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S(F n ) be a statistic of the observations. The precision of S(F n ) is a strictly decreasing function of n and the sample size is thus a crucial issue. It is often possible to increase the sample size by acquiring additional observations X ′ = X n+1 , . . . , X n+k . This is done at additional cost and time, for example by increasing the cohorts in clinical trials or sequencing additional genes in molecular biology. In a parametric framework where F belongs to some family (F θ ) θ∈Θ , S(X 1 , . . . , X n ) would typically be an estimator of θ satisfying S(F θ ) = θ and the precision, often of order n -1/2 , should decrease by using X ′ . However the truth is often more complex. The use of additional observations raises at least two issues, which are addressed in this paper. The first one is the relevance of additional observations to the inference problem. If the additional observations X ′ do not share the distribution function F with X, it is certainly unwise to expect better precision when using them in the inference. We therefore need to assess whether X ′ is distributed consistently with F. Focusing on the average modification induced by extending the sample to X ′ , we provide in Section 3 an approximation to the law of this modification, under the consistency hypothesis. This approximation is then fed in Section 4 to a test procedure and used to control the type I error. The second issue is the relevance of acquiring the data. If the common distribution F ′ of observations in X ′ is close to F, one additional observation only is likely not to be enough to detect the difference between F and F ′ . Indeed k needs to be larger than some function of n for the test to be powerful. In test language, for given F ′ and F, it is similar to finding the size sample needed to achieve a power exceeding some threshold. This issue can be solved using results of Section 3 and is addressed in Section 4. These two issues arise in a slightly different form in sequential tests of hypotheses and sequential change point detection. When collecting new observations is lengthy and costly, waiting for completion of a sample of size n before performing the analyses is not a option. In such an instance, it is desirable to use any new observation as soon as it becomes available. Wald's Sequential Probability Ratio Test (SRPT), introduced by his seminal paper [START_REF]Sequential tests of statistical hypotheses[END_REF] and tightly connected to the classical Neyman-Pearson test for fixed sample size, does just this. Sequential tests stop sampling as soon as a positive result is detected and can thus be superior to classical tests by providing results faster than classical tests, as the success story of the Beta-Blocker Heart Attack Trial (BHAT) proved in 1981 when it ended 8 months earlier than scheduled with positive results [START_REF] Study | The beta-blocker heart attack trial. beta-blocker heart attack study group[END_REF]. But, although modifications exists to account for account for composite hypothesis (Brodsky and Darkov 2005), sequential tests usually test H 0 : F = F 0 against H 1 : F = F 1 , i.e. observations are either all distributed according to F 0 or all distributed according to F 1 , which is different of our main concern, since new data can have a different distribution function than the previous ones. Sequential change point detection is closer in essence to our needs, although it does not perfectly fits our need either. Sequential change point detection is heavily used in statistical quality control. It is used to answer three questions: has a production process ran out of control, when did it ran out of control and what is the magnitude of the change ? Assume that the observations are distributed according to F 0 under the state of control and according to F 1 under the other state. Noting T the point in time at which the jump is detected and ν the point at which it occurs, most of the change point detection literature is interested in minimizing E[(Tν) + ], the average number of additional observations needed to detect the change. This is very close to our concern: new observations not being consistent with the previous ones is equivalent to a process running out of control at time n. The CUSUM (cumulative sum) charts use the current observation to detect significant departures of the process from the state of control [START_REF] Page | Continuous inspection schemes[END_REF]. [START_REF] Lai | Sequential changepoint detection in quality control and dynamical systems (with discussion)[END_REF] showed that a moving average scheme consisting of only a finite size observation window around the current observation is asymptotically as efficient as the CUSUM if the window size grows suitably fast to infinity. [START_REF] Brodsky | Non-Parametric Statistical Diagnosis[END_REF] generalize this result to a larger class of schemes. But all these methods are likelihood-based and assume F 0 and F 1 are simple enough for log-likelihood ratio to be easily computed. [START_REF] Benveniste | The asymptotic local approach to change detection and model validation[END_REF] use weak convergence theory to extend CUSUM to non-likelihoodbased procedures. Their asymptotic local approach use convergence of the rescaled sums of detection statistics to a gaussian process. [START_REF] Lai | Efficient recursive algorithms for detection of abrupt changes in signals and systems[END_REF] use another approach based on moderate deviations to extend a Generalized Likelihood Ratio (GLR) to non-likelihoodbased detection statistics. We present in this paper an original non-likelihood based method to check the consistency of a new batch of observations with previous ones. Our method requires very little assumption about F 0 and F 1 and builds upon a simple and intuitive idea: under the hypothesis of consistency, the precision gain obtained when adding k observations to the sample can roughly be estimated by the precision loss induced by removing k observations from the sample. Our work is motivated by the study of DNA sequences. Organisms genomes are sequenced gene by gene: when new genes become of interest for the community, they are simultaneously sequenced in several organisms. Waiting for all genes from all species to be sequenced before proceeding to an analysis is of course not an option. The current standard is to use as many genes as available: concatenating several genes into one supergene increases the sample size -here the gene length -and implies a more accurate analysis. Such concatenation implicitly assumes that every new gene has the same evolutionary history as the others. Unfortunately, there is no certainty about that. It is well known that many mechanismsrecombination, selective sweep, purifying or positive selection among others [START_REF] Balding | Handbook of Statistical Genetics[END_REF]-lead different genes to have different histories. When a new gene becomes available, it should thus be tested for consistency before being included in the sample. If there is suspicion or exterior information that the new gene do not share a common history with the previous ones, the focus is on the minimum gene length necessary to confidently assess the difference, as in the optimization of the change point detection. The issue of change point detection is hardly new but unlike most methods available in the sequential tests literature the alternative hypothesis is not well specified: a gene can be affected by a number of evolutionary event and thus have a number of evolutionary histories. Specifying one, or even a finite set, of those histories in H 1 is hardly better than an educated guess. The main focus is thus on rejecting H 0 , close in philosophy to the Repeated Significance Test (RST) [START_REF] Armitage | Repeated significance tests on accumulating data[END_REF][START_REF] O'brien | A multiple testing procedure for clinical trials[END_REF][START_REF] Pocock | Group sequential methods in the design and analysis of clinical trials[END_REF]. This particular issue of assessing consistency when the alternative is not well specified can also be found in the online learning literature and is there referred to as concept drift [START_REF] Domingos | Mining high-speed data streams[END_REF]. The article is organized as follows: Section 2 introduces the key concepts and provides intuition about the kind of results we expect. Section 3 present our main results, derived from Edgeworth expansions, and discuss their strong and weak points. Section 4 builds upon the results of Section 3 to present a test of consistency of a new set of data with previous ones. Proofs are postponed to Section 5.

Definitions and Notations

Definition of ∆ n,+k and ∆ n,-k

Let (X 1 , . . . , X n , . . .) be a sequence of i.i.d random variables whose common distribution function is F 0 . Consider the sample mean for the first n terms:

Y n = 1 n n i=1 X i
and define:

∆ n,+k = Y n+k -Y n , ∆ n,-k = Y n-k -Y n .
Since ∆ n,+k is invariant by translation of the X i s, we assume without loss of generality that the X k are centered (E[X 1 ] = µ = 0) and furthermore note:

E[X 2 1 ] = σ 2 E[X 3 1 ] = κ E[|X 1 | 3 ] = β 3 < ∞ A alternative definition of ∆ n,+k is ∆ n,+k = 1 n + k k j=1 X n+j - k n(n + k) n j=1 X j .
(1)

∆ n,+k (resp. ∆ n,-k ) is centered with distribution function F + (resp. F -) and variance σ 2 n,+k (resp. σ 2 n,-k ) where σ 2 n,+k = kσ 2 n(n + k) and σ 2 n,-k = kσ 2 n(n -k)
∆ n,+k (resp. ∆ n,-k ) represent perturbations of the sample mean induced by adding (resp. removing) k units from the sample. As one would expect, when n increases perturbations to the sample mean are the same no matter whether k terms are added to or removed from the sample. To formalize this intuition, we focus on the difference

F + -F -. F + (x) -F -(x)
is convenient for at least two results: using appropriate expansion techniques, we can get results about its order of magnitude and sup x∈R |F + (x) -F -(x)|, the quantity of interest in Kolmogorov-Smirnoff test, is easy to calculate given some expansion of F + (x) -F -(x).

Characteristic Function

But, before proceeding to derivation of the expansion, we recall a few properties of characteristic functions and use them to get insight into the difference between ∆ n,+k and ∆ n,-k . Let X be a real valued random variable with distribution function F X . Let f X be the characteristic function of X defined as f X

(t) = E[e itX ] = ∞ -∞ e itx dF X (x).
Hereafter and unless specified otherwise, we use the shorthands f for f X , f + for f ∆ n,+k and f -for f ∆ n,-k . Thanks to Eq. (1) and classical properties of the characteristic function for independent random variables, we have

f + (t) = f t n + k k f -t n(n + k) n .
(2)

Taylor expansion around 0 yields

f -(t) -f + (t) ≃ kt 2 σ 2 n 2 k n .
where lower order terms have been omitted. Note that Var(∆ n,+k ) ∼ Var(∆ n,-k ) ∼ kσ 2 n 2 . Normalizing ∆ n,+k and ∆ n,-k so that they have asymptotic variance 1 and considering the difference between the characteristic function of the normalized version yields

f - nt √ kσ -f + nt √ kσ ≃ kt 2 n . (3) 
omitting again all lower order terms. Since the first order term in the expansion of f -f + around 0 is of order k/n and although local expansion provides is not enough to prove it, we expect from the inversion theorem the difference F --F + to be of order k/n. However, in order to achieve this result, two competing speeds need to be balanced: k -1/2 and k/n. An intuitive justification follows. It is clear that

n √ kσ ∆ n,+k = 1 + k n -1 1 σ √ k k j=1 (X n+j -Xn ) and n √ kσ ∆ n,-k = 1 σ √ k k j=1 (X n-k+j -Xn-k ) (4)
where Xn is the empirical mean of an n-sample of i.i.d. X j . Since Xn = µ + O P n -1/2 , it is clear from Eq. ( 4) that n √ kσ ∆ n,+k can be thought of as the standardized sum of k i.i.d roughly centered random variables with variance 1. If k goes to infinity with n, the speed k -1/2 is thus the usual speed of the central limit theorem whereas k/n is the speed of the first order difference between variance of ∆ n,+k and ∆ n,-k . Depending on the regularity of F and the compared speed of k -1/2 and k/n, we can make the intuition rigorous and prove the assertion:

F +       √ kσx n       -F -       √ kσx n       = x √ 2π e -x 2 /2 k n + o k n (5)
uniformly in x. Proper formulations and proofs are provided in Section 3. Eq. ( 3) provides an asymptotic expansion of f +f -in an interval around 0 and, although it gives some insight about the resulting Eq. ( 5), it is not powerful enough to derive it properly. We therefore resort to Edgeworth expansion, with an Edgeworth series acting as a middleman between f + and f -. This is the aim of Section 3.

Edgeworth Expansion

Edgeworth series provide an approximation of a probability distribution in terms of its cumulants and are an improvement to the central limit theorem. The nice property of Edgeworth expansions is that they are true asymptotic expansions. We can thus control the error between a probability distribution and its Edgeworth expansion. The literature about Edgeworth expansion is quite abundant and full of powerful results. However most, if not all, of these results rely heavily on f satisfying the so-called Cramér's Condition:

lim sup |t|→∞ | f (t)| < 1 (6)
Cramér's condition is equivalent to F having an absolutely continuous component [START_REF] Hall | Bootstrap and Edgeworth Expansion[END_REF] but we take a special interest in non-lattice completely discontinuous F (i.e. discrete X) for which condition ( 6) is not satisfied. We deal with distribution functions satisfying Cramér's condition in Section 3.1 before turning to non-lattice discrete distribution functions in Section 3.2. Proofs are postponed in Section 5.

With Cramér's Condition

The main result of this section is the following: 

Theorem 3.1 Let (X i ) be
| f (t)| < 1. Suppose furthermore that there exists an integer m ≥ 1 such E[|X| m+2 ] < ∞ and consider α ∈ 2 m+2 , 1 . If k ∼ n α then: F +       √ kσx n       -F -       √ kσx n       = xe -x 2 /2 √ 2π k n + o k n (7)
uniformly in x.

If E[|X| m ] < ∞ for all m, as is the case for gaussian random variables, α can take any value in (0, 1). The only missing case is k = o(n ε ) for all ε > 0. In particular and unlike gaussian variables, as will be shown in Prop. 4.1, k can not be fixed or grow only logarithmically with n.

Without Cramér's Condition

The main result of this section is the following:

Theorem 3.2 Let (X i ) be a sequence of i.i.d. real valued random variables with distribution function F. Suppose that X is a non lattice, discrete random variable. Suppose furthermore that

β 3 = E[|X| 3 ] < ∞ and consider α ∈ 2 3 , 1 . If k ∼ n α then: F +       √ kσx n       -F -       √ kσx n       = xe -x 2 /2 √ 2π k n + o k n (8)
uniformly in x.

The fundamental difference between Theorems 3.2 and 3.1 lies in the range of value α can take. When the distribution function F of X has some absolutely continuous component, k is allowed, upon moment conditions, to grow slowly compared to n. When the distribution function is completely discrete, the third order moment is enough to achieve the expansion. Higher order moments, even if they do exist, are not sufficient to expand the range of value α can take and are thus not required.

New Generating Process

The main result of this section is the following:

Theorem 3.3 Let X i (resp. Y i ) be a sequence of i.i.d. real valued random variables with distribution function F 0 (resp. F 1 ). Suppose that X (resp. Y) has finite expectation µ 0 (resp. µ 1 ) and variance σ 2 0 (resp. σ 2 1 ). Suppose furthermore that

β 3 = E[|Y| 3 ] < ∞ and consider α ∈ (0, 1). If k ∼ n α , then: F +       √ kσ 1 x n       = Φ       x - n n + k √ k(µ 1 -µ 0 ) σ 1       + O(n -β ) (9)
uniformly in x, where β = min ( α 2 , 1α). If x is restricted to a bounded range and µ 1 µ 0 , the correcting term n/(n + k) is unnecessary and Eq. (9) simplifies to

F +       √ kσ 1 x n       = Φ       x - √ k(µ 1 -µ 0 ) σ 1       + O(n -β ). ( 10 
)
Theorem 3.3 requires a third order condition on the new generating process Y to ensure that the remaining term is of order O(k -1/2 ). Neglecting second order terms,

n∆ n,+k √ kσ 1 behaves like a gaussian variable with mean √ k µ 1 -µ 0 σ 1
and variance 1. As we could expect, the mean diverges faster if µ 0 and µ 1 are well separated when compared to the scale σ 1 .

About Discrete Distributions

Our motivating example of DNA analysis is intimately linked to discrete state space. When comparing the same gene among a set of s organisms, each nucleotide in a species is associated to its homologous in the remaining species. An observation consists of a s-uple of nucleotides, . Each nucleotide can take value in the set {A, C, G, T} and thus the s-uples take value in {A, C, G, T} s . The statistic of interest is the likelihood of an observation under a given model. The observations are intrinsically discrete and so is the likelihood of an observation under a given model. To turn these likelihoods to continuous variables and allow for the use of Theorem 3.1 instead of the less powerful Theorem 3.2, we must resort to the trick exposed hereafter. Formally, consider a discrete space A = (a i ) i=1,...,N and a probability measure θ = (θ 1 , . . . , θ N ) on A. In DNA analysis, A = {A, C, G, T} s and θ is a model assigning a probability to each a ∈ A. Assume θ i > 0 for all i and let (Z i ) i∈N be a sequence of i.i.d. random variables such that P(Z = a j ) = θ j for j = 1, . . . , N. We take a special interest in (X i ) i∈N defined as

X i = log P({Z i }) = N j=1 log P(Z i = a j )½ {Z i =a j }
(X i ) is easily an i.i.d sequence of discrete random variables such that P(X = log(θ j )) = θ j . In this case, we can prove thanks to Theorem 3.

2 that sup R |F + -F -| = 1 √ 2πe k n + o k n but only if k ∼ n α with α ∈ (2/3, 1
). We don't have access to lower values of α. Suppose now that θ is not the same for all Z i but rather that each Z i is drawn from A according to a specific

α (i) = (α (i) 1 , . . . , α (i)
N ) and furthermore that α (i) is an i.i.d sequence from a Dirichlet distribution Dir(λθ) that has density:

f (v 1 , . . . , v N-1 ) = N i=1 Γ(λθ i ) Γ(λ N i=1 θ i ) N-1 i=1 v λθ i -1 i for all v 1 , . . . , v N-1 > 0 such that N-1 i=1 v i < 1 and V N = 1 -N-1 i=1 V i . Intuitively, (V 1 , . . . , V N
) is a vector of the N dimensional unit simplex with mean θ and variance inversely proportional to λ: the marginal distribution of V i has mean θ i and variance

θ i (1-θ i )
λ+1 . Using Dir(λθ) instead of θ can be seen as a regularization of the previous case, with θ being the limiting case of Dir(λθ) when λ goes to infinity. It is then easily seen that the X i are i.i.d random variables taking value in R -and absolutely continuous with respect to the Lebesgue-measure. A bit of algebra gives for all m

E[|X| m ] = E        N i=1 |log m P(Z = a i )|½ Z=a i        = N i=1 1 0 | log(α i )| m α i p(α i |θ)dα i = N i=1 Γ(λθ i )Γ(λ(1 -θ i )) Γ(λ) 1 0 |log m (x)|x λθ i (1 -x) λ(1-θ i )-1 dx < ∞
In this case of particular interest, Theorem 3.1 applies for any value of α in (0, 1) as m can be taken arbitrary large.

Application to Test

Theorems 3.1 and 3.2 are useful for detecting changes in the generating process of new observations. We want to test whether the new batch of observations is generated by the same process as the previous observations. Formally, given two probability distributions F 0 and F 1 , and a sequence of independent random variables (X i ) with associated distribution function F X i , we want to test H 0 : "F X i = F 0 for i = 1, . . . , n + k" against H 1 : "F X i = F 0 for i ≤ n and F X i = F 1 otherwise".

In our problem, the statistic of interest is the sample mean, calculated either on all n + k observations (Y n+k )or only the previous n observations (Y n ). We shall therefore assume that F 0 and F 1 have different means µ 0 and µ 1 . ∆ n,+k = Y n+k -Y n represents the influence of the batch of k new observations on the mean, i.e the translation of the sample mean induced by adding the batch of new observation to the calculation. The use of the term "influence" is not coincidental: ∆ n,+k is strongly connected to influence functions [START_REF] Hampel | The influence curve and its role in robust estimation[END_REF][START_REF] Huber | Robust Statistics[END_REF]. When the quantity to estimate is the mean µ of a distribution and k = 1, n∆ n,+1 is indeed exactly the empirical influence value of observation X n+1 on the estimator

Y n = 1 n n i=1 X i of µ, i.e.
the influence of an infinitesimal perturbation on μ along the direction δ X i , the unit mass at point X i . Large positive or negative influence values point up the corresponding observations as potentials outliers whereas small to moderate influence values support consistency of the data. Up to a rescaling, ∆ n,+k can be understood as an extension of influence functions to a batch of observations instead of a single one.

Distribution of ∆ n,+k under H 0

Let k ∈ {n β 1 , n β 2 } with β 1 and β 2 to be specified later. Under H 0 , F X i = F 0 for i = 1, . . . , n + k and it comes from Theorems 3.1 for continuous and 3.2 for discrete distributions that ∆ n,+k and ∆ n,-k have the same distribution function, up to a correcting term of order k/n. For discrete distributions, (β 1 , β 2 ) = (2/3 + ε, 1ε) where ε is an arbitrary small positive value. For continuous distributions (β 1 , β 2 ) = ( 2 m+2 + ε, 1ε) where ε is again an arbitrary small positive value and m is the highest order moment of F 0 . The alternative definition Eq. ( 1) of ∆ n,-k gives different weights to (X 1 , . . . , X n-k ) and (X n-k+1 , . . . , X n ). Under H 0 , the first n observations are identically distributed and exchangeable. Exchangeability implies that the order of (X 1 , . . . , X n ) does not matter. Since their order does not matter, (X n-k+1 , . . . , X n ) can be replaced by any other subset of (X 1 , . . . , X n ) of size k. In particular, the distribution of ∆ n,-k can be approximated by repeatedly selecting k terms from (X 1 , . . . , X n ) and substituting them to (X n-k+1 , . . . , X n ). When the distribution F 0 of the X i under H 0 is not a simple parametric function or involves a large number of parameters, the exact distribution function of ∆ n,+k is unachievable. Even an Edgeworth expansion à la Prop. 5.9 requires the estimation of many cumulants. By contrast a good numerical approximation of F -is available thanks to the previous remark and we can substitute it to F + . Adding the correcting term of order k/n only requires the estimation of the standard deviation σ of F 0 . And one may notice that since there are n + k observations with n larger than k, the estimation of σ is significantly more accurate than the approximation of F -by its empirical version. Wrapping up the preceding remarks, the distribution F + of ∆ n,-k can approximated in the following way:

(i) Compute the mean Y n of the n observations;

(ii) Select at random without replacement k observations among the n;

(iii) Compute the mean Y ⋆ n-k of the remaining n -k observations; (iv) Record the difference ∆ ⋆ n,-k = Y n -Y ⋆ n-k ; (v) Repeat (ii) to (iv) a large number (N) of times.
The distribution F + of ∆ n,+k is then well approximated by the distribution of ∆ ⋆ n,-k , corrected by the term of order k/n (see [START_REF] Hall | Bootstrap and Edgeworth Expansion[END_REF] for more detailed results). The approximation of F + can then be used to construct a critical region for rejecting H 0 based on the ∆ n,+k .

Distribution of ∆ n,+k under H 1

Under H 1 , noting σ 2 1 the variance of the distribution F 1 and assuming µ 0 µ 1 , Theorem 3.3 implies

F +       √ kσ 1 t n       = Φ t - √ k µ 1 -µ 0 σ 1 + O(k -1/2 ) + O k n
where Φ is the standard normal distribution. The distribution of ∆ n,+k under H 1 is approximately gaussian with mean √ k µ 1 -µ 0 σ 1 diverging to ∞ with k. Difference between F + and F -is of order O(1) and terms correcting for the lack of gaussianity of the observations are negligible in front of the main term. Given the boundary of the rejection zone calculated in section 4.1, the approximate power of the test can then easily be computed.

Discussion of the results

About the remainder term: Theorems 3.1 and 3.3 are derived for very general distribution functions: they hold under mere moment conditions. When the distribution at hand is better specified, more accurate results can reasonably be expected. But in the absence of any further assumptions, the remainder of order o(k/n) is possibly the best we can achieve. For example, if the distribution function is skewed, tedious calculations show that the remainder is at least of order O( √ k/n). And we can get closer to k/n by mimicking discrete lattice distributions. Lattice distributions are off-limits but can be seen as the limiting case of non-lattice discrete distributions: a discrete non-lattice distribution with jumps of size 1/2ε at points ±1 and size ε at points ± √ 2 is very close to a lattice distribution with jumps of size 1/2 at points ±1 for small enough ε. For the limiting case of F 0 being such a lattice distribution, and for odd k such that neither n/k nor (n-k)/k are integer, F + has a jump of size of asymptotic size √ 2/πk at point 1/(n + k) when F -has no jump at that point. Since kx n e -x 2 /2 has no jump whatsoever at any point, the extremum of (F

+ ( √ kσx/n)-F -( √ kσx/n))-kx/ne -x 2 2 is at least √ 2/πk attained for x = n n+k 1 √
kσ and thus of order at least k -1/2 . Since k -1/2 ∼ n -α/2 which can be arbitrarily close to k/n as α decreases towards 2/3, the o(k/n) can not be improved upon in this case. On the other hand, gaussian variables have such a nice distribution that most calculations about F -and F + can be done exactly. Most important of all, whatever the value of k, if (X n+1 , . . . , X n+k ) is a linear vector, then any linear combination of X n+1 , . . . , X n+k is gaussian. Going back to Eq. ( 4), the first term is exactly gaussian and there is no need whatsoever for correcting terms of order k j/2 . This is the most favorable case, for which the remainder in Theorem 3.1 has the smallest order of magnitude. Under H 0 , if the X i have mean µ and variance σ 2 , then

n∆ n,-k √ kσ ∼ N(0, n n-k ),
n∆ n,+k √ kσ ∼ N(0, n n+k ) and we can derive the following result: Proposition 4.1 Let ∆ n,+k and ∆ n,-k be defined as before, then:

F +       √ kσx n       -F -       √ kσx n       - k n xe -x 2 2 √ 2π = O k 3 n 3 Uniformly in x.
Prop 4.1 is better than the result provided by Theorem 3.1, as

O(k 3 /n 3 ) is smaller than o(k/n).
Further algebra can even prove here that O(k 3 /n 3 ) is no greater than 1.2k 3 /n 3 , uniformly in x.

Under hypothesis H 1 , we have:

n∆ n,+k √ kσ ∼ N       n n + k √ k(µ 1 -µ 0 ) σ 1 , 1 + Ak n       where A ≤ 1 + σ 2 0 σ 2 1 .
As expected, the result is again slightly more accurate than would be obtained by Theorem 3.3 alone, as the remainder is exactly, instead of at least, of order (k/n) 1/2 . In the gaussian case, we can thus easily improve upon results from Section 3. About Cramer's Condition: Cramer's condition plays a crucial role in the demonstration of Theorem 3.1. Without Cramer's condition, there is no guarantee that jumps of the distribution function F + are of order o(k -1 ) and higher order moments of F + can not be used to improve the range of k that can be used. Indeed, as the binomial example emphasizes for the forbidden but limiting case of lattice distribution, jumps can be of order k -1/2 . But for non-lattice discrete lattice distributions, the maximum jump is at most of order o(k -1/2 ) and can be much smaller than that, for example o(k -1 ). In this case, is might be possible upon further work to increase the range of value α can take in Theorem 3.2.

Proofs

Before we proceed to proof of Theorem 3.1, 3.2 and 3.3, we recall some lemma concerning the expansion of f k (x/ √ k). Without loss of generality, we assume E[X] = 0. Note σ 2 the variance of X, α j = E[X j ] the moment of order j and κ j the j-th cumulant of X, defined as:

κ j = 1 i j d j dt j ln E e itX t=0 = 1 i j (ln • f ) ( j) (0)

Previous Results

Lemma 5.1 (Esseen45) Let (X i ) a sequence of i.i.d. random variables and m ≥ 3

an integer such that E[|X| m ] < ∞, then f X t √ kσ k -e -t 2 2         1 + m-2 j=1 P j (it) k j/2         ≤ δ(k) k m-2 2 (|t| m + |t| 3(m-1) )e -t 2 4 for |t| ≤ σ √ k 4β 1/m
m where P j (it) = j v=1 c jv (it) 2v+j is a polynomial of degree 3 j in it, the coefficient c jv being a polynomial in the cumulants κ 3 , . . . , κ j-v+3 and δ(k) → 0. Lemma 5.2 (Esseen45) Let (X i ) a sequence of i.i.d. random variables and 2 < ν ≤ 3 a real number such that

β ν = E[|X| ν ] < ∞, then there exists a constant C ν depending only on ν such that f X t √ kσ k -e -t 2 2 ≤ C ν n ν-2 2 β ν σ ν |t| ν e -t 2 4 for |t| ≤ σ 1 ν-2 √ k (24β ν ) 1 ν-2
Lemma 5.1 and 5.2 are proved in Esseen (1945) (p. 44). An alternative proof can be found in Cramer (1937) (p. 71 and 74).

Lemma 5.3 (Esseen48) Let X be a non lattice discrete random variable, then for every η > 0 there exists a positive function λ(k) -→ k→∞ ∞ such that:

λ(k) η | f (t)| k t = o 1 √ k
The proof of Lemma 5.2 can be found in [START_REF] Esseen | Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law[END_REF] (Lemma 1, p. 49). We recall one last theorem before proceeding to the proof.

Theorem 5.4 (Essen48) Let A, T and ε be arbitrary positive constants, F(x) a non-decreasing function, G(x) a real function of bounded variation on the real axis, f (t) and g(t) the corresponding

Fourier-Stieltjed transforms such that:

1. F(-∞) = G(-∞) = 0, F(∞) = G(∞)
2. G ′ (x) exists everywhere and

|G ′ (x)| ≤ A 3. T -T f (t)-g(t) t dt = ε
To every number k > 1, there corresponds a finite positive number c(k), only depending on k, such that

|F(x) -G(x)| ≤ k ε 2π + c(k) A T
The proof of Theorem 5.4 is given in Esseen (1945) (Theorem 2.a, p. 32)

New Results

Lemma 5.5 is a generalization of Lemma 5.1.

Lemma 5.5 Suppose that X i is a sequence of i.i.d. random variables such E[|X| m ] < ∞ for an integer m ≥ 3, then for |t| ≤ σ √ k 4β 1/m m : f X t √ kσ n n + k k -e -t 2 2 1 + kt 2 n         1 + m-2 j=1 P j (it) k j/2         ≤      δ(k) k m-2 2 + C m √ k n      (|t| 3 + |t| 3(m-1) )e -t 2 4 +C ′ m k 2 n 2 (|t| 4 + |t| 3m-2 )e -t 2 4
where P j (it) = j v=1 c jv (it) 2v+j is a polynomial of degree 3 j in it, the coefficient c jv being a polynomial in the cumulants κ 3 , . . . , κ j-v+3 , lim k→∞ δ(k) = 0 and C m and C ′ m are constants depending only on m.

Proof. It follows from Lemma 5.1 that

f X t √ kσ n n + k k -e -t 2 2 (1+ k n ) -2         1 + m-2 j=1 P j (it(1 + k n )) k j/2         ≤ δ(k) k m-2 2 (|t| m +|t| 3(m-1) ) 1 + k n -3(m-1) e -t 2 (1+ k n ) -2 4 
We now expand e -t 2 2 (1+ k n ) -2 in power of k n and arrange the terms in a convenient order.

-

t 2 2        1 + k n -2 -1        = kt 2 n - k 2 t 2 2(n + k) 2 Furthermore -t 2 2 ≤ -t 2 2 1 + k n -2 ≤ -t 2 4
, where the last inequality holds for large enough n. It then follows from a Taylor expansion that

e -t 2 2 (1+ k n ) -2 -e -t 2 2 1 + kt 2 n ≤ e -t 2 2 (1+ k n ) -2 kt 2 n - k 2 t 2 2(n + k) 2 2 ≤ e -t 2 4 k 2 t 4 n 2 .
We also have, for any integer j

(it) j 1 + k n -j -(it) j = -(it) j jk n + O k 2 n 2 .
And thus there exist a constant K j , not depending on n and j such that

P j (it(1 + k n )) -P j (it) = j v=1 c jv (it) 2v+j (2v + j)k n + O k 2 n 2 ≤ K j (|t| j+2 + |t| 3 j ) k n
It follows that there exists a positive constant C m , depending neither on n nor k such that

1 + m-2 j=1 P j (it(1 + k n )) k j/2 -         1 + m-2 j=1 P j (it) k j/2         ≤ m-2 j=1 K j k n (|t| j+2 + |t| 3 j ) k j/2 ≤ C m 3 √ k n (|t| 3 + |t| 3(m-2) ). Finally e -t 2 2 1 + kt 2 n ≤ 3e -t 2 4 and there exists a constant C ′ m such that 1 + m-2 j=1 P j (it) k j/2 ≤ C ′ m (1 + |t| 3(m-2) ). For any four reals A, B, a, b, |AB -ab| ≤ |A(B -b)| + |b(A -a)|. Using A = e -t 2 2 1 + kt 2 n , a = e -t 2 2 (1+ k n ) -2 , B = 1 + m-2 j=1 P j (it(1+ k n )) k j/2 and b = 1 + m-2 j=1 P j (it)
k j/2 we obtain:

e -t 2 2 (1+ k n ) -2         1 + m-2 j=1 P j (it(1 + k n )) k j/2         -e -t 2 2 1 + kt 2 n         1 + m-2 j=1 P j (it) k j/2         ≤ C m √ k n (|t| 3 + |t| 3(m-2) )e -t 2 4 +C ′ m k 2 n 2 (|t| 4 + |t| 3m-2 )e -t 2 4
From which the result immediately follows.

Lemma 5.6 With the notations previously defined and under the conditions of Theorem 3.1

f X       - √ kt (n -k)σ       n-k -1 - k n t 2 2 ≤ K -(t 2 + t 4 ) k 2 n 2 f X       - √ kt (n + k)σ       n -1 - k n t 2 2 ≤ K + (t 2 + t 4 ) k 2 n 2 uniformly for |t| ≤ σ √ k 4β 1/m m
, where K + and K -are constants not depending on n, k or X.

Proof. Since the two inequalities are proved in the same way, we prove only the first one. It is readily observed that β 1/m m increases with m, thus

β 3 ≤ β 3/m m . It follows by taking ν = 3 in Lemma 5.2 that for |t| ≤ σ √ k 4β 1/3 3 , f X t √ kσ k -e -t 2 2 ≤ C 3 β 3 σ 3 1 k 1/2 |t| 3 e -t 2 4
A simple decomposition of the quantity to upper bound yields

f X       - √ kt (n -k)σ       n-k -1 - k n t 2 2 ≤ f X       - √ kt (n -k)σ       n-k -exp - kt 2 2(n -k) + (11) exp - kt 2 2(n -k) t 2 2 -exp - kt 2 2n + exp - kt 2 2n -1 - kt 2 2n
For large enough n, k ≤ nk and thus for |t| ≤ σ

√ k 4β 1/3 3 ≤ σ √ n-k 4β 1/3 3
, the first term of the right-hand side of Eq. ( 11) is upper bounded by

f X       - √ kt (n -k)σ       n-k -e -k n-k t 2 2 ≤ C 3 β 3 σ 3 k 3/2 (n -k) 2 |t| 3 e -k n-k t 2 4 ≤ K 2 k 3/2 n 2 |t| 3
where

K 2 = C 3 β 3 /σ 3 sup n {n 2 /(n -k) 2 }.
Using the classical inequality |e x+ye x | ≤ |y|e x for y < 0 we bound the second term of Eq. 11:

e -k n-k t 2 2 -e -k n t 2 2 ≤ e -k n t 2 2 k n -k - k n t 2 2 ≤ K 1 k 2 n 2 t 2
where K 1 = sup n {n/(nk)}/2. Finally we bound the third term of Eq. 11 using the inequality |e

-x -(1 -x)| ≤ x 2 /2 for x ≥ 0: e -k n t 2 2 -1 - k n t 2 2 ≤ k 2 n 2 t 4 4 Since k 3/2 /n 2 = o(k 2 /n 2 ), for K + large enough K 2 k 3/2 n 2 |t| 3 + K 1 k 2 n 2 t 2 + 1 4 k 2 n 2 t 4 ≤ K + (t 2 + t 4 )
k 2 n 2 which ends the proof of the first part of the lemma. Replacing nk by n + k, the same demonstration holds and yields the second inequality of the lemma.

Lemma 5.7 With the notations previously defined and under the conditions of Theorem 3.1

f - nt √ kσ -e -t 2 2 1 - kt 2 2n         1 + m-2 j=1 P j (it) k j/2         ≤ δ(k) k m-2 2 (|t| 3 + |t| 3(m-1) )e -t 2 4 + K ′ - k 2 n 2 e -t 2 4 (|t| 2 + |t| 3m-2 ) f + nt √ kσ -e -t 2 2 1 + kt 2 2n         1 + m-2 j=1 P j (it) k j/2         ≤      δ(k) k m-2 2 + C m √ k n      (|t| 3 + |t| 3(m-1) )e -t 2 4 +K ′ + k 2 n 2 e -t 2 4 (|t| 2 + |t| 3m-2 ) uniformly for |t| ≤ σ √ k 4β 1/m m
, where K ′ -and K ′ + are constants not depending on n and k.

Proof. For any four reals

A, B, a, b, |AB -ab| ≤ |B(A -a)| + |a(B -b)|. We take A = f X t √ kσ k , a = e -t 2 2 1 + m-2 j=1 P j (it) k j/2 , B = f X -t √ k(n-k)σ n-k , b = 1 -kt 2 2n . Using |a| ≤ C m e -t 2 2 (1 + |t| 3(m-2) ) and Lemma 5.6, |a(B -b)| ≤ C m K -(1 + |t| 3(m-2) )(t 2 + t 4 )e -t 2 2 ≤ K ′ - k 2 n 2 (|t| 2 + |t| 3m-2 )e -t 2 4 where K ′ -= C m K -sup t e -t 2 4 |t| 2 + |t| 4 + |t| 3m-4 + |t| 3m-2 |t| 2 + |t| 3m-2
. Similarly using |B| ≤ 1 and Lemma 5.1

|B(A -a)| ≤ δ(k) k m-2 2 (|t| m + |t| 3(m-1) )e -t 2 4
Combining these two inequalities gives the result for the first part of the lemma. The second part is proved in the same way using Lemma 5.5 instead of 5.1.

Proof of Prop 4.1

Lemma 5.8 Let Φ a (resp. Φ b ) be the cumulative distribution function of a centered normal random variable with variance a (resp. b). Furthermore assume there is ε > 0 such that a = (1 + ε) -1 and b = (1ε) -1 . Then, for vanishing ε:

Φ a (x) -Φ b (x) = ε xe -x 2 2 √ 2π + O ε 3 uniformly in x. Proof. Since Φ σ 2 (x) = Φ(x/σ), we have Φ a (x) = Φ(x/ √ a). By hypothesis a -1/2 = (1 + ε) 1/2 = 1 + ε/2 -ε 2 /8 + O ε 3 . A Taylor expansion around x gives Φ x √ a = Φ(x) + Φ ′ (x)x(a -1/2 -1) + Φ ′′ (x) 2 x 2 (a -1/2 -1) 2 + Φ (3) (c) 6 x 3 (a -1/2 -1) 3 = Φ(x) + xΦ ′ (x) ε 2 - ε 2 8 + O(ε 3 ) + x 2 Φ ′′ (x) 2 ε 2 4 + ε ∋ + x 3 Φ (3) (c)O(ε 3 )
where c belongs to (x, x/ √ a). Since xΦ ′ (x) and x 2 Φ ′′ (x) can each be written P(x)e -x 2 2 with P a polynomial of degree lower than 4, they are bounded on R. The same holds for

x 3 Φ (3) (c) since |x 3 Φ (3) (c)| ≤ sup x∈R |x 3 Φ (3) (x/ √ a)| ≤ 1.2a 3/2 ≤ ∞. We can therefore rewrite Φ x √ a = Φ(x) + xΦ ′ (x) ε 2 - ε 2 8 + x 2 Φ ′′ (x) 2 ε 2 4 + O(ε 3 )
uniformly in x. The same arguments lead to

Φ x √ b = Φ(x) + xΦ ′ (x) -ε 2 - ε 2 8 + x 2 Φ ′′ (x) 2 ε 2 4 + O(ε 3 )
Combining these two equations and using xΦ ′ (x) = xe -x 2 2 √ 2π gives the results.

Proof of Prop. 4.1: Since, n 2 kσ 2 σ 2 n,+k = 1 + k n -1 and n 2 kσ 2 σ 2 n,-k = 1 -k n -1
, the result is a direct consequence of Lemma 5.8 when replacing ε by k n .

Proof of Theorem 3.1

Proposition 5.9 With the notations and under the conditions of Theorem 3.1

F -       √ kσx n       = Φ(x) - kx 2 √ 2πn e -x 2 2 + m-2 j=1 P j (-D) k j/2 Φ(x) + o k n F +       √ kσx n       = Φ(x) + kx 2 √ 2πn e -x 2 2 + m-2 j=1 P j (-D) k j/2 Φ(x) + o k n
Uniformly in x, where D is the differential operator.

Proof. The two developments are obtained in the same way, we focus on the first one. It follows from Lemma 5.7 that

A = -σ √ k 4β 1/m m -σ √ k 4β 1/m m f - nt √ kσ -e -t 2 2 1 -kt 2 2n 1 + m-2 j=1 P j (it) k j/2 t dt ≤ δ(k) k m-2 2 ∞ -∞ (|t| m + |t| 3(m-1) )e -t 2 4 + K ′ -k 2 n 2 ∞ -∞ (|t| 2 + |t| 3m-2) )e -t 2 4 = O δ(k) k m-2 2 + O k 2 n 2 = o k n (12) Since Cramér's condition holds, sup |t|≥β -1/m m | f X (t)| ≤ c < 1. It follows then that σk m 2 σ √ k 4β 1/m m f + nt √ kσ t dt ≤ σk m 2 σ √ k 4β 1/m m f t √ kσ k t dt ≤ k m-2 2 1 4β 1/m m f (t) k t dt ≤ k m-2 2 c k = o k n ( 13 
)
The same holds for e

-t 2 2 1 -kt 2 2n 1 + m-2 j=1 P j (it)
k j/2 . Finally, combining Eq. ( 12) and Eq. ( 13) gives

k m/2 -k m/2 f - √ nt √ kσ -e -t 2 2 1 -kt 2 2n 1 + m-2 j=1 P j (it) k j/2 t dt = o k n Remark that k -m/2 ∼ n -mα 2 = o(n -m m+2 ) = o k n .
Using Theorem 5.4 with T = k -m/2 , we obtain:

F -       √ kσx n       = 1 + kX 2 2n (-D)Φ(x) + m-2 j=1 1 + kX 2 n P j (-D) k j/2 Φ(x) + o k n
The term 1 + kX 2 2n (-D)Φ(x) of the right-hand side gives Φ(x) -kx 2 √ 2πn e -x 2 2 when doing the inverse Fourier transform. The result then follows from kX 2 n P j (-D)

k j/2 Φ(x) = o k n uniformly in x. Replacing 1 + kt 2
2n with 1 -kt 2 2n in the proof gives the second expansion.

Proof of Theorem 3.1: The result is a direct consequence from Prop. 5.9.

Proof of Theorem 3.2

Remark: Cramér's condition is essential to ensure that the Edgeworth expansion of f + is valid up to the order m. If it does not hold, then Lemma 5.1 and 5.5 are still valid but

t ω | f (t)| k t
does not decrease exponentially fast anymore. We are limited to T or order k 1/2 in Theorem 5.4 so that only expansions of order 1 are available. But order 1 is not enough if n grows too fast compared to k. Proposition 5.10 With the notations and under the conditions of Theorem 3.2

F -       √ kσx n       = Φ(x) - kx 2 √ 2πn e -x 2 2 + P 1 (-D) k 1/2 Φ(x) + o k n F +       √ kσx n       = Φ(x) + kx 2 √ 2πn e -x 2 2 + P 1 (-D) k 1/2 Φ(x) + o k n
Uniformly in x.

Proof. As for Prop. 5.9, the result is an application of Theo. 5.4. It follows from Lemma 5.7 that

A = -σ √ k 4β 1/3 3 -σ √ k 4β 1/3 3 f - nt √ kσ -e -t 2 2 1 -kt 2 2n 1 + P j (it) k 1/2 t dt ≤ δ(k) k 1/2 ∞ -∞ (|t| 3 + |t| 6 )e -t 2 4 + K ′ - k 2 n 2 ∞ -∞ (|t| 2 + |t| 7 )e -t 2 4 = o(k -1/2 ) + o k n ( 14 
)
Remark that, since α > 2/3, k -1/2 ∼ n -α/2 = o(n α-1 ) = o k n . Since Cramér's condition does not hold, we resort to Lem. 5.3 from which it follows that

σ √ kλ(k) σ √ k 4β 1/3 3 f + ( nt √ kσ ) t dt ≤ σ √ kλ(k) σ √ k 4β 1/3 3 f ( nt √ kσ ) k t dt ≤ λ(k) 1 4β 1/3 3 f (t) t dt = o(k -1/2 ) = o k n ( 15 
)
And the same holds for e -t 2 2 1 -kt 2 2n 1 + P 1 (it) k 1/2 . Combining Eq. ( 14) and ( 15 with 1 -kt 2 2n in the proof gives the second expansion. Proof of Theorem 3.2: The result is a direct consequence from Prop. 5.10.

Proof of Theorem 3.3

Remark: As soon as X and Y have different expectations, ∆ n,+k is not centered anymore and the central limit theorem is enough to get the first order expansion of its distribution function. Up to a normalization constant, ∆ n,+k drifts away to ±∞, depending on the sign of µ 1µ 0 . Following along the same lines as the proofs of Theorem 3.2, we first note that

f + nt √ kσ 1 exp        -it n n + k √ k(µ 1 -µ 0 ) σ 1        = f Y-µ 1 n n + k t √ kσ 1 k f X-µ 0       √ kt (n + k)σ 1       n Using Lemma 5.6, f X-µ 0       √ kt (n + k)σ 1       n -1 - σ 2 0 kt 2 2σ 2 1 n ≤ K(t 2 + t 4 ) k 2 n 2 for |t| ≤ σ 0 √ n 4β 1/3 3
And it comes from Lemma 5.1 that 

f Y-µ 1 n n + k t √ kσ 1 k -e -t 2 /2 1 + kt 2 n 1 + α 3 6σ 6 1 (it) 3 k 1/2 ≤ δ(k) k 1/2 (|t| 3 + |t| 6 )e -
+ |t| 5 )e -t 2 2 that f X-µ 0       √ kt (n + k)σ 1       n f Y-µ 1 n n + k t √ kσ 1 k -e -t 2 2 1 + kt 2 2n 2 - σ 2 0 σ 2 1 + α 3 σ 3 1 (it) 3 k 1/2 ≤ K k 2 n 2 + δ(k) k 1/2 (
+ α 3 σ 3 1 (it) 3 k 1/2 t dt = o k n + o(k -1/2 ).
Lemma 5.3 combined to Theorem 5.4 then provides the following result:

F +       √ kσ 1 x n + k n + k µ 1 -µ 0 σ 1       = P n∆ n,+k √ kσ 1 - √ k n n + k µ 1 -µ 0 σ 1 ≤ x = Φ(x) + k n 2 - σ 2 0 σ 2 1 xe -x 2 2 e -x 2 2 2 √ 2π + α 3 6σ 3 1 (1 -x 2 )e -x 2 2 √ 2kπ + o k n + o(k -1/2 ) = Φ(x) + O(n -β )
uniformly in x, where β = min( α 2 , 1α). In addition, if x is bounded by some M, we further have

F +       √ kσ 1 x n       = Φ       x - √ k(µ 1 -µ 0 ) σ 1      
which concludes the proof.

  Since λ(k) → ∞ as k, or equivalently n, goes to infinity, 1√ kλ(k) = o(k -1/2) the differential operator. The first term of the right-hand side gives Φ(x) -kx 2 √ 2πn e -x 22 . The result then follows from kX 2 n P j (-D)k j/2 Φ(x) = o k n uniformly in x. Replacing 1 + kt 2 2n

  |AB -ab| ≤ |A(Bb)| + |b(Aa)| with A = f X-µ 0 it comes from |A| ≤ 1 and |b| ≤ K(1

  a sequence of i.i.d. real valued random variables with distribution function F. Suppose that Cramér's condition holds, i.e. that lim sup |t|→∞

  t 2 +|t| 9 )e -t 2 for |t| ≤ B =

		min(σ 0 ,σ 1 ) 3 4β 1/3	√ k	. It then follows that			
	B	f X-µ 0	√ kt (n+k)σ 1	n	f Y-µ 1	n n+k	t kσ 1 √	k	-e -t 2 2	1 + k n	t 2 2 2 -	σ 2 0 σ 2 1
	-B