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Abstract 
 

Whether turbulence intermittencies shall be described by a log-Poisson, a log-stable pdf or 
other distributions is still debated nowadays. In this paper, a bridge between polymer physics, 
self-avoiding walk and random vortex stretching is established which may help in getting a 
new insight on this topics. Actually a very simple relationship between stability index of the 
stable law and the well known Flory exponent stemming from polymer physics is established. 
Moreover the scaling of turbulence intermittencies with Reynolds number is also obtained and 
the overall picture is very close to Tennekes’ simple model for the fine scale structure of 
turbulence [Phys. Fluids, 11, 3 (1968)] : vortex tubes of Kolmogorov length width are bend 
by bigger vortices of Taylor length scale. This thus results in both a simple and sound model 
with no fitting parameter needed.  

1. Introduction 
Since Discovery of intermittencies in turbulence by Batchelor and Townsend in 1949 (see 

Frisch, 1995, for a review) there have been numerous debates on how to model properly this 
phenomenon. One of the first modelling is due to Oboukhov and Kolmogorov who predicted 
a lognormal law for the distribution of the dissipation of turbulence (Kolmogorov, 1962) 
(Actually Kolmogorov, 1941, predicted this law in studies on pulverization/fragmentation and 
Obouhkov, 1961, used it in turbulence modelling). The next important step has been the 
definition of “scale similarity” by Novikov (1966). This has led to a lot of interesting works 
on multifractal modelling of turbulence (again Frisch is a good reference; see also Evertz and 
Mandelbrot, 1992, for the definition of a multifractal measure) which ultimately resulted in 
multiscale analysis (for instance resorting to wavelets theory cf. Farge, 1992). However this 
has not led to any simple law. On the other side, in the wake of Lovejoy and Mandelbrot 
(1985) work on multifractal analysis in raindrop distribution (where some reference to Lévy 
law of stability parameters 5/3 can be found), Kida (1991a, 1991b) generalized Kolmogorov-
Oboukhov results to Log-stable law with a stability index  = 1.65 and an intermittency 
parameter  = 0.21.  

The purpose of this paper is to show that Kida’s empirical analysis can be put on a more 
solid ground on the condition of changing the value of the stability parameter from 1.65 to 
1/F where F stands for the Flory exponent well known in polymer physics (this leads to the 
value 1.70). Actually In section 2, a bridge between Kuo’s effective vortex stretching 
mechanism (Kuo, 1986) and (linear) polymer growth is drawn leading to a mapping of one 
mechanism onto the other. Scaling properties of three dimensional self-avoiding walks are 
then used to obtain the results. In section 3, it is shown how this model can be successfully 
applied to a given set of experimental and numerical results. Lastly, the number of stretching 
and bending events is related to the ratio between Taylor micro scale and Kolmogorov scale 
leading to quite simple picture, very close to some insight of Tennekes (1966), describing the 
worm-like structure of turbulent vortices. 
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2. Random Vortex Stretching 

 
Figure 1: Wrinkling of a fluid surface in isotropic turbulence: Karweit, John Hopkins Univ. 1968 (Van 
Dyke, 1982). Here, it is material lines that are stretched, but a clear analogy with vortex tubes can be 
made, since they can be considered as materially linked to the fluid (Lamb, 1932). 

Partly following Kuo (1986), a very simple way of modelling Random Vortex 
Stretching can be obtained by simplifying the vorticity equation: 
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. The first term on the second hand stands for vortex 

stretching, second term for viscous diffusion, third term for vorticity increase related to vortex 
thinning and the last term is the baroclinic creation of vorticity. Neglecting the second and 
fourth term (i.e. viscosity effects and baroclinic generation of vorticity) and setting 
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as the “effective stretching”, one gets 
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Where D/Dt stands for the material derivative. According to Kuo, the random nature of the 
effective vortex stretching ensures that the vorticity shall evolve toward a log-normal 
distribution. This shall be examined further in the following sections; it will actually be shown 
that this hypothesis is not compatible with the topological constraints that affect a vortex line. 

2.1. Angular acceleration and stretching 

L(t) 

R(t) 

(t) 

R(t+dt) 

(t+dt) 

L(t+dt)

 
Figure 2: axial stretching of a portion of a vortex tube 
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Considering a part of a vortex tube, of length L(t), of radius R(t) and angular velocity 
(t), submitted to an axial stretching (cf. Figure 2). In non viscous flow, vorticity is 
conserved and materially linked to the fluid particles. Thus the following simple conservation 
equation can be written: 
Mass conservation: 

R2L = constant .     (4) 
Angular Momentum conservation: 

R2 = constant.     (5) 
Angular velocity increase can thus be thought to be proportional to the vortex length 
increment. Note that this analysis is similar to the pioneering works of Lagrange, Helmholtz, 
Kelvin, Cauchy,…etc. (see Lamb, 1932, for a more rigorous approach and a review. More 
details on the present, simpler, analysis can be found in Vanyo, 1993). Using (3) this can be 
summed up into a continuous time stochastic multiplicative process of the form: 

 t L tDL B t L Dt .     (6) 

Or using the logarithmic derivative, one gets: 
 ln t LD L B t Dt .     (7) 

The effective stretching B is a priori an unknown random variable (and is a priori different in 
(3) and (7) since in this process the vector nature of equation (3) is lost). The next section will 
determine which scaling constraint the random variables B shall obey to. 

2.2. Topological constraint on a vortex tube and Self-avoiding Walk 
To obtain the simple equation (7), several simplifications and hypotheses have been 

made; indeed viscosity has been neglected. This hypothesis withhold as long as the finer scale 
of turbulence known as the Kolmogorov scale  has not been reached. At this scale viscosity 
and inertial term balance each other so that the former can turn the latter into heat. In this 
paper the following assumption is made: the fluid possesses a null viscosity till the 
Kolmogorov scale is reached where the viscosity is applied. Neglecting viscosity ensures that 
Helmholtz theorem on vorticity conservation can be applied (Lamb, 1932). As a sequel to this 
theorem, vortex line cannot intersect each other. Therefore a vortex tube shall obey (3) or (7) 
under the constraint of non intersection. 

Thought Vortex are mainly found in turbulent flows in the form of vortex tubes a.k.a. 
“worms” or sometimes vortex sheet, the assumption of simple vortex lines will be maintained 
in the following for the sake of simplicity (yet a vortex sheet can be considered as a set of 
vortex line as a material surface can be considered as a set of material line: this is what Figure 
1 suggests: each material line seems to be compelled to self avoidance. Note also that vortex 
line cannot stricto sensu be submitted to stretching: only vortex tubes can be stretched cf. 
Vanyo, 1993). Let us look at the ways in which a vortex line can fold itself under the 
combined constraint of effective stretching and self avoidance. Letting the dynamics aspect of 
vortex line folding apart, it is clear that the kinematics aspects can be fully translated in the 
world of linear polymer growth or equivalently of self-avoiding walk.  
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 

 

 

Figure 3: Example of a 2D SAW 

According to Flory pioneering work in polymer physics (see De Gennes, 1979 for 
instance), some scaling properties concerning the equivalent radius of a polymer chain of N 
monomers can be established. Let NN (r) be the number of chains of N monomers of equal 
size going from the origin to the point of r coordinate. Let  
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be the probability distribution of chain of length N and let the gyration radius be defined by: 

 
1/ 2

2

0

NR p r dr
 

 
 
r       (9) 

Then it is known that: 
R N      (10) 

Where  is a universal scaling exponent called Flory’s exponent such that its value is 
appreciatively 3/5 (.588 according to numerical simulations cf. Sokal, 1994) in a three 
dimensional space. Figure 3 gives the simple picture of a 2D SAW (which will be used for the 
sake of simplicity thought the overall picture is three dimensiona)l. The question which still 
has to be answered is how the flow maps a piece of vortex tube into a SAW similar to that of 
Figure 3. 

2.3. SAW and Lévy-stable stretching 
Actually the answer is quite straightforward: the vortex must be strained and bent so as 

to map onto the SAW. But differing from figure 1 where each step is of equal size, there is no 
a priori reason that the average step size or standard deviation thereof shall be defined and 
finite. We shall yet make the hypothesis that the average size is defined and finite and we will 
consider that the actual number of steps is related to the number of bending events in a 
manner quite similar to how, according to popular belief, the first Arabic number ideograms 
were defined in the IXth century (cf. Figure 4).  

 
Figure 4: the first Arabic number ideograms are based on the number of (bending) angles 

Each bending event is associated to a stretching event and introducing the Hencky strain H = 
ln L, the latter can be considered to be a good approximation to the number of steps N  H. 
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Since the average deviation of the size steps may eventually not be defined, let us define  as 
the greatest number such that 

 1

0

p r dr


 r      (11) 

Then the following definition 

 
1/

0

Hp r dr




 

 
 
r      (12) 

leads to a finite integral so that (12) can supersede (9) and  can be considered as a new 
gyration radius. From the preceding hypotheses, one gets that 1 <   2.  

1 

2 

B 

B1 

B2 

1=2 

 
Figure 5: scaling property of vortex stretching  

Now, let us consider the scaling properties of this model. Consider that the number of steps is 
high enough and that the N steps SAW created by the random effective stretching B can be 
divided into two SAW, B1 and B2 each having H1 and H2 steps. The following equation is 
quite obvious: 

H = H1 + H2      (13) 
And assuming H = N and that equation (10) is still verified, this leads to: 

1 1

1 2

1
           (14) 

  can be qualitatively thought as the intensity scale of the effective random stretching B and 
equation (13) indicate that H considered as a random variable shall belong to the family of 
Lévy stable law (cf. Feller, 1966). If this is the case, considering (12),  can be considered as 
the scaling parameter of the law and (13) leads to 1 2

       suggesting that the stability 

index  shall be taken equal to 1/ so as to recover (14). Note that the (self-intersecting) case 
 = 1/2 leads to Kuo’s lognormal model. Thus an analogy can be made between polymer 
growth and vortex stretching. This is summarized in Table 1. 
 

Table 1: analogy between polymer growth and vortex stretching 

 Number of elements Radius Relation 
Polymers N R R = N 
Vortices H  H =  
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2.4. Interpretation of some previous experimental results 
Following Novikov (1966,1994), the spatial distribution of the rate of turbulent energy 

dissipation  = dk/dt is often, as  represent the death of bigger eddies, thought to give a 
proper picture of Richardson turbulent cascade. Actually  is never directly measured and, as 
described by Frisch (1995), a bridge between intermittencies model based on dissipation and 
intermittencies model based on velocity increment is mostly used. According to Kolmogorov 
refined similarity hypothesis (Kolmogorov, 1962) the following relation can be obtained  

3 4
( ) ( )

5 ru x r u x r        (16) 

where r stands for the dissipation averaged on a sphere of radius r. Then following Tennekes 
and Lumley (1972), one gets: 

2        (17) 
Thus the law of ln(|v(r)|) or ln() shall follow the law of ln(  ) (or even ln( /u x  )) up to a 

scaling factor and a translation. Anyway these laws shall be Lévy stable with stable parameter 
1/F and an asymmetry parameter , equal to minus one. The last condition stems form the 
fact that it implies that every positive moments of the log-lévy law are defined and finite.  

1.1.1. Comparison to Kida previous results 
Figure 6 shows the fitting of such a Lévy stable law to Stewart et al. (1970) 

atmospheric turbulence data. The result gives  = 1.684 which is closer to 1/F than the value 
1.65 previously used by Kida (1991b) without directly fitting the pdf. As can be seen on 
Figure 7, this value of 1.65, as been obtained by fitting the scaling parameter of the moments 
of the distribution. The following set of definition is used in this description: the p order 
hyper-flatness of the velocity increment is defined as 

/ 22
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using Kolmogorov four-fifths law and defining the scaling parameter p as : 

 exppH p      (18) 

If r is Log-stably distributed with  = -1, this yields 
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And then 
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Figure 6: Fitting of (Stewart et al., 1970) pdf  with a 
stable law; Stability parameter is found to be 1.684 

 
Figure 7: fitting by Kida, 1991 of Anselmet et al., 1984 

data obtained in Modane wind tunnel. 

 

Unfortunately, error bars around values of theses moments increases with the order of 
the moments considered since poorly resolved tails of distribution are more and more 
solicited. Moreover knowledge of the pdf is only equivalent to the knowledge of all the 
moments of the distribution (i.e. an infinite number of moments!). Lastly a distribution having 
a discrete support (like a Poisson distribution) or a continuous support (like a stable law) may 
yield similar set of moments (up to a given order) whereas they are both physically and 
fundamentally different (due to the topological nature of their support). Theses arguments 
point out that moment of a pdf may not be the most appropriate way to describe accurately a 
pdf and that a direct fitting of the pdf, whenever available, shall be preferred. Yet some 
scaling properties of these moments with Reynolds number will be used in the forthcoming 
section and it will shed a new light on the cascade of stretching events described in previous 
sections. 

Scaling of hyper flatness with Reynolds Number and Tennekes’ simple 
model for the small scale structure of turbulence 

Before going on, let us discuss a bit further the way structure functions can be related 
to vortex distribution. Actually most values of (Rimbert and Séro-Guillaume, 2003), 
compatible with the present description have been taken in the near-dissipation range ( < r < 
10) where according to (Chevillard et al., 2005) turbulence intermittencies are known to be 
“rapidly increasing”. This may be related to the fact that it is actually the range of scale where 
the velocity difference is a proper picture of Richardson turbulent cascade. Let us have a look 
at how, in this modeling, structure function can be computed: 

 ( ) ( ) ( , ) ( , )
p

u x r u x u x r u x d
p      P    (24) 

Where  is a random events (i.e. a realization of the vortex tangle) whose probability measure 
is P(). Now let us assume that point x is in the neighbourhood of a stretched vortex of radius 
R (actually R()). If r < R then both measurements point in the structure function can be 
located inside the vortex (let us call this case 1) whereas when r > R, at most one point can be 
located inside the vortex (case 2: one point outside and case 3: two points outside). In the near 
dissipation range, it will be assumed that viscosity is still non existent so that velocity can be 
assumed to be that of a solid rotation at an angular velocity of  inside the vortex. Outside it 
is the result of the application of Biot-savart law, the vortices and their intensity superseding 
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the electric wires and their current (Lamb, chapter VII, 1932). Since the geometry of the 
current is random and somewhat unknown (it is a tangle of random self-avoiding vortices), 
the velocity outside a vortex can be assumed to be a random variable of mean, the average 
velocity of the fluid. Anyway, in case 2 or 3, u(x+r) and u(x) are not much correlated whereas 
in case 1, one gets (approximatively): 

( ) ( )u x r u x r    1     (25) 
So that 

     ( ) ( )
p pp pu x r u x r d r d        P p P   (26) 

And structure function can be related to moments of the distribution of vorticity. Actually this 
can only happen in case 1 which is more frequent in the near-dissipation range. This may 
explain the so-called increase of turbulent intermittencies in this range. 

 
Figure 8: scaling of hyper flatness with Reynolds number up to a Taylor scale based Reynolds number of 
750 

Combining the fitting of the scaling of hyper flatness with Reynolds number of the 
kind Hp = a(p).Re

b(p) (Cf. Figure 8, result are summed up in Table 2) and using equations 
(17-20), this has led to the following scaling relation (cf. Rimbert and Séro-Guillaume, 2003 
for details)  

   1,06 0,08 .ln Re 0,00 0, 20
     

                                                

  (27) 

In this work a thorough attention to incertitude determination was made (using standard 
techniques, see Beck and Arnold 1977 for instance). Moreover both numerical simulations 
(Kerr, 1985) and experimental results (Belin et al., 1997) have been used to obtain that 
correlation. Note that changing the value of the stability index from 1.65 to 1.70 does not 
change the overall analysis but the results are now on the extreme side of the 95% confidence 
interval. 

 
1 Actually the hypothesis that the fluid is in solid rotating motion is not necessary. Since r is kept fixed, the only 
thing that matter is that velocity increment at fixed r and  shall be proportional so that it still works if the 
vortex is, for instance, a Burgers vortex (Burgers, 1948) 
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Table 2: scaling of hyper flatness with Reynolds number (Rimbert and Séro-Guillaume, 2003) 

Order Hyper-flatness Moment scaling parameter 

4 H4 = 0,95.Re
0,376  4 0.38 ln Re - 0.045   

5 H5 = 1,07.Re
0,642  5 0.64 ln Re 0.069    

6 H6 = 0,99.Re
0,989  6 0.99 ln Re - 0.013   

 
Now, let us recall that the ratio between Taylor scale  and Kolmogorov scale  is 

equal to (Tennekes and Lumley, 1972): 
1/ 4 1/ 215 .Re



     (28) 

So that (21) leads to 

ln 

 

  
 

      (29) 

Where  stands for the Taylor length scale i.e. the mean size of the dissipative eddies. 
Moreover following section 2.3 this equation also reads 

lnH


 

  
 

      (30) 

This means that the Hencky strain i.e. the number of stretching and bending events needed to 
describe the self-avoiding vortex is related to the ratio between the Taylor micro scale and the 
Kolmogorov scale. 

 
Figure 9: Tennekes’ simple model for the small scale structure of turbulence 

This seems quite natural and the picture that is suggested can be related to Tennekes 
(1968) simple model for the small scale structure of turbulence (cf .Figure 9): a population of 
vortices of the size of the Taylor microscale is stretching a population of vortex tubes whose 
radii is of the order of the Kolmogorov scale. As Tennekes pointed out by making a budget of 
turbulent energy dissipation per unit volume: the following relationship is recovered:  

2 2 2

2 2 2

q q  
 

 


     (31) 

Where q stands for the scale of velocity fluctuation (cf .Figure 9). 

Conclusion 
In this paper a bridge between vortex stretching and linear polymer growth has been 

drawn leading to log stable law of intermittency parameter inversely proportional to the Flory 
exponent. The number of stretching and folding stage needed to map a vortex onto a three 
dimensional self-avoiding walk has been proved to be the logarithm of the ratio between 
Taylor micro scale (i.e. the size of the mean dissipative eddies) and Kolmogorov scale (i.e. the 
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 10

                                                

size of the smallest dissipative eddies). For the time being, this modeling has been verified on 
four independent sets of experimental and numerical results (Stewart et al. 1970; Anselmet et 
al.; 1984, Kerr; 1985, Belin et al., 1997) giving it some generality2 . 

How interesting this modeling may be (since it does not contain any free parameter, 
eventually, values of Taylor and Kolmogorov scale depend on the experiment taken into 
account), let us emphasis that it can only be considered as a kinematic description: it shows a 
possible way for the vortices to evolve. The dynamics of vortex evolution is another matter 
that should be taken into account (this shall be rather simple, in the inertial range, but 
boundary conditions on the integral scale and Kolmogorov scale are another, tougher, matter). 
The goal of this work would be, for instance, to explain the relaxation mechanism of 
homogeneous and isotropic turbulence (cf. Comte-Bellot and Corrsin, 1965). Other topics of 
interest would be the introduction of transition in the behaviour vortices (for instance vortex 
breakdown or reconnections cf. Tabeling and Willaime, 2002) which may lead to some 
change in the modeling (maybe in the value of the stability parameter). Lastly reconnection 
with the pioneering work of Kolmogorov on pulverization (cf. Rimbert and Séro-Guillaume, 
2004) which has been the very incentive of this work will be considered in some forthcoming 
papers. 
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