1934). T! here were a few attempts to repres ent sounds
in terms of specific functions, notably sine wave multiplied by exponentially
decaying exponentials by Dolansky and Huggins: The possibility to analyze
and reconstitute a given signal in terms of Gabor grains was demonstrated
by Baastians (1979)3. I discussed these possibilities in a joint article with
David Wessel published in 1982, and which comprised a paragraph entitled
signal representation and analysis-synthesis processes. Shortly after, I heard
about the work of Alex Grossmann about wavelets: it seemed clearly of high
interest for the representation of sound. Although I had known Alex for ten
years, I was unaware of what Alex was working on: I thought it dealt mainly
with out of my reachd advanced mathematics of quantum mechanics. In
preparation for the RCP ondelettes, I wrote in early 1985 a brief memo for
Alex to describe our team and our interest in exploring the wavelet transform
for the representation and the modification of sounds.

At that time, Richard Kronland-Martinet was initiating his thesis work
in our team. Our Equipe d’Informatique Musicale had been created in 1972
at Luminy thanks to Mohammed Mebkhout, and moved to Laboratoire de
Mécanique et d’Acoustique of CNRS (LMA) with the help of Bernard Nay-
roles. Daniel Arfib had been working with me on digital synthesis of musical
sound, and we were just beginning to tackle digital processing. One has
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to inject richness, suppleness and musicality into synthetic sounds: acoustic
sounds - for instance those of musical instruments - are already endowed
with those qualities; however it is difficult to transform then with the very
ductility one benefits from with synthesis. Thus we were looking for pro-
cesses that would permit to extend ductility to processing. One can try to
represent acoustic sounds in term of a synthesis model to take advantage of
the ductility of synthesis.

Richard was a very motivated young scientist with a lot of musical training
and interest in music. After his master in Physics at Luminy, he had followed
the DEA of Acoustics, hoping to do research on digital synthesis of music -
and he was assigned to work on digital synthesis for active noise absorption!
He was longing to get to more musical material, and the project for his thesis
was to develop sonic analysis so as to extract models from sounds: these
models could then be the point of departure for synthesis, with the possibility
to produce variants - to perform intimate variations on the initial sound. A
research grant on analysis-synthesis from the French Navy, obtained with
the help of Francoise Briolle, made it possible for us to work on the audio
digital processor SYTER, built by the company Digilog, which permitted
faster processing (computers were not as fast then as they are today).

Richard collaborated with Alex Grossmann and Jean Morlet to implement
the wavelet transform so as to process digital sounds. With analysis-synthesis
processes, intimate changes can be performed on the original signal by al-
tering the analysis parameters before reconstruction. Indeed, the wavelet
worked very well to reconstruct sound: the copy was indistinguishable form
the original, whether one looked at the waveforms or listened to the sounds.
Defective synthesis immediately showed the possibility of intimate transfor-
mations. Richard demonstrated this on flute sounds, separating low and
high scales in convincing ways. Later Frdric Boyer used wavelets separated
by one semi-tone: by adding only those components corresponding to a given
chord of the well-tempered scale, analyzed speech could be reconstructed as
perfectly intelligible, yet sounding as though this chord was imprinted in the
vocal chords of the speakers. Richard also demonstrated time-stretching: but
in this cas! e a low-frequency quality was adde d. Time-stretching was easier
using Gabor grains, as Daniel Arfib demonstrated. Some wavelet and Gabor
features were incorporated into the LMA version of the MUSIC V synthesis
program and in a SOUND MUTATIONS, a program to modify sounds. The
SYTER processor speeded up the computations of the transforms. Wavelet
transform programs developed at LMA were incorporated in a work station,




Onyx, developed by the company Digilog for signal processing. A number
of possibilities were explored and described in fundamental articles. Among
them, the use of converging patterns in the phase diagram to locate disconti-
nuities: this was served to localize scratches in vinyl disk recordings. Richard
also showed that by using a wavelet made up of two sine waves at an interval
of an octave, one would cause the octave intervals to stand out clearly on
the module diagram of the transform of a musical sequence - this figure was
selected in 1989 for the cover of Computer Music Journal 12 n 4. Oli! vier
Rioul spent a training period in Marseille at both CPT {Centre de Physique
Thorique) and LMA. In 1987, a 40 mn pedagogic video on wavelets was real-
ized at LMA by Alex and Richard, using SYTER and computer animations
to explain the wavelet transform and to show wavelet translation and dilation
as well as wavelet transform diagrams for modulus and phase: this video was
shown at the first congress on wavelets, organized by Elf Aquitaine and the
RCP Ondelettes in Pau. The same year, Richard produced the color figures
presented in the first article published for a large audience, ”L’analyse par
ondelettes” by Yves Meyer, Stphane Jaffard and Rioul, which appeared in
Pour la Science, and he also contributed to edit this article.

Later the cooperation with Alex continued, with the occasional participa-
tion of the late Bernard Escudi: the notion of ridge or skeleton of a time-scale
or a time-frequency transform helped to extract modulation laws from a, sig-
nal. Philippe Guillemain developed a clever process to model a signal in term
of additive synthesis - that is, as a sum of sine waves, each of which is con-
trolled in both amplitude and frequency by separate curves. The curves are
extracted automatically by the analysis program, although the user can in-
tervene to improve things in difficult cases. Then the sound be reconstructed.
The process works remarkably well if the sounds are made up of a limited set
of discrete ”spectral components”: this is the case of guasi-periodic tones,
but also of inharmonic sounds such as those of bells or gongs. The fact that
the reconstruction is practically indistinguishable from the original demon-
strates that the analysis does capture the aspects which are relevant {1 or the
ear. But the interest is al so to produce variants of the original. If, instead
of merely reconstructing it, one alters the amplitudes or frequencies, one can
achieve very interesting transformations: the sound becomes highly ductile.
For instance, the rate of the amplitude and frequency envelopes can be al-
tered: the sound can be stretched or compressed in time without changing
its frequencies. Richard Kronland and Philippe Guillemain made substantial
progress towards non-linear resynthesis of instrumental tones. The goal here



is to estimate the parameters of a non-linear synthesis process - frequency-
modulation or waveshaping - best approximating a given instrumental sound.
This is a considerable challenge - the problem may have no solution or no
unique one. To get around the difficulty, frequency components were grouped
in subclasses with simpler behavior.

There are a number of other applications of wavelets to represent, recon-
struct and modify signals in novel ways, and many more to come.

4 A musical demonstration

In the honor of Alex Grossmann, whose culture is broad and deep in art as
well as in science, a musical demonstration was also given, illustrating certain
points discussed in the conference.

A milestone of "kinetic” music, Turenas by John Chowning demonstrated
swift movements of virtual sound sources in illusory space. The sounds were
actually emitted by four loudspeakers which were fixed in position: but
Chowning carefully contrived the synthesized sounds so as to emulate the
cues which suggest to our ear that the sounds it receives comes from mov-
ing sources (Chowning, 1971). Among these cues, Chowning simulated the
Doppler effect5. The space here is generated by the music, specifically by
the interaction of the sonic signals with the auditory perceptual organization.
This may remind one of the status of space in models based upon the algebra
of non-commutative operators, presenied at the opening of the conference by
Daniel Kastler: space is no longer a priori, it results from the interactions.

Also in four tracks, Electron-Positron, a short "metaphoric event” real-
ized by Richard Beaudemont and myself for the inauguration of the LEP in
Geneva in 1989 - the visual part was shown in video, in synchrony with the
music. In the first part of this audio-visual piece, the accelerating particles
are symbolized by rotating trajectories. While the sound circles around at
increasing speed, one can hear rhythmic beats at a tempo which also goes
faster and faster - in fact these beats accelerate for ever, a cyclical auditory
illusion analogous to Shepards tones or to my endlessly descending glissandi.
Tension builds up to the "collision”. Then the end of the event is supposed
to evoke the work of the scientists. The film shows trajectories of high-energy
particles. The music includes the voice of Alex Grossmann, transformed us-
ing both Gabor and wavelet techniques. The processes presented in the audio
illustrate the work of the team of Acoustique Musicale on processing (spatiall



ization, time-frequency alteration s) and on perception (auditory illusions).

Then followed the demonstration of a piano "duet” with a single pianist,
resorting to a novel process: the pianist has a "partner” - but an invisible,
virtual one. A computer program "listens” to what the pianist plays, and
instantly adds its own musical part on the same piano: this part is not a
mere recording, it depends upon what the pianist plays and how he plays.
Hence we have a genuine duet: the pianist’s partner, although unreal and
computerized, is sensitive and responsive. Different processes of interaction
between what the pianist plays and what his or her shadow partner responds
were shown, from simple, "geometrical” relations such as translation (musical
transposition) or symmetry (inversion of intervals) to proliferating processes
such as canons, automatic arpeggiation of fractalization, and to acoustic
resonances through the sound board of the acoustic piano.

The presentation was concluded by Invisible: In this work, inspired by
Italo Calvino’s Invisible cities, a soprano speaks and sings texts by Tchouang-
tseu, Wang Wei, Lao Tseu, Dante, Basho, Heine, Goethe, Longfellow et Leop-
ardi, in dialogue with sounds from an "invisible” partner, sounds produced
by synthesis or processing resorting in particular to wavelets. Wavelets which
are - hopefully - good to hear!

Many warm thanks to Alex, and best wishes.
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Chowning, J.M. Turenas. On CD Wergo 2012-50.
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Risset, J.C. Duet, for one pianist. On CD Neuma 450-87.

L It is worth insisting here on the well-known fact that the same mathe-
matical formalism can apply to different phenomena. Electric analogies are
very helpful in mechanics and acoustics. Heisenberg’s uncertainty principles
relate to the trade-off between frequency and temporal resolution in linear
filters. An analogy across several fields which does not seem widely known
is Callen and Welton’s theorem: for 2 causal system, the fluctuations - the




behavior in a free state - relate to the susceptibility- the response under con-
straint - according to integral formulas, which can be derived by expressing
causality. These formula yield the Nyquist formula giving the noise in resis-
tors as well as the Mandelstam formulas, or dispersion formulas, in nuclear
physics. Note 3, below, gives another instance.

2 The Wiener-Kinchine theorem, linking the power spectrum and the au-
tocorrelation function, has been generalized to the case of short-time spectra
by Fano, Schroeder and Atal.

3 As I found later, work published in the context of quantum mechanics
by Bacry, Grossmann, and Zak five years before the article of Bastiaans in
the field of signal processing, was very close to demonstrating the validity of
the representation of sounds by grains - Gabor grains are akin to the wave
packets used to represent the wave assciated with a particle.

4 T had initially worked in high-energy physics at the Orsay linear accel-
erator with George Bishop and the late Bernard Grossette (1961), but I had
soon switched to the domain of audible waves.

5 Christian Doppler first experimented his effect with musicians of the
Conservatory of Vienna - performers on a railway cart and listeners by the
railroad.



Are Statistical and Deterministic Approaches
Compatible to study Fully-developed Turbulence?

Marie Farge
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Fluid mechanics is governed by the Navier-Stokes equations, which are deterministic.
Fully-developed turbulence, which correspouds to very large Reynolds number flows (for which
the micro-scale Reynolds number Re should be larger than 10*), is the limit where the non-
linear advective term of Navier-Stokes equations strongly dominates the linear dissipative
term. In this limit, the solutions are highly chaotic, namely very sensitive to initial con-
ditions, and we are unable to integrate the Navier-Stokes equations, even with the largest
computers presently available or proposed for the future. Therefore, in order o compute
fully-developed turbulent flows we should combine a deterministic numerical infegration and
a statistical model.

The present state of the art, so called Large Eddy Stmulation (LES), consists of inte-
grating the dynamics of the large-scale motions {corresponding to the scales resolved by the
computational grid) and of statistically modelling the effect of the small-scale motions (cor-
responding to the subgrid-scales) on the large scales. But this programme is not adequate
for fully-developed turbulence because it requires a scale separability, namely a decoupling
between large-scale and small-scale dynamics. Such a decoupling exists between the inertial
range scales and the dissipative scales, which therefore allows the numerical simulation of
weakly nonlinear flows (corresponding to low Reynolds numbers). However, if we want to
compute very large Reynolds number flows, i.e. fully-developed turbulent flows, at a reason-
able computing cost we should find another way to separate the modes to be deterministically
computed from those to be statistically modelled.

We will first focus on two-dimensional turbulence, and then extend our results to three-
dimensional turbulence. From a physical point of view the two-dimensional approximation
is relevant to study large scale geophysical flows, due to the combined eflect of stable strat-
ification at scales larger than 10 K and rotation of the Farth. From a mathematical point
of view there are existence, unicity and regularity theorems for two-dimensional Navier-
Stokes equations, which do not yet exist in dimension three. These theorems are necessary
to validate the numerical procedure we use to solve Navier-Stokes equations. Therefore,
from a numerical analysis point of view, the integration of two-dimensional turbulent flows
is much ‘safer’ than for three-dimensional turbulent flows. Moreover, the existence of an
inertial manifold has been proven for two-dimensional turbulent flows, and upper bounds
for the dimension of the attractor have been given, but this is still an open problem for
three-dimensional turbulent flows. Last argument to justi{y our interest for two-dimensional
turbulent flows: according to the present estimation, the minimal number N of degrees of
freedom necessary to compute fully-developed turbulent flows without turbulence model,




namely by Direct Numerical Simulation (DNS), scales as Re in dimension two and as Re/*
in dimension three. Therefore we are able to compute by DNS much larger Reynolds flows in
two dimensions than in three dimensions. For two-dimensional turbulence we have already
reached the fully-developed twrbulent regime without using ad hoc turbulence models, but
this is not yet the case for fully-developed three-dimensional turbulence.

Twelve years ago we proposed to use the wavelet representation to analyze, model and
compute fully-developed turbulent flows. We have shown that the strong wavelet coeflicients
correspond to the coherent vortices, while the weak wavelet coefficients correspond to the
incoherent background flow (see for 2D turbulence /FR88/, /FS89/, /FHCI0/ and for 3D
JFMGI96/). Both components are multiscale and therefore cannot be separated by Fourier
filtering (/F91/, /F92/). We have developed a method, inspired by Donoho’s denoising
technique (wavelet shrinkage) used for image compression, to separate coherent vortices
and background flow (/FSK97/). The figures illustrating this paper show an example of
this separation applied to a vorticity field which has been computed with resolution 2562,
Only 0.7% of the wavelet coeflicients correspond to the coherent vortices, which exhibit the
same non-Gaussian Probability Distribution Function (PDF) as the total field, while the
99.3% remaining weaker wavelet coefficients correspond to the incoherent background flow,
which presents a Gaussian PDF. Higher the resolution stronger will be the compression
ratio we obtain with the wavelet representation. We have also shown that the incoherent
background flow is slaved to the coherent vortices, due to their straining effect which inhibits
any nonlinear instability to develop from the background flow (/KIF97/). We have then
developed a wavelet-based method to force two-dimensional turbulent flows, more physically
sound than the Fourier forcing presently used (/SF97/). Our method excites vortices locally
in physical space and as smoothly as possible without aflecting the background flow. This
procedure does not interfere with the emergence of vortices and does not impose them a
scale, contrarily to the Fourier forcing. We have reached a statistically steady regime, for
which energy, enstrophy, spectra and PDEF are steady.

We are presently developing a new method to compute fully-developed two-dimensional
turbulent flows based on wavelet phase-space segmentation (/FGMPW92/, /FKPG96/,
J/SKF97/, FKPS97/). This method proposes to compute the dynamics of the coherent vor-
tices with a limited number of wavelet modes, keeping only the most excited ones which
correspond to coherent vortices, and remapping the wavelet basis at each time step. The
discarded coefficients, which are characterized by a Gaussian one-point Probability Dis-
tribution Function (PDF) and correspond to the incoherent background flow, should be
statistically model in order to take into account their effect on the coherent vortices. We can
either model them by a stochastic forcing having the samne statistical behaviour, or compute
the linear equation characterizing their motions, or design a one-point turbulence model
(such as Boussinesq, Smagorinsky or k-¢). The justification for this procedure is that the
coherent vortices are not numerous enough and their encounters are too rare events to have
reached a statistical equilibrium state, and therefore we have to compute their dynamics
with a deterministic method. On the contrary, for the well-mixed background flow we can



assume stationarity, homogeneity and ergodicity, in order to define a statistical equilibrium
state from which we can design an appropriate statistical model.

Legend of the figures

Wavelet compression of vorticity.

(a) The vorticity. (b) The modulus of velocity. (¢) The stream function. (d) The coherence
scatter plot. (e) Cut of vorticity. (f) PDFs of velocity and vorticity. (f) Energy spectrum.
The solid lines correspond to the total vorticity w, the dashed lines to the coherent part w.,
and the dotted lines to the incoherent part w..

We observe that only 0.7% of the total number of wavelet coefficients are sufficient to rep-
resent all coherent structures, while the remaining 99.3%correspond to the incoherent back-
ground flow, which is much weaker and homogeneous. The coherent vorticity ws contains
94.3% of the total enstrophy. Moreover, the velocity associated with the coherent structures
Is quasi-identical to the total velocity and contains 99.2% of the total energy. As for the
coherent stream function, ¢ is perfectly identical to the total stream function . The fact
that the scatter plot of the background, F. such that we = Fe(1Pe), is isotropic proves that
our method has extracted all coherent structures. The PDFs of velocity and vorticity show
that only 0.7% of the wavelet coefficients are sufficient to capture the non-Gaussian one-point
statistical distributions of vorticity and velocity, while the remaining 99.3% correspond to
Gaussian distributions. The energy spectrum, on the confrary, is dominated at small scales
by the incoherent background flow and therefore is insensitive to coherent structures be-
cause they are too rare to affect the energy spectrun (which is the Fourier transform of the
two-point correlation function).
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Abstract

The space of polynomials maps onto itself under affine transformations, 2 — m—f This

suggests that a moment reformulation of Continuous Wavelet Transform (CWT) theory
should lead to significant simplifications in the analysis of Schrédinger quantum operators.
We review the implications of this for one and two space dimension problems.



Overview

The space of polynomials of degree N, Py (), maps onto itself under the affine trans-
formation, = -+ “'”—a"f—b This simple observation underlies the theoretical simplicity that
a moment representation formulation can offer in applying continuous wavelet transform
(CWT) analysis [1,2] to one dimensional Sturm-Liouville problems in quantim mechanics.
By working with properly scaled and translated moments, {fi,+(p)}, one is able to trans-
form the Schrddinger eigenvalue problem (for an arbitrary rational fraction potential) into
an exact representation involving a finite number of coupled first order differential equa-
tions in the inverse scale variable, v = 2—3:;[&5}. Contrary to other applications of wavelet
analysis to quantum systems, the present approach does not involve a truncated variational
wavelet basis expansion [6-8] or other type of Galerkin analysis [9]. :

An essential part of our approach is obtaining the infinite scale moments, Ly 5{p) =
flap(p), for v = 0 or ¢ = oo. Utilizing moment gquantization methods, the infinite scale
problem (a = o) can be solved, enabling the numerical integration of the coupled differ-
ential moment equations, to arbitrary small scale (a — 0). This approach readily yields
high precision estimates for the bound state energies and corresponding wavefunction [3-5].
This formalism, to be referred to as moment-wavelet quantization, has yielded excellent
results for various one dimensional problems. Despite the manifestly non-wavelet structure
of the formalism, it is inherently (equivalent to) a wavelet analysis [10]. We review the rel-
evant formalism and briefly outline the essential issues necessary for its multidimensional
extension.

Some General Results
Consider the (normalized} one dimensional Schrédinger problem
~020(z) + V(2)¥(z) = B¥(z), (1)
where V(z) is any rational polynomial. The following presentation applies to mother
wavelet functions W(z) of the form W(z) = —N8ie 2@, wherei > 1, Q(z) = T2V g, 2™ B
and gan > 0 (e Limg ,ooW(z) = 0); however, for simplicity, we limit the discussion to

the Mezican hat wavelet case, W(z) = —N92¢7% . N is a normalization factor.
The Mexican hat wavelet transform for the unknown wavefunction is given by

Wi¥(a,b) = %/ dx[—@%e“%(ﬁiﬂ)g}\lf(cc). (2)

Performing the indicated differentiation one obtains:

W(a,b) = N (297 [11,4(0) = 27185(2)], (3)
where oo
toy (D) E/ dz xP e_”/“’z\i[!(:c +86),p = 0 (4)




are the moments of the measure ®., 3(z) = e“""”gklf(n: + b). Clearly, the wavelet transform
is a linear superposition of the appropriately scaled and translated moments, Loy b (D).
Another important relationship is

Oytiy,p(P) = =iy ,p(p + 2). (8)

For the class of one space dimension problems being considered, the moments are linearly
dependent on the first 1 + m, moments (the missing moments) :

s @) = S M (0, Dty ), (6)
I=0

where m, is problem dependent. The energy, E, dependent coefficients M E~s(p, 1) are
numerically or algebraically determinable, and must satisfy Mg, 5(3,7) = &;;, for 0 <
%, ] < ms. Inserting these relations into the right hand side of Eq.(5) results in a coupled
set of first order differential equations for the missing moments:

Mg

Oty p(D) = = Y Mpp(p+2, )iy p(1), for 0 <1 < m,. (7)
=0




The Quartic Anharmonic Oscillator
In order to fix the above formalism in the reader’s mind, consider the example of the
quartic anharmonic oscillator defined by:
> 5 4
ey + (mz® + gz )V (z) = E¥(z). (8)
We need to define a moment equation for ®. 5(z) = e~ U(z + b). One first obtains the
differential equation [4]:

[ [ddi -+ 473:% + 29+ 47°2% + [m(z + 8)* + g(z + b)ﬂ]@bﬁ(:c) = Edy . (z). (9)

The moments satisfy the equation (for p > 0):

ﬁ\’f’?,b(p + 4) ==

,_1)

S Ciblinafp +3) 4 {472 1 Collbnste) + 22 uo -2, (10)
g

where the coefficients are Cs = —4b, Cyly] = ¢~ dv? — m — 6¢d%], C1 = —g~}[2bm + 4gb°%],
and Co[y] = —g 727y + mb® + gb* — E].

The moment equation corresponds to a linear, homogeneous, fourth order finite dif-
ference equation (for nonnegative p values). All of the moments are linearly dependent on

the initialization or missing moments {1, ({)[0 < I < 3}. This is expressed through the
relation

3
fu"y,b(p) = ZME,’T,ZJ(pi l).u")',b(z)i (11)
I=0
where
Mg,y p(i,7) =65, for 0 < 4,5 <3, (12)
and the remaining Mg, 3(p > 3,1) coefficients satisfy the same moment equation as in
Eq.(10).
The relation (from Eq.(5))

Ju"y,b(o) Ju’r,b(z)
i H’Y,b(l) _ ”7,6(3) (13)
Oy \ Hy,b(2) tys(4) ]’
fhy,5(3) fhy,5(5)
now becomes (upon substituting Eq.(11))
,U,%b(O) 0 0 -1 0 ,u,,,b(O)
0 (s | _[ o 0 S T Y PG
Oy | pyp(2) Moaoly] Maalvl Maaly] Magsly] Poy 5 (2)
Loy 5(3) Mazoly] Maily] Maaolyv] Msga[v] Py, (3)



(note, Msocjca = —Mpap(4,5) and Magcjcs = —Mg . 4(5,7)) where My gly] =
] ]

~Colv], M2yl = —Ci, Maaly] = ~Caly], Magly] = =Cs, Msgly] = —Coly]Cs,
é/éjx,lm = =~ [C1C3 + Coly] — 4v/g), M3 2[7] = —[C1 + C3Ca[v]], and Mss[y] = —[Ca[y] +

Generating the Wavefunction

For arbitrary ‘b’, given the physical energy and starting missing moment values
{p0p(1)] 0 < 1 < ms} (through methods to be described shortly) one can numerically
integrate 5q.(14} and proceed to determine the wavelet transform (Eq.(3)). Facilitating
this is the relation:

00 +0o0
pop(p) = /_ dr 22V (z +b) = /_ dz (x — b)PU(z), (15)
.or {expanding)
P
— Yy L RYP— s
pants) = 32 () (-0 hoato) (16

Thus, knowledge of the pg,0(l) moments generates the initial configuration, to (1), neces-
sary for integrating Eq.(14).

Instead of generating the wavelet transform, one can directly recover the wavefunc-
tion upon numerically generating the p.s(l) for v — oco. This follows from the simple
observation {obtained after performing the change of variables y = ,/7x)

: 1 p
Lity— o0 fy,p(p) = (ﬁ)(pﬂ} 0(5) ¥(b), p = even, (17)

where 0(p) = fj:j dy y*Pexp(—y?). For p = 0,2, we have 0(0) = /7 and 6(1) = /7/2.
Usually, for the quantum systems studied so far, moderately small v values (v < O(10))
are sufficient to generate the low lying discrete state wavefunctions (despite the fact that
7 — oo corresponds to the local, configuration space, domain for the wavefunction).

It is immediate to show that the asymptotic relations in Eq.(17) lead to the usual
signal-wavelet transform inversion formula [10]

T(p) :% fomda;@ _Z dgp(f_b) W(a,€), (18)

a

1..2 . . . -
where v = ffooo dz e72% | and the dual expression, D, satisfies (in terms of the Fourier
transforms)

Fk) = Vor W(E)D(k), (19)



where F(z) = —07¢#" and W(z) = —-NdZe™s%".

Moment Quantization for the Infinite Scale Problem
As noted above, an important component of the underlying analysis is the generation
of the starting moment values and eigenenergy. If the integration of Eq.(14) is to begin
at v = v, # 0, then one cannot use the relation in Eq.(16). Instead, the missing moments
must be generated at fixed v, and each translation variable value, ‘b’, within the desired
range: ~B < b < B. If v, = 0, then from Eq.(16) one only requires that the missing
moments be generated for the b = 0 case.

For the infinite scale problem, s = 0, there are various moment quantization methods
available. One of the earliest is that of Blankenbecler et al [11] which involves a complicated
analysis making use of the asymptotic {(p — co) behavior of the moments. Subsequent re-
formulations by Killingbeck et al [12] realized that the asymptotic requirements could be
weakened without affecting the accuracy of the eigenenergy estimates. Additional works by
Killingbeck et al [12], Fernandez and Ogilvie [13], and Witwit {14] used a moment quanti-
zation representation in order to generate, wavefunction independent, regular perturbation
expansions for the energy.

Paralleling these developments, Handy, Bessis and co-workers [15 - 17] realized that
for bosonic systems, the positivity of the ground state wavefunction permitted the exploita-
tion of well known theorems arising from the classic Moment Problem in pure mathematics
[18]. Their investigations led to a novel method ( that combines moment representa-
tion analysis, Moment Problem theorems, and linear programming [19]) producing highly
accurate eigenenergy values {and the corresponding missing moments} through the gen-
eration of rapidly converging lower and upper bounds : Ei(L) < Bphysical < EZ-(U), with
Limwoo(Ei(U) —EREL)) == {) . This method is generally referred to as the Eigenvalue Moment
Method (EMM).

The application of EMM, coupled with moment-wavelet analysis, as described above,
has yielded impressive results for both the (low lying) discrete state energies and the
associated wavefunctions [4,5,10].

Application of any of the above moment guantization methods to the case v, # 0
becomes cumbersome. Instead, a very powerful moment quantization method has been
recently developed by Tymezak et al [20]. An overview of this is presented following the
discussion on the two dimensional extension of our moment-wavelet formalism.



Extension of Moment-Wavelet Quantization to Multidimensions

The extension of the preceding formalism to two dimensional space problems presents
one important complication. Instead of working with a finite number of coupled first
order differential equations, one is forced to work within a finite hierarchy of coupled
partial differential equations, first order in v, and of Q-th order in ‘b’, depending on the
nature of the potential. For the case V{z,y) = m(z? + ¢?) + ¢(zy)?, whose moment
equation structure is reviewed in ref.[21] (particularly with respects to implementation of
our moment-wavelet analysis), the maximum 8b order is ¢} < 2. A simple analogue of
the necessary multidimensional modifications to the one space dimension moment-wavelet
analysis formalism is afforded by the quartic anhar momc oscillator problem.

Reconsider the expression p,4(p) = [dzzPe” 7 G (g + b). The first order partial
derivative with respect to ‘b’ gives

Bytin 5(p) = / dzzPe " 8,0 (z + b), (20);
r (integrating by pal'ts)
Oty b(P) = —Plin p(p — 1) + 27ty p(p + 1), (21)
We can rewrite this as
by p(p + 1) = [ppyp(p —~ 2)7-!— Foiy,p(p )} (22)

Utilizing these relations, we can transform the quartic anaharmonic first order equa-
tions (refer to Eq.(13)) into either of three versions:

ﬂ”y,b(e) Fooy, b( )
O (D)) Hy,5(3) (23a),
Oy | pap(2) | (29) 7 [Bpy,5(2) + Bty (3 )] !
ty,6(3) 513[4![”’)'111(3) + “z%abﬂv, (2) + 278{) tiy,5(3)]
fy,6(0) fy,5(2)
O (D)} _ 4oy 5(3) (230);
8’}' Iu’}',b(g) - (2’7)H1[3P"'y,b(2) + 36#7,()(3)] '
oy (3) Yo M (5, Dy (1)
Py, 5(0) M,bg;
ad i ,b(l) _ L~y b
o | mo@ | S o Moa(4, () (230
fy,6(3) %[4.“7,1}(3) + %35,&7,5(2) + %8{?.“7,!1(3)]

For cither of these three formulations, one numerically integrates in the + direction
starting at v = «; # 0, since the inverse v dependence complicates any numerical integra-
tion starting from zero. This implicitly requires that we know the starting missing moment



values {py, 5(1)]0 < < 3} for —B < b < B, as well as the corresponding physical energy
value. Clearly, these quantities correspond to large scale information about the physical
configuration. As -y increases, the detailed small scale structure of the underlying wave-
function is systematically recovered through the integration of any of the three coupled
partial differential equations.

The first partial differential equation formulation {Eq.(234)} involves no manifest in-
formation about the physical system (the quartic anharmonic oscillator). The numerical
integration required for obtaining the physical configuration, as v — oo, critically depends
on a very accurate description of the initial moment configuration {u., »{{}|0 <1 < 3}.

The other partial differential equation formulations (Egs.(23b,¢)) involve more mani-
fest information about the underlying physical problem, as evidenced through the explicit
incorporation of the Mg . »(p, {) coeflicients. One expects that the corresponding numerical
integration is less sensitive (more stable) to the accuracy of the initial moment configu-
ration. This is confirmed by our preliminary numerical investigations. Ior the ground
state, taking v, = .1, we have succesfully integrated the second and third equations up
to v = O(1). This inverse scale value (y = iy) is sufficient to approximate the basic
structure of the {v = o0) ground state wavefunction for 1b| < O(1.5).

For two dimensional problems, such as the H,y = —VZ+m(z? +y?) +g(zy)? Hamilto-
nian, the relevant coupled partial differential moment equations are of the type represented
in Eq.(23¢).

Moment Quantization for the Large Scale Problem

An effective procedure for determining not only the physical energies but also the
required initial moments, for sufficiently small v values and arbitrary ‘b’, has been found
by Tymczak, Japaridze, Handy, and Wang [20]. This method, to be referred to as TTHW
moment quantization, has been shown to generate excellent results for one and two di-
mensional problems. The simplicity of the approach belies its robustness in solving a large
assortment of multidimensional systems, including the famous quadratic Zeeman effect for
hydrogenic atoms.

We outline the momentum space version of TIJHW moment quantization though its
one space dimension formulation. The extension to multidimensional configurations follows
in a similar manner.

Consider the Fourier transform of the @., 5(z) = e~ %" U (z+b) configuration, &, 5(k) =
735—; [ dze=#*®, 1 (z}. Tts momentum space power series expansion becomes:

o) = = D (=i 2T, (24)
p=0 '

Now consider transforming the Fourier transform into the representation ®., (k) =

V—%[ano(mik)”an]l{(k), where the reference function R{k) can be taken to be R(k} =

e= Bk’ (0 is an arbitrary constant). One readily establishes that the a,, coefficients become

( e*ﬁ(“‘ik)2 Z;O(mzk)pﬂqsl(p) — ano(__z‘k)nan)



. (—8) k(1) (25)

Ipl
2g+p=n s

However, the moments are linearly dependent on the missing moments through Ly p(p) =
200 Mg,y ,(p, )iy (1), Accordingly,

—a s
G = Z (qlfﬂ) ZME,')*,b(pal)”’y,b(g)a (26)
2q+p=n =0
or
m™s C(—B)IM !
n ZZ[ > =) ,Ef’b( ’ )]ﬂﬂy,b(l). (27)
=0 2q+p=n ap:
That is,
an[E> /‘L'y,b(o): M HU"T:b(mS)] = Z Dﬂ,l[Ear)’: b]lu"hb(l) (28)
=0

Quantization results from taking anin[£; iy 5(0), . . ., iy p(ms)] = 0, for arbitrarily
large ¥V and 0 < n/ < m,. Thus, TJTHW quantization becomes

Det(Dpyn j[E,v,b]) = 0,for 0 < n',1 < my, and N — co. (29)

This prescription yields excellent, high accuracy, results for the low lying energy states of
many multidimensional quantum systems. Upon obtaining the physical energy, I, one can
then determine very accurate values for the moment ratios Ryp(l) = ﬁ ::((é}}, 1 <1< m,.

To obtain s, 5(0) (and thereby the ., 4(1)’s as well) we can use Eq.{21) divided by
ty,5(0), for p = 0:

1
mabﬂfr,b(o) = 27R7,b(1)- (30)

Since the right hand side is known numerically, one can integrate this equation in the
b-direction, for fixed v, (the moments are appropriately normalized at v = v, and b = 0).
Thus this entire procedure generates the necessary initial missing moment configurations
corresponding to -y = ~,.

The TJHW quantization method works provided « is sufficiently small. This is not too
surprising since quantization is a global, multiscale process, and moments are extensive
(non-local) structures. The smaller the chosen value for ~,, the larger B becomes (for
a specified accuracy for the energy and missing moments). In the case of the quartic
anharmonic oscillator we find that for N = O(40), 8 = .5, and v, = .1, we can predict the
ground state energy to at least ten decimal places for b < O(5).




Conclusion

The preceding analysis (i.e. Eq.(23b,c) and TJHW quantization) works reasonably
well for the quartic anharmonic oscillator ground state. More numerically efficient impli-
mentations are under investigation, together with the extension of the method to the two
dimenisonal problem #,,. A more detailed discussion will appear elsewhere.

The moment-wavelet quantization formalism presented shows that for a large class
of problems, specifically those corresponding to (multidimensional) rational polynomial
potentials, and mother wavelets of the type defined at the outset, one can transform the
Schrodinger equation into an exact set of coupled (partial} differential equations in the
inverse scale and translation variables. Utilization of moment quantization methods then
permit the numerical integration of these coupled equations yielding either the wavelet
transform itself, or pointwise recovery of the (multidimensional) wavefunction and energy.
This process recovers the wavefunction through a multiscale analysis starting from large
{infinite} scale information (vs << O(1)), systematically generating more detailed ‘local
information’ as the inverse scale approaches infinity, v —+ co. This analysis has been firmly
established by Handy and Murenzi within the context of one space dimension quantum
mechanical systems. The extension to two dimensions follows in a similar manner through
the analysis of multidimensional versions of Eqs.(23b,c). The numerical analysis of this is
currently under investigation. The details will be presented elsewhere.
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Uncovering hidden symmetries with directional wavelets

J.-P. Antoine
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It is well-known that the two-dimensional continuous wavelet transform (CWT) is a
powerful tool for detecting various features in a picture or a pattern, as opposed to the
discrete W'T', which is the prime choice for data compression. If the relevant features have a
preferred direction, the tool analysis necessary for detecting them must fulfill two conditions:
(i) One must use the full 2-D CWT, including the rotation parameter, in addition to the usual
translations and dilations; (ii) One must choose a wavelet with some directional selectivity,
such as a Morlet or a Cauchy wavelet. This is standard, for instance, in directional filtering
or edge detection, two classical problems in image processing. In this talk, we describe a
novel application of such directional wavelets, namely the determination of the symmetries
of a pattern, even approximate or local ones.

In order to fix the notations, let us recall first the 2-D CWT, in position and in spatial
frequency space, respectively:

— -

S(.a,0) = a™* / BEP(a " r_p(F — BY)8(F) = a f 2R D ar_o(R)) 5, (1)

where 3,9 € L*(R?, d?Z) and 1 is admissible, which essentially reduces to the familiar zero
mean condition

B =0 = [druE-o (2)

In the sequel we will use a directional wavelet, that is, a wavelet 1 whose Fourler transform
{b\(:’z) has (essential) support in a convex cone in spatial frequency space, with apex at the
origin. In particular, we will use a Cauchy wavelet, since this class is particularly well-suited
for the problem at hand, as shown by various calibration tests [1]. The wavelet we will use
is defined as follows:

~a0), | (B-Eli)t (K@) e he,  —10° < arg(k) < 10°, .
Via- (k) _{ 0, otherwise, (3)

where €419 denote unit vectors with argument £10°, respectively. This particular Cauchy
wavelet, whose supporting cone has an opening angle of ® = 20°, has the same angular
selectivity as the familiar 2-D Morlet wavelet with |ko| ~ 5.5 [1].

We turn now to the symmetry problem. Given a 2-D signal (an object, a pattern,. .. ),
let, S (E, a,8) be its wavelet transform with respect to a directional wavelet. Our main $ool
for analyzing the symmetries of the signal is its scale-angle measure, defined as the positive-
valued, bounded function:

] us(a, 8) = f 225 15(5, a, 0)[2,

which may also be viewed as a partial energy density in the scale and angle variables, that
is, in spatial frequency space.

We begin with a simplified version and eliminate the scale dependence by integrating
over a, thus ending with a function ay of the rotation angle only, called the angular measure



of the object. In general, as() is 27-periodic. But when the analyzed object has rotational
symmetry n, that is, it is invariant under a rotation of angle %;I, then s isin fact %’Uperiodic.
‘This is illustrated on simple geometrical figures, such as a square, a rectangle and a regular
hexagon.

If the object has not only a rotational symmetry, but a combined rotation-dilation sym-
metry, one has to use the full scale-angle measure pg, which is then a doubly-periodic function
of a and 8. This is exemplified on several types of pictures: a “twisted snowflake’, a Penrose
tiling with local 10-fold symmetry, an octagonal dot pattern. The latter is particularly inter-
esting (see the figure). It is invariant under a rotation by 7/4, and under dilation by a factor
1+ /2, as follows from its construction rule, but it has, in addition, two distinct combined
rotation-dilation symmetries, one exact, the other one approximate. The remarkable fact is
that these two additional symmetries were discovered on the graph of the scale-angle mea-
sure, not on the tiling itself! In each case, one gets a semigroup, with seemingly infinitely
many orbits, and some defects in the second case. This example suggests a systematic
wavelet analysis of 2-D lattices, which often show rich geometric and arithmetic properties.
The technigue could also be used for uncovering hidden symmetries of physical objects, such
as quasicrystals or nanotubes, through their X-ray diffraction patterns.
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Analysis of an octagonal tiling: (left) the tiling; (right) the set of local maxima of its angular
measure pig(a, ). The latter shows two symmetries consisting of a rotation by 7/8 combined
with a dilation by +/2cos{n/8), resp. 2cos(n/8). The variables are 8 (in degrees) on the
z-axis and — Ina on the y-axis.
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DARWINIAN EVOLUTION OF PROTEINS

Jean-Loup Risler, Claudine Landés-Devauchelle Alain Hénaut
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Université de Versailles
risler@genetique.uvsq.fr

According to the most recent evaluations based on fossil records, it is esti-
mated that life appeared on earth about 3.5 billions years ago ... only 1 billion
years after the birth of earth itself. Thus, following the Darwinian view on
the evolution of life, all the present day living creatures are descendants of the
primitive bacteria-like, unicellular organisms that populated the earth at that
time. Consequently, it is a nonsense to state that any presently living organism
is more "primitive” than any other one or, stated differently, that any organism
is "more developed” than any other one: all the contemporary living organisms
have the very same age and any bacterium, like any human, is the result of 3.5
billion years of evolution. The bacteria are perfectly well adapted to their own
environments and, in many respects, are much more "robust” than the mam-
malians! However, it is quite true that a human being is more complicated than
a bacterium, which is a different thing. Although the Darwinian ”theory” of
evolution has now gained wide acceptance, there still often remains some sort
of unconscious belief that evolution proceeds towards more complexity and that
the driving force of evolution is the search for perfection (indeed, the driving
force of evolution is natural selection). According to this view, the "tree of life”
is generally drawn like a tree with a root (the primitive bacteria) and a top (the
Man) and many branches holding the leaves of the different species. In fact,
and this is now well documented, the tree of life is a bush with no particular
prominent top and with a great number of dead branches. Let us give some
examples. Horses appeared some 50 My ago in the Americas, and many fossil
records enabled to trace their evolution, in particular the progressive disappear-
ance of all but one of their fingers. Fortunately, some American horses managed
to migrate to Asia and Europe and proliferate there, because at one time they
totally disappeared from the Americas! A dead branch in the bush... Horses re-
appeared in the Americas recently when Cortez invaded Mexico. About 500 My
ago, an extraordinary "explosion” of multicellular organisms took place. The
weli-known ” Burgess fossils” kept the record of animals locking like crustaceans
or arthropodes, but showing some morphological traits totally unshared by mod-
ern animals. One of them, for example, had five eyes! Everything happened as




if evolution became over- imaginative and performed a great number of trial-
and-error experiments. Most of these species have disappeared from the earth.
Some 250 My ago, a massive extinction occured and it is currently estimated
that more than 80 extinct. Another massive -but less important- extinction
occured about 60 My ago, that led among other things to the disparition of the
famous dinosaurs. Think that before being swept from the surface of the earth,
dinosaars had been the kings of the animals for more than 100 million years,
and that Homo sapiens appeared about 200,000 years ago..... Interested readers
will find many such beautiful stories in the books by Stephen Jay Gould. So
far, our knowledge of the evolution of living species has been based solely on
the study of fossils. But we can go somewhat deeper into the biochemical origin
of the evolution of organisms. As everybody knows, all the information that
is necessary to make an organism develop, live and duplicate -or make babies-
is entirely hold into the chromosomes of the cells, the so-called genome. The
chromosomes are huge nucleic acid macromolecules (that can be more than one
millimeter long) built up by only four elementary bricks called the bases. The
human genome contains approximately 3 billions of such bases, while that of a
simpie bacterium amounts to ca. 4-6 miliion bases. A genome can be considered
as a text, the significance of which results from the precise linear order of the
bases along the macromolecule, called the sequence. A mutation is the result of
any modification in this sequence -substitution of a base by another one, inser-
tion or deletion of one or more bases, etc... It is essentially through mutational
events, whatever their precise nature, that evolution proceeds. The cells also
contain important macromolecules called proteins {e.g. muscles, hemoglobin).
The proteins are built up by amino acids. There are 20 different amino acids in
biological proteins, and a typical protein contains about 300 amino acids. The
sequence of a protein -the order of the amino acids- is dictated univocally by
the sequence of the corresponding gene in the genome. Hence a mutation in
a gene will generally result in a mutation in the corresponding protein. The
point is that nowadays, it has become feasible to determine the sequence of
nucleic acids. One can therefore compare the sequences of genes or proteins
having the same function but coming from different organisms. For example,
one can compare the sequences of all the hemogiobins of all the animals. The
basic idea is that all these proteins (in fact all their genes) have a common
ancestor (they are said to be homologous) and that they have independently
accumulated mutations as time passed. Mammalians and birds have diverged
quite a long time ago (their common ancestor lived hundreds of million years
ago) and it is anticipated that the sequences of their respective hemoglobins
will show a great number of differences. On the contrary, humans and chimps
diverged only 5 miilion years ago and their hemoglobins will have very similar
sequences. Hence, by counting the number of differences between homologous
sequences, it is possible to have an idea of the relationships between different
species and to build a ”genealogical tree” or "phylogenic tree” so as to trace
back the path of evolution. Such studies based on sequence comparisons are




the core of an exciting field of research called molecular evolution. Now comes
the time when Alex Grossmann turned to biclogy and when, together with his
colleagues Bruno Torresani and Mathias Holschneider from Marseilles, he could
solve a long-standing problem. Since we are plain simple-minded biologists, we
shall give only the outline of his work. The observed differences between two
homologous sequences are the result of two different phenomena: i} the intrisic
mutability of amino acids, and ii) the time course. Depending on their respec-
tive chemical properties, two amino acids can or can not be easily exchanged for
one another. Hence, If the comparison of two sequences shows that two amino
acids {say A and C) are seldom exchanged for one ancther, this can mean that
1) either A and C can hardly be exchanged or ii) they can be exchanged but the
sequences diverged recently. Here is the problem: so far, it has not be possible
in sequence comparison studies to disentangle the contribution of the intrinsic
mutability of amino acids from that of the time. By comparing two homologous
sequences A and B and counting the numbers of substitutions, one can build a
20x20 transition matrix M{A/B). Its element Mij(A/B) is the probability that,
if the amino acid i is found at one site in sequence A, the amino acid j will
occupy the same position in sequence B. Thus, every comparison {alignment) of
two sequences can be represented by a transition matrix and, therefore, every
alignment determines a point in a 400-dimensional space. Let us now consider
the action of a rate matrix Q. An alignment generated a time t will give riseto a
transition matrix M = etQ. M can be determined experimentally and the prob-
lem is to disentangle the respective influences of t and Q. Suppose that we have
in our hands the sequences of n homologous proteins from n organisms. We can
perform N = n(n-1)/2 pairwise comparisons and build N transition matrices.
For the kth pair of sequences (1 | k j N) coming from the kth pair of species
and assuming that the rate matrix  is the same for all the pairs, we write Mk
= etk or log(Mk) = tk(Q) where tk is the time elapsed since the divergence of
the two species. Hence in the 400- dimensional space, all the points correspond-
ing to Mk will He along the line of multiples of Q and the relative distances of
the points along this line will give the relative divergence times of the differ-
ent species. The method is presently being tested on different sequences from
different families, and the first results are definitely encouraging. They show,
beyond any deubt, that a theoretical physicist can be scientifically original and
productive even in fields such as biology.....
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The wavelet transform has recently received much attention in the "fractal”
community [1-4]. This mathematical microscope is actually well adapted to the large
hierarchy of scales involved in fractal patterns. Increasing the magnification factor provides
a natural way to explore the intricate internal structure of fractals and to resolve local scaling
invariance. Our purpose in this talk, is to report on some interesting and rather successful
application of the wavelet transform to the analysis of the complexity of DNA sequences.

We first provide some background definitions concerning the continuous wavelet
transform [5,6] and its ability to capture the hierarchical distribution of singularities of a
fractal (1D) signal [1-4]. We elaborate on a unified multifractal description of singular
distributions, including measures and functions, based on the wavelet decomposition [7-9].
This new approach relies on the definition of partition functions from the wavelet transform
modulus maxima. We demonstrate that very much like thermodynamic functions, the
generalized fractal dimensions and the singularity spectrum can be readily determined from
the scaling behavior of these partition functions [9]. We show that this method provides a
natural generalization of the classical box-counting and structure function techniques to
fractal functions. We illustrate our theoretical considerations on pedagogical examples
including devil's staircases and fractional Brownian motions [7-9]. We briefly review some
experimental applications to fully developed torbulence data {7] and financial time series
[10].

Then we use the wavelet transform to investigate the fractal scaling properties of
DNA. sequences [11,12]. Mapping nucleotide sequences onto a "DNA walk” [13] produces
fractal landscapes that can be studied quantitatively by applying the wavelet transform
modulus maxima method. By considering analyzing wavelets that make the wavelet
transform microscope blind to "patches” of different nucleotide compositions which are
ubiquitous to genomic sequences, we demonstrate and quantify the existence of long-range
correlations in both the (protein) coding and the non coding regions of the human genome
[14]. Morcover, the fluctuations in the patchy landscapes of DNA walks are found to be
homogeneous with Gaussian statistics. When looking at the introns, one notices some
significant tendancy to the long-range correlation exponent H to increase with the GC
content of the sequence {14]. In particular, a few introns with a low percentage of GC do
not display long-range correlations (H = 1/2) and therefore cannot be distinguished from
actual exons, We show that similar GC content dependent long-range correlations also exist
in exons when undersampling these coding sequences by retaining the third base of each
codon only [14]. This observation seems to corroborate the attractive biological conjecture
that the correlations in coding DNA sequences could be attained through the degencracy of
the genetic code (most of the synonyms are due to change in the third base in the codon).
Finally, we comment about the possible understanding of the origin of the observed long-
range correlations in terms of the nonequilibrium dynamical processes that produce the
"1sochose structure” of the human genome [14].
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Balian-Low Theorem for Landau Levels*
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In this paper we connect the Bailian®-Low? theorem with the dynamics
of an electron in a magnetic field B. When the motion is in the zy-plane
with the magnetic field B in the z-direction, Schrédinger’s equation assumes

the form [the Landau gauge 4 = (0, Be) is chosen]

2 ;2 2 ’ -
Pyt pe)? _ o he |
ot b, y) = Ey(z,y), A = "z (1)

Eq. (1) is written in the zy-representation. For the magnetic field problem

it is convenient to work in the WX-representation according to the transfor-

mation
mA? A2 )
W:Tvy:?{ py+ﬁ$ , Py = mu, = p,
X2 i h
X:E pm+?)\”§y 3 PX:Pyzj\EY (2)

Here W Py denotes the velocity degree of freedom and X Py - the orbit center

degree of freedom. A is the cyclotron radius (as was already used above).

" This paper is a follow-up of the talk presented at the Conference in honor
of Alex Grossmann. It was a pleasure to come to this conference, to present

the talk and to write this paper as well.
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;From Egs. (1) and (2) it follows that the Hamiltonian depends on the
degree of freedom W Py only (it does not depend on the orbit center) The

wave function ¢(W, X) can therefore be chosen as a product function
(W, X) = 7o(W)x(X) (3)

where £ labels the Landau levels. For connecting with the Balian-Low The-
orem we use the magnetic translations which depend on the orbit center
operators X and Py only.®* In particular, the commuting finite magnetic

translations in 2 and y-directions can be written in the following way®

i h 2T
7:(d) = exp [-g(p,,, + Xiy)Nd} = exp(sz&m)

w000 = (1) 152

where N is an integer which is defined by the following rationality condition®

hefe  2mX? .
T BT & (5)

This relation has a simple meaning of the ratio of the elementary fluxon
hefe to the flux of the magnetic field B through a unit cell of area d? Id is
an arbitrary constant®]. As is seen from Eq. (4), the magnetic translations
depend only on the X Py degree of freedom of the orbit center. We can
thercfore use them directly for constructing a von Neumann set for a Landau

level, by replacing x(X) in Eq. (3) by xma(x) in Eq. (4). We get

? 2T .
Xmn(X) = (=1)™" exp(—EPde) exp(i X 771)){(/\) (6)




(From Eq. (3) we then get the von Neumann set for a Landau level

Biran (W, X) = 1e(W ) (X) (7)

The properties of the von Neumann set in Eq. (6) are determined by the
initial function x(X). The Balian-Low theorem states that if the functions
in Eq. (6) are orthogonal for mn # m/m/, then at least one of the uncertainties
AX or APy in the x(X) -state diverges. An example of a normalized X~

function, that leads to an orthogonal von Neumann set in Eq. (6), is

o o X< df2
=y e ®

For the x in Eq. (8), AX = d//12 and APx = o, in agreement with the
Balian-Low theorem.

The condition on ) for an orthogonal von Neumann set [Eq. (6)] was first
formulated in the kg-representation® [See also Ref. 1]. This condition is that

the absolufe value of the kg-function, C(k, q), is constant”
IC(k,q)} = const, (9)

where (@ is an arbitrary constant). Ok, q) and x(X) are related in the

following way*

OOk, q) = (51" 3 e x(g — na) (10)

CW(kg)| =

It is easy to check that the function x(X) in Eq. (8) leads to
const. A normalized kg-function that satisfies Eq. (9) is necessarily a pure

phase factor

Clk,q) = jﬂ; exp{isg(k, q)] (11)
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where @(k, ¢) is real. In the X-representation the condition given by Eq. (9)
[or Eq. (11)] assumes the following form [Eq. (10) is used]

CLZ,\ — na)x(X ~ na — fa) = dg (12)

Again it is easy to check that the function in Eq. (8) with d = « satisfies
Eq. (12).

Now, when x(X) satisfies the condition given by Eq. (9) or (12), the set
of functions in Eq. {16) for each Landau level ¢ is orthogonal. By using the
canonical transformation for going from WX to zy-coordinates (see Ref. 8)

we get the orthonormal von Neumann set e, (2, y) in the zy-representation

Yemn(2,y) = (—1)™™exp (’\ZyNa’n) Pe(z + Ndn,y + dm) (13)

where the function ¥.(z, y) in Eq. (13) can be given the two alternative forms

Yoz, y) exp(iyk)ye(kA: + 2) Py (k)dk

Vi

exp | —~3 t z-Y :
< P Jeotenn () xe. 09
VT

and where £, and F, are the Fourier transforms of y and « respectively
(v and x are the functions in Eq. (3)). It should be pointed out that the
condition given by E¢q. (9) [or Eq. (12)] is necessary and sufficient for the von
Neumann set [Egs. (7) or {14)] for each Laudau level £ to be orthogonal.
By using the results for the single degree of freedom X Py (Py = & LY,
the Balian-Low theorem implies that the coordinates X and Y of the orbit
center in the state ¥, {Eq. (14)] for a magnetic field cannot both be well

localized, or in a more precise language, at least one of the two uncertainties




AX or AY in the -state [Eq. (14)] diverges. It is interesting $o point that

for obtaining the result there is no need to go to the configuration plane zy.
The coordinates 2 and y of the electron in & magnetic field are related to the
operators WPy and X Py (Px = A—f;Y) in Eq. (2), one has

/\2
r=W-Y, y:X—?Pw' (15)

Bearing in mind that the uncertainties AW and APy are finite in the state
given by Eq. (3) |or alternatively, by Eq. (14)], we come to the conclusion
[by using Eq. (15)] that at least one of the uncertainties Az or Ay diverges
in the state 1z, y) of Eq. (14). This also means that if orthongonality is
required on von Neumann type functions [see Eq. (7)] then the electron in a
magnetic field cannot be well localized in both the z and y- directions.

It is of interest to compare the consequences of the Balian-Low theorem
with the known resulis for the Wannier function in a magnetic field.®!° In
Ref. 9 it was shown that Wannier functions for a Bloch electron in the zy-
plane, with the magnetic field B perpendicular to the plane, cannot fall off
at infinity faster than =2 (r? = 2% + y?). In Ref. 10 Wannier functions with
a 7% fall off were actually constructed for such a two-dimensional problem
where only a magnetic field is present. One can see that the Balian-Low
theorem for Landau levels is in good agreement with the results of Refs. 9
and 10. In order to see it, we notice that as a consequence of the Balian-
Low theoremn the quantity (z® +y*) = (r*) diverges, (the triangular brackets
denote the expectation value) because either (z?) or (y?) has to diverge. This
divergence of (r?} also follows when the function falls off as r=2 at infinity,

like in Ref. 10.



It should, however, be pointed out that the Balian-Low theorem is com-
pletely general in nature. For example, when x(X) is given by Eq. (8), then

wo(z,y) in Eq. (14) assumes the form (for the lowest Landau level, £ = 0)

_ 1 3 ixyy (4?2 P (y — 2)?
Yol@y) = (47?342,\6) P (“ » ) /_d/zeXP [ﬁ‘” ~ w4 (9)

In deriving Eq. (16), use was made of the second line in Eq. (14). For large

Y, Eq. (16) becomes

1
d? \1 izy oyt . [ xd xd
¢°($=y>”(m),“l° (“ﬁ""ﬁz wlow)/aae) D

This function has a ;1: fail off in the a-direction and is Gaussian in the y-
direction.

Finally, it can be directly checked that the von Newmann set in Eq. (13)
is orthonormal, when ¥¢(z,y) is given by Tq. (14). In the particular case of
the localized function in Eq. (16), the explicit orthonormal von Neumann set

is [See Eq. (17)]:

—1)mn . . p ;
¢0mn($? y) = Ezgg;&%j\"g)"}" eXp (_%&J - -ﬁ-:ﬂ??’td} f-[{uj? exp [ﬁ(T + nNd)z—
— kel ] (18)

In conclusion, the Balian-Low theorem was applied to the motion of an
electron in the zy-plane, with a magnetic field perpendicular to this plane.
By using this theorem it was shown that orthonormality on a von Neumann
lattice and localizability are incompatible features. In particular, it is shown
that even for the best localized eigenfunctions for the Landai levels the un-

certainties Az and Ay can never.both be made finite. On a qualitative level,




incompatibility of orthonormality and localizability is not an unexpected fea-

ture for wave functions in quantum mechanics!!, In this paper we derive for
the first time a precise quantitative result for Landau level wave functions in
a magnetic field. Although the proof was carried out in the Landau gauge,
the result that Az and Ay can never both be finite in a Landau level state
Po(z,y) [See Eq. (14)], for any £, is gauge independent. This is seen from
the expression of the wave [unction in the WX -representation [Eq. (7)]. The
part of the wave function xma(X) in Eq. {7) that leads to the von Neumann
set does not depend on the gauge because the X-coordinate does not appear
in the Hamiltonian of the problem [Eq. (1)]. |

As is well known, in the symmetric gauge the wave function for any Lan-
dau level can be chosen well localized in both z and y-directions'®. However,
for such a well localized wave function, the von-Neumann set in Eq. (13) will
not be orthogonal®
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" To Alex-4A teacher and friend

The talk gave a historical and mathematical review of the Hall effect. It
started in the previous century with an observation of Maxwell which lead
Hall, a graduate student at Johns Hopkins, to his classical experiment which
proved Maxwell wrong. The next spectacular development took place in
1980: K. von Klitzing found that, under appropriate conditions, the Hall
conductance of rather poorly define materials, is quantized to a great pre-
ciston. Such measurements now serve as an accurate determination of the
fundamental constant ¢*/h. T outlined two complementary theoretical frame-
works, both of geometric character, that address the precise quantization
that occurs in the integral quantum Hall effect. One associates the Hall
conductance with a Chern number and another associates it with an index
of a Fredholm operator. The Chern number point of view was started by
D. Thouless and collaborators [4]. The Index approach was started by J.
Bellissard [2]. My review was based on a series of works on the subject I
have carried out in collaboration mainly with R. Seiler [3]. A review of the
subject from such a point of view is given in {1] which can be downloaded
from http://physics.technion.ac.il/~avron/B3.ps.gz
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Formules de traces localest

T. Paul®

On se propose dans cette courte note de montrer comment le concept d’état cohérent
peut étre utilisé comme filtre spectral pour des opérateurs de Schrodinger, faisant ainsi le
lien entre deux des sujets les plus importants traites jusqu’icl par Alex Grossmann.

Un état cohérent est un vecteur de 'espace de Hilbert qui "ressemble” beaucoup & un
point de 'espace de phases: il permet en effet, par action d’un hamiltonien quantique
d’évaluer P'énergie en un point,

(1) -I:I",l)p,q o~ h’(p'i (1’)"!/)]?)‘1

et il ”se souvient”, lors de son évolution {(gquantique), de lévolution classique ainsi que de
I’action lagrangienne associée,

3 S L(t)

(2) {'fi“ﬁ_’(/);n,(j ~ (-:1 " 't/)]"(f'}l'f(t)

Ici (p(t}, q(t)) est le flot classique et £(#) := fi{pg — I(p, q)ds est ’action lagrangienne.

En fait les relations d’incertitude de Heisenberg le rendent sensible non seulement an
flot mais & toutes ses dérivées (par rapport aux conditions initiales). Clest ainsi que dés
Pordre dominant en /i la "forme” de I'état cohérent (son "vide” en théorie des champs)
se transporte lors de I'évolution quantique par nn opérateur unitaire "gnidé” par le flot
linéarisé autour de la trajectoire.

Gréce a lewr localisation (autonr d'un point) en espace de phases, les états cohérents
permettent de déterminer la partie dit spectre d'un opératenr de Schrédinger correspondant
a une région de Pespace de phases. Soyons plus précis.

A tout fonction test a, par exemple (mais pas nécessairement) une gaussienne, et tout
fonction "cut-off” p (égale a 1 autour de 0 et & support compact) on associe la famille de
vecteurs indicée par R*"

A ; . . T T —
(3) T’b?:u q)(""’) = ple —q) (27777')_% gl =il 2 givefh ——\/—fT]
’ ]
Soit H = mﬁ2A+V(:1:), V lisse, un opératenr de Schrédinger sur R™ (ou sur une variété sans

bord}, de spectre (discret) {£;} et fonctions propres ¢;. La formule de traces de Gutawiller
exprime la densité spectrale de H convolée avec une fonction test ¢ a transformée de Fourier

{Exposé a la conférence ”Perpectives en Physicqne Mathéinaticque”, Marseitle Juillet 1997
ECEREMADE, URA 749 CNRS, Université Paris-Dauphine, Place de Latire de Tassigny, 75775 Paris
Cedex 16



a support compact. Si on veut localiser en espace de phases on est amené a considérer la
quantité suivante:

E' _ E 1 2
@ S0 (22 ) [ (W)
La localisation de ¢ assure que I'on "regarde” le spectre autowr de I’énergie F et la locali-
sation de ¥f, ) ne retient dans cette somme que les valeurs propres dont la fonction propre
correspondante est localisée en (p, ¢).
Le premier résultat est un développement asymptotiuqe lorsque /i — 0 de la forme:

Ei—FE : 2 - —n+l/2+k

(%) S0 (ZE) | o) o~ Sl

k=0

On peut de plus exprimer les premiers coéfficients en fonction des caractéristiques de sta-
bilité ou d’instabilité linéaire de ’éventuelle trajectoive périodique v passant par (g, p).
Dans tous les cas on exhibe ainsi une partie "linéaire” de "spectre”, rélle si v est stable et
compleze si vy est instable. Plus précisement on a (dans la cas n = 2), si v est linéairement
stable:

L, - F 9 b 1 Sy nLifa
O ¢ () 1 o) P~ 5 | (2mi+ (4 504 5L 4 o) | 17t

iedieN o

Iei T, Sy et o sont les période, action et indice de Maslov de 4. De plus # est 'angle
de application de Poincaré. Si v est instable on a une formule presque identique mais

"complexe”:
E; ~ E . cometiy {1 . : 1 S. o
e (Mmj - ) | (9, i) P~ 30 aptiomet® (T(%J VL D+ S %)) z
¥

jed el
(7)

ol p est I'exposant de Liapounov de v et wt/~ sont les parties "Hardy” et "anti-Iardy”

de .
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Abstract

Starting from a convolutive time evolution we sketch a construction
of a unitary one.

1 Introduction

In this note we consider linear, non-unitary time evolutions in a separable
Hilbert space that allow a unitary extension in a larger space. This situation
has been studied extensively for dissipative time evolutions where unitary
“dilations” have been constructed [1]. Thus let A be a dissipative operator
in the Hilbert space H , generating the time evolution

V(t) = exp{At]. (1)

*Electronic adress: tip@amolf.nl T



Then there is a larger Hilbert space K, a projector P, projecting K upon X
and a unitary time evolution U(¢) on K, such that

V(t) = PU(t)P. (2)

Here we address a similar problem that arises within the context of Maxwell’s
equations for lossy, linear dielectric systems. There the displacement D is
related to the electric field E by the relation

D(x,t) = E(x,t) + /t dsy(x,t — s)E(x, s), (3)
0

which contains a convolutive term. Since dielectric systems have recently
become jmportant in connection with photonic crystals (spatially periodic
dielectrics) {2], it is convenient to extend, if possible, the convolutive time
evolution by a unitary one in a larger space. Once a unitary time evolution is
available, a canonical setup and quantization of the system offers no further
problems [3]. This is important for a description of atomic decay and the
production of X-ray radiation by fast electrons travelling through a dielectric,
see [4].

In order to understand how convolutive time evolutions appear in physical
processes, consider the situation where part of the system is “integrated out”.
Thus

Dap(t) = —iHp(t) ()
in some linear space H, is rewritten as (P and @ = 1 — P are complementary
projectors, @ (0) = 0)

PY(t) = —iPHPY(t) —iPHQp(L),
BQ(E) = —iQHPY(E) — iQHQU(). (5)

Solving the second and substituting into the first results in the convolutive
equation

8, Pp(t) = —iPHP(t) — /OtdsPHQexp[wiQHQ(t — 5)JQHPyY(s). (6)

This expression is the starting point for the construction of generalized master
equations in statistical mechanics, where ¢ is a density operator and # the
Liouville operator, i.e., the commutator with the Hamiltonian. In quantum
theory %) is the state vector and H the Hamiltonian. This procedure suggests
following the inverse route, i.e., reconstructing a unitary time evolution from
(6). Below we show how this is done. .




2 Reconstruction of a unitary time evolution

Let H = L*(RY,dx) and H a self-adjoint operator acting in H. Consider the
equation of motion for f(t) &€ H,
t
0f(t) = =i 1(D) ~ [ dsW (2= 5)f(s). (7)
0

Note that only ¢ > 0 appears, so we can consider W(]¢|) without penalty.
Suppose it has a Fourier transform

W(x, [t]) = /Wf(x,dw)exp[—iwt}, (8)

with M (x,dw) Z 0 an x-dependent measure. In physical applications W

is real, so M(x, —dw) = M(x,dw). Usually also M(x,dw) = g(x}m(dw) in

applications. Now let fi(¢) == f(¢} and fy(t,w) be a second function with the
property f(0,w) == 0. Consider the set

Qi) = I~ [ Mlx,d)foty) 9)

8tf2(t,w) = m?:fx)fg(t,&)) + fl(t) (10)

Solving the second and substituting into the first then gives back (7) and
we have removed the convolution at the price of introducing f,. With F' =

( ;; ) we have

where

OF = —~iKF, (11)

7 w

K, = ( H g)’Kl _ ((3 i [ M (x, dw)... ) (1)

K = ( H i [ M(x, do)... ) = Ky + K1,

0 ¢
Let us now check whether these formal manipulations can be made precise.

Thus let K = Ho H, H = LE®RY dxM(x,dw)), f € H, f» € H, s0
Fek.

Proposition: Let M (x,R) <c < co. Then K is self-adjoint in .



Proof: Obviously K| is symmetric on a suitable dense domain. Moreover it
is bounded. We have

HIQFHQ:/dx{|/M(x,dw)fg(x,w)lz+fM(x, dw)| f1(x)|*},

S0, since

| f M(x, dw) fs(x, w)| < [ / M (x, dw).1}"?] / M(x, dw")| fa(x, ) P12,
we obtain
| [ M) fae ) < ¢ [ M) ot )P
50
HGF? < cf|F|P.
‘Thus K is bounded, self-adjoint and K is self-adjoint with domain D(K,).M

Corollary: Let U(t) = exp[—iKt| and P the projector upon H, i.e., P = H.
Then f(t) = PU{t}Pf(0).

We see that, as in the dilation case (2), we retrieve the original motion
by projecting back upon H.

3 Discussion

Above we sketched a special case. Obviously we can replace H by a dis-
sipative operator, thus making K dissipative as well. Actually dissipative
structures sometimes appear in physical applications by making the approx-
imation

/tdSW(x,t —s)f(s) = /t dsW(x, s) f(t ~ s)

0

t v
~ / s (x, 8) [ (1) ~ / dsW (x, ) f(£) = V £ (2),

0 0
which makes sense if W (x, s) is a rapidly decaying function of s. From this
we can conclude that in dissipative time evolutions details of the original
structure are lost that are still present in a convolutive situation. A notorious
case is the quantization of the damped harmonic oscillator [5].



Depending upon the precise structure of M, the procedure can be ex-
tended to more general Hilbert spaces H. As discussed in {4}, further prop-
erties of M are required in the Maxwell case . In that reference some appli-
cations can also be found.
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REGGE POLES 38 YEARS LATER

André MARTIN
CERN and Annecy

Sorry: I do not think that Alex ever worked on Regge poles, but I believe he worked a lot
on the Schrédinger equation and Regge poles are part of it. In 1959, Tullio Regge had the idea
to make £, the orbital angular momentum, non-integer and even complex in the radial reduced

Schridinger equation [1]
d?  L(l+1)

dv? r?
Then resonances and bound states become poles in the complex ¢ plane. The purpose of Regge
was to study the asymptotic behaviour of the scattering amplitude for unphysical cos8 (¢
scattering angle) going to infinity. This was controlled by the Regge pole most to the right for
potentials of the type of Yukawa. Explicit calculations [2] showed that for that kind of potential
Regge poles move in a compact region when energy runs from - infinity to + infinity.

+V{r)—En, )| Upe=0.

Shortly afterwards, it was proposed, in particular by Chew and Frautschi [3], to exchange
the role of energy and angle and to assume that high energy scattering amplitudes, for finite
square of the momentum transfer ¢ were dominated by the exchange of Regge poles. They
postulated that the Regge trajectories (the position of the pole),

J = alt)

were linear in ¢. There did not seem to be any good reason for this except simplicity. However,
with the years, there was growing evidence that Regge trajectories were linear, like the p
trajectory linear for negative ¢ [4] (scattering) and positive ¢t (resonances) [5].

Around 1967 the idea of duality (equivalence of sum of resonances and sum of exchanged
Regge poles) appeared {6] and after various episodes {7}, Veneziano [8] came out with a formula
which had explicit duality and strictly linear trajectories, but at the fundamental level, there
was no understanding of this.

The miracle is that if mesons are quark-antiquark pairs, and baryons 3-quark colourless
systems, interacting by some sort of relativistic potential behaving like a string at large dis-
tances, we understand now that Regge trajectories are linear if we use relativistic kinematics




[8]. Furthermore one can prove that, at large angular momentum, the preferred configuration
of a 3-quark system is a quark-diquark. The diquark, which must be in the representation 3 of
the colour group, is exactly equivalent to an antiquark, and therefore we have an understanding
of the fact that baryons and mesons have parallel trajectories {9],{10}, so that in the end, Chew
and Frautschi were right, ever if nobody understands why they had this intuition!

Even if we know that the fundamental theory is QCD, we shall have to live with Regge poles
which dominate fixed momentum transfer high energy scattering. They are a tool, essential in
many places, like for instance to control the phase of the Ky, — Kyg, regeneration amplitude
[11] in matter, which is needed in at least one of the CP and CPT major experiments.
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Argaments de syméirie
en faveur d'une réinterprétation d'une gravure de Diirer (1471-1528),
celle connue sous le nom de Melencolia 1

Henn Bacry

Deux gravures sur cuivre marquent {'année 1514: Saint Jérdme dans sa cellule et
MELENCOLIA 1. Tous les critiques s'accordent pour les considérer comme des chefs-
d'ceuvre et, si on les associe, c'est parce que Diirer [ui-méme les appariaient; en effet, if
ne les offrait jamais 'une sans 'autre.

La plupart des spécialistes de Diirer donne la mélancolie comme théme de la
gravure, alors que Diirer n'a pas donné le mot méluncolie comme titre. Il faudrait
expliquer pourquoi Diirer a placé le mot Melencoliu dans fe ciel. Le numéro I qui
l'accompagne reste mystérieux. D'autre part, les éléments usuellement associés 2 la
mélancolie n'apparaissent pas dans la gravure.

Dans le Saint JérGme apparait le caractére exemplaire de [a perspective. A
l'opposé, la perspective ne semble jouer qu'un rdle tout a fait secondaire dans &
Mélancolie. Dans cette gravure, un point de fuite se déduit sans difficulté en prolongeant
le fléau de Ia balance et les lignes des corniches du batiment qui [ui sont parailéles. Le
point de convergence se situe, comme 1l se doit, sur {a ligne d'horizon, au-dessous du ¢
du mot MELENCOLJIA.. Ou constate que l'échelle, elle est dirangement adossée en biais.
Elle semble tout droit sortie d'un dessin d'Escher. :

Une construction simple permet de déterminer la forme exacte de cette échelle en
la projetant horizontalement sur le mur sur lequel elle s'appuie, 4 {'aide du point de fuite
mentionné; on est obligé de lui attribuer une forme inadmissible, les échelons étant bien
plus écartés dans la partie inférieure que dans la partie supérieure (voir la figure
correspondante). II est donc impossible de la considérer comme une échelle ordinaire, car
Diirer, connaissant parfaitement les régles de la perspective, a certainement voulu attirer
notre attention sur son caractére étrange.

On se trouve devant l'obligation d'identifier 1'échelle avec la seule échelle
extraordinaire qui apparaisse dans le texte sacré que traduit saint Jérdme, & savoir
l'échelle de Jucob. Rappelons le texte de ce réve de Jacob (Genése, XXVIII, 12-13):1
eut un réve quie voici: une échelle était dressée sur lu terre. Son sommet atteignait le ciel.
Et des messagers d'Elohim montaient et descendaient le long de cette échelle. Et voici que
YHVH se tenait au-dessus delle et disait: Je YHVH, I'Elohim d'Abraham, ton pére, e
['Elohim d'Isaac. Nous avons pris soin, dans cette traduction, de distinguer entre les
deux noms de la divinité qui apparaissent dans la Bible: Elohim et YHVH.

Le symbolisme de l'échelle est le suivant. L'esprit de ['homme peut gravir et
descendre les degrés de U'échelle et démontrer ainsi qu'elle relie la terre au ciel, ofi siége
Elohim. 1.a terre est d'ailleurs nommée en premier. Cependant YHVH se tient AU-
DESSUS de I'échelle. Ne veut-on pas souligner ici que, contrairement a Elokim, YHVH
est inaccessible? Un autre élément va nous conforter dans notre interprétation. Selon
Maimonide!, le nombre de barreaux est de quatre, certains, dit-il, en mentionnent sept.
Fallait-il dessiner guatre ou sept barreaux pour I'échelle? Curieusement, Diirer semble
avoir sugeéré quatre barreaux et indiqué qu'tl pourrait y en avoir sept, puisque trois
d'entre eux n'apparaissent qu'a moitié.

S'arréter au ciel, c'est atteindre la banderole MELENCOLIA I, le premier stade de
la divinité (Elohim). Il faut voir au-dela de ce premier stade, dépasser 1'état de mélancolie.
Ce n'est rien d'autre que ce que Malmonide écrit: En effet, fous les hommes alors, &
l'exception de quelques-uns, ignoraient ['existence de YHVH, et leur plus haute
méditartion N'ALLAIT PAS AU-DELA DE LA SPHERE CELESTE, DE SES FORCES ET DISES
E‘FFEYLS‘.Z Ajoutons que Le Guide est un best seller de la Renaissance et que Diirer est un

umaniste.

I'Moise Matmomide, Le guide des égarés, 11, 11, Verdier, 1979,
2(),0. it 1, 63, Notons que fe traducteur a remplacé YHVH par Dicu, ce qui rend le texte inintelligible,
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Proiection horizontale de 'dchelle sur le mur d'appui
{on suppose |'échelle de longuenur minimale)

Deux anomalies:
1) L'espacement irrégulier des barreaux
2) L'échelle repose sur un plan situé au-dessous de la marche
P r L H
SiT'on allonge 'échelle, la premiére anomalie s'atténue,
mais la seconde s'accentue considérablement



Alex Grossmann features large in my life, as he does in so many other
lives, and T am grateful for the many insights I gained from him, in science
as well as in non scientific matters. If I was sure that my students got from
me even half the amount of wisdom that I gained from Alex, I would be a
happy advisor. Thank you, Alex, for everything.

REGULARITY OF IRREGULAR SUBDIVISION IN 1D

INGRID DAUBECHIES!

May 1997

ABSTRACT. This talk presents joint work with Igor Guskov {Prince-
ton University) and Wim Sweldens (Bell Laboratories). We study the
smoothness of the limit function for one dimensicnal unequally spaced
interpolating subdivision schemes. The new grid points introduced at
every level can lie in irregularly spaced locations between old, adjacent
grid points and not only midway as is usuaily the case. For the natural
generalization of the four point scheme introduced by Dubuc and Dyn,
Levin, and Gregory, we show that, under some geometric restrictions,
the Hmit function is always C'; under slightly stronger restrictions we
show that the limit function is almost C%, the same regularity as in the
regularly spaced case.

Subdivision is a powerful mechanism for the construction of smooth curves
and surfaces., The main idea behind subdivision is to iterate upsampling
and local averaging to build complex geometrical shapes. The following is a
typical subdivision scheme, used to construct interpolating curves. In this
four-point scheme [1, 6], one constructs a real function fon R , starting
from the pre-assigned (but arbitrary) values f(n) to be taken by f at the
integers, via a simple iterative procedure: first, the valve f(k + %) of f at
each odd multiple of 1/2 is computed by cubic interpolation from its two
left neighbors f(k — 1), f(k) and its two right neighbors f(k+1), f(k+ 2}
next, the same procedure is repeated to compute the values of f at the odd
multiples of 1/4, and so on, "filling in” the graph of f. The limiting func-
tion for this subdivision scheme is “almost C'2”; more precisely it is C?, and
|f/(z 4 8) - f{2)] < Clsup,e w | F(n)]lt] lloglt]]. I arbitrary points (T, Ya)
in the plane are given, this scheme can be used to construct an interpolating
curve by taking f(n) = 2, g(r) = yn, and finding the corresponding limit
functions f and g; the map ¢ = {f{t), g(¢)) then parameterizes the interpo-
lating curve. Originally subdivision schemes were studied in the context of
corner cutting [7, 10] as well as for building piecewise polynomial (or spline}

tProgram for Applied and Computational Mathematics, PrincetonUniversity, Prince-
ton NJ 08544.
ingrid@math.princeton.edu.




curves [11, 8, 9]. Later subdivision was studied independently of spline func-
tions [1, 6, 2, 3, 4, 5]. Around the same time it was noted that subdivision
fits into the framework of wavelets and multiresolution analysis [12, 13].

Smoothness of spline functions follows from simple algebraic conditions
on the polynomial segments at the knots. However, when the limit function
of a subdivision scheme is not a spline, convergence and smoothness are
usually harder to prove. Various approaches have been explored to find
the Holder exponent of the limit function for a general subdivision scheme
(6, 1, 2, 15, 16, 17, 18, 19, 3, 20] or to determine its Sobolev class {21, 22];
all these results are concerned with a regular {or sometimes called uniform)
grid, i.e, at each stage new grid points are introduced in the middle of two old
grid points. The most common tools used are the commutation formula (by
which the order of the subdivision can be reduced}, the Fourier transform,
and spectral analysis.

In the spline context, knot insertion algorithms allowed for splines with
non-equally spaced knots rom very early on. This extra flexibility is crucial
in developing algorithms for computer aided geometric design, see e.g. [23].
Later a global subdivision scheme for non-uniform splines was introduced
in {24]. Again smoothness results are refatively easy given that the analytic
form of the limit function is known.

Only recently have people started working on subdivision for non-equally
spaced knots. Here we distinguish two settings. The semi-regufar case,
where the original samples are non-equally spaced, buf the subdivision
scheme still introduces new grid points midway between old ones, and the
irregular case, were new grid points need not be in the middle between old
ones even ad infinitum. For example, the family of Lagrange interpolating
schemes [25] of which the four point described above scheme is the cubic
case, can easily be generalized to both the semi-regular case [26, 27] and the
irregular case [28].

Almost all work on smoothness for non-equally spaced grids concerns
the semi-regular case; the subdivision scheme becomes spatially variant, so
that the Fourier transform can no longer be used in a simple way. On the
other hand, at very fine scales, the grids consist of long concatenated finite
stretches of equispaced points, with a sudden transition in spacing distance
at the original data points. One can then combine results from the uniformly
spaced case with the spectral analysis of a matrix that characterizes the be-
havior through scale of the scheme near the transition points, exploiting the
stationarity through scale of the scheme near those points. In [26] Warren
shows that the four point interpolating scheme in the semi-regular case stiil
yields an C! “almost” C? function. Several results have been obtained in
the higher dimensional semi-regular setting. The problem is then harder
because the topology can be irregular as well. We refer to [29, 27, 30] for
more details.

In the irregular case the subdivision scheme becomes both spatially vari-
ant and non-stationary, meaning that near every point the weights used for




interpolation can change from scale to scale. Smoothness results are then
not, straightforward; because the subdivision is spatially variant the Fourjer
transform can no longer be used and because it is non-stationary no simple
matrix spectral analysis can help. In {14} we study the regularity of limit
functions of subdivision in the irregular (ad infinitum) one dimensional case.
We show that the commutation formula still holds in the irregular case and
use it as the main tool in our analysis. In particular, if an interpolating
subdivision scheme preserves polynomials up to a certain order (that is, if
the data happen to be samples, at the irregularly spaced coarse grid points,
of a polynomial, then the subdivision scheme will produce the correct poly-
romial values at every finer scale), then we can define "derived” schemes
that preserve lower order polynomials only, but that are simpler to analyze.
For the cubic four-point scheme, we can use up to four such reduction steps;
after the fourth reduction, the resulting subdivision scheme is no longer
convergent, but we can control the rate of its exponential growth through
scale, and this helps us prove smoothness for the original, more complicated
scheme. For example, with a very mild condition on the non-uniformity of
the grid, the four point scheme converges to a C? function in the irregu-
lar case; we also show how the irregularity of the grid affects the fractional
smoothness exponent. In fact, with a more restrictive condition on the ir-
regular grid, the four point scheme actually converges to a C'27° function, so
that we obtain the same regularity as in the regular case. This holds under
remarkably general conditions. For instance, let us start from arbitrary (but
uniformly bounded) function values at irregularly spaced points such that
the successive spacings are bounded uniformly, and bounded below away
from zero. Now choose the “new” points at every level under the following
fairly weak restriction. Every time you introduce a new point between two
old points, it splits the interval between the two old points into two subinter-
vals; suppose that the ratio of the lengths of the left and right subintervals
always lies between .5 and 2. (This still allows for fairly crazy subdivisions;
if the ratio is always .5, for instance, then the ratio of the subintervals on
both sides of a coarse grid point grows exponentially with the number of
scales.) For all such cases, the cubic four-point scheme still leads to a fimit
function that is “almost” C?. The proof of this result is fairly technical, and
we refer to [14] for all the details. It is interesting that even for the regular
case, our approach leads to a proof that is different from earlier proofs, and
that is conceptually very simple.

We conclude this summary with a short discussion of why one should even
care about the irregular setting. Is not the semi-regular setting sufficient?
The user provides the coarse level grid points and after that the subdivision
might as well use the midpoints to synthesize a curve. In this setup, indeed,
the semi-regular setting is sufficient to generate smooth functions, although,
to have more control over the geometric shape of a curve a designer may
want to insert new points at arbitrary locations independent of the under-
lying parameterization. There is another framework, however, in which the




irregular setting comes up naturally, namely in the case of compression of or
multiresolution analysis for irregular samples. Here the user provides data,
sampled on a closely spaced but irregular grid, which we can think of as the
“finest” level grid. Resampling onto a regular grid is typically costly and
may generate unwanted artifacts. In [28] it is shown how to then build a
multiresolution analysis and an associated wavelet transform on the origi-
nal grid. The main idea is to downsample the original grid and introduce
spatially variant filter banks using the lifting scheme. Once the multiresolu-
tion is defined, wavelet based algorithms such as compression and denoising,
familiar from the regular case, can be carried out in the same way in the ir-
regular setting. The wavelet basis functions from the coarsest level are now
generated with a subdivision scheme where the new points are no longer
midpoints but are dictated by the finest level grid on which the data was
sampled. They are no longer translates and dilates of one fixed function, but
form an instance of so-called “second generation wavelets” [31]. One could
now use the semi-regular setting to argue that using midpoints beyond the
finest level leads to a smooth limit function. However, in a practical setting
one often cannot afford or one does not care to synthesize functions on lev-
els finer than the original finest level. Instead all processing is done on the
original grid or the coarser grids. Given that the finest and coarsest level
can be arbitrarily far apart, the irregular setting then becomes the correct
model.

REFERENCES

[1} N.Dyn, D. Levin, and J. Gregory. A 4-point interpolatory subdivision scheme for
curve design. Comput. Aided Geom. Des., 4:257-268, 1987,

{2] G. Deslauriers and S. Dubuc. Interpolation dyadique. In Fractals, dimensions non
endiéres el applications, pages 44-55. Masson, Paris, 1987,

(3] A. 8. Cavaretta, W, Dahmen, and C. A. Micchelli. Stationary subdivision. Memairs
Amer. Math. Soc., 93(453), 1991.

[4] A.S. Cavaretta and C.A. Micchelli. Computing surfaces invariant under subdivision.
Computer Aided Geomelric Design, 4(4):321-328, 1987.

[5] A. S. Cavaretta and C. A. Micchelli. The design of curves and surfaces by subdivi-
sion algorithms. In T. Lyche and [.. L. Schumaker, editors, Mathematical Aspects of
Computer Aided Geometric Design. Academic Press, Tampa, 1089

{6] 8. Dubuc. Interpolation through an iterative scheme. J. Math. Anal. Appl., 114:185-
204, 1986.

[7] G. de Rham. Sur une courbe plane. J. Math, Pures Appl., 39:25-42, 1956.

(8] J. M. Lane and R. F. Riesenfeld. A theoretical development for the computer genera-
tion of piecewise polynomial surfaces. J/EEE Trans. Patt. Anal. Mach. Intell., (1):35-
46, 1980.

(9] C. De Boor. A practical guide to splines. Number 27 in Applied mathematical Sci-
ences. Springer, New York, 1978.

[10] G. Chaikin. Anr algorithm for high speed curve generation. Comp. Graphics Image
Process., 3:346-349, 1974.

(i1] F. de Casteljau. Outillages méthodes caicul. André Citroén Automobiles SA, Paris,
1959,

[12] S. . Mallat. Multiresolution approximations and wavelet orthonormal bases of
L*(R). Trans. Amer. Math. Soc., 315{1}:69-87, 1989,



13
(14
[15]
[

(17]

[18]

{19]
{20]

{21]

I. Daubechies. Orthonoermal bases of compactly supported wavelets. Comm. Pure
Appl. Math., 41:908-996, 1988,

[. Daubechies, 1. Guskov, and W. Sweldens. Regularity of Irregular Subdivision. Sub-
mitted to Constructive Approximation, 1997.

C. A. Micchelli and H. Prautzsch. Computing surfaces invariant under subdivision.
Computer Aided Geometric Design, 4(4):321-328, 1987

I. Daubechies and J. C. Lagarias. Two-scale difference equations i. Existence and
global regularity of solutions. STAM J. Math. Anal., 22(5):1388-1410, 1991,

I. Daubechies and J. C. Lagarias. Two-scale difference equations 1. Local regularity,
infinite products of matrices and fractals. STAM J. Math. Aneal., 23(4):1031-1078,
1592,

N. Dyn, D. Levin, and C. A, Micchelli. Using parameters to increase smoothness of
curves and surfaces generated by subdivision. Comput. Aided Geom. Des., 7:129-140,
1990.

N. Dyn, J. Gregory, and D. Levin. Analysis of uniform binary subdivision schemes
for curve design. Constr. Approz., 7:127-147, 1981,

Q. Rioul. Simple regularity criteria for subdivision schemes. STAM J. Math. Anal.,
23(6):1544-1576, 1992.

I.F. Villemoes. Wavelet analysis of refinement eqguations. SIAM J. Math. anal,
25(5):1433-1460, 1994. .

T. Eirola. Sobolev characterization of solutions of dilation equations. STAM J. Math.
Anal., 23(4):1015-1030, 1992,

A. R. Forrest. The twisted cubic curve: A computer-aided geometric design approach.
Computer-Aided Design, 12:165-172, 1980.

R. Qu and J. Gregory. A subdivisicn algorithm for non-uniform b-splines. In Approz-
imation Theory, Spline Functions and Applications, NATQ ASI Series C: Mathemat-
ical and Physical Sciences 356, pages 423-436, 1992,

G. Deslauriers and 8. Dubuc. Symmetric iterative interpolation process. Constr. Ap-
proz., 5(1):49-68, 1989,

J. Warren. Binary subdivision schemes for functions over irregular knotb sequences. In
M. Dachlen, T. Lyche, and L. Schumaker, editors, Mathematical Methods in CAGD
I11. Academic Press, 1995,

J. Warren. Subdivision methods for geometric design. Unpublished manuscript,
http://www.cs.rice.edu/ jwarren.

W. Sweldens and P. Schroder. Building your own wavelets at home, In Wavelets
in Computer Graphica, pages 15-87. ACM SIGGRAPH Course notes, 1996.
http:/ fem.beli-labs.com/who/wim/papers/papers.html#athorme.

U. Reif. A unified approach to subdivision algorithms near extraordinary vertices.
Computer Aided Geometric Design, 12:153-174, 1995,

D). Zorin. CF continuity of subdivision surfaces. Technical report, California Institute
of Technology, 1996.

W. Sweldens. The lifting scheme: A construction of second generation wavelets. STAM
J. Muath Anal., to appear.

T

b

D e R S D




TIME-FREQUENCY LOCALIZATION,
SYMMETRIES AND GENERALIZED MEANS *

Patrick FLANDRIN

Ecole Normeale Supérieure de Lyon
Laboratoire de Physique (Ura 1325 CNRS)
46 allée d’Italie, 69364 Lyon Cedex 07, France
E-mail: flandrin@physique.ens-lyon.fr

to Alex Grossmann, for his 65th birthday

“Chirps” are generally introduced so as to model monocomponent signals
modulated in both amplitude and frequency. Intuitively, chirps should therefore
localize on some curve of the time-frequency plane (instantaneous frequency or
group delay), and a key qguestion is, given a chirp, to find a time-frequency
description with such a localization property.

In the case of (unimodular) linear chirps, it is well-known that the Wigner-
Ville distribution is a solution and, moreover, that it is the only solution in the
clags of quadratic energy distributions [7, 2]. This can be readily checked by a
direct calculation, but this also admits a geometrical interpretation which allows
for generalizations beyond the restrictive case of linear frequency medulations.
In fact, A. Grossmann first showed in 1976 [4] (then followed independently by
A. Royer [8]) that the Wigner-Ville distribution can be expressed as the expec-
tation value of a symmetry operator in the plane. This has the consequence that
energy contributions located at any two peints in the plane create an additional
contribution at the midpoint of the line joining the two considered points. This
interpretation is indead a key for understanding the localization property of the
Wigner-Ville distribution on lines in the plane, since straight lines are the only
curves which exactly coincide with all of their midpoints.

The situation of linear chirps can be extended to the case of kyperbolic chirps
for which J. and P. Bertrand have established that suitable afline generalizations
of the Wigner-Ville distribution may guarantee localization [1]. As shown in [3],

*The results reported here are mostly based on joint work with P. Gongalves {formerly
with ENS Lyon and now with INRIA Rocquencourt}.




localization properties of Bertrand distributions can be given a geometrical in-
terpretation almost identical to that pertaining to the Wigner-Ville distribution,
provided that the usual arithmetic mean (which underlies the ordinary concept
of midpoint) is replaced by some suitable generolized mean which turns cut to
be the generalization of the logarithmic mean introduced by K.B. Stolarsky in
[9].

In order to preserve the duality relation which held -~ in the case of the
Wigner-Ville distribution — between arithmetic mean and symmetry, one has to
look for the conditions under which a Stolarsky’s mean is indeed quasi-arithmetic
in the sense of G.H. Hardy et ol. [6]. It can be shown [3] that the class of
solutions is fairly restricted and that, apart from the arithmetic mean, only two
other cases are admissible solutions to this problem, corresponding respectively
to the square-root mean and the geometric mean. Given this interpretation,
the geometric mean can then serve as a basis for proposing the definition of a
time-frequency distribution [5] which happens to coincide with the one referred
to as an “Unterberger distribution” in Bertrands’s terminology [1].
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Designing a Custom Wavelet Packet Image Compression Scheme,

with Applications to Fingerprints and Seismic Data*

Mladen Victor Wickerlianser?

December 31, 1097

1 Introduction

No single image compression algorithm can be expected to work well for all images, and designing a trans-
form coding image compression algorithm for a given application is itself & meta-algorithm. Sampling rates,
frequency content, and pixel qnantization all inflnence the compressibility of the original data, Subsequent
machine or human analyses of thie compressed data, or its presenfation ab various magnifications, all influence
the natwre and visibility of distortion and avtifacts, Tlms, algorithn like JPEG [1), established for a “nat-
ural” images intended to he viewed by liunans, do nob satisly the requirements for compressing fingerprint
images intended to be scanned by machines. In that partionlar example, it was necessary to develop a new
algorithm WSQ [2].

One procedure foctises on the transform portion of the compression algorithm: the best basis method
antomatically finds a transform which provides the hest average compression of a representative set of images,
selected from a seb of “fast”™ transforms. A version of this method was used to design the WSQ fingerprint
image compression algorithn, while another was used to design cotpression algorithms for varions types of
seismic exploration data.

2 Transform coding image compression
The generic transform coding compression scheme s depleted o Fignee 1. F6 consists of three pieces:
o Transform: Apply a function, invertible In exact, arithimetic, to decorrelate nearby pixels i the image,

Do this by decomposing tlie image into a superposition of independent patterns, producing a sequence
of Boating-point ampltudes of the pew components,

o Quantize:  Replace the transform amplitudes with {small} inbeger approximations. This is lossy, or
non-invertible; all distortion is introduced here,

s Code: Rewrite the integer stream into a more efficient alphabet, so as to approach the information-
theoretic mininnum bit rate, This operation is invertible.

These three steps ave depicted at the left of Figure 1; to recover an image from the coded, stoved data, they
are inverted,

Compression and decompression ave judged together by their rafe-distortion ewree, The Unguantize hlock
does nol, in general prodieee the same amplitiades that were given to Lhe Guantize block during compression,
bt the errors thns introduced ean be reduced in exchange for a lower comgression ratio, which is compufed
by dividing the size of the inpuk image file by the size of the stored fille. This nmst take inko acconnt ail of
the side information that is needed for reconstrigtion.

“Research partially supported by NEF, AFGSR. and Southwestern Bell Corporation -
TDepartment of Mathomaties, Washinglon Uaiversity, 81, Louis, Missouwri, 63130 USA
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- &

It the coding step is perfectly efficient, the compression ratio is maximized for a given distortion when the
transform and quantize steps procduce a sequence with minimal entropy. However, since minimal entropy is
hard to characterize and harder to achieve, il is hetter to aim at a hroader target: @ sequence with almost all
of the values being zero, Any such sequence will have low entropy, since jts value distribution with be highly
peaked at zero, and a best one can be chosen from any set by maximizing the number of zeroes, To produce
these secuiences, there are large families of wavelet, wavelet packet, and local trigonometric transforms, all of
which have low-complexity implementations. All of them ave orthogonal or nearly orthogonal, so that their
conclition number is close to 1. The best is the oue which praduces the largest fraction of negligibly small
amplitudes,

3 Custom transforms

Two fast ways to implement transforms ave: splitking into small blocks of pixels and then applylng sone
fast transform to the blocks, ar splitting the whole image into frequency siubbands by convolving with short
filters. Both methods cost O(Plog P) operations [or an Pepixel image, Delailed fornmlas and a proof of the
complexity statement is omitted here; they can e found in Reference [61.

In the pixel splitting scheme, the Image is cuf into blocks small enough so that the intensities of all pixels
confained within a block are correlabed. This cubting is depicted in the left half of Figure 2. Decorrelation
is performed by applying the two-dimensional discrete cosine transform (DCT) to the blocks, as in JPEG
[4], or by Malvar transform (LCT) as in the Amoco selsmic data compression algorithm [3]. The resulting
ampliftndes represent spatial frequency components in the blocks, Digitized images are limited in their
speciral content, so most of the amplitudes in each Mock will he negligible, To maximize the proportion of
negligible amplitudes, the blocks are chosen as large as possible subject to the constraints that (1) only a
few spatial frequencies are present in eacl hlock, and {2) describing the block honndaries does nol. create
too much side information.

In the subband splitting scheme, a low-pass and a highepass filber are nsed along rows and columns to
spiit the image into four subimages characterized by restricted frequency content. This process Is repeated
on the subimages, down fo some maxinzun deptly of decomposition, resulbing in a segmentation of frequency
space into subbands. The segmentation used for W5Q [2] s depicted in the right half of Figure 2. The
resulting amplitudes again represent spatial frequency components. Again, for images of Hinited spectral
content, most of these amplitiudes will be negligible,

4 The joint best basis

Both splitting schemes can be organized as quadtrees to a specified deptl, with the selected transform
determined by the leaves of a subtree like the one depicted in Figure 3. To choose the subtree and thus the
transform, each member of a representative training set of hnages is decomposed info the complete quadizee
of amplitudes. Then the squares of these amplitndes ave siummed into a sunrof-squares quadtree, Using
an information cost function such as “raction of nonnegligible amplitndes®, the swn-of-squares gquadtree
is searched for ibs best basis, which is the one that minimizes this cost ([6], p. 282), Figure 4 depicts this
algorithm. The hest basis for the 5 quadtres is the jommt best bosis for the training set of images 1,2, ..., N,
That is the transform which produces, on average, the largest wanher of negligible oubput coefficients.




Figure 2: Left: division of a 128 x 128 pixel image into 8 x 8 blocks, as in JPEG. Right: Divisinn of an image
mto orthogonal subbands, as in W5Q).

/
/

Figure 3: Splitting schemes prodices quadirees; custom hases are deterined by the leaves of a sibtree such
as bhie one shown here, shaded for emphasis,
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Figare 41 A joint best basis from a class ol splitting algorithuns is determined by a sanple sel of N images.

To find the best basis requires examining each coefficient in the cquadbree and examining each subband
or pixel block at most twice, which means that the complexity is Q(Plog ) for P-pixel images, To find the
joint best basis requires huilding the sum-ofssqnares tree first, which dominates the total complexity with
its O(NPlog I) cost for a training set of N P-pixel images.

Of course, the joint hest hasis transform is only optimal within its ewn class, and the class is determined
by the technical details and mathematical propezbies of the splitting algorithm. H these consiraints were
removed and the seareh performed ever all orthonormal transforms, then the joint best basis will he the
Karhunen Loéve (KL) or principel orthogonal Dasis §5], which is known to be the minimizer of the fraction
of non-negligible amplitudes. With the constraints, whose purpose is bo speed things ap, the chosen transtorm
is jush an approximation to KL.

5 Choosing the best transform from multiple classes

There is another meta-algorithm for relaxing the constrainks a bit while preserving the speed. Namely, a
custom transform can be chosen hy checking many classes of splitting algorithms in order to further increase
the expected mumber of negligible coefficients. This sehienie was fiest praoposed by Yves Meyer, and s depicted
in Figare 5. At the end of each patl is & cost figure, the expected fraction of non-negligible coefficients for
the training set of images. The patl thal leads to the lowest cost determines which algorithm should be
used to find the custom transform for compressing the mages represented by e training set.

Examples of different classes are the different subband splitting schemes assoctated to different conjugate
quadratnre filters ([6], Chapter 5 and Appendix C), or the adapted local trigonometric hases determined by
different windows ([6], Chapters 3 and 4).

6 Conclusion

Given a training set of images, a transform coding lmage compression algorithm may he rationally chosen
from a class of fast splitting algorithms, The choice criferion is a cost function that, when low, yields high
compression rabios for transform coding image compression. The method works for wavelet packet and local
trigonometric transforms and thus produces well-conditioned compression and decompression methocds of
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Figure 3: A meta-algorithm for deciding which splitting algorithm to nse with a particular class of images.

complexity O(Plog P) for P-pixel images. Searching for the best cholee itself casts O{NI log ), where N
ig the number of training Images.
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Abstract

A general method to generate adaptively orthogonal transforms
with a multiscale FFT structure will be described. In particular a
nonlinear version of the Haar transform, as well as noiselet transforms
will be constructed. These are connected to automatic sequences and
paper folding mechanisms.

1 Introduction

As the reader undoubtedly knows, various effective algorithms exist for using
wavelets and wavelef packets to process data, for example for compression,
or noise removal. In these algorithms, analysis of data is achieved because
one is able to find rapid decay in the distribution of values of the data, when
it is transformed into wavelet or wavelet packet bases.

In practice one finds that the few large values in the transformed data
describe the “interesting” part of the data, and the vast majority of values,
which are srnall, represent a noise term. See, for example, [3].

The performance of these algorithms is impressive, and might lull one
into the belief that analysis of any “interesting” structure can be carried out
via wavelet packet analysis.




However, there are counter-examples to the preceding point of view.
Noiselets (see [1]) are functions which give worst case behavior for the afore-
mentioned type of orthogonal wavelet packet analysis. In particular, there
are explicit examples of {complex-valued) noiselets for which all Haar-Waish
wavelet packet coefficients have exactly the same absolute value. So, in some
sense, noiselets are “noise-like”.

Although noiselets are noise like in the sense of being spread in time and
frequency, there are patterns Iurking in them. Certain families of noiselets
arise as bases for the spaces of the Haar multi-resolution analysis. These
bases are computationally good, in the same way that wavelet packets are;
they come with fast algorithms for forward and inverse transforms, and there
are trees of bases with the structure needed to support the best-basis algo-
rithm. These good properties of noiselets are no coincidence. Noiselets are
constructed via a multiscale iteration in exactly the same way as wavelet
packets, but with a twist. So in some sense noiselets have the structure of
wavelet packets.

Another source of pattern within noiselets is that one finds within their
construction certain classical fractal generating mechanisms. In fact, a whole
class of noiselets are nothing but the distributional derivatives of the classical
paper folding curves (see [2] for an introduction to paper folding). Hence
noiselets provide a counter-example to the philosophical view of analysis with
which this note began. Indeed, one sees that certain interesting multiscale
mechanisms can produce well organized data which are none the less invisible
to our standard analysis tools.

Because of all of the above properties, rather than simply representing
counter-examples, the possibility exists that noiselets will be valuable tools
for certain applications. The reader should note that the authors are puz-
suing certain applications of noiselets and their generalizations, and some
such applications may be patented or patent pending. The interested reader
should contact the authors for more information.




2 Some Noiselets

2.1 An Example Of A Noiselet

Here is a recursive scheme for generating a discrete noiselet. Start with the
length one sequence s; = ( 1 }. Now at each stage, replace the sequence s;
with

Si41 = 8¢ A (1 * Sz').

The symbol “A” denotes sequence juxtaposition, and “*” point-wise multi-

plication. One has sg = (1¢), 83 =(17¢-1), 84 =(1lii—-1i-1-1—),
ssg={lids—li—-1-1—¢-1-1—-—-1—-—1), etc.

The sequence s; has length 21, and it’s inner product with any discrete
Haar wavelet packet of length 2°~1 or less, has absolute value 1. Indeed,
such a wavelet packet is simply a Haar-Walsh sequence: that is, a dyadicly
shifted rescaled Walsh function, sampled on a dyadic grid. For example, the
Haar-Walsh sequences of length 4 are: (1000), {(0010), (0010),
(0001), (5 FH00) (005G 35 ) (F=4500) (005-3),
(3338 (55-b=1) (b-iig ) and (55 5).

Now one can see that the inner product of sp with any Haar wavelet packet
of length 2*=! has absolute vale 1, by induction as follows. It is clearly true
for s¢. If it is true for s;_;, consider the inner product of ¢; with any Haar-
Walsh sequence of length 2071, Such a Haar-Walsh sequence either has no
zeros, or the non-zero part is contained in its left or right half, and this half
is a Haar-Walsh sequence of length 22, In the latter case, the induction
hypothesis implies the right conclusion since both the left and right halves
of s; are unit multiples of s;.,. In the former case, the Haar-Walsh sequence
has the property that it’s left half is either the same as, or —1 times it’s right
half, and each of the halves is _1_2 times a Haar-Walsh sequence of length 2072,
Also, the left half of s; is s;_1, and the right half of s; is ¢ times s;,.1. So in
this case, the inner product is Lj—;i times a complex number of absolute value
1, and this is a complex number of absolute value 1.

2.2 A Noiselet Basis

One can generalize the above construction, to produce a full basis of noiselets
for sequences of length 27, for any 7, by allowing 7 or —t in the “string




composition rules”. This amounts to making “wavelet packets” with the
two filters: (117 ), and { 1 — ) (in the same sense in which the Haar-Walsh
sequences are built from the Hlters < % ﬁ >, and < % m—\/% >)

This basis has the property that all basis functions are “totally flat” in
the Haar-Walsh system, and all Haar-Walsh wavelet packets are totally flat
in this basis.

2.3 Noiselet functions and distributions

In the same way that the discrete Walsh sequences correspond to the Walsh
functions defined by:

Wo(z) = Xpo,1){(¥)
Wan(z) = W,o(2z)+W,(22 1)
I/I/Qn_'_]_(fﬂ) = Wn(zl) - I’VH(Q'L - 1),

one also has noiselet function defined by:

Ny(z) = Xpu{z)
Non(z) = (1 —=9)Nu(22) + (1 + ¢)No(22 — 1)

Note that we have multiplied the two filters by 1+4¢ and 1 —: respectively,
since we observe that in doing so, we can view N, and Nz,4 as refinements
of N,. In this way, if we change notation and write Ny, ,_,y for N, when
B =24 Z:f,::lo cm2™, then for an infinite binary sequence (¢}, the limit has
Fourler transform:

Vo 3 g €
Niy(6) = 3];[2 (COS 57 + €52 81N 5 )

and exists as a |¢|/*tempered distribution. See [1] for details.

3 Looking For Structure

Notice that the discrete Haar wavelet packet transforms can all be computed
as follows. Start with some discrete sequence 29, 2%, ...,2%_;, where N = 2",
Now form a new sequence @, ..., T, as follows. form (2§, 2]} by rotating




the vector (2§, 27) by 45 degrees. Form (z},z}), from (9, 23), by 45 degree
rotation, and similarly for (z},2l), ..., (23, 5, 2ls ;). That is, we think of
adjacent pairs of numbers as being coordinates of a vector in two dimensions,
and we get new coordinates by 45 degree rotation.

Now repeat at the next scale, rotating (zl,2}) by 45 degrees to get
(23,22), (z},2}) by 45 degrees to get (2, 23), etc. At the j*™ iteration, we

et (o3, 2, ) from (227", 2772,) by 45 degree rotation, etc. When one does
g 0r~2s 27 g

this n — 1 times, one has produced all of the Nlog N Haar wavelet packet
coeflicients of the original sequence.
The following figure illustrates this scheme for the case n = 3.

When one replaces the 45 degree rotations above with any rotations, one
gets what we call a fast rotation. 1t is fast because we can compute everything
in O(N log V).

Given any vector of length N = 2", one can find a fast rotation which
sends all of it’s energy to the first coordinate. We call this rotation it’s non-



linear wavelet transform, and 1t is found as follows. First note that for any
two dimensional vector, {z,y), there is a unique rotation which sends it to
(vx? + 32%,0). Now one simply fills in the angles in the tree structure such
as the one illustrated for length 8 in the following figure:

r
’

so as to always put all of the energy towards the left. We also sometimes call
the data 8;,...,8,_1,7 the non-linear wavelet transform of the original data.

Note that given an orthogonal N x N maftrix, one can find in this way a
fast rotation with the structure of figure 1, so that the matrix is transformed
into a lower triangular matrix. We can think of this as a kind of non-linear
Walsh transform of the original matrix columns.

In particular, the non-linear wavelet transform of any Walsh function is
the Haar wavelet transform, and the non-linear Walsh transform of the Walsh
basis is the Walsh transform.

If one replaces the rotations by 2 x 2 unitary matrices with appropriate
constraints, then one can discover the noiselet transform from the noiselets.




So the idea of fast rotation allows one to find a method of analysis, which
generalized the traditional ones, and which “sees” the noiselets.

4 Some More Noiselets

4.1 Dragon curve noiselets

There are however other ways to create noiselets. Here is another construc-
tion of noiselets which can not be “seen” using wavelet packets, nor can they
be seen via the fast rotations of the previous section.

The construction is analogous to the Rudin-Shaprio construction, but
with different initial conditions. This time we start with two sequences Py =
(lij,and Pp= (1) Welet Popi = P, A Qu, and Qpyr = Po A —Qs,.

The noisclet functions in this case are given by:

Di(z) = xpu(e)
Do) = (1 —9D,(22) + (1 + ) Da(2 — 22)

and the limiting objects, with Fourier transforms given by

27 co 1--g;4 €51 _mi .
D ) ( e ey (1)
m6—2m§D(E)(__€) T4e5i l—zcjae_qné/g: 1 ;

j=0 2

exist as [£|%-tempered distributions.

These noiselets are called dragon noiselets, since if one graphs the indefi-
nite integrals of the functions Dy one gets the classical paer-folding dragon
curves.

The Rudin-Shaprio argument, or an examination of the L bound on the
above Fourier transform matrix product implied by the fact that each matrix
in the product is unitary, shows that the dragon noiselets are not only flat
in the Haar wavelet packet bases, but are also semi-flat in the trigonometric
bases, and their windowed cousins.

4.2 A challenge

The dragon noiselets arise from a fast unitary map, which simply has its
“X's” tied together by a scheme other than the usual wavelet packet scheme




of figure 1. Let us call such a transform a generalized fast rotation. Since
there are many permutations, it seems that there are many ways in which
one can generate a fast basis, the vectors of which will not be particularly
visible to those who do not know the scheme.

As a challenge problem, the reader is asked to consider whether there
might be some fast algorithm which is able to search through the possible
generalized fast rotations, in order to have an adaptive analysis which sees
all of these structures.
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Abstract:  In this work we apply the spatio-temporal continuous wavelet transform to
tracking moving targets in noisy environment. We focus our attention on handling more
general classes of motion, such as acceleration. To accomplish this task the spatio-temporal
wavelet transform is adapted to the motion parameters on a frame-by-frame basis. Three
different energy densities, associated with velocity, location and size are used to determine
motion parameters. Tracking results on synthetically generated images sequences

demonstrate the capabilities of the proposed methods.

This work is partially supported by ONR (Office of Naval Research), Grant N0O0014-93-1-
3561, BMDO, Grant DAAHO04-95-1-0650, and ARL, Grant DAAL01-96-2-001.



Wavelet analysis of signals with gaps
Peter Frick

Institute of Continuous Media Mechanics, Korolev 1, Perm, 614061, Russia

In many domains of science, there are inevitable gaps in the time (or space)
domains at which data can be recorded. When one applies spectral methods to
such data, one is faced with the problem of separating the spectral properties of the
signal from the spectral properties of the set of gaps.

This situation is typical, e.g. for astronomy, where the gaps are caused by sea-
sonal windows of observation, cloudy skies, telescope maintenance ete. In order to
overcome these problems, different kinds of interpolation are currently used. How-
ever, extended gaps in time series are difficult to fill by interpolation (in some cases
the total size of gaps is comparable with the duration of observations) and, secondly,
any interpolation also introduces additional artifacts, leading at least to smoothing
of the higher frequencies of the signal. These problems appear in Fourier analysis
as well as in wavelet analysis. An extension of Fourier transform to an uneven data
set is known in astronomy as the Lomb-Scargle periodogram {1, 2]. The idea of this
technique is to correct the basic functions cos(wt) and sin(wt) by a phase shift and
a mean value subtraction to preserve their normalization conditions on a given set
of observations.

Foster [3] recently introduced an analogous algorithm for wavelet transform
on an irregular data set. He considers the Morlet wavelets and proposes to re-
orthogonalyze the three basic functions (the real and the imaginary parts of Morlet
wavelet and a constant) by rotating the matrix of their scalar productions.

Another technique for the wavelet transform of si gnals with gaps has been inbtro-
duced in the context of astronomical problems by Frick et al. [4]. The main idea
of this method, called the gapped wavelet transform, was to considere the wavelet
transform not as a convolution of signal with gaps with a given analysing wavelet,
but as the convolution of a signal and of the wavelet with gaps. Transfering the gap
problem from the unknown signal function to the known wavelet function, one tries
to correct the broken wavelet in a way to provide at least the admissibility condition
for any dilation and translation of analyzing wavelet.

Gapped wavelets. Let & C R”® be an open set, for the moment arbitrary, and
let f & L*(R") a function defined on §. Asswme that we know only the restriction
of fto £, i.e. the function fxgq, where X is the characterisitic function of 0.

One would like to develop a Littlwood-Paley like analysis of fygq, which char-
acterizes the time-scale (or space-scale in case of many dimensions) localization of
function f and not of fyq.




To do it one introduces for the given wavelet ¢ a scaling {envelope) function ¢
such that [1f] < ¢. If & > 0 and b € R” one defines

9(;.1) = 'ir/)a,bG "" C(a} b)qba.,bG (i)
where for simplicity we write G = yq and C(a,b) is a parameter, which should

tnsure that
/ n ga,b = O (2)

We use for wavelets the notation v, = Lp(:=b) as well as for ¢

a_n

Let us note that as || < ¢, one has
Cla,b) < 1 3)

for all @, b.

As it was mentioned above, the replacement of a given wavelet i, by its gapped
version 8, is motivated by the intention to reconstruct at least jts admissibility
condition. Theorems proved in [5] showed that no dramatical changes (which lead
to the growth of the spectral energy) are expected in the spectra of the signal
calculated using the functions 8,, and that the density of spectral energy which
reflects the artefacts comming from the borders and gaps should be suppressed in
both high and low frequencies.

The proposed technique could be generalized by requiring the functions 6,; to
have vanishing values of moments of higher orders [3]. To do that one replaces the
formula for 6, by

t—b t—b
)+ Cy(

O = [thas — (Cola, b) + Cy( R W [ (4)

[

The formulae for C; are readily obtained from the corresponding conditions for all
the moments under the consideration

t—b
Oop(——)" = 0. 5
J =) =0 )
In the simplest case one asks only for zeroth and first morments and (4} reduses up
to '
t—b
Oup = [thap = (Cola,8) + Co () ) o] G (6)
a

with explecit formula for the hoth papameters Cy and 5 :

. _ Jo ?l’fn(éz_b)zﬁé—fn(%)'ﬁi’fn(%&)é -
C(](G, ) = ) ) 5 ) ’ ( )
Jo 8 fo(452)%6 — (fa(0)6)




_ bt k(5% — ¥ (54
Jo 8 fol527¢ = (L(52)9)

Let us note that Cy and C) are not more inevitable less as 1. The values of these
coeflicients were checked in numerical calculations. They really become more as 1,
but only in very large @, where the caracteristic lenght of the wavelet essentialy
exceeds the whole interval of data, and anyway the results of wavelet transform
become doubtfull.

No strick results are obtained concerning the wavelets (6}, but in numerical
simulations we used them as well as the functions {1). We call as GO the wavelet
(1), which enables only the admissibility of the wavelet (the zeroth moment vanishs),
and as (71 the wavelet {6) which adopts to satisly the admissibility condition for the
first order moment as well as for the zeroth. We compare the both with the standart
wavelet transform with Morlet wavelet (noted in the figure as M). Let us emphasize,
that in the later case (taken as the rcference) we also do not use any interpolation
of signals in the gap, and we do not try to eliminate the mean value, the trend ete.
Surely, there are a lot of possibilities to ameliorate the results of wavelet transform
of signals with gaps, espessialy in a concrete situation when the expected caracter
of the signal is known « priori. Our aim is to show that the proposed algorithm
eliminates automaticaly the influence of constants and linear trends and not only in
the cas when these factors are global, but also when they are local.

One example which illustrates the properties of gapped wavelets is presented in
figure, where an signal with two frequencies on a linear background and its wavelet
spectra are shown. In this case the standart technic produces an additional peak in
intermediat scales. The gapped algorithm destroys it. One can see that the wavelets
Gl provides further improvement of spectral resolution of the wavelet transform.
The position of maxima in spectra given by G1 better coinside with the frequency
in the signal. The large scale noise is better supressed by the wavelets G1 as by GO.

Ci(a,b) (8)
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