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Abstract: A robust controller is derived for networked control systems with uncertain plant dynamics.
The link between the nodes is disturbed by time-varying communication delays, samplings and time-
synchronization. A stability criterion for a robust control is presented in terms of LMIs based on
Lyapunov-Krasovskii techniques. A second-order system example is considered and the relation between
the admissive bounds of the synchronization error and the size of the uncertainties is computed.

1. INTRODUCTION

Internet technology appears as a natural and cheap way to en-
sure the communication link in remotely controlled systems [1].
Today, the available Quality of Service is often good enough
for that kind of applications. However, such a communication
link constitutes an additional dynamical system, which great
influence on stability was already mentioned in the 60’s [4].
Indeed, several dynamics and perturbations (communication
delay, real-time sampling, packet dropout and synchronization
errors) are unavoidably introduced and have to be taken into
account during the design of the control/observation loop.

In the literature, many authors assume that the nodes of the
NCS are synchronized [8]. However the synchronization is an
fundamental issue of NCS since ensuring several nodes are
synchronized is not easy and some error in it may reduce the
performances of the controller [5]. The article focusses on the
lake of time-synchronization and provides a robust controller
for continuous networked control systems with synchronization
error and to parameter uncertainties. A time-delay represen-
tation which takes into account the transmission delays, the
sampling and the synchronization errors.

Several works on networked controlled systems introduced the
question of transmission delays [2]. It is well known that delays
generally lead to unstable behavior [10][11]. Moreover in net-
worked control situations, the delays are basically variable (jit-
ter phenomenon) and unpredictable. This is a source of problem
when the classical predictor-based controllers are intended to
be applied. These techniques generally need the constant delay,
i.e. hi(t) = hi. In the case of variable delays, some researches
have used independent-of-delay conditions. Because such i.o.d.
conditions may be conservative in general, particular cases such
as constant or symmetric delays were considered [3]. These
assumptions refers to the case where the transmission delays are
equal, i.e. h1(t) = h2(t) = R(t)/2, where R(t) denotes the round
trip time (RTT). Another interesting approach was recently
given in [14], which generalized the predictor techniques to the
case of variable delays.
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Fig. 1. Plant controller through a network

Considering unknown time-varying delays and samplings,
some stability and stabilization results, [15] have been provided
known introducing bounds of the delays and of the sampling
interval (hm, hM and T such that 0 ≤ hm ≤ h(t) ≤ hM and such
that the difference between two successive sampling instants is
less than T ), which is not that restrictive. In this paper, the same
assumptions are done to ensure the stability of the NCS using a
observer-based controller which extends the controller from [9]
to the case of time varying delays, synchronization errors and
parameter uncertainties.

The present article is organized as follows. Section II concerns
the problem formulation providing a presentation of the plant
and of the communication. Section III exposes the control
strategy. Section IV deals with the stability of the controller.
An example is provided in Section V.

2. PRELIMINARIES

The network control problem is described in Fig.1. The plant
and the controller are connected through a network which
induces additional dynamics in the closed loop system. In the
present situation, it is assumed that the time synchronization of
the process and controller clocks is not achieved. It means that
the time tp given by the plant’s clock and the time tc delivered
by the controller’s clock do not have the same sense. Assume
the reference time is given by the plant clock. It means that
tc = tp + ε(t) where ε corresponds to a time-varying error of
synchronization. The features of the plant and the assumptions
on the network are described in the following.

2.1 Definition of the plant

Consider the uncertain systems:



ẋ(t) = (A+∆γ A)x(t)+(B+∆γ B)u(t),
y(t) = (C +∆γC)x(t).

(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are, respectively, the state,
input and output vectors. The constant and known matrices A,
B and C correspond to the nominal behavior or the plant. The
(time-varying) uncertainties are given in a polytopic represen-
tation:

∆γ A = γ
N

∑
i=1

λi(t)Ai, ∆γ B = γ
N

∑
i=1

λi(t)Bi

∆γC = γ
N

∑
i=1

λi(t)Ci

where N corresponds to the numbers of vertices. The matrices
Ai, Bi and Ci are constant and of appropriate dimension. The
scalar γ ∈R characterizes the size of the uncertainties. Note that
when γ = 0, no parameter uncertainty is disturbing the system.
However the greater the γ , the greater the disturbances. The
functions λi(.) are weighted scalar functions which follow a
convexity property, ie. for all i = 1, ..,N and for all t ≥ 0:

λi(t) ≥ 0,
N

∑
i=1

λi(t) = 1

In the plant, it is assumed there is a low computation power
and its functions are limited to receive control packets, apply
control, send output measurement data. The computation thus
is removed in a centralized controller.

2.2 Synchronization and delays models

In addition to parameter uncertainties, the stability of the
closed-loop system must be ensured whatever the delays, the
possible aperiodicity of the real-time sampling processes and
synchronization error. Concerning the transmission delays, it
is only assumed that they are non-symmetric but have known
minimal and maximal bounds hm and hM , so that:

A1 (maximal allowed delay) : hm ≤ hi(t) ≤ hM. (2)

Since we aim at limiting the value of hm, the use of the User
Datagram Protocol (UDP) is preferred to Transmission Control
Protocol (TCP), the reliability mechanisms of which may need-
lessly slow down the feedback loop. Another feature of UDP
is that the packets do not always arrive in their chronological
emission order. The reception function will be added a re-
ordering mechanism thanks to some “time-stamps” added in
packets. This can be expressed as:

A2 (packet reordering) : ḣi(t) < 1. (3)

Another disturbance implied by the network comes from the
samplers and zero-holders. Following the lines of [6], we con-
sider they produce an additional variable delay t − tk, where tk
is the kth sampling instant. Moreover, because of the operating
system, the sampling is generally not periodic. So, we only
assume there exists a known maximum sampling interval T so
that:

A3 (max. sampling interval) : 0 ≤ tk+1 − tk ≤ T. (4)

Consider now the synchronization error. Assume the function ε
is time-varying and there exists a known constant ε̄ such that:

A4 : |ε(t)| ≤ ε̄ (5)
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Fig. 2. Architecture of the networked controller

3. OBSERVER-BASED NETWORKED CONTROL

The objectives of controller have the following tasks. It must
estimate present state of plant based on output measurements
and to compute the control value which will be sent to the plant.
The system architecture is exposed in Fig.2 and explained in the
sequel:

D1 The control law: The controller computes a control law
which considers some set-values to be reached. The static
state feedback control u(t) = Kx̂(t) is defined considering
the state estimate x̂ given by the observer. The main
difficulty is to determine the gain K which guarantees
stability despite the value of the time-varying delay δ1(t).

D2 Transmission of the control u: The kth packets sent by
the controller to the process includes the designed control
u(t1,k) and a sampling time t1,k when it was produced.
The plant receives this information at time tr

1,k. This time

does not have the same meaning for both parts. Then, the
term tr

1,k − t1,k, corresponding to the transmission delay,

corrupted by ε is estimated by the Slave once the packet
has reached it.

D3 Receipt and processing of the control data: The control,
sent at time t1,k, is received by the process at time tr

1,k ≥
t1,k +hm. There is no raison that the controller also knows
the time tr

1,k when the control u(t1,k) will be injected into

the plant input. Finally, there exists k such that hm ≤ t1,k ≤
hM +T and the process is governed by:

ẋ(t) = (A+∆γ A)x(t)+(B+∆γ B)u(t1,k) (6)

D4 Transmission of the output information: The process
have access to its output y only in discrete-time. A packet
contains the output y(t2,k′) and the sampling time t2,k′ . The
controller receives the output packet at time tr

2,k′ .

D5 Observation of the process: For a given k̂ and any t ∈
[t1,k̂ +(hM − hm)/2, t1,k̂+1 +(hM − hm)/2[, there exists a

k′ such that the proposed observer is of the form:

˙̂x(t) = Ax̂(t)+Bu(t1,k̂ + ε)−L(y(t2,k′)− ŷ(t2,k′ − ε)),
ŷ(t) = Cx̂(t).

(7)
As in the controller case, the design of the observer gain L
which ensures stability is not straightforward.

Note that the observation of the process state is based on the
nominal values of the system definition. No assumption are
used to estimate the uncertainties and the λi functions. The
time stamp t1,k̂ corresponds to the time where the control input

is assumed to be implemented in the plant input. The index k′

corresponds to the most recent output information the controller
has received. Note that it is not supposed to know the time
tr
1,k and the control u(t1,k) (see D2), which makes this observer

realizable.



A final improve compare to [13] concerns the fact that no
buffers are required in the controller. This allows considering
the input packets as soon as they arrive in the plant.

4. STABILIZATION UNDER SYNCHRONIZATION
ERROR

This section focusses on developing asymptotic stability of the
networked control architecture detailed in Fig. 3.

4.1 Closed-loop system

The input delay approach to sampled-data signals allows a

homogenized definition of the delays δ1(t) , t − t1,k where
k corresponds to the real sampling implemented in the plant,

δ̂1(t) , t − t1,k̂ and δ2(t) , t − t2,k′ to be considered. Note that

the limit case δ̇i = 1 occurs. The observer dynamics are then
driven by:

˙̂x(t) = Ax̂(t)+Bu(t − δ̂1(t)+ ε)
−L(y(t −δ2(t))− ŷ(t −δ2(t)− ε)),

ŷ(t) = Cx̂(t),
(8)

where the features of the system lead to hm ≤ δi(t)≤ hM +T for
i = 1,2. Equivalently, if the average delay δ (hm,hM,T )= (hM +
T + hm)/2 and the maximum delay amplitude µ(hm,hM,T ) =
(hM +T −hm)/2 is used, then:

δ −µ ≤ δi(t) ≤ δ + µ, ∀i = 1,2. (9)

According to (6) and (7) and for given k and any t ∈ [tr
1,k +

hm, tr
1,k+1 +hm[, there exist k̂ and k′ such that the global remote

system is governed by:

ẋ(t) = (A+∆γ A)x(t)+(B+∆γ B)Kx̂(t1,k),
˙̂x(t) = Ax̂(t)+BKx̂(t1,k̂ − ε)−∆γ LCx(t2,k′)

−LC(x(t2,k′)− x̂(t2,k′ + ε)).
(10)

Rewriting the equations with the error e(t) = x(t)− x̂(t), the
dynamics become:

ẋ(t) = (A+∆γ A)x(t)+(B+∆γ B)K(x(t1,k)− e(t1,k))

ė(t) = Ae(t)+LCe(t2,k′)−BK

∫ t
1,k̂+ε

t1,k

[ẋ(s)− ė(s)]ds

+LC

∫ t2,k′

t2,k′−ε
[ẋ(s)− ė(s)]ds+∆Ax(t)

+∆BK(x(t1,k)− e(t1,k))+∆γ LCx(t2,k′).

Applying the input delay representation [6] yields:

ẋ(t) = (A+∆γ A)x(t)+(B+∆γ B)Kx(t −δ1)
−∆γ BKe(t −δ1)

ė(t) = Ae(t)−BK

∫ t−δ̂1+ε

t−δ1

[ẋ(s)− ė(s)]ds+∆γ Ax(t)

+∆γ BK(x(t −δ1)− e(t −δ1))+L∆γCx(t −δ2)

+LCe(t −δ2)+LC

∫ t−δ2

t−δ2−ε
[ẋ(s)− ė(s)]ds.

(11)

with δ1(t) = t − t1,k and δ2(t) = t − t2,k′ . From the fact that the
communication delays belong to the interval [hm, hM] where hm

and hM are given by the network properties. Then the condition
(9) on the delays still holds.

In an ideal case, ie. ε = 0 (from A2, synchronized case), the

C2P delays are assumed to be well known, ie. δ1(t) = δ̂1(t)
(see [13]) and the model is assumed to be perfectly known and

constant (γ = 0), then the global system is rewritten using the
error vector e(t) = x(t)− x̂(t) as:

ẋ(t) = Ax(t)+BKx(t −δ1(t))−BKe(t −δ1(t))
ė(t) = Ae(t)+LCe(t −δ2(t))

For this ideal case, Theorem 2 and 3 from [13] deliver controller
and observer gains.

4.2 Stability Criteria

It is now accepted that δ1(t) 6= δ̂1(t) and ε 6= 0. The stability
of the controller and of the observer is not ensured anymore
by Theorem 2 and 3 in [13], as ε 6= 0 leads error in the delay
measurement,.

As in equation (11), there are interconnection terms between
the two variables x and e, a separation principle is no longer
applicable to prove the global stabilization. The stability proof
requires to consider now both variables simultaneously.

Theorem 1. For given K and L, suppose that, there exists for q
representing the subscript x or e, positive definite matrices : Pq1,
Sq, Rqa, Rqε , Sxe, Qxe and Rb and matrices of size n×n: Pq2, Pq3,
Zql for l = 1,2,3, Yql′ for l′ = 1,2 such that the following LMI’s
hold :







Θi
x Θi

x12 µPT
x Ai

K PT
x Ai

K µPT
x Ai

K

∗ −Sx +2Rb 0 0 0

∗ ∗ −µRxa 0 0

∗ ∗ ∗ −Sxe 0

∗ ∗ ∗ ∗ −µRb






< 0, (12)









Πi PT
e

[

0

γAi

]

0

αPT
e

[

0

γBiK

]

0

(1+ µ)PT
e

[

0

γLCi

]

0

∗ −Qxe 0 0

∗ ∗ −αRb 0

∗ ∗ ∗ −(1+ µ)Rb









< 0,

(13)

[

Rq Yq1 Yq2

∗ Zq1 Zq2

∗ ∗ Zq3

]

≥ 0, q ∈ {x,e}, (14)

where α = (1+2µ), β = 2(µ + ε̄), Pq =
[

Pq1 0

Pq2 Pq3

]

and

Πi =













Θe Θi
e12 µPT

e AL ε̄PT
e AL ε̄PT

e AL βPT
e AK βPT

e AK

∗ −Se +Sxe 0 0 0 0 0

∗ ∗ −µRea 0 0 0 0

∗ ∗ ∗ −ε̄Reε 0 0 0

∗ ∗ ∗ ∗ −ε̄Rxε 0 0

∗ ∗ ∗ ∗ ∗ −βReε 0

∗ ∗ ∗ ∗ ∗ ∗ −βRxε













Θx12 = PT
x Ai

K −
[

Y T
x1

Y T
x2

]

,Θe12 = PT
e

[

0

LC− γBiK

]

−
[

Y T
e1

Y T
e2

]

,

Θi
x = Θni

x +
[

Qxe 0

0 2βRxε +4µRb

]

,

Θe = Θn
e +

[

0 0

0 2βReε +4µRb

]

,

Θni
x = PT

x

[

0 I

Āi −I

]

+
[

0 I

Āi −I

]T

Px

+
[

Sx +Yx1 +Y T
x1 +δZx1 Yx2 +δZx2

∗ δRx +2µRxa +δZx3

]

,

Θn
e = PT

e

[

0 I

A −I

]

+
[

0 I

A −I

]T

Pe

+
[

Se +Ye1 +Y T
e1 +δZe1 Ye2 +δZe2

∗ δRe +2µRea +δZe3

]

,

and where AK =
[

0

BK

]

, Ai
K =

[

0

B̄iK

]

and AL =
[

0

LC

]

.

Then, the NCS (10) is asymptotic stable.

The proof of Theorem 3 is given in the appendix.

Remark 1. Theorem 1 guarantees the robust stability of the
global remote to be guaranteed system with respect to the



0 0.5 1 1.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

γ

ε

(3)(2)

(1)
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synchronization error and for observer and controller gains
given in [13]. Since the problems of designing observer and
controller gains are dual, to develop constructive LMI’s is not
straightforward.

5. APPLICATION TO A MOBILE ROBOT

This study is illustrated on the model of a mobile robot (Slave)
which can move in one direction. The identification phase gives
the following dynamics:

{

ẋ =
[

0 1

0 −11,32−ζ γ

]

x+
[

0

−11,32+ζ γ

]

u(t −δ1),

y = [ 1+ζ γ/10 0 ]x,
(15)

where the scalar function ζ (t) lies in [−1, 1] and is taken as
ζ (t) = sin(6t). The characteristics of transmission delays in a
classical network (between Lens and Lille in France (50km))
allows hm = 0,1s and hM = 0.4s. Consider now that the band-
width of the network allows the sampling period as T = 0.1s
to be defined. For these values, Theorems 2 and 3 in [13]

produce the following gains L = [ −0.9119 −0.0726 ]T and K =
[ −0.9125 −0.0801 ]. This gains ensures that, in the ideal case the re-
mote system is α-stable for αx = αe = 1.05. Theorem 1 ensures
that, with these features, the global system is asymptotically
stable and robust without any time-varying synchronization
error less than ε̄ = 0.04s in (5) for γ = 0. Figure 3 shows the
the maximal admissive ε̄ for greater values of γ . Moreover it
guarantees asymptotic stability of the global system without the
introduction of a buffer in the controller.

Figure 4 shows the simulation results for γ = 0.1 and ε = 0.03
(point (2) in Figure 3). The state of the process and the sampled
input and output are provided. It can be seen that the state
convergence to the reference. The stability of the system despite
the synchronization error and the parameters uncertainties is
ensured.

Figure 5 present simulations for γ = 0 and ε = 0 (point (1))
and for γ = 1.5 and ε = 0.03 (point (3)). In comparison to
Figure 4, the results for (1) are closed to the ones obtained for
(2). Concerning (3), Theorem 1 does not ensure the stability.
However the controller still stabilize the system. It means
that the conditions from Theorem 1 are conservative. Further
results would investigate in reducing the conservativeness of
the stability conditions.
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6. CONCLUDING REMARKS

This paper presents a strategy for an observer-based control of
a networked controlled systems under synchronization erros.
No buffering technique was involved, which allows using the
available information as soon as received. Various perturbations
were dealt with jittery, non-symmetric and unpredictable de-
lays, synchronization error, aperiodic sampling (real-time) and
uncertainties in the model. A remaining assumption in [13]
which is that the clocks have to be synchronized is not required
anymore.

A characteristic feature of this control strategy is to consider
that the observer based controller runs in continuous time (i.e.,
with small computation step) whereas the process provides
discrete-time measurements. Thus, the observer keeps on pro-
viding a continuous estimation of the current state, even if the
data are not sent continuously.



The proposed conditions are conservative. New and less conser-
vative results which guarantee stability of system with sampled-
data control recently appears and might help in reducing the
conservativeness. It would be interesting to apply these new
technics on the present system.
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Appendix A. PROOF OF THEOREM 1

To analyze the asymptotic stability property of such a system,
equations (11) are rewritten by using the descriptor represen-
tation [7] with x̄(t) = col{x(t), ẋ(t)}, ē(t) = col{e(t), ė(t)}. In

this section, when there is no confusion, any function con-
sidered at time ‘t’ will be written without ‘(t)’. Consider the
Lyapunov-Krasovskii functional:

V = Vxn +Vxa +Vxε +Ven +Vea +Veε +Vxe (A.1)

where the sub-Lyapunov-Krasovskii functionals are, for q rep-
resenting the subscript of the variables ‘x’ and ‘e’:

Vqn = q̄T EPqq̄+

∫ 0

−δ

∫ t

t+θ
q̇T (s)Rqq̇(s)dsdθ

+
∫ t

t−δ
qT (s)Sqq(s)ds,

Vqa =
∫ µ

−µ

∫ t

t+θ−δ
q̇T (s)Rqaq̇(s)dsdθ ,

Vqε = 2

∫ µ+ε̄

−µ−ε̄

∫ t

t+θ−δ
q̇T (s)Rqε q̇(s)dsdθ

Vqb = 2

∫ µ

−µ

∫ t

t+θ−δ
q̇T (s)Rbq̇(s)dsdθ

with E = diag{In,0} and Px, Pe defined in Theorem 1.

The signification of each sub-Lyapunov-Krasovskii functional
has to be explain. The first functionals Vxn and Ven deal with the
stability of the Slave and the observer systems subject to the
constant delay δ while Vxa and Vea refer to the disturbances due
to the delay variations. Even if the functionals do not explicitly
depend on each time varying delay, it will be considered both
different delays δ1 and δ2. The functionals Vqε are concerned
with synchronization errors. The last functionals Vqb deals with
the interconnection between the variables x and e. Consider as
a first step, the polytopic representation of the dynamics in x:

ẋ =
N

∑
i=1

λi

{

Āix+ B̄iK(x(t −δ1)− e(t −δ1))
}

(A.2)

where Āi = A+ γAi and B̄i = B+ γBi. According to Theorem 2
in [12], if LMI (14) holds for ′q = x′ and for all vertices of the
polytopic system, the following inequality holds:

V̇xn +V̇xa ≤
N

∑
i=1

λi

{

ξ T
x

[

Ψi
x1 Θi

x12

∗ −Sx

]

ξx +η i
x

}

(A.3)

where ξx = col{x, ẋ,x(t −δ )} and:

η i
x = −2x̄T PT

x Ai
Ke(t −δ1), Ψi

x1 = Θni
x + µPT

x Ai
KR−1

xa AiT
K Px.

Noting that e(t − δ1) = e(t − δ ) −
∫ t−δ

t−δ1
ė(s)ds and using a

classical LMI bounding, it holds for i = 1,2:

η i
x ≤ x̄T PT

x Ai
K(S−1

xe + µR−1
b )AiT

K Pxx̄

+eT (t −δ )Sxee(t −δ )+ |

∫ t−δ

t−δ1

ėT (s)Rbė(s)ds|
(A.4)

where Sxe and Rb are positive definite matrices which represent
the presence of the error vector in the state equation. Then, the
following inequality holds:

V̇xn +V̇xa ≤
N

∑
i=1

λi

{

ξ T
x

[

Ψni
x2 Θi

x12

∗ −Sx

]

ξx

}

+eT (t −δ )Sxee(t −δ )+ |
∫ t−δ

t−δ1

ėT (s)Rbė(s)ds|,

(A.5)

where Ψni
x2 = Θni

x + PT
x Ai

K(S−1
xe + µR−1

xa + µR−1
b )AiT

K Px. Con-
cerning the errors dynamics, differentiating Ven +Vea along the
trajectory of (11) and assuming that LMI (14) holds with q = e
yields:

V̇en +V̇ea ≤
N

∑
i=1

λi{ξ T
e

[

Ψe1 PT
e AL −Y T

e

∗ −Se

]

ξe −ηx
e1

+ηe
e1 −ηx

e2 +ηe
e2 +ηxi

∆A +ηxi
∆B +ηei

∆B +ηxi
∆C

}

,

(A.6)



where ξe = col{e, ė,e(t −δ )} and where

Ψe1 = Θn
e + µPT

e ALR−1
ea AiT

L Pe,

ηq
e1 = 2ēT PT

e AK

∫ t
1,k̂+ε

t1,k

q̇(s)ds

ηq
e2 = −2ēT PT

e AL

∫ t2,k′

t2,k′−ε
q̇(s)ds

ηxi
∆A = 2ēT PT

e [ 0 γAT
i ]T x

ηxi
∆B = 2ēT PT

e [ 0 γ(BiK)T ]T x(t −δ1)

ηei
∆B = −2ēT PT

e [ 0 γ(BiK)T ]T e(t −δ1)

ηxi
∆C = 2ēT PT

e [ 0 γ(LCi)
T ]T x(t −δ1)

with q representing either x or e. Note that the functions ηq
ei,

for q =‘x’,‘e’ and i = 1,2 correspond to the disturbance due
to the synchronization error. Consider i = 1: Noting that from
assumption A4, inequality t1,k̂ + ε − t1,k ≤ ε̄ +2µ holds, then a

classical bounding leads to:

ηx
q1 ≤ (ε̄ +2µ)ēT PT

e AKR−1
qε AT

KPeē+

∫ t
1,k̂+ε

t1,k

q̇T (s)Rqε q̇(s)ds.

(A.7)
By the same way, the following inequalities hold:

ηq
e2 ≤ ε̄ ēT PT

e ALR−1
qε AT

L Peē+
∫ t2,k′

t2,k′−ε
q̇T (s)Rqε q̇(s)ds. (A.8)

Following the same method as in (A.4), the following inequali-
ties hold:

ηxi
∆A ≤ ēT PT

e

[

0

γAi

]

Q−1
xe

[

0

γAi

]T

Peē+ xT Qxex

ηxi
∆B ≤ (1+ µ)ēT PT

e

[

0

γBiK

]

R−1
b

[

0

γBiK

]T

Peē

+xT (t −δ )Rbx(t −δ )+ |

∫ t−δ

t−δ1

ẋT (s)Rbẋ(s)ds|

ηei
∆B ≤ µ ēT PT

e

[

0

γBiK

]

R−1
b

[

0

γBiK

]T

Peē

−2ēT PT
e

[

0

γBiK

]

e(t −δ )+ |

∫ t−δ

t−δ1

ėT (s)Rbė(s)ds|

ηxi
∆C ≤ (1+ µ)ēT PT

e

[

0

γLCi

]

R−1
b

[

0

γLCi

]T

Peē

+xT (t −δ )Rbx(t −δ )+ |

∫ t−δ

t−δ2

ẋT (s)Rbẋ(s)ds|

(A.9)

Finally, the following inequality holds:

V̇en +V̇ea ≤ ξ T
e

[

Ψn
e2 Θei

12

∗ −Se +Rb

]

ξe + xT Qxex

+2xT (t −δ )Rbx(t −δ )−2ēT PT
e

[

0

γBiK

]

e(t −δ )

+|
∫ t−δ

t−δ2

ẋT (s)Rbẋ(s)ds|+ ∑
q=x,e

{

|
∫ t−δ

t−δ1

q̇T (s)Rbq̇(s)ds|

+
∫ t

1,k̂+ε

t1,k

q̇T (s)Rqpq̇(s)ds+
∫ t2,k′

t2,k′−ε

q̇T (s)Rqpq̇(s)ds)

}

,

(A.10)
where

Ψn
e2 = Θn

e +PT
e AL(µRea + ε̄R−1

xε + ε̄R−1
eε )−1AT

L Pe

+βPT
e AK(R−1

xε +R−1
eε )AT

KPe +PT
e

[

0

γAi

]

Q−1
xe

[

0

γAi

]T

Pe

+αPT
e

[

0

γBiK

]

R−1
b

[

0

γBiK

]T

Pe

+(1+ µ)PT
e

[

0

γLCi

]

R−1
b

[

0

γLCi

]T

Pe.

Differentiating Vxε , Veε , Vxb and Veb leads to:

V̇qε = 2β q̇T Rqε q̇−2

∫ t−δ+µ+ε̄

t−δ−µ−ε̄
q̇T (s)Rxε q̇(s)ds

V̇qb = 4µ q̇T Rbq̇−2

∫ t−δ+µ

t−δ−µ
q̇T (s)Rbq̇(s)ds,

(A.11)

Combining (A.5), (A.10) and (A.11) and noting that the sum of
the negative integrals in (A.11) with the integrals from (A.8) is
negative, the following inequality holds:

V̇ ≤
N

∑
i=1

λi

{

ξ T
x

[

Ψi
x Θxi

12

∗ −Sx +Rex

]

ξx +ξ T
e

[

Ψe Θei
12

∗ −Se +Sxe

]

ξe

}

where

Ψi
x = Ψni

x2 +
[

0 0

0 2βRxε +4µRb

]

,

Ψe = Ψn
e +

[

0 0

0 2βReε +4µRb

]

,

Then the Schur complement leads to the LMI’s given in (12)
and (13). Then LMI’s from Theorem 1 are satisfied, the system
(11) is asymptotically stable.


