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A significant part of eukaryotic noncoding DNA is viewed as the passive result of mutational processes, such as the
proliferation of mobile elements. However, sequences lacking an immediate utility can nonetheless play a major role in
the long-term evolvability of a lineage, for instance by promoting genomic rearrangements. They could thus be subject to
an indirect selection. Yet, such a long-term effect is difficult to isolate either in vivo or in vitro. Here, by performing in
silico experimental evolution, we demonstrate that, under low mutation rates, the indirect selection of variability
promotes the accumulation of noncoding sequences: Even in the absence of self-replicating elements and mutational
bias, noncoding sequences constituted an important fraction of the evolved genome because the indirectly selected
genomes were those that were variable enough to discover beneficial mutations. On the other hand, high mutation rates
lead to compact genomes, much like the viral ones, although no selective cost of genome size was applied: The indirectly
selected genomes were those that were small enough for the genetic information to be reliably transmitted. Thus, the
spontaneous evolution of the amount of noncoding DNA strongly depends on the mutation rate. Our results suggest the
existence of an additional pressure on the amount of noncoding DNA, namely the indirect selection of an appropriate
trade-off between the fidelity of the transmission of the genetic information and the exploration of the mutational
neighborhood. Interestingly, this trade-off resulted robustly in the accumulation of noncoding DNA so that the best
individual leaves one offspring without mutation (or only neutral ones) per generation.

Introduction

Eukaryotic genomes contain many sequences that are
not translated into proteins. Although some of these sequen-
ces bear the hallmark of natural selection and are thus pre-
sumed to be functional (Duret et al. 1993; Frazer et al. 2001;
Margulies et al. 2003; Bejerano et al. 2004; Andolfatto
2005; Dermitzakis et al. 2005; Keightley et al. 2005), many
others seem to have no direct effect on the phenotype. Such
sequences can be passively produced by mutational pro-
cesses biased toward genome growth and driven to fixation
by genetic drift (Lynch and Conery 2003). According to
this view, a substantial amount of nonfunctional DNA
can be maintained in a genome, depending on the balance
between insertions and deletions (Petrov et al. 2000; Mira
et al. 2001; Denver et al. 2004), the rate of proliferation of
transposable elements (Kidwell 2002), the rate of retropo-
sition of mRNAs (Maestre et al. 1995), and the population
size (Lynch and Conery 2003).

Sequences acquired in such a nonadaptive way can
then provide novel substrates for evolutionary innovations
(Brosius and Gould 1992; Smit 1999; Lynch and Conery
2003). For instance, mRNA-derived retroposons can give
rise to active genes (Brosius 2003). Furthermore, even
when they remain nonfunctional, sequences present in sev-
eral copies promote genomic rearrangements that can affect
the phenotype (Hughes 1999; Kidwell 2002; Rocha 2003;
Coghlan et al. 2005). Thus, sequences that are nonfunc-
tional in a particular organism may nonetheless play a major
role in the appearance of nonneutral mutations, leading to
new phenotypes in the offspring of this organism.

Now the level of nonneutral genetic variation is a key
element for the long-term evolutionary success of a lineage.

On the one hand, variability is a prerequisite for evolvabil-
ity, the ability to innovate (Wagner and Altenberg 1996;
Kirschner and Gerhart 1998; Radman et al. 1999; Burch
and Chao 2000; Wagner 2005). On the other hand, the
long-term evolutionary success also requires that a sufficient
proportion of the offspring keep the ancestral phenotype by
bearing no mutation or only neutral ones (Van Nimwegen
et al. 1999; Wilke 2001a, 2001b; Wilke et al. 2001). Indeed,
if the ancestral fitness cannot be retained from one generation
to the next because deleterious mutations are too frequent,
the lineage will face a heavy mutational burden that can lead
to extinction. Taken together, these considerations imply that
competing organisms need to achieve not only a high fitness
but also an appropriate level of nonneutral genetic variation,
reflecting a trade-off between the exploration of new pheno-
types and the reliable transmission of the current one.

As nonfunctional sequences are not under immediate
selection, their number can easily vary, which could be
a way to reach the appropriate level of nonneutral variation.
If this hypothesis is correct, the amount of nonfunctional
sequences may not just be the passive result of mutational
processes. The long-term selection of an appropriate vari-
ability may exert a selective pressure on the amount of non-
functional DNA. This selective pressure would be indirect
because varying the amount of nonfunctional DNA would
not change the immediate fitness of the organism but would
rather modify the chance that its offspring retain it.

This fairly simple hypothesis is however hard to test
for many reasons. The first is the indirect, long-term nature
of this selective pressure. Many generations would be nec-
essary to reveal its effect. A second and perhaps more se-
rious obstacle is the difficulty to isolate this effect from the
other evolutionary pressures acting on the amount of non-
functional DNA, including mutational biases and direct se-
lective constraints on genome size. Finally, the long-term
selection of an appropriate frequency of nonneutral muta-
tions can also act at other levels than genome compactness.
It can lead, for example, to more or less robust topologies
for regulatory networks and metabolic pathways. Thus,
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testing the hypothesis of an indirect selective pressure on
nonfunctional DNA requires a specific approach, allowing
us to isolate its effects. In silico experimental evolution of
simple ‘‘organisms’’ is particularly useful in this context
(Adami 2006). Direct selective pressures are controlled
and mutational biases can be turned-off. Moreover, the ex-
act knowledge of lineages, ancestral sequences, and fixed
mutations allows for a detailed analysis of the evolutionary
mechanisms.

However, in previous in silico experiments designed
to study long-term evolutionary forces, the effects on the
genomic structure could not be predicted because only
one gene was modeled (Eigen 1971) or because the genome
representation did not explicitly include the notions of gene,
gene product, and intergenic sequences (Eigen 1971; Wilke
2001b; Wilke et al. 2001). In other models involving a more
realistic genome architecture (Wu and Lindsay 1996; Burke
et al. 1998), the complexity of the phenotype was not al-
lowed to evolve with the complexity of the genotype. As
a consequence, unrealistic heuristics were used in the tran-
sition from genotype to phenotype, which introduced arti-
factual effects on the evolution of genome size.

Here, we study the evolution of artificial organisms
where the genomic structure is biologically interpretable
and where the complexity of the phenotype is allowed to
evolve. This allows us to investigate the spontaneous evo-
lution of genome size, that is, without either direct selection
on genome size, or mutational biases, or self-replication of
selfish elements. We show that in these conditions, the
amount of noncoding sequences maintained in the genome,
far from being random, is determined by the long-term se-
lection of an appropriate level of nonneutral variation. This
indirect selective pressure is at the origin of a strong rela-
tionship between the mutation rate and the amount of non-
functional DNA contained in the artificial genomes.

Materials and Methods

These in silico experiments were performed on the
‘‘aevol’’ platform (Knibbe et al. 2007), version 4.5. The

source code, as well as the configuration files used here,
is available on request.

General Principles

The simulated organisms have circular, double-strand
binary genomes containing both coding and noncoding se-
quences (fig. 1). Each coding sequence encodes a ‘‘protein,’’
able to either activate or inhibit a number of functions. The
phenotype is defined as the set of functional abilities of the
organism, resulting from the combination of all its proteins.
Adaptation is then measured by comparing the functions the
organism can achieve to the functions to be performed and to
be avoided in the environment. During replication, genomes
can undergo not only point mutations, small insertions and
deletions but also genomic rearrangements, consisting of
duplications, deletions, translocations, and inversions.

Detection of the Coding Sequences

Promoter and terminator signals define the boundaries
of the transcribed regions. Within them, start and stop sig-
nals delimit the coding sequences. Promoters are sequences
whose Hamming distance with a predefined 28-bp consen-
sus sequence is d � dmax; with dmax54 in this study. Ter-
minator signals are sequences able to form a stem–loop
secondary structure: abcd� � ��d�c�b�a: The expression level
of a transcribed region is defined as e51 � d

dmaxþ1
: Note

that this modulation of the expression level models only
(in a simplified way) the basal interaction of the RNA poly-
merase with the promoter without additional regulation.
The purpose here is not to accurately model the regulation
of gene expression but rather to provide duplicated genes
a way to reduce temporarily their phenotypic contribution
while diverging toward other functions. Inside transcribed
regions, the start signal for the translation is made up of
a Shine-Dalgarno–like sequence followed by the start co-
don (011011***000), whereas the stop signal is simply
the stop codon (001, see the artificial genetic code in
fig. 1). Overlapping coding sequences are allowed.

FIG. 1.—Intergenic sequences, coding sequences, and proteins are the central concepts of the model. Coding sequences are detected using signal
sequences (promoter, terminator, start, and stop) and translated using an artificial genetic code. This translation step characterizes the functional abilities
of the protein (by determining the subset of functions it can activate or inhibit, among an abstract set of possible functions). The phenotype, describing
the global functional abilities of the organism, results from the combined actions of all the proteins. Possibility distributions are used to describe the
functional abilities of the proteins and of the organism as a whole.



Translation and Phenotype Computation

A global set of feasible functions is defined as the real
interval X5½0; 1�: The functional abilities of each gene
product are represented by a fuzzy subset
½m� w;mþ w�� X: The possibility distributions of these
subsets are piecewise linear with ‘‘triangular’’ shapes, with
a maximal possibility degree H5ejhj for the function m
(fig. 1). The 3 real parameters m, w, and h are encoded
by the coding sequence. Each coding sequence is read co-
don by codon using the genetic code shown in figure 1. This
genetic code is not degenerated in order to prevent robust-
ness at this level interfering with the effect of the noncoding
sequences. The run of codons m0 and m1 (respectively w0

and w1, h0 and h1) forms a gray encoding of m (respectively
w, h). The sign of h determines whether the gene product
activates or inhibits the functions ½m� w;mþ w�: The
functional abilities of the organism as a whole is the fuzzy
set of functions that are activated and not inhibited by its

proteins: P5ð[
i
AiÞ \ ð[

j
IjÞ; where Ai is the subset of the

ith activator protein and Ij the subset of the jth inhibitor pro-
tein. Lukasiewicz fuzzy operators are used to compute the
possibility distribution P(x) of this set, which represents the
phenotype of the organism.

Adaptation Measure

The abilities required to survive in the environment are
also modeled by a fuzzy set E, whose possibility distribu-
tion E(x) can be seen on figure 2. Adaptation is then mea-
sured by the gap g5

R
XjEðxÞ � PðxÞjdx between the

possibility distributions E(x) and P(x). Note that although
this adaptation measure penalizes both the under- and
the overrealized functions, it does not prevent increases
in gene number. There is indeed a constant need for new
activator and inhibitory genes to refine the phenotypic
distribution P(x).

Mutations

Every time a genome is replicated, it can undergo point
mutations, small indels (1–6 bp), inversions, translocations,
large deletions, and duplications. The mutation algorithm
proceeds as follows. When a genome of length L is repli-
cated, we first draw the 4 numbers of rearrangements it will
undergo. These 4 numbers all follow the binomial law
BðL; urearrÞ; where urearr is the per-base rate for the 4 types
of rearrangement. Hence, the genome undergoes on average
urearr L inversions, urearr L translocations, urearr L large de-
letions, and urearr L duplications (the fact that larger ge-
nomes undergo more rearrangements per replication aims
at simply taking into account the fact that they contain more
repeated sequences, while avoiding a time-consuming sim-
ilarity search). Then, all these rearrangements are per-
formed in a random order. To perform, for instance,
a large deletion, 2 breakpoints p1 and p2 are chosen ran-
domly (uniformly) on the chromosome, and the segment
ranging from p1 to p2 in the clockwise sense is excised.
In a similar manner, the boundaries of the duplicated, in-

verted, and translocated segments, as well as the reinsertion
points for the translocated and duplicated segments, are also
chosen uniformly on the chromosome. Once all the rear-
rangements have been performed, the new chromosome
length is called L# and we draw the 3 numbers of local mu-
tations (point mutations, small insertions, and small dele-
tions). They all follow the binomial law BðL#; ulocÞ;
where uloc is the per-base rate for the 3 types of local mu-
tations. We finally perform all the local events in a random
order, the affected positions being again randomly chosen.
All the mutation rates were first adjusted to a same per-base
pair value, uloc 5 urearr 5 u (with u5 5.10�6, 10�5, 2.10�5,
5.10�5, 10�4, or 2.10�4), in order not to give a priori more
importance to a specific category of genetic change. Then,
we ran additional simulations where the rate of the local
events, uloc, was either smaller or larger than the rate of
large-scale rearrangements, urearr.

Initialization

To initialize each population, random genomes of
5,000 bp were tested until one was found whose phenotype
narrows the gap g, due to at least one beneficial gene. The
whole population was seeded with that single genome. The
number of trials required to get a suitable genome can be
used to estimate the probability to find by chance a func-
tional gene in a random sequence. On average, 610 ge-
nomes of 5,000 bp were tested before getting a suitable
one, which means that a functional gene is found every
3,050,000 bp (on average) in a random sequence. This
shows, albeit indirectly, that local mutations in the inter-
genic sequences have a low probability to create new genes
ex nihilo.

Evolution of the Population

The population size, N, is fixed and organisms repro-
duce asexually, according to their adaptation. To control the
selective pressure, and to keep it constant throughout the
evolution period (Whitley 1989), we used an exponential
ranking selection scheme (Blickle and Thiele 1996): The
expected number of offspring of a given organism is an ex-
ponential function of its rank in the population. Thus, at
each generation, the N organisms were sorted from the least
adapted to the best adapted. Their expected numbers of off-
spring then followed the multinomial law with N 5 1,000
trials and reproduction probabilities wr5

c�1
cN�1

cN�r; where r
is the rank of the organism. The parameter c 2�0; 1½ is the
curvature of the relationship between the rank and the prob-
ability of reproduction; hence, it controls the efficiency of
the selection. The closer c is to 1, the less efficient the se-
lection. This selection scheme allows us to test various se-
lection efficiencies while keeping the population size
tractable. We tested 4 values for c (0.9900, 0.9950,
0.9980, and 0.9995). For each combination of u and c,
we tested 3 populations of N 5 1,000 organisms. Supple-
mentary text S2 (Supplementary Material online) presents
additional experiments that were performed under a
more classical selection scheme, where the probability



of reproduction of an individual directly depends on its
adaptation measureg rather than on its rank in the population.

Estimates of the Fraction of Neutral Offspring

The theoretical estimates of the fraction Fm of neutral
offspring were computed for the final fittest organism by
considering the transcribed regions—including their pro-
moters and terminators—as the coding units, overlapping
regions being merged into a single unit (see supplementary
text S1, Supplementary Material online). Empirical esti-
mates were obtained by generating 1,000 offspring for each
final fittest organism, with the same mutation rate, u, as dur-
ing the evolution period and by counting the number of off-
spring that retained the same gap g.

Results

To study the spontaneous evolution of the amount of
nonfunctional DNA, we allowed 72 asexual populations to

evolve during 20,000 generations under various mutation
rates combined with various selection efficiencies.

Relation between the Mutation Rate and Genome
Compactness

The initial genomes contained only one gene. In all
cases, the very first generations were characterized by
duplication-divergence events, allowing the organisms to
acquire new functional capabilities and to reduce the gap
g with the environment (fig. 2). Then, after a few thousands
of generations, both the gene number and the amount of
noncoding sequences reached equilibrium (fig. 3A). The
equilibrium values were independent of the initial genome
size (data not shown) but strongly dependent on the muta-
tion rate (figs. 2 and 3B). It has been suggested that as most
mutations are deleterious, the per-base pair mutation rate
can impose an upper limit to the number of genes (Eigen
1971; Maynard-Smith 1983; Hurst 1995; Pal and Hurst
2000) and this is indeed what happened here. The higher
the mutation rate, the lower the number of genes at
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equilibrium (figs. 2 and 3B) and the higher the gap with the
target (supplementary fig. S1, Supplementary Material on-
line). However, more surprisingly, our experiments show
that the mutational pressure also acted on the amount of
noncoding sequences (figs. 2 and 3B). Under high mutation
rates, the evolved genomes resembled viral ones, with over-
lapping genes and almost no noncoding sequences (fig. 2B).
Under low mutation rates, the genomes contained high pro-
portions of noncoding sequences (fig. 2A), up to 97% of the
genome here. This implies that during adaptive evolution,
large amounts of noncoding sequences can accumulate in
the absence of self-replicating elements and without a pre-
dominance of the insertions on the deletions, if the per-base
pair mutation rate is low. To further test this strong relation-

ship between the mutation rate and the architecture of the
genome, we changed the per-base pair mutation rate after
10,000 generations. This caused the genomes to evolve
quickly toward the size corresponding to the new mutation
rate (supplementary fig. S2, Supplementary Material on-
line). We observed this tight coupling for the 4 selection
efficiencies tested, the genomes being globally larger when
the selection strengthens (fig. 3B).

Role of the Noncoding Sequences in the Mutational
Variability of the Phenotype

To test whether the indirect selection of a specific level
of variability could underlie this coupling, we investigated
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the role of genome compactness in the mutational variabil-
ity of phenotype. One indicator of this variability is the
fraction of ‘‘neutral offspring’’ (Ofria et al. 2003), that
is, the fraction of offspring without mutation or with only
neutral mutations. Here, it can be inferred from genomic
parameters, if we assume that a mutation is neutral if it
does not affect any functional region, a functional region
being defined as a transcribed region (promoter and termi-
nator included) containing at least one coding sequence.
This hypothesis is simplistic for a real organism but quite
accurate for the artificial organisms that were evolved. In
these conditions, the fraction of neutral offspring Fm can be
approximately calculated using the probability that no
functional region mutates during replication

where uloc is the rate of local mutations, urearr the rate of
rearrangements, L the genome length, and m̃j the probabil-
ity that a random mutation of type j does not affect any
transcribed region. This probability can be computed
for each type of mutation:

8>>>>>>>>>><
>>>>>>>>>>:

m̃point mut: 5 m̃small ins:5m̃small del:51 � l
L

m̃inv: 5 ð1 � l
LÞ

2

m̃transloc: 5 ð1 � l
LÞ

3

m̃large del: 5 1
2L2

PNG

i51

kiðki þ 1Þ

m̃duplic: 5 1
2L2 ð1 � l

LÞ
PNG

i51

kiðki þ 1Þ

; ð2Þ

with l the total length of functional regions, NG the number
of functional regions, and ki the length of the intergenic
sequence between the functional regions i and i þ 1
(see supplementary text S1, Supplementary Material on-
line for the details of this derivation). These equations
show that, for a given mutation rate, longer intergenic se-
quences lower the fraction of neutral offspring (fig. 4) and
hence promote the exploration of new phenotypes. There
are 2 reasons for this. The first is that when new noncoding
bases are acquired, the genome undergoes more muta-
tional events. The second is that longer intergenic sequen-
ces do not make duplications and large deletions more
neutral (eq. 2 and fig. 4). Indeed, contrary to the other
types of mutation, their deleterious effects are not concen-
trated on a few points. Here, the average length of the re-
arranged segments increases with genome length, which
implies that a duplication or a large deletion is not more
likely to be neutral when intergenic sequences grow. Lon-
ger genomes undergo, however, more duplications and de-
letions per replication. The net effect of longer intergenic
sequences is that genes have a higher probability to be de-
leted or duplicated at each replication. In short, intergenic
sequences promoting large deletions and duplications are

mutagenic for the genes they surround. Thus, longer inter-
genic sequences tend to enhance the level of nonneutral var-
iation, that is, the mutational variability of the phenotype.

Indirect Selection of a Constant Level of Mutational
Variability

In our model, noncoding sequences are not under
direct selection; hence, their sizes can be easily increased
and compensate for a low mutation rate or, conversely,
decreased and compensate for a high mutation rate. To test
whether this is what actually happened in our experiments,
we calculated, for each run, the fraction Fm of neutral off-

spring of all ancestors of the final best individual, using
equations 1 and 2. As shown in supplementary figure S3
(Supplementary Material online), Fm stabilizes quickly, af-
ter less than 5,000 generations. The final values are shown
in figure 5A. We also computed empirical estimations of the
final Fm (by simulating 1,000 independent replications of
the final fittest individual, see Materials and Methods).
These empirical values are shown in figure 5B. Both meth-
ods agree well and show that for a given selection effi-
ciency, the evolved organisms exhibit roughly the same
fraction of neutral offspring whatever the mutation rate
be (fig. 5A and B). Thus, for each of the 4 selection efficien-
cies, a same level of mutational variability was indirectly
selected. Under a low (respectively high) mutation rate,
the organisms that exhibited the selected level of variability
were those with a large (respectively compact) genome.
Hence, the indirect selection of 4 specific levels of variabil-
ity drove the evolution of genome compactness in the 4 data
sets and underlies the 4 observed relationships between the
mutation rate and the amount of nonfunctional DNA.

To test the generality of this principle, we ran addi-
tional experiments, where the rate of local mutations uloc

and the rate of rearrangements urearr were allowed to differ
(all these experiments were run under a same selection in-
tensity, c5 0.9980). As shown in table 1, the evolved frac-
tion of neutral offspring is of the same order when uloc .
urearr, when uloc , urearr, and when uloc 5 urearr. This sug-
gests that the fraction of neutral offspring is a general cri-
terion driving the spontaneous evolution of genome
compactness.

Respective Roles of the Local Mutations and the
Rearrangements

Table 1 also shows that uloc and urearr both influence
genome compactness and that they do so in the same direc-
tion. A higher rate of local mutations leads to more compact

Fm �
Y

j5point mut:;

small ins:; small del:

ð1 � ulocð1 � m̃jÞL �
Y

j5inv:; transloc:;

duplic:; large del:

ð1 � urearrð1 � m̃jÞL; ð1Þ



genomes and so does a higher rate of rearrangements. Con-
versely, either a lower rate of local mutations or a lower rate
of rearrangements leads to a larger genome. This means that
if either uloc or urearr is changed, this is compensated for by
changing the number of genes, NG, and the lengths of the
intergenic sequences, ki (see eqs. 1 and 2). These additional
experiments raise an interesting point: Although the exis-
tence of duplications and large deletions is indispensable
for the effect to take place (without them, changing the
ki ’s would have no effect on Fm), it is not mandatory to
change their own rate to get an effect on the amount of non-
coding DNA. Changing only the local mutation rate suffi-
ces to induce an effect. By changing uloc, the left term in
equation 1 is modified and it is compensated for in the right
term by changing the ki’s. This effect is however smaller

than the effect induced by changing directly the rate of re-
arrangements table 1.

What Determines the Selected Level of Variability?

There remains an important question: What deter-
mines the value of the selected level of variability and
why does this value depend on the selection intensity?
The intensity of the selection, c, sets the relative probability
of reproduction of the best individuals compared with the
least adapted. When c 5 0.9900 (efficient selection), the
best individual gets an average of W 5 10 reproductive tri-
als. Now, the lineage can persist only if at least one of these
offspring retains the ancestral phenotype, that is, if
FmW � 1: Hence, Fm must be greater than 1/W, which

1e+02 1e+04 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
ra

ct
io

n 
of

 n
eu

tr
al

 m
ut

at
io

ns
 

1e+02 1e+04 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of non−coding bases 
(log scale)

F
ra

ct
io

n 
of

 n
eu

tr
al

 o
ffs

pr
in

g

BA

Number of non−coding bases 
(log scale)
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FIG. 5.—The intensity of the selection sets the appropriate level of variability. For each run, we estimated the fraction Fm of neutral offspring of the
final fittest organism, both theoretically (using eqs. 1 and 2) and empirically (by simulating 1,000 independent replications, see Materials and Methods).
(A and B) For a given selection intensity (c5 0.9900: squares, 0.9950: circles, 0.9980: triangles, 0.9995: diamonds), this evolved Fm is roughly the same
for the 6 mutation rates tested. The evolved Fm is close to the value that would ensure an average of one neutral offspring to the best individual, namely
1
W 5 cN�1

Nðc�1Þ (dotted horizontal lines). (C) The evolved Fm (all mutation rates together) as a function of W, the number of reproductive trials of the
individual. They are indeed close to 1/W (black curve).



means here that at least 10% of the offspring must bear no
mutation or only neutral ones. Let us consider now a weaker
selection, where the best individuals do not get many more
reproductive trials than the worst ones. If c 5 0.9995, for
example, the expected number of reproductive trials of the
best individual is as low as W 5 1.27; hence, Fm must be
greater than 79%. These examples show that the intensity of
the selection indirectly determines a lower bound for Fm,
and hence—for a given mutation rate—an upper bound
for the number of genes and for the amount of noncoding
sequences (eqs. 1 and 2).

It is harder to explain why the evolved Fm is actually
always almost equal to its lower bound, 1/W (fig. 5). This
means that all the 72 successful organisms share one prop-
erty: When they reproduce, their progeny contains one neu-
tral offspring, that is, the minimum ensuring the persistence
in the following generation, but not more. In other words,
for each of them, the genome is as large as possible given 1)
the maximal number of reproductive trials he can expect
and 2) the per-base pair mutation rate he undergoes. To
make sure that this is not due to a hidden mutational bias
toward genome growth, we monitored the evolution of ge-
nome size without any selection. In all cases, the genomes
lost all their genes and shrank to less than 100 bp (supple-
mentary fig. S4, Supplementary Material online), which
suggests that in the standard runs the genome size is ac-
tively maintained by the selective pressure. This could ba-
sically be the direct selective pressure to close the gap g,
which may tend to favor genomes with many genes and
hence with low Fm: This could also reflect the indirect se-
lection of the lineages that were variable enough to explore
new phenotypes and to sometimes discover fitter ones (or
rediscover a fit phenotype after a deleterious mutation): in
the lineage of the final best individual, beneficial mutations
keep occurring even in the last 1,000 generations (data not
shown). Such a pressure would not only favor high gene
numbers, but could also favor high amounts of noncoding
sequences (figs. 2 and 4). Thus, the empirical ‘‘rule’’ of one
neutral offspring as a key of the long-term evolutionary suc-
cess most likely reflects a trade-off between a sufficient fi-
delity of the transmission of the phenotype, a sufficient
ability to explore new phenotypes, and a sufficient fitness.

To test whether this principle still applies under a more
realistic selection scheme, we performed all experiments
again under a ‘‘fitness-proportionate’’ selection scheme.
In these experiments, the probability of reproduction of
an individual directly depended on the absolute value of
its gap g with environment, rather than on its rank in the

population (see Materials and Methods). The evolved Fm
were again of the order of 1/W, which means that the suc-
cessful individuals were again those who produce one neu-
tral offspring when they reproduce (see supplementary text
S2, Supplementary Material online for more details). Be-
sides, we obtained the same type of relationship between
the mutation rate and the amount of noncoding positions
(supplementary text S2, Supplementary Material online).
This data set confirms that the previous results are not
an artifact of the ranking selection scheme.

Discussion

Taken together, our experiments and the mathematical
analysis show that a specific level of mutational variability
is indirectly selected, which in turn induces the selection of
a specific amount of noncoding sequences, depending on
the mutation rate and the selection efficiency. This does
not require the evolutionary process to be farsighted.
Nor does it require that selection acts on a group level.
In our experiments, selection acted only on the individuals.
Individuals whose phenotypes are not robust enough un-
dergo deleterious mutations and disappear, whereas indi-
viduals whose phenotypes are not variable enough are
outcompeted by those that were able to discover innova-
tions. In our experiments, the long-term evolutionary suc-
cess requires that one of the offspring produced at each
generation retains the phenotype of its progenitor, which
reflects this trade-off between the exploration of new phe-
notypes and the reliable transmission of the current one.

What are the consequences of the selection of a specific
variability level on genome compactness? It depends on the
contribution of nonfunctional DNA to the variability level.
Here, the simple mutational patterns we used allowed us to
describe the relationship between genome structure and
variability by simple equations (see eqs. 1 and 2 and fig.
4). In the tested situation, the fraction of neutral offspring
decreases when additional noncoding bases are acquired
because 1) more rearrangements occur and 2) the average
size of the rearranged segments increases. The former effect
is plausible if the number of repeated elements increases
with genome size, which seems plausible for both bacterial
and eukaryote genomes (Achaz et al. 2001; Achaz et al.
2002). The latter is a consequence of the uniform distribu-
tion we assumed here for the size of the spontaneous rear-
rangements. Is such a distribution relevant for living
species? Although comparative genomics approaches can
reveal the size distribution of the fixed rearrangements, it

Table 1
Respective Influence of the Local Mutation Rate and the Rearrangement Rate

Experiment

Local
Mutation

Rate (uloc)
Rearrangement

Rate (urearr)
Gene

Numbera

Number of
Noncoding
Positionsa

Fraction
of Neutral

Offspring (Fm)
b

Reference 2.10�5 2.10�5 36.6 ± 3.7 6 106 ± 470 0.48 ± 0.01
Lower urearr 2.10�5 5.10�6 42.2 ± 0.3 21 546 ± 4,563 0.59 ± 0.05
Higher urearr 2.10�5 2.10�4 14.3 ± 5.1 289 ± 23 0.45 ± 0.04
Lower uloc 5.10�6 2.10�5 45.7 ± 4.5 7 500 ± 1,168 0.50 ± 0.05
Higher uloc 2.10�4 2.10�5 15.9 ± 0.5 2197 ± 527 0.46 ± 0.02

a Value at equilibrium (estimated as in fig. 3), mean ± standard deviation (SD) on n 5 3 repetitions.
b Empirical estimate for the final best organism (see Materials and Methods), mean ± SD on n 5 3 repetitions.



is extremely difficult to assess the size distribution of all the
spontaneous rearrangements that occur in evolving popula-
tions. Indeed, in living organisms, illegitimate recombina-
tion, site-specific recombination, general homologous
recombination, gene amplification by retroposition, and
whole-genomeduplicationsall contribute togenomedynam-
ics at different levels (Hughes 1999; Rocha 2003; Cannon
et al. 2004; Dujon et al. 2004). Hence, one can expect that
each species, depending on its mutational patterns, exhibits
itsowncomplex,probablymultimodal, sizedistribution.Our
choice of a uniform distribution basically reflects the lack of
knowledge in this area. However, we expect that in qualita-
tive terms, the dynamics of noncoding DNA does not depend
on the specific distribution of segment size, provided that
the average segment size increases with genome size.

Aside from genome structure and the variety of muta-
tional patterns, many other factors can influence the level of
mutational variability of a living organism. From the ro-
bustness of protein folding to the robustness of develop-
mental pathways, a multitude of mechanisms modulate
the fraction of neutral mutations (Wagner 2005). Recombi-
nation also plays a major role in variation and may have its
own effect on the length of the noncoding sequences
(Comeron 2001). Thus, the relationship between genome
size and the fraction of neutral offspring can be more com-
plex in a living species than in our experiments.

As a consequence, the link we underscore here be-
tween the mutation rate and genome compactness may
be difficult to reveal experimentally in living species. It
is, however, noteworthy that the relationship we obtained
is qualitatively consistent with Drake’s (1991) data, gath-
ered for several microbial species from phage to fungi.
Our results may provide an explanation for the constant
genome-wide mutation rate he observed. It may reflect
the indirect selection of the genome structure that allows
for the best trade-off between a reliable transmission of
the genetic information and the exploration of the muta-
tional neighborhood. If the tested species share roughly
the same mutational patterns, the same selective pressure
and similar mutational robustness at other levels than the
genome, then we can indeed expect them to appear on
the same line on the log-log plot of genome size versus
mutation rate (fig. 3). This pattern cannot be seen when uni-
cellular and multicellular species are mixed (Lynch 2006),
probably because the transition to multicellularity has
introduced fundamentally new mechanisms of mutational
robustness, like a cellular selection in the germ line.

Conclusion

These in silico experiments shed light on a long-term
evolutionary pressure that can drive the loss or the accumu-
lation of noncoding sequences. These results show that un-
der low mutation rates, a large amount of noncoding
sequences can be maintained despite the absence of muta-
tional biases or proliferation of ‘‘selfish’’ elements. A forth-
coming challenge is the design of in vitro or in vivo
experiments that could assess the strength of this spontane-
ous, long-term evolutionary dynamics compared with more
immediate pressures like the self-replication of transpos-
able elements. Furthermore, with the evidence that indirect

selective pressures shape genome structure in silico, it is
relevant to search for the hallmark of such pressures at
all levels between genotype and phenotype, from protein
sequence to gene networks and developmental pathways.

Supplementary Material

Supplementary texts S1 and S2 and figures S1, S2, S3,
and S4 are available at Molecular Biology and Evolution
online (http://www.mbe.oxfordjournals.org/).
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