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An explicit formula for the free

exponential modality of linear logic

Paul-André Melliès Nicolas Tabareau Christine Tasson

Laboratoire Preuves Programmes Systèmes
CNRS & Université Paris 7 - Denis Diderot

Abstract. The exponential modality of linear logic associates a commutative
comonoid !A to every formula A, in order to duplicate it. Here, we explain how
to compute the free commutative comonoid !A in various models of linear logic,
using a sequential limit of equalizers. The recipe is simple and elegant, and en-
ables to unify for the first time the miscellaneous constructions of the exponential
modality appearing in the literature. It also sheds light on the duplication policy
of linear logic. We illustrate its relevance by applying it to three familiar models
of linear logic based on coherence spaces, Conway games, and finiteness spaces.

1 Introduction

Linear logic is based on the principle that every hypothesis Ai should appear exactly
once in a proof of the sequent

A1, . . . , An ⊢ B. (1)

This logical restriction enables to represent the logic in monoidal categories, along
the idea that every formula denotes an object of the category, and every proof of the
sequent (1) denotes a morphism

A1 ⊗ · · · ⊗An −→ B

where the tensor product is thus seen as a linear kind of conjunction. Note that, for
clarity’s sake, we use the same notation for a formula A and for its interpretation (or
denotation) in the monoidal category.

This linearity policy on proofs seems far too restrictive in order to integrate tradi-
tional forms of reasoning, where it is accepted to repeat or to discard an hypothesis in
the course of a logical argument. This difficulty is nicely resolved by providing linear
logic with an exponential modality, whose task is to strengthen every formula A into
a formula !A which may be repeated or discarded. From a semantic point of view, the
formula !A is most naturally interpreted as a comonoid of the monoidal category. Recall
that a comonoid (C, d, u) in a monoidal category L is defined as an object C equipped
with two morphisms

d : C −→ C ⊗ C u : C −→ 1

where 1 denotes the monoidal unit of the category. The morphism d and u are respec-
tively called the multiplication and the unit of the comonoid. The two morphisms d
and u are supposed to satisfy associativity and unitality properties, neatly formulated
by requiring that the two diagrams
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commute. Note that we draw our diagrams as if the category were strictly monoidal,
although the usual models of linear logic are only weakly monoidal.

The comonoidal structure of the formula !A enables to interpret the contraction rule

and the weakening rule of linear logic

π
...

Γ, !A, !A, ∆ ⊢ B
Contraction

Γ, !A, ∆ ⊢ B

π
...

Γ,∆ ⊢ B
Weakening

Γ, !A, ∆ ⊢ B

by pre-composing the interpretation of the proof π with the multiplication d in the case
of contraction

Γ ⊗ !A ⊗ ∆
d
−→ Γ ⊗ !A ⊗ !A ⊗ ∆

π
−→ B

and with the unit u in the case of weakening

Γ ⊗ !A ⊗ ∆
u
−→ Γ ⊗ ∆

π
−→ B.

Besides, linear logic is generally interpreted in a symmetric monoidal category, and one
requires that the comonoid !A is commutative, this meaning that the following equality
holds:

A
d // A⊗A

symmetry
// A⊗A = A

d // A⊗A

When linear logic was introduced by Jean-Yves Girard, twenty years ago, it was soon
realized by Robert Seely and others that the multiplicative fragment of the logic should
be interpreted in a ∗-autonomous category, or at least, a symmetric monoidal closed
category L ; and that the category should have finite products in order to interpret the
additive fragment of the logic, see [12]. A more difficult question was to understand what
categorical properties of the exponential modality “ ! ” were exactly required, in order
to define a model of propositional linear logic – that is, including the multiplicative,
additive and exponential components of the logic. Nonetheless, Yves Lafont found in
his PhD thesis [9] a simple way to define a model of linear logic. Recall that a comonoid
morphism between two comonoids (C1, d1, u1) and (C2, d2, u2) is defined as a morphism
f : C1 −→ C2 such that the two diagrams

C1
f

//

d1

��

C2

d2

��

C1 ⊗ C1
f⊗f

// C2 ⊗ C2

C1
f

//

u1 --

C2

u2qq1



commute. The commutative comonoid !A is freely generated by an object A when there
exists a morphism

ε : !A −→ A

such that for every morphism

f : C −→ A

from a commutative comonoid C to the object A, there exists a unique comonoid
morphism

f† : C −→ !A

such that the diagram

!A

ε

��

C

f 00

f† ..

A

(2)

commutes. Lafont noticed that the existence of a free commutative comonoid !A for
every object A of a symmetric monoidal closed category L induces automatically a
model of propositional linear logic. But this is not the only way to construct a model
of linear logic. A folklore example is the coherence space model, which admits two
alternative interpretations of the exponential modality: the original one, formulated by
Girard [5] where the coherence space !A is defined as a space of cliques, and the free
construction, where !A is defined as a space of multicliques (cliques with multiplicity)
of the original coherence space A.

In this paper, we explain how to construct the free commutative comonoid in the
symmetric monoidal categories L typically encountered in the semantics of linear logic.
Our starting point is the well-known formula defining the symmetric algebra

SA =
⊕

n∈N

A⊗n / ∼n (3)

generated by a vector space A. The formula computes indeed the free commutative
monoid associated to the object A in the category of vector spaces over a given field k.
Here, the group Σn of permutations on {1, . . . , n} acts on the vector space A⊗n, and
the vector space A⊗n/ ∼n of equivalence classes (or orbits) modulo the group action is
defined as the coequalizer of the n! symmetries

A⊗n

symmetry
//

···

symmetry
// A⊗n

coequalizer
// A⊗n/ ∼n

in the category of vector spaces. Since a comonoid in the category L is the same thing as
a monoid in the opposite category Lop, it is tempting to apply the dual formula to (3)
in order to define the free commutative comonoid !A generated by an object A in the
category L. Although the idea is extremely naive, it is surprisingly close to the truth...



Indeed, one significant aspect of our work is to establish that the equalizer An of the
n! symmetries

An
equalizer

// A⊗n

symmetry
//

···

symmetry
// A⊗n (4)

exists in many familiar models of linear logic, and provides there the n-th layer of the
free commutative comonoid !A generated by the object A. As we will see in Sections 2
and 3, this principle is nicely illustrated by the equalizer An in the category of coherence
spaces, which contains the multicliques of cardinality n in the coherence space A ; and
by the equalizer An in the category of Conway games, which defines the game where
Opponent may open up to n copies of the game A, one after the other, in a sequential
order.

Of course, the construction of the free exponential modality does not stop here: one
still needs to combine the layers An together in order to define !A properly. One obvious
solution is to apply the dual of formula (3) and to define !A as the infinite cartesian
product

!A =
¯

n∈N

An. (5)

This formula works perfectly well for symmetric monoidal categories L where the tensor
product distributes over the infinite product, in the sense that the canonical morphism

X ⊗
( ¯

n∈N

An
)
−→

¯

n∈N

( X ⊗ An ) (6)

is an isomorphism. This algebraic miracle is not so uncommon: it often happens in
models of linear logic enriched over commutative monoids – where morphisms (and
thus proofs) may be added. A typical illustration is provided by the relational model
of linear logic, where the free exponential !A is defined as the set of finite multisets
of A, each An describing the set of multisets of cardinality n. We take the opportunity
to establish at the end of the paper that the formula (5) works in just the same way
in the finiteness space model of differential linear logic recently introduced by Thomas
Ehrhard [3].

On the other hand, the formula (5) is far too optimistic, and does not work in
the typical models of linear logic, like coherence spaces, or game semantics. It is quite
instructive to apply it to the category of Conway games: the formula defines in that case
a game !A where the first move by Opponent selects a component An, and thus decides
the number n of copies of the game A played subsequently. This departs from the free
commutative comonoid !A which we shall describe in Section 3, where Opponent is
allowed to open a new copy of the game A at any point of the interaction. So, there
remains to understand how the various layers An should be combined together, in order
to ensure that !A performs this particular copy policy. The temptation is to ask that
every layer An is “glued” inside the next layer An+1 in order to permit the computation
to transit from one layer to the next in the course of interaction.

The most natural way to perform this “glueing” is to introduce the notion of pointed
(or affine) object. By pointed object in a monoidal category L, one means a pair (A, u)
consisting of an object A and a morphism u : A −→ 1 to the monoidal unit. So, a pointed



object is the same thing as a comonoid, without a comultiplication. It is folklore that
the category of pointed objects and pointed morphisms (defined in the expected way)
is symmetric monoidal, and affine in the sense that its monoidal unit 1 is terminal.
Once this notion of pointed object introduced, the construction of the free commutative
comonoid !A is excessively simple and elegant, and proceeds in three elementary steps.

First step. The object A is transported to the free pointed object (A•, u) it generates,
when this object exists in the monoidal category L. Intuitively, the purpose of the
pointed object A• is to describe one copy of the object A, or none... It is usually quite
easy to define: in the case of coherence spaces, the space A• = A & 1 is obtained by
adding a point to the web of A ; in the case of Conway games, the game A• is the game
A itself, at least when the category is restricted to the Opponent-starting games.

Second step. The object A≤n is defined as the equalizer (A•)
n of the diagram

A≤n
equalizer

// A⊗n
•

symmetry
//

···

symmetry
// A

⊗n
• (7)

in the category L. The purpose of A≤n is to describe all the layers Ak at the same time,
for k ≤ n. Typically, the object A≤n computed in the category of coherence spaces is
the space of all multicliques in A of cardinality less than n.

Third step. It appears that there exists a canonical morphism

A≤n A≤n+1oo

induced by the unit u of the pointed object A•. The free commutative comonoid !A
generated by A is then defined as the sequential limit of the sequence

1 A≤1oo A≤2oo · · ·oo A≤noo A≤n+1oo · · ·oo

The 2-dimensional description of algebraic theories and PROPs recently performed
by Melliès and Tabareau [11] ensures then that this recipe in three steps defines the
free commutative comonoid !A generated by the object A... as long as the following
fundamental property is satisfied by the symmetric monoidal category L: its tensor
product should distribute over

1. the equalizer computing the object A≤n,

2. the sequential limit computing the object !A.

So, one main purpose of the paper is to establish that this pair of distributivity prop-
erties holds for the category of coherence spaces (in Section 2) and for the category of
Conway games (in Section 3). In this way, we demonstrate the extraordinary fact that
despite their difference in style, the free exponential modalities of coherence spaces and
Conway games are based on exactly the same limiting process.



2 Coherence spaces

In this section, we compute the free exponential modality in the category of coherence
spaces defined by Jean-Yves Girard [5]. A coherence space E = (|E|,⌢⌣) consists of a
set |E| called its web, and of a binary reflexive and symmetric relation ⌢⌣ over E. A
clique of E is a set X of pairwise coherent elements of the web:

∀e1, e2 ∈ X, e1 ⌢⌣ e2.

We do not recall here the definition of the category Coh of coherence spaces (however,
the reader will find a brief description of the category in Annex 1). Just remember
that a morphism R : E → E′ in Coh is a clique of the coherence space E ⊸ E′, so in
particular, R is a relation on the web |E| × |E′|.

It is easy to see that the tensor product does not distribute over cartesian products:
simply observe that the canonical morphism

A⊗ (1 & 1) −→ (A⊗ 1) & (A⊗ 1)

is not an isomorphism. This explains why formula (5) does not work, and why the
construction of the free exponential modality requires a sequential limit, along the line
described in the introduction.

First step: compute the free affine object. Computing the free pointed (or affine)
object on a coherence space E is easy, because the category Coh has cartesian products:
it is simply given by formula

E• = E & 1.

It is useful to think of E &1 is the space of multicliques of E with at most one element:
the very first layer of the construction of the free exponential modality. Recall that a
multiclique of E is just a multiset on |E| whose underlying set is a clique of E.

Second step: compute the symmetric tensor power E≤n. It is not difficult to
see that the equalizer E≤n of the symmetries

(E & 1)⊗n
symmetry

//
···

symmetry
// (E & 1)⊗n

is given by the set of multicliques of E with at most n elements, two multicliques being
coherent if their union is still a multiclique. As explained in the introduction, one also
needs to check that the tensor product distributes over those equalizers. Consider a
cone

YR

yy

R′

%%

X ⊗ (E & 1)⊗n
X⊗symmetry

//
···

X⊗symmetry
// X ⊗ (E & 1)⊗n

(8)

We can choose the identity among the symmetries. This ensures already that R = R′.
Next, we show that the morphism R factors uniquely through the morphism

X ⊗ E≤n
X⊗ equalizer

// X ⊗ (E & 1)⊗n



To that purpose, one defines the relation

R≤n : Y −−→ X ⊗ E≤n by y R≤n (x, µ) iff y R (x, u)

where µ is a multiset of |E| of cardinal less than n, and u is any word of length n whose
letters with multiplicity in |E & 1| = |E| ⊎ {∗} define the multiset µ. We let the reader
check that the definition is correct, that it defines a clique R≤n of Y ⊸ (X ⊗ E≤n),
and that it is the unique way to factor R through (8).

Third step: compute the sequential limit

E≤0 = 1 E≤1 = (E & 1)oo E≤2oo E≤3 · · ·oo

whose arrows are (dualized) inclusions from E≤n into E≤n+1. Again, it is a basic fact
that the limit !E of the diagram is given by the set of all finite multicliques, two
multicliques being coherent if their union is a multiclique. One also needs to check that
the tensor product distributes over the sequential limit. So, consider a cone

YR0

tt
R1

vv
R2

��

R3

&&

X ⊗ 1 X ⊗ (E & 1)oo X ⊗ E≤2oo X ⊗ E≤3 · · ·oo

and define the relation

R∞ : Y −−→ X⊗!E by y R∞ (x, µ) iff ∃n, y Rn (x, u)

where µ is a multiset of elements of |E| and the element u of the web of E≤n is any word
of length n whose letters with multiplicity in |E & 1| = |E| ⊎ {∗} define the multiset µ.
We let the reader check that R∞ is a clique of Y ⊸ (X⊗!E) and defines the unique
way to factor the cone. This concludes the proof that the sequential limit !E defines the
free commutative comonoid generated by E in the category Coh of coherence spaces.

3 Conway games

In this section, we compute the free exponential modality in the category of Conway
games introduced by André Joyal in [7]. One unifying aspect of our approach is that
the construction works in exactly the same way as for coherence spaces.

Conway games. A Conway game A is an oriented rooted graph (VA, EA, λA) consisting
of (1) a set VA of vertices called the positions of the game; (2) a set EA ⊂ VA × VA

of edges called the moves of the game; (3) a function λA : EA → {−1,+1} indicating
whether a move is played by Opponent (−1) or by Proponent (+1). We write ⋆A for
the root of the underlying graph. A Conway game is called negative when all the moves
starting from its root are played by Opponent.
A play s = m1 ·m2 · . . . ·mk−1 ·mk of a Conway game A is a path s : ⋆A ։ xk starting
from the root ⋆A

s : ⋆A
m1−−→ x1

m2−−→ . . .
mk−1
−−−→ xk−1

mk−−→ xk



Two paths are parallel when they have the same initial and final positions. A play is
alternating when

∀i ∈ {1, . . . , k − 1}, λA(mi+1) = −λA(mi).

We note PlayA the set of plays of a game A.

Dual. Every Conway game A induces a dual game A∗ obtained simply by reversing the
polarity of moves.

Tensor product. The tensor product A⊗B of two Conway games A and B is essentially
the asynchronous product of the two underlying graphs. More formally, it is defined as:

– VA⊗B = VA × VB ,
– its moves are of two kinds :

x⊗ y →

{
z ⊗ y if x→ z in the game A
x⊗ z if y → z in the game B,

– the polarity of moves is inherited from games A and B.

The unique Conway game 1 with a unique position ⋆ and no move is the neutral
element of the tensor product. As usual in game semantics, every play s of the game
A⊗B can be seen as the interleaving of a play s|A of the game A and a play s|B of the
game B.

Strategies. A strategy σ of a Conway game A is defined as a non empty set of alternat-

ing plays of even length such that (1) every non empty play starts with an Opponent
move; (2) σ is closed by even length prefix; (3) σ is deterministic, i.e. for all plays s,
and for all moves m, n, n′,

s ·m · n ∈ σ ∧ s ·m · n′ ∈ σ ⇒ n = n′.

The category of Conway games. The category Conway has Conway games as
objects, and strategies σ of A∗⊗B as morphisms σ : A→ B. The composition is based
on the usual “parallel composition plus hiding” technique and the identity is defined
by a copycat strategy. The resulting category Conway is compact-closed in the sense
of [8].

The category Conway does not have finite or infinite products. For that reason,
we compute the free exponential modality in the full subcategory Conway of negative
Conway games, which has products. We explain in a later stage how the free construction
on the subcategory Conway induces a free construction on the whole category.

First step: compute the free affine object. The monoidal unit 1 is terminal in the
category Conway . In other words, every negative Conway game may be seen as an
affine object in a unique way, by equipping it with the empty strategy tA : A → 1. In
particular, the free affine object A• is simply A itself.

Second step: compute the symmetric tensor power An as the equalizer of the
n! symmetries



A⊗n

symmetry
//

···

symmetry
// A⊗n.

A simple argument shows that the equalizer An = A≤n is the following Conway game:

– the positions of the game An are the finite words w = x1 · · ·xn of length n, whose
letters are positions xi of the game A, and such that xi+1 = ⋆A is the root of A
whenever xi = ⋆A is the root of A, for every 1 ≤ i < n. The intuition is that the
letter xk in the position w = x1 · · ·xn of the game An describes the position of the
k-th copy of A, and that the i + 1-th copy of A cannot be opened by Opponent
unless all the i-th copy of A has been already opened.

– its root is the word ⋆An = ⋆A · · · ⋆A where the n the positions xk are at the root ⋆A

of the game A,
– a move w → w′ is a move played in one copy:

w1 x w2 → w1 y w2

where x → y is a move of the game A. Note that the condition on the positions
implies that when a new copy of A is opened (that is, when x = ⋆A) no position in
w1 is at the root, and all the positions in w2 are at the root.

– the polarities of moves are inherited from the game A in the obvious way.

Note that An may be also seen as the subgame of A⊗n where the i + 1-th copy of A is
always opened after the i-th copy of A.

Third step: compute the sequential limit

A0 = 1 A1 = Aoo A2oo A3oo · · ·oo

whose morphisms are the partial copycat strategies An ← An+1 identifying An as the
subgame of An+1 where only the first n copies of A are played. The limit of this diagram
in the category Conway is the game A∞ defined in the same way as A≤n except that
its positions w = x1 · x2 · · · are infinite sequences of positions of A, all of them at the
root except for a finite prefix x1 · · ·xk. We establish in Annex 2 that A∞ is indeed the
limit of this diagram, and that the tensor product distributes with this limit. From this,
we deduce that the sequential limit A∞ describes the free commutative comonoid in
the category Conway .

It is nice to observe that the free construction extends to the whole category Conway

of Conway games. A careful study shows that every commutative comonoid in the
category of Conway games is in fact a negative game. Moreover, the inclusion functor
from Conway to Conway has a right adjoint, which associates to every Conway game
A, the negative Conway game A obtained by removing all the Proponent moves from
the root ⋆A. By combining these two observations, we obtain that (A )

∞
is the free

commutative comonoid generated by A in the category Conway of Conway games.

4 Finiteness spaces

In contrast with Section 2 and Section 3, we describe in this last example the con-
struction of the dual of the free exponential in the category of linear finiteness spaces



introduced by Thomas Ehrhard in [3]. It appears that in this model of linear logic based
on vector spaces, the well-known Formula 3 is sufficient. Remark that we choose to com-
pute the dual of the exponential modality because it comes out with a slick description
using the Taylor expansion formula.

There are two layers of finiteness spaces. Relational finiteness spaces are defined by
adapting the definition of coherence spaces through duality (the coherence relation is
replaced by the set of cliques, equal to its second orthogonal). Linear finiteness spaces
are linearly topologized spaces [10] built on the relational layer.

Relational finiteness spaces Two subsets u, u′ of a countable set A are finitely
orthogonal1 u ⊥ u′ whenever their intersection u ∩ u′ is finite. The orthogonal of F ⊆
P(E) is then F⊥ = {u′ ⊆ E |∀u ∈ F , u ⊥ u′}.

A relational finiteness space E = (|E|,F(E)) is given by its web |E|, a countable set
and by its finitary subsets F(E) ⊆ P(|E|), orthogonally closed i.e. F(E)⊥⊥ = F(E).
We call u ∈ F(E)⊥ antifinitary. A finitary relation R between E1 and E2 is a subset of
|E1| × |E2| such that:

∀u ∈ F(E1), R · u = {b ∈ |E2| |∃a ∈ u, (a, b) ∈ R} ∈ F(E2),

∀v′ ∈ F(E2)
⊥, tR · v′ = {a ∈ |E1| |∃b ∈ v′, (a, b) ∈ R} ∈ F(E1)

⊥.

The category RelFin of relational finiteness spaces and finitary relations is ∗-
autonomous. The constructions of linear logic are recalled on Figure 1 in Annexe 5.

Linear finiteness spaces In the sequel, ❦ is an infinite field endowed with the discrete
topology i.e. every subset of ❦ is open. Each relational finiteness space E generates a
linear space ❦〈E〉 which is a subspace of the linear space ❦|E|:

❦〈E〉 = {x ∈ ❦|E| | |x| ∈ F(E)}, with |x| = {a ∈ |E| |xa 6= 0}.

Each linear finiteness space can be endowed with a topology induced by the antifinitary
parts J ′ ∈ F(E)⊥ of the underlying relational finiteness space: VJ′ = {x ∈ ❦〈E〉 |
|x| ∩ J ′ = ∅} is a fundamental linear neighborhood of 0. A subset U of ❦〈E〉 is open

if and only if for each x ∈ U there is J ′
x ∈ F(E)⊥ such that x + VJ′

x
⊆ U . Endowed

with this topology, ❦〈E〉 is a linearly topologized space i.e. a topological vector space
over a discrete field whose topology is generated by a fundamental system (a filter basis
of neighbourhoods of 0, here the VJ′ , which are linear subspaces of ❦〈E〉). Moreover,
Every linear finiteness space is topologically complete (in the sense that every cauchy
net converges).

Although linear finiteness spaces are entirely determined by relational ones, we de-
scribe the constructions of linear logic from an algebraic and topological viewpoint. In
the sequel, linear finiteness spaces range over X, Y, . . . .

Product and Coproduct. The coproduct X ⊕ Y of of linear finiteness spaces X and
Y is made of linear combinations of elements of X and Y and is endowed with the
product topology. Finite product coincide with finite coproduct. However, the infinite
coproduct ⊕iXi of the collection of finiteness space Xi is a strict subspace of the infinite
product &iXi.

1 The coherence orthogonality is: u ⊥ u′ ⇐⇒ ♯u ∩ u′ ≤ 1.



Linear implication. The linear implication X ⊸ Y of two linear finiteness spaces X
and Y is the linearly topologized space of continuous linear functions endowed with the
topology of uniform convergence on closed spaces with finitary support. This linearly

compact open topology is generated by

W(K, V ) = {f |f(K) ⊆ V }

where K ranges over linearly compact subspaces2 of ❦〈X〉, i.e. K is closed and |K| =
∪x∈K |x| is finitary, and V ranges over fundamental neighbourhoods of 0.

Let ⊥ = ❦. The topological dual X⊥ = X ⊸ ⊥ of X is endowed with the compact
open topology generated by W(K) = {x′ ∈ X⊥ | ∀x ∈ K, 〈x′, x〉 = 0} where K ranges
over linearly compact subspaces of X.

Inductive tensor product. An n-linear form φ : (Xi)
i → ❦ over linear finiteness

spaces (Xi)i≤n is hypocontinuous if for any (Ki) collection of linearly compact subspaces
of Xis (respectively), for any i0 there exists a fundamental linear neighborhood Ui0 such
that φ(×Xi) = 0 where Xi = Ki if i 6= i0 and Xi0 = Ui0 . The inductive tensor product3

X ` Y of two linear finiteness spaces X and Y is the space of hypocontinuous bilinear
forms over X⊥ × Y ⊥, endowed with the linearly compact open topology generated
by W(K ′

X , K ′
Y ) = {φ | φ(K ′

X , K ′
Y ) = 0} where K ′

X and K ′
Y resp. range over linearly

compact subspaces of X ′ and Y ′.

Tensor product The tensor product ❦〈X〉 ⊗̃❦〈Y 〉 of two linear finiteness spaces X
and Y is the dual of X⊥ ` Y ⊥. It is the topological completion of the algebraic tensor
product ❦〈X〉 ⊗ ❦〈Y 〉 endowed with the topology induced by (X⊥ ` Y ⊥)⊥.

The category of linear finiteness spaces. The category LinFin has linear finiteness
spaces as objects and linear continuous functions from X to Y as morphisms. It is ∗-
autonomous and provides a model of LL.

In LinFin, we can compute the free commutative monoid on X⊥ by using directly
the formula

?X⊥ = ⊕n (X⊥)`n/ ∼ .

Indeed, we are really closed to the case of linear spaces and the symmetric algebra
even if a little topology is needed. Besides, the description of the ?X⊥ construction
as the free commutative monoid enlightens the Taylor formula [3] which is central in
the syntactical work initiated by finiteness spaces. This formula allows to decompose an
analytic function F :!X → Y into a converging series made of homogeneous polynomials,
that is its derivative at 0.

First step: computing the coequalizer of symmetries. The linear finiteness space
(X⊥)`n is made of hypocontinuous n-linear forms over Xn, and the symmetries act on
(X⊥)`n by permuting the arguments of the multilinear forms. The coequalizer X≤n

of the symmetries is given by the space of symmetric hypocontinuous n-linear forms

2 Linear compactness can be defined adapting the intersection property to the linearly topol-
ogized setting [10]. We prefer their finitary characterisation which is more useful.

3 The space X`Y is an adaptation of the inductive tensor product [6] to linearly topologized
space as done in [4].



endowed with the linearly compact open topology. A function P : X → ❦ is polynomial

whenever there are symmetric hypocontinous i-linear forms: φi : (❦〈X〉′)i → ❦ such
that P (x) =

∑n
i=0 φi(x, . . . , x). The canonical isomorphism between symmetric bilinear

functions and quadratic functions can be generalised to a homeomorphism between X≤n

and the space of polynomial functions x 7→ φ(x, . . . , x) with φ ∈ X≤n, endowed with
the linearly compact open topology.

Second step: computing the colimit. In the category of linearly topologised spaces,
the colimit Pol(X) of the X≤n is the direct sum ⊕nX≤n, that is the space of poly-
nomial functions, endowed with linearly compact open topology. However, this space
is not complete as should be a linear finiteness space. Hence we need to compute the
colimit in the category of complete linearly topologised spaces. This colimit is simply
the completion of Pol(X). Since Ehrhard [2] has shown that the completion of Pol(X)
with respect to the compact open topology is homeomorphic to a linear finiteness space,
we get our wanted colimit.

We provide in Annex 3 a full proof that the ` distributes over the coequalizer
of the symmetries and over infinite coproducts, which means that the dual version of
the morphism (6) is an isomorphism. Shortly, the proof lays on the Taylor expansion
formula:

F (x) =
∑ 1

n!
F (n)(0) · x⊗n

where F ∈?X⊥, x ∈ X and x⊗n : φ ∈ X≤n 7→ φ(x, . . . , x). We thus deduce that the
linear finiteness space ?X⊥ is the free commutative monoid in LinFin.

5 Conclusion

One main contribution of this work is to unify and to compare the miscellaneous in-
terpretations of the exponential modality appearing in the literature. In particular, we
show this somewhat unexpected fact, that the free exponential modalities on coher-
ence spaces and on Conway games are computed by the very same sequential limit in
their respective categories. We also establish that the formula for the free exponential
modality in the finiteness space semantics is of a different nature, closer to the usual
construction of the symmetric algebra in vector spaces. We connect this alternative
definition to the existence of the Taylor expansion formula in that model. This clarifies
an old question initiated by Michael Barr [1] about the algebraic and recursive nature
of the free exponential modality of linearity. We believe that the purely abstract and
algebraic method advocated in this paper will be also relevant for other constructions
of computational effects or co-effects appearing in the literature.
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Annex 1: Coherence spaces

The coherence relation induces an incoherence relation ˚ defined by

e1 ˚ e2 ⇐⇒ ¬(e1 ⌢⌣ e2) or e1 = e2.

Finite product. The product E1 & E2 of two coherence spaces E1 and E2 is defined
by |E1 & E2| = |E1| ⊎ |E2| and two elements (e, i) and (e′, j) of the web are coherent
when i 6= j or when i = j and e ⌢⌣ e′.

Tensor product. The tensor product E1 ⊗ E2 of two coherence spaces E1 and E2 is
defined by |E1 ⊗ E2| = |E1| × |E2| and two elements (e1, e2) and (e′1, e

′
2) are coherent

when
e1 ⌢⌣ e′1 and e2 ⌢⌣ e′2.

Linear implication. The linear implication E1 ⊸ E2 of two coherence spaces E1 and
E2 is defined by |E1 ⊸ E2| = |E1| × |E2| and two elements (e1, e2) and (e′1, e

′
2) of the

web are incoherent when
e1 ⌢⌣ e′1 and e2 ˚ e′2.

The category of coherence spaces. The category Coh of coherence spaces has co-
herence spaces as objects and cliques of E1 ⊸ E2 as morphisms from E1 to E2. As the
web of E1 ⊸ E2 is |E1| × |E2|, a morphism can be seen as a relation between |E1| and
|E2|, satisfying additional consistency properties. In particular, identity and composi-
tion are defined in the same way as identity and composition in the category of sets
and relations. This category is ∗-autonomous and provides a model the multiplicative
fragment of linear logic.

Annex 2: Conway games

Proposition 1. The game A∞ is the free exponential of the negative Conway game A.

Proof. Instead of showing in two steps that A∞ is the limit of the diagram A and that
the tensor product distributes with this limit, we will directly show that X ⊗A∞ is the
limit of the diagram

X ⊗A : X X ⊗A
tA

oo X ⊗A⊗2

X⊗tA⊗A
oo

X⊗A⊗tAoo

X⊗symmetry

��

X ⊗A⊗3 · · ·
X⊗tA⊗A⊗2

oo ···

X⊗A⊗2⊗tAoo

X⊗symmetry

��

Let us define a cone on the diagram X ⊗ A whose origin is X ⊗ A∞. We proceed by
defining a interleaving function from plays of A∞ to plays of An, and then by defining
a copycat strategy. Given a play s ·m of A∞, we define

〈s ·m〉 = 〈s〉 ·m



where m is the underlying move of m in A. We then define the strategy εn : A∞ → A⊗n

by its set of plays

εn
def
= {s ∈ Playeven

A1
∞

⊸A⊗n

2
| ∀t ≺even s , t|A1

∞ = 〈t|A⊗n

2
〉}.

The cone of X ⊗ A∞ on X ⊗ A is then given by the strategies X ⊗ εn. Note that
the scheduling of the opening of moves is enforced by the presence of symmetry in
the diagram. This explains why A∞ is not just the infinite tensor product of A. Let
(B, α : B → A) be a cone on X ⊗A. We have to define a strategy from B to X ⊗A∞.
Let us introduced the strategy in : X ⊗A⊗n → X ⊗A∞ which mimics Opponent on X
and on the n first copies of A, and which does not answer when Opponent opens the
n+1th copy of A∞. The strategy α†(n) is defined for all n by the commutative diagram

B
αn //

α†(n)

��

A⊗n

in
zzuuuuuuuuu

A∞

Consider now the diagram

B αn+1

//

αn

''

α†(n+1)

��

A⊗n+1

in+1

��

A⊗n⊗tA

// A⊗n

in

��

A∞ A∞ A∞

It commutes on all faces except for the right down one which satisfies in ◦ (An ⊗ tB) ⊆
in+1. The clockwise external path is equal α†(n), so we deduce that

α†(n) ⊆ α†(n+1).

The comonoidal lifting α† is then defined by the monotone limit of the α†(n)’s:

α† def
=

⋃

n

α†(n)

This strategy is a cone morphism because εn ◦ in = An, which implies

εn ◦ α†(n) = εn ◦ in ◦ αn = αn.

It remains to show that this strategy is unique as a cone morphism. Let β be another
cone morphism from B to A∞. Let us define

β(n) = in ◦ εn ◦ β

and remark the two following things

β(n) = α†(n) and β =
⋃

n

β(n).

We deduce that α† = τ , which concludes the proof.
We clearly have the symmetric property for the diagram A⊗X. By using this fact

for X = 1, we obtain that A∞ is the limit of the diagram A.



Annex 3: Finiteness spaces

Proposition 2. The linear finiteness space ?X⊥ is the free commutative monoid in

LinFin.

Proof. We first have to show that the inductive tensor commutes with the permutation
colimits. Since the inductive tensor product on linearly topologized spaces is associa-
tive [4], (X`n) ` Y is the space of (n+1)-hypocontinuous linear forms over (Xn) × Y
and the permutations act only on the first n variables. Thus the coequalizer is the space
of n + 1-hypocontinuous linear functions over (Xn)× Y which are symmetric in the n
first variables.

Instead of showing the commutation of the inductive tensor product with the colimit,
we equivalently show that ⊸ commutes with the colimit. Hence we have to show that
Y ⊸?X⊥ is homeomorphic to the colimit of Y ⊸ X≤n. In order to show this, we
need to study more closely the exponential constructions of LL in LinFin. As shown by
Ehrhard [3,2], if E is a relational finiteness space, the exponential constructions are given
in Figure 1. Moreover, the linear finiteness space ❦〈?E〉 coincides with the completion
of the space of polynomial functions over ❦〈E〉 endowed with the linearly compact open

topology, that is ?(❦〈E〉⊥) = P̃ol(❦〈E〉), we call its elements analytic functions. Since

❦〈!E〉 is the dual space of P̃ol(❦〈E〉), it is related with distributions. For instance, the

distribution x! =
∑

µ∈Mfin(|E|)(
∏

a∈µ x
µ(a)
a )eµ sends an analytic function F to its image

〈x!, F 〉 = F (x) and corresponds to the dirac mass at x. Besides, there exists in LinFin

a sequence of projections:

πn :
∑

µ∈Mfin(|E|)

xµeµ ∈ ❦〈!E〉 7→
∑

♯µ=n

xµeµ ∈ ❦〈!E〉,

which are linear and continuous since their support |π|n = {(µ, µ) |♯µ = n} are finitary.
The vector xn = πn(x!) =

∑
♯µ=n xµeµ of ❦〈!E〉 is the convolution of x iterated n

times. This distribution sends an analytic function to a homogeneous polynomial of

degree n, that is its derivative at zero. From x! =
∞∑

n=0

1
n!x

n, Ehrhard [3] deduced the

Taylor expansion formula

F (x) =
∑

n

1

n!
〈xn, F 〉. (9)

From the cocone defining the colimit ?X⊥ (where X = ❦〈E〉), we deduce the cocone
and the map L:

Y ⊸ X0

--

,,

Y ⊸ X1

))

))

· · · Y ⊸ X≤n

tt

uu

· · ·

colimn(Y ⊸ X≤n)

L

��
�

�

�

Y ⊸?X⊥



Orthogonal: Multiplicatives:

|E⊥| = |E| F(E⊥) = F(E)⊥ |X ` Y | = |E1 ⊗ E2| = |E|1 × |E|2

Additives:

|&iEi| = |⊕iEi| =
F

i
|Ei|

F(⊕iEi) =



⊔j∈Juj s.t. J finite
∀j ∈ J, uj ∈ F(Ej)

ff

F(&iEi) =



⊔iui s.t.
∀i ∈ I, ui ∈ F(Ei)

ff

F(E1 ` E2) =

8

<

:

R ⊆ |E1| × |E2| s.t.

∀u ∈ F(E1)
⊥, R · u ∈ F(E2)

∀v ∈ F(E2)
⊥, tR · v ∈ F(E1)

9

=

;

F(E1 ⊗ E2) =

8

<

:

R ⊆ |E1| × |E2| s.t.
R · |E2| ∈ F(E1)

tR · |E1| ∈ F(E2)

9

=

;

Exponentials:

|!E| = |?E| = Mfin(|E|) = {µ : |E| → N |µ(a) > 0 for finitely many a ∈ |E|}

F(!E) = {M ⊆ Mfin(|E|) | ∪{|µ|, µ ∈ M} ∈ F(E)}

F(?E) =
n

M ⊆ Mfin(|E|) |∀u ∈ F(E)⊥,Mfin(u) ∩ M finite
o

Fig. 1: Linear logic constructions in RelFin.

It remains to find the inverse of L. Let F ∈ Y ⊸?X⊥. For every y ∈ Y , thanks to
the Taylor formula, F (y) : x 7→

∑
n

1
n! 〈x

n, F (y)〉. Besides, since F (y) ∈?X⊥, Fn(y) :
x 7→

∑n
i=0〈x

i, F (y)〉 is in X≤n. The function Fn is of course linear and we only need
to show its continuity. This is ensure since Fn is obtained by composition of F , πn and
the exponentiation x 7→ x! which are continuous since their support are finitary.
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