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1 INTRODUCTION 

Concerning plastic anisotropy, many successful 
efforts have been made in the last years to improve 
macroscopic models [1][2][3]. Nevertheless, the 
modeling of deviations from isotropic hardening still 
is a difficult task for these models, in particular for 
non-proportional loading paths. 
The alternative polycrystalline models suffer from 
large CPU time in FE analyses. Moreover, for a 
given experimental anisotropic texture, it was also 
shown that classical polycrystalline models do not 
always give simultaneously a good description of 
flow stresses and transverse strain rates, see for 
example [4][5]. A choice has to be made between 
the yield locus and the Lankford coefficients. This 
drawback could be prohibitive for accurate finite 
element calculations of structures. 
The objective of the present work is to comply with 
two contradictory requirements: 
� small CPU times with polycrystalline models, 
thanks to a small number (<10) of crystallographic 
orientations ("grains"), 
� good agreement with experimental stress levels 
and strain rates simultaneously. 

2 MATERIAL 

The material is a strongly anisotropic 2090-T3 
aluminum-lithium alloy 1.6 mm thick sheet sample. 

The yield stress ( )y11σ  and Lankford ratio 
p
thickness

p
width

ppr εεεε &&&& // 3322 ==  have been determined 

with tensile tests conducted every 15° from the 
rolling direction. The yield stress °== 0035.1 θσσ b  

and Lankford ratio 67.0/ 1122 == pp
br εε &&  

corresponding to a biaxial stress tensor 2211 σσ =  in 
the rolling and transverse directions are also known 
[1]. 
The database has been reconstructed from the 
experimental hardening curve in the rolling 
direction: 

( ) 227.0
025.0646 pεσ +=   (1) 

and from the experimental stresses and r ratios. The 
r-values are supposed to be independent of the strain 
level. The plastic strain range considered in the 
database is 06.0001.0 −=pε , with 13 experimental 

points for each curve: 1111 εσ −  and 3322 εε −  in 

simple tension, 3311 εσ −  and 1122 εε −  in biaxial 

tension. So parameter identification of the 
polycrystalline model has been performed with low 
to moderate strains, and not only at initial yielding. 
The reconstructed stress-strain curves are very close 
to the real experimental curves, with the exception 
of the biaxial curve for 03.011 >ε . The real 
experimental biaxial curve has been used for 
parameter identification. It shows that the hypothesis 
of isotropic hardening following equation (1) can be 
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invalidated even in proportional loading. 
The database has been completed with a strongly 
non-proportional loading: shear 12σ  followed by 

traction 11σ  in the rolling direction, an example of 
"orthogonal" loading. The data do not correspond to 
a real experimental test. This test is introduced to 
investigate the ability to model large cross-
hardening after a loading path change. The cross-
hardening is supposed to be in the order of 50 MPa. 

3 POLYCRYSTALLINE MODEL 

The following equations, where sm , 1=s  to 12, are 

the orientation tensors of the 12 slip systems of fcc 
crystallographic structures, and where gσ  is the 

stress tensor in the “grain” number g  (from 1 to 
N ), are used: 

sgs m:στ =   ,  ∑
=

=
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( )sss Signv τγ && =    (3) 

( ){ }[ ]n
sss KrMaxv /,0 −= τ&   (4) 

The hardening of the slip systems is supposed to be 
purely isotropic (no kinematic hardening): 
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1
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t
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The hardening matrix stH  depends on 6 parameters 

1h  to 6h  [6]. The localization equations are [7]: 
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Because of the non-linear evolution of the 
intermediate variables 

g
β , these equations correctly 

capture the transition from elastic to plastic 
accommodation of the intergranular deformations. 
The scalar parameter C  is in the order of the shear 
modulus µ , as in the self-consistent formalism. D  

is a fourth-order tensor. With Voigt notations, the 
form of this tensor for orthotropic materials is: 
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As D  is a linear relation between two deviators, the 

coefficients obey 2 conditions (10 independent 
coefficients): 

332313322212312111 DDDDDDDDD ++=++=++  

4 RESULTS OF PARAMETER 
IDENTIFICATION 

The parameters of the polycrystalline model have 
been calibrated with Levenberg-Marquardt 
optimization algorithm and a specific identification 
procedure [8]. The 26 parameters of the 
polycrystalline model, including 6 Euler angles and 
1 volume fraction for the texture, have been 
calibrated simultaneously on the 43 experimental 
curves of the database. Eq. (4) is viscoplastic: fixed 
parameters 25=n  and 20=K  MPa have been used 
for the rate-independent aluminum alloy, and the 
duration of all tensile tests is 1000 seconds. The 
hardening matrix is defined by 11 =h , 3177.02 =h , 

0585.03 =h , 2102.04 =h , 6700.15 =h , 

6925.06 =h . Other parameters are 6502.820 =R  

MPa, 4851.31=Q  MPa, 3828.17=b  and 
46484=C  MPa. The resulting anisotropy of the 

localization equation (6) is: 
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Due to the large number of parameters and of 
experimental tests to be calculated at each step of the 
optimization process, the CPU times are prohibitive 
if a large number N  of crystallographic orientations 
are considered. That is why parameter identification 
can be completed only for reduced polycrystalline 
models, say with 20≤N . Good results have been 
obtained with 8=N  "grains". The resulting model 
is named RP8 in the following. 
The model curves and experimental points are 
compared in Fig. 1 (ST: simple tension, BT: biaxial 
tension, S: shear). The RP8 model {111} pole figure 
with 8 "grains" is shown in Fig. 2a. An orientation is 
defined by the 3 Euler angles ( )21 ,, ϕϕ Φ  and its 
volume fraction f . Orthotropic symmetry gives the 

3 associated orientations or "grains" ( )21 ,, ϕϕ −Φ− , 

( )21 ,, ϕϕ −Φ−−  and ( )21 ,, ϕϕ Φ− . In Fig. 2a, 2 sets of 
4 orientations close to the S and brass texture 
components are represented: (60.0839, 24.4331, 
52.1730), 1149.0=f , (39.1266, 36.1651, 1.6579), 

1351.0=f . The experimental pole figure is shown 
in Fig. 2b. The objective is not to have a precise 
modeling of the experimental texture. Nevertheless, 
the good agreement between the 2 figures enables a 
good modeling of texture evolution. 



5 FINITE ELEMENT APPLICATION 

In order to test the computational efficiency of the 
reduced polycrystalline model, the punch test of 
Fig. 3 has been calculated. The complete mesh 
(360°) is made of 2567 nodes and 2460 linear 8-
noded finite elements with 8 integration points. 
Since the material is orthotropic, the 1/4 mesh of 
Fig. 3 would have been sufficient. However, since 
the objective of this work is to test CPU times for 
different constitutive models, the larger mesh is 
more suitable. 
The punch test has been calculated between t=0 and 
1000 seconds, corresponding to a punch 
displacement of 13.33 mm. The finite strain option 
has been activated, but the texture evolution is not 
taken into account, as the maximum local strain is 

217.033 −=ε  (thickness direction). The punch test 

was also calculated with the Bron and Besson [3] 
macroscopic model, BB in the following, calibrated 
with the simple and biaxial tensile tests. The load-
displacement curves of the RP8 and BB models are 
shown in Fig. 4. The two curves differ due to some 
discrepancy of the BB model with the experimental 
database. 
The CPU times of the RP8 and BB models are 
compared in Table 1. Only a Runge-Kutta algorithm 
was implemented for the polycrystalline model. An 
implicit algorithm has also been used for the 
macroscopic BB model. The calculations have been 
performed with the same single processor of a bi-
processor AMD Opteron 248 (64 bits, 2.2 GHz). 
Table 1 shows that the CPU time of the reduced 
polycrystalline model is quite reasonable, although 
somewhat longer in the local integration of the 
material model. 

6 CONCLUSIONS 

With the reduced polycrystalline model, two 
contradictory requirements have been fulfilled: (i) to 
preserve reasonable CPU times with physical slip 
systems, (ii) to improve the agreement with 
experimental stress levels and strain rates (Lankford 
coefficients) simultaneously. It enables the use of 
the model in industrial applications. 
 
Table 1. CPU times with the polycrystalline RP8 
model and the macroscopic BB model. 
 

model algor- 
ithm 

load 
(N) 

CPU 
time 
(s) 

local 
integ. 
(s) 

contact 
flexibility 
matrix (s) 

RP8 RK 36974 33473 4851 16968 
BB RK 41987 29981 1500 16998 
BB impl. 41978 31505 2844 17067 

 
 

 
 
Fig. 1a. Stress-strain curves. ST 0°, 15°, 30°, 45°, 
BT, S, orthogonal. 
 

 
 
Fig. 1b. Stress-strain curves. ST 60°, 75°, 90°, BT, 
S, orthogonal. 
 

 
 
Fig. 1c. Transverse strains curves. ST 0°, 15°, 30°, 
45°, BT, orthogonal. 



 
 
Fig. 1d. Transverse strains curves. ST 90°, 75°, 60°, 
45°, orthogonal. 
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Fig. 2. {111} pole figures of aluminum alloy 2090-
T3, RP8 model (2a, left), experimental (2b, right) 
[2]. 
 

 
 
Fig. 3. Finite element model of the punch test: 1/4 of 
the complete 360° mesh used in calculations. The 
1.6 mm thick sheet is fixed on a die with a 64 mm 
circular hole. The punch diameter is 53.33 mm. The 
sheet has 4 finite elements in its thickness. Punch 
displacement: 13.33 mm. 
 

 

Fig. 4. Calculated load (kN)-displacement (mm) 
curves of the punch of Fig. 3. RP8: polycrystalline 
model with 8 "grains", BB: macroscopic Bron-
Besson model. 
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