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Asymptotic shallow water models for internal waves in a two-fluid

system with a free surface

Vincent Duchêne∗

June 3, 2009

Abstract

In this paper, we derive asymptotic models for the propagation of two and three-dimensional gravity
waves at the free surface and the interface between two layers of immiscible fluids of different densities,
over an uneven bottom. We assume the thickness of the upper and lower fluids to be of comparable size,
and small compared to the characteristic wavelength of the system (shallow water regimes). Following
a method introduced by Bona, Lannes and Saut based on the expansion of the involved Dirichlet-
to-Neumann operators, we are able to give a rigorous justification of classical models for weakly and
strongly nonlinear waves, as well as interesting new ones. In particular, we derive linearly well-posed
systems in the so called Boussinesq/Boussinesq regime. Furthermore, we establish the consistency of
the full Euler system with these models, and deduce the convergence of the solutions.

1 Introduction

1.1 General settings

This paper deals with weakly and strongly nonlinear internal waves in a two-fluid system. We consider the
case of uneven bottom topography and free surface, though the rigid lid assumption is mentioned. The
idealized system studied here consists in two layers of immiscible, homogeneous, ideal, incompressible and
irrotationnal fluids under the only influence of gravity.

The mathematical theory of internal waves, following the theory of free-surface water waves, has at-
tracted lots of interest over the past decades. We let the reader refer to the survey article of Helfrich and
Melville [15] for a good overview of the ins and outs on this problem.

Many models for a two-fluid system have already been derived and studied. Systems under the rigid-lid
assumption have first been investigated (see [22] or [19] for example). Weakly nonlinear models in the free-
surface case have been presented by Camassa and Choi [10]. Nguyen and Dias [23] presented a great deal
of numeric simulations for such Boussinesq-type systems. Strongly nonlinear regimes have been derived by
Camassa and Choi [9], and Barros, Gavrilyuk and Teshukov [3], generalizing the classical Green-Naghdi
model (see [13]). A different approach has been carried out by Craig, Guyenne and Kalisch [11], using
the Hamiltonian formulation of the Euler equations. Most of these works are formal, and restricted to
two-dimensional flows, or to the flat-bottom case. Finally, we refer to the work of Bona, Lannes and
Saut [7] who, following a strategy initiated in [6,4,5], rigorously derived a large class of models in different
regimes, under the rigid-lid assumption. This paper is concerned with the more complex case where the
rigid-lid assumption is removed and replaced by a free surface.
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The strategy consists in rewriting the full system as a system of four evolution equations located
on the surface and the interface between the two fluids (as opposed to two equations in the rigid-lid
case). The reformulation introduces a Dirichlet-to-Neumann operator G[ζ] and an interface operator H [ζ],
defined precisely below. The computation of asymptotic expansions of these operators leads to the models
presented here. We focus here on shallow water regimes, allowing strongly nonlinear waves.

Our analysis gives a rigorous derivation of most of the models existing in the literature, and also
interesting new ones. In particular, we derive a set of models in the Boussinesq/Boussinesq regime, with
coefficients that can be chosen so that the system is linearly well-posed. We prove that the full Euler system
is consistent with each of our models, which roughly means that any solution of the full system solves the
asymptotic systems up to a small error. We also prove, using energy methods together with consistency,
that the solutions of our models converge toward the solution of the full Euler system, assuming that such
solution exist.

The paper is organized as follows. Section 1 is devoted to the reformulation of the full system, from
the Euler equation to the “Zakharov formulation”, written in dimensionless form. In Section 1.5, we focus
on the linearized system, and its dispersion relations are derived. From the asymptotic expansion of
the operators G[ζ] and H [ζ] presented in Section 2, the asymptotic models under different regimes are
rigorously obtained, and presented in Section 2.3. The consistency of the full Euler system with each of
our models is proved. Then, Section 3 gives convergence results : we show that the solutions of the full
Euler system tend to associated solutions of our models in the shallow-water limit. Finally, the links with
different models already existing in the literature are presented in Section 4, for rigid-lid models [7] and
layer-mean equations [9, 10]. The proof of Proposition 2.5 is given in Appendix.
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Figure 1: Sketch of the domain

Notation. We use the Cartesian coordinates (X, z), where z is the vertical variable, and X is the d-
dimensional horizontal variable : X = x when d = 1 and X = (x, y) when d = 2.
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The symbols ∇ and ∆ denote the gradient and Laplace operators in the horizontal variables, whereas
∇X,z and ∆X,z are their (d + 1)-variable version. For µ > 0, we also define the scaled version of the
gradient and Laplace operators, namely ∇µ

X,z := (
√
µ∇T , ∂z)

T and ∆µ
X,z := µ∆ + ∂2

z .
Given a surface Γ := {(X, z), z = ζ(X)}, we denote by ∂n the upward normal derivative at Γ :

∂n := n · ∇X,z, with n :=
1√

1 + |∇ζ|2
(−∇ζ, 1)T .

If we consider an elliptic operator P = ∇X,z · P∇X,z , then the co-normal derivative associated to P is

∂Pn := n · P∇X,z ,

that we simply denote ∂n when there is no risk of confusion.
For any tempered distribution u, we denote by û its Fourier transform. We use the standard Fourier

multiplier notation f(D)u, defined in terms of Fourier transforms by

f̂(D)u := fû.

The operator Λ = (1 − ∆)1/2 is equivalently defined using the Fourier multiplier notation to be Λ =
(1 + |D|2)1/2.

We denote by Hs(Rd) (or simply Hs if the underlying domain is clear from the context) the L2-based
Sobolev spaces. Their norm is written

∣∣ ·
∣∣
Hs , and simply

∣∣ ·
∣∣
2

for the L2 norm.

Then for 0 < T ≤ ∞, q ∈ N, W q,∞([0, T ];Hs(Rd)) (or simply W q,∞Hs, and L∞Hs when q = 0)
denotes the space of the functions f(t,X) defined on [0, T ] × Rd, whose derivative up to the order q in t
are bounded in Hs(Rd), uniformly with respect to t ∈ [0, T ). Their norm is written

∣∣ ·
∣∣
W q,∞Hs .

Since it often appears, it is convenient to introduce for s and T > 0 the space Hs([0, T ]), made up of the
quadruplets (ζ1, ζ2, u1, u2) such that u1, u2 ∈ W 1,∞([0, T ];Hs+7/2(Rd))d, ζ1 ∈ W 1,∞([0, T ];Hs+3/2(Rd))
and ζ2 ∈W 1,∞([0, T ];Hs+5/2(Rd)). Their norm is written

∣∣ ·
∣∣
Hs .

Finally, we denote by S+ the planar strip Rd× (0, 1), and by S− the planar strip Rd× (−1, 0). We use
the notation

∥∥ ·
∥∥
Hs for the usual norm of Hs(S±), and simply

∥∥ ·
∥∥

2
for the L2(S±) norm. We also for

s ∈ R and k ∈ N introduce the spaces

Hs,k(S±) = {f ∈ D′(S±) :
∥∥f
∥∥
Hs,k <∞},

where
∥∥f
∥∥
Hs,k =

∑k
j=0

∥∥Λs−j∂jzf
∥∥.

1.2 The basic equations

We assume that each fluid is irrotational and incompressible, so that we can introduce velocity potentials
φi (i = 1, 2) respectively associated to the upper and lower fluid layer. The velocity potentials satisfy

∆X,zφi = 0 in Ωit, (1)

where Ωit denotes the domain of the fluid i at time t. Moreover, we assume the fluids to satisfy the Euler
equation, and their respective density ρi is constant, so that the velocity potentials satisfy the Bernoulli
equation :

∂tφi +
1

2
|∇X,zφi|2 = −P

ρi
− gz in Ωit, (2)

where g denotes the acceleration of gravity and P is the pressure inside the fluid. The kinematic boundary
condition at the known bottom topography Γb := {z = −h20 + b(X)} is given by

∂nφ2 = 0 on Γb. (3)
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It is presumed that the surface and the interface are given as the graph of functions (respectively ζ1(t,X)
and ζ2(t,X)) which express the deviation from their rest position (respectively (X,h10) and (X, 0)) at
the spatial coordinate X and at time t. The assumption that no fluid particle crosses the surface or the
interface gives the following kinematic boundary conditions :

∂tζ1 =
√

1 + |∇ζ1|2∂nφ1 on Γ1 := {z = h10 + ζ1(t,X)}, (4)

∂tζ2 =
√

1 + |∇ζ2|2∂nφ1 =
√

1 + |∇ζ2|2∂nφ2 on Γ2 := {z = ζ2(t,X)}. (5)

Finally, we close the set of equations assuming that

P is constant at the surface, and continuous at the interface. (6)

Remark 1.1. The system is always ill-posed in the absence of surface tension (see [16]). We could add a
surface tension term to the equations, and carry on the study as above. However, because of the smallness
of this surface tension, the models obtained in that way would be the exact same as the ones we give on
Section 2.3. Thus, for simplicity, we decide to omit the surface-tension term.

1.3 Reduction of the equations

In [26], Zakharov remarked that the surface wave system can be fully deduced from the knowledge of the
surface elevation, and the trace of the velocity potential at the surface. We extend it here for two fluids in
the free-surface case. Indeed, if we introduce the traces

ψ1(t,X) := φ1(t,X, h10 + ζ1(t,X)), and ψ2(t,X) := φ2(t,X, ζ2(t,X)),

then φ2 is uniquely given as the solution of Laplace’s equation (1) in the lower fluid domain, with the
Neumann condition (3) on Γb and the Dirichlet condition φ2 = ψ2 on Γ2. Then, φ1 is obtained as
the solution of Laplace’s equation on the upper fluid domain, with the Neumann condition given by (5)
∂nφ2 = ∂nφ1 on Γ2, and the Dirichlet condition φ1 = ψ1 on Γ1.

Following the formalism introduced by Craig and Sulem in [12], we first define the Dirichlet-Neumann
operators :

G1[ζ1, ζ2, b](ψ1, ψ2) :=
√

1 + |∇ζ1|2∂nφ1|z=h10+ζ1 ,

G2[ζ2, b]ψ2 :=
√

1 + |∇ζ2|2∂nφ2|z=ζ2 .

We also define the following operator :

H [ζ1, ζ2, b](ψ1, ψ2) := ∇φ1|z=ζ2 .

Using the chain rule and the last definitions in the relation (2) evaluated at the surface, we obtain

∂tψ1 + g(1 + ζ1) +
1

2
|∇ψ1|2 −

(G1[ζ1, ζ2, b](ψ1, ψ2) + ∇ζ1 · ∇ψ1)
2

2(1 + |∇ζ1|2)
= −P1

ρ1
, (7)

where P1 is the constant pressure at the surface. Using again the Bernoulli equation for the upper and the
lower fluid evaluated at the interface, we have

∂t(φ1|z=ζ2) + gζ2 +
1

2
|H [ζ1, ζ2, b](ψ1, ψ2)|2 −

(G2[ζ2, b]ψ2 + ∇ζ2 ·H [ζ1, ζ2, b](ψ1, ψ2))
2

2(1 + |∇ζ2|2)
= −P2

ρ1
, (8)

∂tψ2 + gζ2 +
1

2
|∇ψ2|2 −

(G2[ζ2, b]ψ2 + ∇ζ2 · ∇ψ2)
2

2(1 + |∇ζ2|2)
= −P2

ρ2
, (9)
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where P2 is the pressure at the interface, identical in (8) and (9), thanks to the continuity assumption in
(6).

Finally, using (4), (5), the gradient of the equality (7) and a straightforward combination of (8) and
(9), we obtain the system of equations






∂tζ1 −G1[ζ1, ζ2, b](ψ1, ψ2) = 0,
∂tζ2 −G2[ζ2, b]ψ2 = 0,
∂t∇ψ1 + g∇ζ1 + 1

2∇(|∇ψ1|2) −∇N1(ζ1, ζ2, b, ψ1, ψ2) = 0,
∂t(∇ψ2 − γH [ζ1, ζ2, b](ψ1, ψ2)) + g(1 − γ)∇ζ2 + 1

2∇(|∇ψ2|2 − γ|H [ζ1, ζ2, b](ψ1, ψ2, b)|2)
−∇N2(ζ1, ζ2, b, ψ1, ψ2) = 0,

(10)

where γ = ρ1
ρ2

, and

N1(ζ1, ζ2, b, ψ1, ψ2) =
(G1[ζ1, ζ2, b](ψ1, ψ2) + ∇ζ1 · ∇ψ1)

2

2(1 + |∇ζ1|2)
,

N2(ζ1, ζ2, b, ψ1, ψ2) =
(G2[ζ2, b]ψ2 + ∇ζ2 · ∇ψ2)

2 − γ(G2[ζ2, b]ψ2 + ∇ζ2 ·H [ζ1, ζ2, b](ψ1, ψ2))
2

2(1 + |∇ζ2|2)
.

This is the system of equations that we use to derive asymptotic models.

1.4 Nondimensionalization of the equations

In this subsection, we rewrite the system (10) in dimensionless variables, introducing dimensionless pa-
rameters which are crucial to study the asymptotic dynamics. We denote by a1 the typical amplitude of
the surface deformation, and by a2 that of the interface. λ is the typical wavelength (assumed to be of
the same order for the surface and the interface and in any horizontal direction). Finally, B is the order
of bottom topography variation.

We define the dimensionless variables

X̃ :=
X

λ
, z̃ :=

z

h10
, t̃ :=

t

λ/
√
gh10

, b̃(X̃) :=
b(X)

B
,

and the dimensionless unknowns

ζ̃i(X̃) :=
ζi(X)

ai
, ψ̃i(X̃) :=

ψi(X)

a2λ
√
g/h10

.

Five independent parameters of the system are thus added to γ = ρ1
ρ2

:

ǫ1 :=
a1

h10
, ǫ2 :=

a2

h10
, µ :=

h2
10

λ2
, δ :=

h10

h20
, β :=

B

h10
.

So, ǫ1 and ǫ2 are the nonlinearity parameters and µ is the shallowness parameter. We also define the
convenient notation

α :=
a1

a2
=
ǫ1
ǫ2
.

Remark 1.2. The scaling for nondimensionalization has been chosen considering the solutions of the
linearized problem.

We now rewrite the system in terms of dimensionless variables. First, we have to define the dimension-
less operators, associated to the the dimensionless fluid domains :

Ω1 := {(X, z) ∈ R
d+1, ǫ2ζ2(X) < z < 1 + ǫ1ζ1(X)},

Ω2 := {(X, z) ∈ R
d+1,−1

δ
+ βb(X) < z < ǫ2ζ2(X)}.
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In the following, we always assume that the domains remain strictly connected, so there is a positive value
h such that for all X ∈ Rd,

1 + ǫ1ζ1(X) − ǫ2ζ2(X) ≥ h > 0 and
1

δ
+ ǫ2ζ2(X) − βb(X) ≥ h > 0. (11)

Definition 1.3. Let ζ2 and b ∈W 1,∞(Rd), such that Ω2 satisfies (11), and suppose that ∇ψ2 ∈ H1/2(Rd).
Then with φ2 the unique solution in H2(Ω2) of the boundary value problem






∆µ
X,zφ2 = 0 in Ω2,

φ2 = ψ2 on Γ2 := {z = ǫ2ζ2},
∂nφ2 = 0 on Γb := {z = − 1

δ + βb},
(12)

we define Gµ,δ2 [ǫ2ζ2, βb]ψ2 ∈ H1/2(Rd) by

Gµ,δ2 [ǫ2ζ2, βb]ψ2 := −µǫ2∇ζ2 · ∇φ2|z=ǫ2ζ2 + ∂zφ2|z=ǫ2ζ2 .

Definition 1.4. Let now ζ1, ζ2, and b ∈ W 1,∞(Rd) be such that Ω1 and Ω2 satisfy (11), and suppose
∇ψ1, ∇ψ2 ∈ H1/2(Rd). Let φ1 be the unique solution in H2(Ω2) of the boundary value problem






∆µ
X,zφ1 = 0 in Ω1,

φ1 = ψ1 on Γ1 := {z = 1 + ǫ1ζ1},
∂nφ1 = 1√

1+ǫ22|∇ζ2|2
Gµ,δ2 [ǫ2ζ2, βb]ψ2 on Γ2.

(13)

Then we define Gµ,δ1 [ǫ1ζ1, ǫ2ζ2, βb](ψ1, ψ2) ∈ H1/2(Rd) by

Gµ,δ1 [ǫ1ζ1, ǫ2ζ2, βb](ψ1, ψ2) := −µǫ1∇ζ1 · ∇φ1|z=1+ǫ1ζ1 + ∂zφ1|z=1+ǫ1ζ1 ,

and Hµ,δ[ǫ1ζ1, ǫ2ζ2, βb](ψ1, ψ2) ∈ H1/2(Rd) by

Hµ,δ[ǫ1ζ1, ǫ2ζ2, βb](ψ1, ψ2) = (∇φ1)|z=ǫ2ζ2 .

In the following, when there is no possibility of mistake, we simply write :

G2ψ2 := Gµ,δ2 [ǫ2ζ2, βb]ψ2,

G1(ψ1, ψ2) := Gµ,δ1 [ǫ1ζ1, ǫ2ζ2, βb](ψ1, ψ2),

H(ψ1, ψ2) := Hµ,δ[ǫ1ζ1, ǫ2ζ2, βb](ψ1, ψ2).

Remark 1.5. The existence and uniqueness of such solutions φ2 and φ1 are given by Proposition 2.1.

Using these last definitions, it is straightforward to check that the system (10) becomes in dimensionless
variables (where we omit the tildes for the sake of clarity):






α∂tζ1 − 1
µG1(ψ1, ψ2) = 0,

∂tζ2 − 1
µG2ψ2 = 0,

∂t∇ψ1 + α∇ζ1 + ǫ2
2 ∇(|∇ψ1|2) − µǫ2∇N1 = 0,

∂t(∇ψ2 − γH(ψ1, ψ2)) + (1 − γ)∇ζ2 + ǫ2
2 ∇(|∇ψ2|2 − γ|H(ψ1, ψ2)|2) − µǫ2∇N2 = 0,

(14)

where

N1 :=
( 1
µG1(ψ1, ψ2) + ǫ1∇ζ1 · ∇ψ1)

2

2(1 + µ|ǫ1∇ζ1|2)
,

N2 :=
( 1
µG2ψ2 + ǫ2∇ζ2 · ∇ψ2)

2 − γ( 1
µG2ψ2 + ǫ2∇ζ2 ·H(ψ1, ψ2))

2

2(1 + µ|ǫ2∇ζ2|2)
.

We derive the asymptotic models from this system, corresponding to different sizes for the dimensionless
parameters.
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1.5 The linearized equation

Linearizing the system (14) around the rest state, we obtain





α∂tζ1 − 1
µG

µ,δ
1 [0, 0, 0](ψ1, ψ2) = 0,

∂tζ2 − 1
µG

µ,δ
2 [0, 0]ψ2 = 0,

∂t∇ψ1 + α∇ζ1 = 0,
∂t(∇ψ2 − γHµ,δ[0, 0, 0](ψ1, ψ2)) + (1 − γ)∇ζ2 = 0.

(15)

Now, when the surface, the interface and the bottom are flat, we have explicit expressions for the operators
G1, G2 and H . Indeed, taking the horizontal Fourier transform of the Laplace equations in (12) and (13),

we obtain that φ̂2 and φ̂1 are solutions of the following ordinary differential equations :

−µ|D|2y + y′′ = 0.

Then, using the boundary conditions, we deduce

φ2(X, z) = ψ2(X) cosh(
√
µ|D|z) + ψ2(X) tanh(

√
µ

δ
|D|) sinh(

√
µ|D|z),

so that we have

Gµ,δ2 [0, 0]ψ2 =
√
µ|D| tanh(

√
µ

δ
)ψ2.

Then we obtain

φ1(X, z) =
( ψ1(X)

cosh(
√
µ|D|) − tanh(

√
µ

δ
|D|) tanh(

√
µ|D|)ψ2(X)

)
cosh(

√
µ|D|z)

+ ψ2(X) tanh(

√
µ

δ
|D|) sinh(

√
µ|D|z),

so that we have

Gµ,δ1 [0, 0, 0](ψ1, ψ2) =

√
µ|D|

cosh(
√
µ|D|) (sinh(

√
µ|D|)ψ1 + tanh(

√
µ

δ
)ψ2,

and finally

Hµ,δ[0, 0, 0](ψ1, ψ2) =
∇ψ1(X)

cosh(
√
µ|D|) − tanh(

√
µ

δ
|D|) tanh(

√
µ|D|)∇ψ2(X).

Using these expressions in the system (15), we can easily calculate the dispersion relations. Indeed, the
wave frequency ω2

±(k), corresponding to plane-wave solutions eik·X−iω±t, are the solutions of the quadratic
equation

ω4 − |k|√
µ

tanh(
√
µ|k|) + tanh(

√
µ

δ |k|)
1 + γ tanh(

√
µ|k|) tanh(

√
µ

δ |k|)
ω2 + (1 − γ)

|k|2
µ

tanh(
√
µ|k|) tanh(

√
µ

δ |k|)
1 + γ tanh(

√
µ|k|) tanh(

√
µ

δ |k|)
= 0. (16)

This equation has two strictly positive solutions (and their opposite) if and only if γ < 1, corresponding
to the case wherein the lower fluid is heavier than the upper one. This expression also appears in [11]
and [24]. The figure 2 shows the evolution of the wave frequencies ω±, −ω±, as functions of the wave
number k. We chose the parameters µ = 0.1, δ = 1/3, γ = 2/3.

2 Asymptotic Models

We derive asymptotic models for the system, by obtaining explicit expansions of the operators. Following
the method of [7], it is convenient to first reduce the problems (12) and (13) to elliptic equations on a flat
strip.
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Figure 2: Full system dispersion

2.1 Flattening of the domain

We define the mappings

R1 :=
Ω1 → S+

(X, z) 7→ (X, r1(X, z))
with r1(X, z) :=

z − ǫ2ζ2(X)

1 + ǫ1ζ1(X) − ǫ2ζ2(X)
,

R2 :=
Ω2 → S−

(X, z) 7→ (X, r2(X, z))
with r2(X, z) :=

z − ǫ2ζ2(X)

1/δ − βb(X) + ǫ2ζ2(X)
,

and denote their inverse

S1 :=
S+ → Ω1

(X, z) 7→ (X, s1(X, z))
with s1(X, z) := (1 + ǫ1ζ1(X) − ǫ2ζ2(X))z + ǫ2ζ2(X),

S2 :=
S− → Ω2

(X, z) 7→ (X, s2(X, z))
with s2(X, z) := (1/δ − βb(X) + ǫ2ζ2(X))z + ǫ2ζ2(X).

Introducing the (d+ 1) × (d+ 1) matrices

Pi :=
1

∂zsi

(
∂zsiId 0d,1

−∇Xsi
T 1

)(
µId 0d,1
01,d 1

)(
∂zsiId −∇Xsi
01,d 1

)
=

(
µ∂zsiId −µ∇Xsi

−µ∇Xsi
T 1+µ|∇Xsi|2

∂zsi

)
,

(17)
where 0m,n is the m × n zero matrix and Id the d × d identity matrix, we can transform the Laplace
equations (12) and (13) into elliptic boundary value problems on flat strips.

Proposition 2.1. Let ζ1, ζ2, and b ∈ W 1,∞(Rd), such that Ω1 and Ω2 satisfy (11), and suppose ∇ψ1,
∇ψ2 ∈ H1/2(Rd). Then there exists a unique solution φ1 ∈ H2(S+) and φ2 ∈ H2(S−) to the following
boundary value problems 





∇X,z · P2∇X,zφ2 = 0 in S−,
φ2 = ψ2 on {z = 0},
∂nφ2 = 0 on {z = −1},

(18)






∇X,z · P1∇X,zφ1 = 0 in S+,
φ1 = ψ1 on {z = 1},
∂nφ1 = ∂nφ2 on {z = 0},

(19)
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where ∂nφ stands for the upward co-normal derivative associated to the elliptic operator involved :

∂nφ := ed+1 · P∇X,zφ.

Moreover, φ̃i := (X, z) 7→ φi(X, ri(X, z)) (i = 1, 2) respectively solve the problems (13) and (12). Thus,
the operators G1, G2 and H can equivalently be defined with

G2ψ2 = ed+1 · P2∇X,zφ2|z=0,

G1(ψ1, ψ2) = ed+1 · P1∇X,zφ1|z=1,

H(ψ1, ψ2) = ∇φ1|z=0.

Proof. The reduction of the problems (13) and (12) on the flat strip can be found on [17] (Proposition
2.7). The coercivity condition is satisfied thanks to (11) and the assumptions on ζ1, ζ2 (see Proposition
2.3 of [1]) :

∃k > 0, ∀Θ ∈ R
d+1,Θ · PiΘ ≥ 1

k

∣∣Θ
∣∣2. (20)

Thus, we just prove here the existence and uniqueness of the H2-solutions φi (i = 1, 2). Since for all
g ∈ H−1/2(Rd), h ∈ H1/2(Rd), one can easily construct a function w ∈ H1(S+) such that w|z=1 = h and
∂nw|z=0 = g, (19) and (18) clearly reduce to the following problem






∇X,z · P∇X,zφ1 = f in S+,
φ1 = 0 on Γ1 := Rd × {1},
∂nφ1 = 0 on Γ2 := Rd × {0},

(21)

where f ∈ H−1(S+) and P satisfies (20).
As a first step, we introduce the variational formulation of this problem. Let us define the functional

space
V := {v ∈ H1(S+), γ0(v) = 0 on R

d},
with γ0 : H1(S+) → H1/2(Rd) the trace operator on Γ1. Since γ0 is continuous, V , equipped with the
scalar product of H1(S+) and the corresponding norm, is a closed subspace of H1(S+), hence a Hilbert
space. A solution of the variational problem related to (21) is then a function u ∈ V such that

∀v ∈ V,

∫

S+

P∇u · ∇v = −
∫

S+

fv. (22)

Since V = {v ∈ D(S̄+), v = 0 on Γ1} is dense in V , a solution of the variational problem (22) is a weak
solution of the problem (21).

Now we can check that a(u, v) :=
∫
S+ P∇u·∇v is a continuous bilinear form. The coercivity of a is given

by (20) and a generalized Poincaré inequality (see [2], Theorem 5.4.3). Finally, since b : v ∈ V 7→ −
∫
S+ fv

is clearly continuous, the Lax-Milgram Theorem gives the existence and uniqueness of a solution u ∈ V of
(22), and thus a weak solution of (21). Moreover, one has

∥∥u
∥∥
H1 ≤ C

∥∥f
∥∥
H−1 .

The last step consists in proving that the solution u lives in H2(S+), if we assume that f ∈ L2. We
introduce for h > 0,

uh := (x, y, z) 7→ τhu(x, y, z) − u(x, y, z)

h
=
u(x+ h, y, z)− u(x, y, z)

h
.

Then uh is the solution (21) with fh = τhf−f
h and gh = τhg−g

h , so that
∥∥uh

∥∥
H1 ≤

∥∥fh
∥∥
H−1 .
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Then we remark that for any v ∈ H1(S+), vh(x, y, z) = 1
h

∫ x+h
x

∂xv(t, y, z)dt, so that

∥∥vh
∥∥
L2 ≤ 1

h

∫ h

0

∥∥∂xv
∥∥
L2dt ≤

∥∥v
∥∥
H1 .

Thus, one has thanks to the duality between H1 and H1
0 ,

∥∥fh
∥∥
H−1 ≤ sup

v∈H1
0

|(fh, v)|∥∥v
∥∥
H1

≤ sup
v∈H1

0

∥∥f
∥∥
L2

∥∥vh
∥∥
L2∥∥v

∥∥
H1

≤
∥∥f
∥∥
L2 .

We finally have ∥∥uh
∥∥
H1 ≤ C

∥∥f
∥∥
L2 .

Since V is a Hilbert space, we deduce that there exists w ∈ V and a subsequence (uhk
) such that uhk

weakly converges towards w. Moreover, we know that uhk
converges towards ∂xu in D′(S+), so we deduce

∂xu ∈ V ⊂ H1.
We prove in the same way that ∂yu ∈ H1, so that ∆Xu ∈ L2. Finally, thanks to (20), we have

|∂2
zu| ≤ |∆Xu| + k|∇X,z · P∇X,zu| = |∆Xu| + k|f |,

so that u ∈ H2(S+), and the Proposition is proved.

2.2 Asymptotic expansion of the operators

Since we are looking for shallow-water models (µ ≪ 1), we need to obtain an expansion of the operators
in terms of µ. The method is the following. We first exhibit the expansion of the matrix Pi in terms of µ.
Then we look for approximate solutions φappi (i = 1, 2) under the form :

φappi = φ0
i + µφ1

i + µ2φ2
i .

Plugging this ansatz into (18) and (19), and solving at each order of µ, gives the φji . From which we can
deduce the expansion of the operators, by computing the normal derivative of φappi .

Since (18) is exactly the same problem as involved (in the case of the water-wave) in [1], we can directly
apply the Proposition 3.8 to the lower fluid.

Proposition 2.2. Let t0 > d/2 and s ≥ t0 + 1/2, ∇ψ2 ∈ Hs+11/2(R2), ζ2 ∈ Hs+9/2(R2) and b ∈
Hs+11/2(R2), such that (11) is satisfied. Then one has

∣∣G2ψ2 + µ∇ · (h2∇ψ2)
∣∣
Hs ≤ µ2C0, (23)

∣∣G2ψ2 + µ∇ · (h2∇ψ2) − µ2∇ · T [h2, βb]∇ψ2

∣∣
Hs ≤ µ3C1, (24)

with Cj = C( 1
h , β

∣∣b
∣∣
Hs+7/2+2j , ǫ2

∣∣ζ2
∣∣
Hs+5/2+2j ,

∣∣∇ψ2

∣∣
Hs+7/2+2j ), and where h2 := 1

δ−βb+ǫ2ζ2 is the thickness
of the lower layer, and

T [h, b]V := −1

3
∇(h3∇ · V ) +

1

2

(
∇(h2∇b · V ) − h2∇b∇ · V

)
+ h∇b∇b · V.

Remark 2.3. To obtain the estimate (23), we use the approximate solution

φapp,12 = ψ2 − µh2

(
h2(

z2

2
+ z)∆ψ2 − zβ∇b · ∇ψ2

)
.

We need a higher order approximation to obtain (24), namely φapp,22 = φapp,12 + µ2φ2
2, where φ2

2 can be
obtained using the same method as in the following study. The Proposition 2.2 is then obtained following
the path of Appendix A for the lower fluid (see [8] for a rigorous proof).
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The study of the upper fluid is different from the one of the lower fluid, since we have now a nonhomo-
geneous Neumann condition on the interface. In order to manage this, we first decompose φ1 := φ̌1 + φ̄1,
where φ̌1 is the unique solution of






∇X,z · P1∇X,zφ̌1 = 0 in S+,

φ̌1 = ψ1 on {z = 1},
∂nφ̌1 = 0 on {z = 0},

(25)

and φ̄1 is the unique solution of






∇X,z · P1∇X,zφ̄1 = 0 in S+,
φ̄1 = 0 on {z = 1},
∂nφ̄1 = G2ψ2 on {z = 0}.

(26)

Again, the system satisfied by φ̌1 reduces to the water-wave problem (where the topography of the bottom
would be given by ǫ2ζ2), so we introduce as in Remark 2.3 the approximate solutions

φ̌app,11 := ψ1 − µh1

(
h1(

(z − 1)2

2
+ (z − 1))∆ψ1 − (z − 1)ǫ2∇ζ2 · ∇ψ1

)
,

φ̌app,21 := φ̌app,11 + µ2φ̌2
1.

It follows that Ǧ1ψ1 the contribution on the Dirichlet-Neumann operator from φ̌1 can be expanded as in
the following Proposition.

Proposition 2.4. Let t0 > d/2 and s ≥ t0 + 1/2, ∇ψ1, ζ2 ∈ Hs+11/2(R2), ζ1 ∈ Hs+9/2(R2), such that
(11) is satisfied. Then one has

∣∣Ǧ1ψ1 + µ∇ · (h1∇ψ1)
∣∣
Hs ≤ µ2C0, (27)

∣∣Ǧ1ψ1 + µ∇ · (h1∇ψ1) − µ2∇ · T [h1, ǫ2ζ2]∇ψ1

∣∣
Hs ≤ µ3C1, (28)

with Cj = C( 1
h , ǫ2

∣∣ζ2
∣∣
Hs+7/2+2j , ǫ1

∣∣ζ1
∣∣
Hs+5/2+2j ,

∣∣∇ψ1

∣∣
Hs+7/2+2j ), and where h1 := 1 + ǫ1ζ1 − ǫ2ζ2 is the

thickness of the upper layer, and T [h, b]V is defined as in Proposition 2.2.

The last step consists in computing the contribution on the Dirichlet-Neumann operator from φ̄1. We
first define φ̄app1 = φ0 + µφ1 + µ2φ2. It is straightforward that

P1 = P 0 + µP 1, with P 0 :=

(
0d,d 0d,1
01,d

1
h1

)
and P 1 :=

(
h1Id −∇Xs1

−∇Xs1
T |∇Xs1|2

h1

)
,

where we have used the notations 0m,n for the m × n zero matrix, and Id for the d × d identity matrix.
Plugging these expansions into (26), using Proposition 2.2, and solving at each order, we get :

At order O(1) : 




1
h1
∂2
zφ

0 = 0 in S+,

φ0 = 0 on {z = 1},
1
h1
∂zφ

0 = 0 on {z = 0},
so that we have

φ0 = 0. (29)
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At order O(µ) :





1
h1
∂2
zφ

1 = −∇X,z · P 1∇X,zφ
0 = 0 in S+,

φ1 = 0 on {z = 1},
1
h1
∂zφ

1 = −ed+1 · P 1∇X,zφ
0 −∇ · (h2∇ψ2) on {z = 0},

which gives immediately
φ1 = −h1∇ · (h2∇ψ2)(z − 1). (30)

At order O(µ2) :





1
h1
∂2
zφ

2 = h1

(
(z − 1)h1∇ · ∇A2 − 2ǫ1∇ζ1 · ∇A2 − ǫ1∆ζ1A2

)
in S+,

φ2 = 0 on {z = 1},
1
h1
∂zφ

2 = ∇ · T [h2, βb]∇ψ2 + ǫ2∇ζ2 · (h1∇A2 + ǫ1∇ζ1A2) on {z = 0},

with the notation A2 := ∇ · (h2∇ψ2). This leads to the solution

φ2 =h1

(
(h2

1∇ · ∇A2)(
z3

6
− z2

2
+

1

3
) − h1(2ǫ1∇ζ1 · ∇A2 + ǫ1∆ζ1A2)(

z2

2
− 1

2
) (31)

+ (∇ · T [h2, βb]∇ψ2 + ǫ2∇ζ2 · (h1∇A2 + ǫ1∇ζ1A2))(z − 1)
)
.

This formal derivation of φ̄app1 allows us to obtain the expansion of Ḡ1ψ2, the contribution on the
Dirichlet-Neumann operator from φ̄1. Formally, we have

Ḡ1ψ2 ≈ −µA2 + µ2
(
∇ · T [h2, βb]∇ψ2 −

1

2
∇ · (h2

1∇A2) −∇ · (h1ǫ1∇ζ1A2)
)
. (32)

Summing this expansion with the one of Proposition 2.4 gives immediately the expansion of the full op-
erator G1(ψ1, ψ2). The following Proposition gives a rigorous statement of this fact ; its proof is postponed
to Annex A.

Proposition 2.5. Let t0 > d/2 and s ≥ t0 + 1/2, ∇ψ1, ∇ψ2 ∈ Hs+11/2(R2), ζ1 ∈ Hs+7/2(R2), ζ2 ∈
Hs+9/2(R2) and b ∈ Hs+11/2(R2), such that (11) is satisfied. Then one has

∣∣G1(ψ1, ψ2) + µ(A1 + A2)
∣∣
Hs ≤ µ2C0, (33)

∣∣G1(ψ1, ψ2) + µ(A1 + A2) − µ2
(
∇ · T1 + ∇ · T2 −

1

2
∇ · (h2

1∇A2) −∇ · (h1ǫ1∇ζ1A2)
)∣∣
Hs ≤ µ3C1, (34)

with Cj = C( 1
h , β

∣∣b
∣∣
Hs+7/2+2j , ǫ2

∣∣ζ2
∣∣
Hs+5/2+2j , ǫ1

∣∣ζ1
∣∣
Hs+3/2+2j ,

∣∣∇ψ1

∣∣
Hs+7/2+2j ,

∣∣∇ψ2

∣∣
Hs+7/2+2j ), and the no-

tations
A1 := ∇ · (h1∇ψ1), A2 := ∇ · (h2∇ψ2),
T1 := T [h1, ǫ2ζ2]∇ψ1, T2 := T [h2, βb]∇ψ2.

Remark 2.6. As in Remark 2.3, the proof of the estimate (33) requires the approximate solution φapp,11 ,
with

φapp,11 := φ̌app,11 + φ0 + µφ1,

and the second estimate (23) uses

φapp,21 := φ̌app,21 + φ0 + µφ1 + µ2φ2.

In Appendix A (Steps 4 and 5), we give estimates on φ1−φapp1 , obtained thanks to the trace theorem and an
elliptic estimate on the boundary value problem solved by φ1 − φapp1 . This leads to the desired inequalities,
since G1(ψ1, ψ2) − ∂nφ

app
1 = ∂n(φ1 − φapp1 ).
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The last expansion to obtain is the one of H(ψ1, ψ2), which is given by the following.

Proposition 2.7. Let t0 > d/2 and s ≥ t0 + 1/2, ∇ψ1, ∇ψ2 ∈ Hs+11/2(R2), ζ1 ∈ Hs+7/2(R2), ζ2 ∈
Hs+9/2(R2) and b ∈ Hs+11/2(R2), such that (11) is satisfied. Then one has

∣∣H(ψ1, ψ2) −∇ψ1

∣∣
Hs ≤ µC0, (35)

∣∣H(ψ1, ψ2) −∇ψ1 − µ∇
(
h1(A1 + A2) −

1

2
h2

1∆ψ1 − h1ǫ1∇ζ1 · ∇ψ1

)∣∣
Hs ≤ µ2C1, (36)

with Cj = C( 1
h , β

∣∣b
∣∣
Hs+7/2+2j , ǫ2

∣∣ζ2
∣∣
Hs+5/2+2j , ǫ1

∣∣ζ1
∣∣
Hs+3/2+2j ,

∣∣∇ψ1

∣∣
Hs+7/2+2j ,

∣∣∇ψ2

∣∣
Hs+7/2+2j ), and using

the notations of Proposition 2.5.

Proof. The proof uses the estimates (68) and (70) on u := φ1−φapp,11 . Indeed, we have to give an estimate
for
∣∣∇u|z=0

∣∣
Hs , and a trace theorem (see Métivier [20] pp.23-27) gives for all s ≥ 0,

∣∣∇u|z=0

∣∣
Hs ≤ Cst(

∥∥Λs+1/2∇u
∥∥
L2 +

∥∥Λs−1/2∂z∇u
∥∥)L2 ≤ Cst√

µ

∥∥Λs+1/2∇µ
X,zu

∥∥
L2 .

Then, the estimate (68) allows to conclude :

∣∣∇u|z=0

∣∣
Hs ≤ 1√

µ
Cs,t0(

1

h
, ǫ1
∣∣ζ1
∣∣
Hmax{t0+2,s+3/2} , ǫ2

∣∣ζ2
∣∣
Hmax{t0+2,s+3/2}))(µ

2
∥∥h
∥∥
Hs+1/2 +

1 +
√
µ

√
µ

∣∣V
∣∣
Hs+1).

The first estimate (35) follows from this relation, together with the estimates (64) and (65).
As for the Proposition 2.5, the second estimate (36) requires the use of the higher order approximate

solution ũ := φ1 − φapp,21 , and the result is obtained in the same way.

Remark 2.8. Using the same approximate solution as for the expansion of G1(ψ1, ψ2), we obtain an
estimate one order less precise in µ than in (33) and (34). This loss of precision is not seen at the formal
level and comes from the 1√

µ term, due to the horizontal scaling, which is necessary in order to have a

uniformly elliptic operator.

2.3 Asymptotic models

The expansions of the operator we obtained allow us to derive asymptotic models from (14). The frame
of this study is limited to shallow water regimes over finite-depth fluids, that is to say : µ≪ 1, and δ ∼ 1,
but our method could be extended to deep water regimes (δ ≪ 1), as in [7]. As we see in Section 4, we
recover most of the models which have been introduced in the literature, as well as interesting new ones
(the Boussinesq/Boussinesq model with coefficients (44), and the higher order system (46)). Furthermore,
we show rigorously that (14) is consistent with all of these models, in the following sense (see [6]).

Definition 2.9. The internal-wave system (14) is consistent with a system S of 2d+ 2 equations, if any
sufficiently smooth solution of (14) such that (11) is satisfied solves S up to a small residual called the
precision of the asymptotic model. Throughout this paper, the precision is given in the sense of L∞Hs

norms, which means that the Hs norm of the residual is uniformly bounded, with respect to t where the
solution is defined.

Remark 2.10. The consistency does not require the well-posedness of (14), and only concerns the prop-
erties of smooth solutions of the system. However, if we assume the existence of such functions, we can
prove that they are approximated by the solutions of consistent systems, as we see in Section 3.
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2.3.1 The shallow water/shallow water regime : µ≪ 1

We assume here that both layers are in the shallow-water regime (µ ≪ 1), whereas strong nonlinearity are
allowed (ǫ1, ǫ2 = O(1)). We use the first order expansions (23), (33) and (35), and we plug them into (14).
We obtain, discarding the O(µ) terms, the following system :






α∂tζ1 + ∇ · (h1∇ψ1) + ∇ · (h2∇ψ2) = 0,
∂tζ2 + ∇ · (h2∇ψ2) = 0,

∂t∇ψ1 + α∇ζ1 +
ǫ2
2
∇
(
|∇ψ1|2

)
= 0,

∂t∇ψ2 + (1 − γ)∇ζ2 + γα∇ζ1 +
ǫ2
2
∇
(
|∇ψ2|2

)
= 0,

(37)

where h1 = 1 + ǫ1ζ1 − ǫ2ζ2 and h2 = 1
δ − βb+ ǫ2ζ2.

Remark 2.11. This system has already been introduced in the flat bottom case in [11], and equivalently,
though under a different form, in [10]. We say more about this in Section 4.2.

Proposition 2.12. The full system (14) is consistent with (37), at the precision µC0, with
C0 = C( 1

h , β
∣∣b
∣∣
W 1,∞Hs+7/2 , ǫ2

∣∣ζ2
∣∣
W 1,∞Hs+5/2 , ǫ1

∣∣ζ1
∣∣
W 1,∞Hs+3/2 ,

∣∣∇ψ1

∣∣
W 1,∞Hs+7/2 ,

∣∣∇ψ2

∣∣
W 1,∞Hs+7/2).

Proof. Let t0 > d/2 and s ≥ t0 + 1/2. Let U := (ζ1, ζ2,∇ψ1,∇ψ2) be a solution of (14), such that (11) is
satisfied, and U ∈ Hs. It is straightforward to check that we have






α∂tζ1 + ∇ · (h1∇ψ1) + ∇ · (h2∇ψ2) = ∇ · (h1∇ψ1) + ∇ · (h2∇ψ2) + 1
µG1(ψ1, ψ2),

∂tζ2 + ∇ · (h2∇ψ2) = ∇ · (h2∇ψ2) + 1
µG2ψ2,

∂t∇ψ1 + α∇ζ1 +
ǫ2
2
∇
(
|∇ψ1|2

)
= µǫ2∇N1,

∂t∇ψ2 + (1 − γ)∇ζ2 + γα∇ζ1 +
ǫ2
2
∇
(
|∇ψ2|2

)
= γ∂t(H(ψ1, ψ2) −∇ψ1)

+ ǫ2
2 γ∇(|H(ψ1, ψ2)|2 − |∇ψ1|2) + µǫ2∇N2.

(38)

Except for ∂t(H(ψ1, ψ2) − ∇ψ1), the right-hand side is immediately bounded by µC0, thanks to the
estimates (23), (33) and (35). The estimate on the derivative is obtained as in the following.

We use the study of Appendix A : we derive (63) with respect to t on both sides and get





∇µ
X,z · Pµ∇µ

X,z(∂tu) = µ2 ∇µ
X,z · ∂th−∇µ

X,z · ∂t(Pµ)∇µ
X,zu in S+,

∂tu = 0 on {z = 1},
∂n(∂tu) = ∇ · ∂tV + µ2ed+1 · ∂th − ed+1 · ∂t(Pµ)∇µ

X,zu on {z = 0},
(39)

We now need estimates on the right-hand side of the system. Directly from the definition of h, we have
∥∥∂th

∥∥
Hs+3/2,1 ≤ C0. (40)

Thanks to the Step 4 of Section A.2, we have
∥∥∂t(Pµ)∇µ

X,zu
∥∥
Hs+3/2,1 ≤ C0.

Finally, we can obtain the estimate on ∂tV , using the same method as here on the lower layer :

∣∣∂tV
∣∣
Hs ≤ µ2C(

1

h
,
∣∣ ·
∣∣
Hs−1).

Then we use the study of Appendix A, and obtain the estimates of Steps 4 and 5 for ∂tu, and use them as
in Proposition 2.7 in order to obtain the desired inequality :

∣∣∂t(H(ψ1, ψ2) −∇ψ1)
∣∣
Hs =

∣∣∇∂tu
∣∣
Hs ≤ µC0.
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Conservation laws. The first two equations of (37) reveal the conservation of mass, since a straightfor-
ward linear combination gives {

∂th1 + ǫ2∇ · (h1∇ψ1) = 0,
∂th2 + ǫ2∇ · (h2∇ψ2) = 0.

(41)

We can play with the system to obtain other conservation laws. The conservations of total momentum
and energy are given by

∂t(γh1u1 + h2u2) + ∇p+ (γh1 + h2)β∇b + ∇ · (γh1u1 ⊗ u1 + h2u2 ⊗ u2) = 0,

∂t

(1

2

(
γh1|u1|2 + h2|u2|2

)
+ p
)

+
1

2
∇ · (γh1|u1|2u1 + h2|u2|2u2) + ∇ · (γh2

1∇u1 + h2
2u2 + γh1h2(u1 + u2))

+ (γh1u1 + h2u2)β∇b = 0, (42)

with the notations h1 = 1 + ǫ1ζ1 + ǫ2ζ2, h2 = 1
δ − βb + ǫ2ζ2, ui = ǫ2∇ψi (i = 1, 2), and the “pressure”

p := 1
2γh

2
1 + 1

2h
2
2 + γh1h2.

Dispersion relations. When we calculate the linearized dispersion relations as in Section 1.5, we obtain
that ω2

±(k) satisfy :

ω2
±(k) =

1 + δ ±
√

(1 − δ)2 + 4γδ

2δ
|k|2

This dispersion relation is not the same as the one of the full system (it corresponds to the first order of
the expansion in µ of the solutions of (16)), but we still have the condition γ < 1, for the system to be
linearly well-posed. The figure 3 presents shallow water/shallow water model dispersion, compared with
the dispersion of the full system, with the parameters µ = 0.1, δ = 1/3, γ = 2/3.
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Figure 3: The shallow water/shallow water model dispersion
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2.3.2 The Boussinesq/Boussinesq regime : µ ∼ ǫ2 ∼ ǫ1 ≪ 1

In this regime, the shallowness and the nonlinearity are supposed to be small and of the same size. This
time, we use the second order of the expansions, and obtain





α∂tζ1 + ∇ · (h1∇ψ1) + ∇ · (h2∇ψ2) = µ
(−1

3 ∆∇ · ∇ψ1 + ∇ · T [h2,
βb
δ ]∇ψ2 − 1

2δ∆∇ · ∇ψ2)
)
,

∂tζ2 + ∇ · (h2∇ψ2) = µ
(
∇ · T [h2,

βb
δ ]∇ψ2

)
,

∂t∇ψ1 + α∇ζ1 +
ǫ2
2
∇
(
|∇ψ1|2

)
= 0,

∂t∇ψ2 + (1 − γ)∇ζ2 + αγ∇ζ1 +
ǫ2
2
∇
(
|∇ψ2|2

)
= µγ∂t

(
1
δ∇∆ψ2 + 1

2∇∆ψ1

)
,

(43)

with T [h, b]V defined as in Proposition 2.2.

Remark 2.13. If the bottom is flat, then T [h2,
βb
δ ]∇ψ2 is simply −1

3δ3∇∆ψ2.

Model with improved frequency dispersion. This model is linearly ill-posed. Fortunately, following
[6,4], we can easily derive asymptotically equivalent models, with coefficients which can be chosen so that
the system is well-posed. For simplicity, we assume now to be in the case of flat bottom (see [8] for the
varying bottom case).

We rewrite the system (43) with new variables : ui := ∇φi(zi) (i = 1, 2). From the calculations of
Section 2.2, we obtain

φapp,11 (z) = ψ1 − µ(
(z − 1)2

2
+ (z − 1))∆ψ1 − µ

1

δ
(z − 1)∆ψ2,

φapp,12 (z) = ψ2 − µ
1

δ2
(
z2

2
+ z)∆ψ2.

We then define u1 and u2 as in the following :

u1 := ∇φapp,11 (z1) = ∇ψ1 − µb1∆∇ψ1 − µ
1

δ
a1∆∇ψ2,

u2 := ∇φapp,12 (z2) = ∇ψ2 − µ
1

δ2
a2∆ψ2,

with z1 ∈ (0, 1) for the upper fluid, and z2 ∈ (−1, 0) for the lower fluid, and the coefficients

a1 := z1 − 1 ∈ [−1, 0] ; a2 :=
z2
2

2
+ z2 ∈ [−1/2, 0] ; b1 :=

a2
1

2
+ a1 ∈ [−1/2, 0].

We plug this into (43) and obtain





α∂tζ1 + ∇ · (h1u1) + ∇ · (h2u2) + µ
(

1+3b1
3 ∇ · ∆u1 + (1+2a1

2δ + 1+3a2

3δ3 )∇ · ∆u2

)
= 0,

∂tζ2 + ∇ · (h2u2) + µ 1+3a2

3δ3 ∇ · ∆u2 = 0,

(1 + µb1∆)∂tu1 + µa1

δ ∆∂tu2 + α∇ζ1 +
ǫ2
2
∇
(
|u1|2

)
= 0,

(1 + µ(a2

δ2 + γ
δ )∆)∂tu2 − µγ2 ∆∂tu1 + (1 − γ)∇ζ2 + αγ∇ζ1 +

ǫ2
2
∇
(
|u2|2

)
= 0.

(44)

Remark 2.14. If we choose a1 = − 1
2 , a2 = − 1

3 and b1 = − 1
3 , we obtain the classical “layer-mean” model

(61), introduced by Choi and Camassa in [10]. As we see below, this system is linearly ill-posed. One of
the interests of (44) is to offer a large class of equivalent models, with parameters which can be chosen so
that the system is linearly well-posed.

Proposition 2.15. The full system (14) is consistent with (44), at the precision µ2C1, with
C1 = C( 1

h , β
∣∣b
∣∣
W 1,∞Hs+11/2 , ǫ2

∣∣ζ2
∣∣
W 1,∞Hs+9/2 , ǫ1

∣∣ζ1
∣∣
W 1,∞Hs+7/2 ,

∣∣∇ψ1

∣∣
W 1,∞Hs+11/2 ,

∣∣∇ψ2

∣∣
W 1,∞Hs+11/2).
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Proof. Let t0 > d/2 and s ≥ t0 + 1/2. Let U := (ζ1, ζ2,∇ψ1,∇ψ2) be a solution of (14), such that (11) is
satisfied, and U ∈ Hs+2.

We first give the proof for a1 = b1 = a2 = 0, corresponding to the original system (43). We just have
to plug U in (43), as in the proof of Proposition 2.12. Since ǫ2 ∼ µ, we have

∣∣µǫ2∇N1

∣∣
Hs +

∣∣µǫ2∇N2

∣∣
Hs ≤

µ2C1. The other residuals are bounded by µ2C1 thanks to the estimates (24), (34) and (36) with ǫ2 ≪ 1,
and the equivalent estimates on the derivatives which are obtained as in the proof of Proposition 2.12.

The general case is obtained when we substitute ∇ψ1 − µb1∆∇ψ1 − µ 1
δa1∆∇ψ2 for u1, and ∇ψ2 −

µ 1
δ2 a2∆ψ2 for u2 in (44). We obtain (43) up to additional terms that are clearly bounded by µ2C1.

Dispersion relations. As we have said previously, the coefficients can be chosen so that the system
(44) is linearly well-posed. Indeed, it is straightforward to check from the linearized system that ω2

±(k),
corresponding to plane-wave solutions eik·X−iω±t, must be the solutions of the equation

ω4 −A(µ|k|2)|k|2ω2 +B(µ|k|2)|k|4, (45)

with

A(Y ) :=
(1 − β1Y )(1 + γδ(a1+1)−a2

δ2 Y ) + γ(1
δ − (α1 + α2)Y )(1 − (b1 + 1

2 )Y ) + (1 − γ)(1
δ − α2Y )(1 − b1Y )

(1 − b1Y )(1 − a2−γδ
δ2 Y ) + γ

2δa1Y 2
,

B(Y ) :=(1 − γ)
(1
δ − α2Y )(1 − β1Y )

(1 − b1Y )(1 − a2−γδ
δ2 Y ) + γ

2δa1Y 2
,

and the notations

α1 :=
1 + 2a1

2δ
; α2 :=

1 + 3a2

3δ3
; β1 :=

1 + 3b1
3

.

In order to have two positive solutions of (45), the coefficients have to satisfy a2 ≤ −1/3, and b1 ≤ −1/2.
We see that the original system (43), as well as the classical layer-mean model (61) are ill-posed. However,
there exists sets of parameters a1, a2, b1 such that the generalized system is well-posed. Moreover, we
can choose the coefficients such that the dispersions meet with the ones of the full system, at the order
3 in µ|k|2. We present in figure 4 the difference between the dispersion of the full system and the one of
the Boussinesq/Boussinesq model for three sets of parameters : a1 = b1 = a2 = 0 corresponding to the
original system (43), a1 = − 1

2 , a2 = − 1
3 and b1 = − 1

3 corresponding to the layer-mean system (61), and
finally a1 ≈ 0.4714, a2 ≈ −0.3942 and b1 = −1 corresponding to optimized parameters in (44). Moreover,
we chose µ = 0.1, δ = 1/3, and γ = 2/3. Note that except for the last set of parameters, the system is
linearly ill-posed, so that the computation breaks for high wave numbers.

2.3.3 The higher order system

We are now back in the strong linearity regime, allowing large amplitude (ǫ1, ǫ2 = O(1)). But now we use
the higher order expansions (24), (34) and (36), and thus obtain the strongly nonlinear model






α∂tζ1 + A1 + A2 = µ
(
∇ · T1 + ∇ · T2 − 1

2∇ · (h2
1∇A2) −∇ ·

(
h1ǫ1∇ζ1A2)

)
,

∂tζ2 + A2 = µ∇ · T2,

∂t∇ψ1 + α∇ζ1 +
ǫ2
2
∇
(
|∇ψ1|2

)
= µǫ2∇N1,

∂t∇ψ2 + (1 − γ)∇ζ2 + γα∇ζ1 +
ǫ2
2
∇
(
|∇ψ2|2

)
= µ

(
γ∂t∇H + γǫ2∇(∇ψ1 · ∇H)

+ǫ2∇N2 + γǫ2∇N1

)
,

(46)
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Figure 4: The Boussinesq/Boussinesq models dispersion error

where we have used the following notations :

A1 := ∇ · (h1∇ψ1), A2 := ∇ · (h2∇ψ2),
T1 := T [h1, ǫ2ζ2]∇ψ1, T2 := T [h2, βb]∇ψ2,
H := h1(∇ · (h1∇ψ1) + ∇ · (h1∇ψ2) − 1

2h1∆ψ1 − ǫ1∇ζ1 · ∇ψ1),

N1 := (ǫ1∇ζ1·∇ψ1−∇·(h1∇ψ1)−∇·(h1∇ψ2))2

2 ,

N2 := (ǫ2∇ζ2·∇ψ2−∇·(h1∇ψ2))2−γ(ǫ2∇ζ2·∇ψ1−∇·(h1∇ψ2))2

2 .

Proposition 2.16. The full system (14) is consistent with (46), at the precision µ2C1, with
C1 = C( 1

h , β
∣∣b
∣∣
W 1,∞Hs+11/2 , ǫ2

∣∣ζ2
∣∣
W 1,∞Hs+9/2 , ǫ1

∣∣ζ1
∣∣
W 1,∞Hs+7/2 ,

∣∣∇ψ1

∣∣
W 1,∞Hs+11/2 ,

∣∣∇ψ2

∣∣
W 1,∞Hs+11/2).

Proof. Let t0 > d/2 and s ≥ t0 + 1/2. Let U := (ζ1, ζ2,∇ψ1,∇ψ2) be a solution of (14), such that (11)
is satisfied, and U ∈ Hs+2. We plug U in (46), and thanks to the estimates (24), (34) and (36), and the
equivalent estimates on the derivatives are obtained as in the proof of Proposition 2.12, we can check that
the residuals are bounded by µ2C1.

Dispersion relations. The linearized system is exactly the same as the one of (43). So the system is
linearly ill-posed, and we should derive models with parameters, to obtain well-posed systems.

3 Convergence results

We show here how to use the consistency results obtained in Section 2.3 to prove convergence results,
stating that solutions of (14) - if they exist - remain close to the solutions of the asymptotic model on a
relevant time scale. In order to simplify the analysis, we focus here on the shallow water/shallow water
model (37), in the flat-bottom case (β = 0), so that the system can be written

∂tU +A1(U)∂xU +A2(U)∂yU = 0, (47)
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with U := (h1, h2, u1x, u1y, u2x, u2y) = (1 + ǫ1ζ1 − ǫ2ζ2,
1
δ + ǫ2ζ2, ǫ2∂xψ1, ǫ2∂yψ1, ǫ2∂xψ2, ǫ2∂yψ2), and the

matrices

A1(U) :=




u1x 0 h1 0 0 0
0 u2x 0 0 h2 0
1 1 u1x u1y 0 0
0 0 0 0 0 0
γ 1 0 0 u2x u2y

0 0 0 0 0 0



, A2(U) :=




u1y 0 0 h1 0 0
0 u2y 0 0 0 h2

0 0 0 0 0 0
1 1 u1x u1y 0 0
0 0 0 0 0 0
γ 1 0 0 u2x u2y



.

We first prove that our model (47) has solutions, since it is a symmetrizable hyperbolic system.

Proposition 3.1. Let s > d
2 + 1. Let U0 ∈ Hs(Rd)6, such that there exists h > 0 such that for all X in

Rd, U0(X) satisfies the assumptions

h1 ≥ h, h2 ≥ h, and |u2
1x + u2

1y| ≤ (1 − γ)h1, |u2
2x + u2

2y| ≤ h2. (48)

Then there exists T ′ > 0 and a unique U ∈ C0([0, T ′);Hs(Rd))6 such that U satisfies (47) and U(t = 0) =
U0.

Proof. We introduce the following matrix S, namely

S(U) :=




γ γ γu1x u1y 0 0
γ 1 0 0 u2x u2y

γu1x 0 γh1 0 0 0
γu1y 0 0 γh1 0 0

0 u2x 0 0 h2 0
0 u2y 0 0 0 h2



.

It is straightforward that S(U) and S(U)A(U, ξ) are self-adjoint, with A(U, ζ) := ξ1A1(U) + ξ2A2(U).
Then, using the Gauss reduction algorithm, one can check that S(U) is definite positive if U satisfies (48).
These requirements are satisfied at time t = 0 by U0, and we define T as the maximum time such that
they remain satisfied for all t < T . We know that T > 0 thanks to a continuity argument. Then since
we have proved that S is a symmetrizer of (47), the Theorem 7.3.3 of [21] gives T ′ ≤ T such that U is
uniquely defined on [0, T ′).

The last step consists in proving that the solutions of (47) approximate the solutions of the full system
(14), assuming that the latter exist. We first give the the following a priori estimate, which can be found
for example in [21] (Theorem 7.3.9).

Lemma 3.2. Let f ∈ C1([0;T ];Hs), F a smooth function such that F (0) = 0. Then with
u ∈ C1([0, T ];Hs) ∩ C0([0, T ];Hs+1) a solution of the symmetrizable hyperbolic system

∂tU +A1(U)∂xU +A2(U)∂yU = f + F (U), (49)

which satisfies for M > 0 ∣∣u
∣∣
W 1,∞([0,T ]×Rd)

≤M,

there are constants C(M) and K(M) such that

∣∣U(t)
∣∣
Hs ≤ CeKt

∣∣U(0)
∣∣
Hs + C

∫ t

0

CeK(t−s)∣∣f(s)
∣∣
Hsds.
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Proposition 3.3. We fix γ ∈ (0, 1) and δ ∈ (0,+∞). For t0 > d/2 and s ≥ t0 + 1/2, let U ∈
C1([0;T ];Hs)6 ∩ C0([0;T ];Hs+1)6 be a solution of (14) such that (11) is satisfied and U is bounded in
Hs([0, T ]), uniformly with respect to ǫ1, ǫ2 ∈ [0, 1), and µ ∈ (0, µmax]. We denote by Ũ := (ζ̃1, ζ̃2, ũ1, ũ2)
the solution of (37), with the same initial values, that we assume to satisfy (48). Then one has

∣∣U − Ũ
∣∣
Hs ≤ µC0,

with C0 = C( 1
h , γ, δ, µ

max,
∣∣U
∣∣
Hs , T ).

Proof. Thanks to the consistency result (Theorem 2.12), we know that U satisfies (49), with F = 0 and
∣∣f
∣∣
Hs ≤ µC0,

with C0 = C( 1
h ,
∣∣U
∣∣
Hs). Then, the difference between the two solutions Rµ := U − Ũ satisfies (49), with

the same f and

F (Rµ) := −A1(R
µ)∂xŨ −A2(R

µ)∂yŨ −A1(Ũ)∂xR
µ −A2(Ũ)∂yR

µ.

Taking a smaller T if necessary, one has
∣∣U
∣∣
W 1,∞([0,T ]×Rd)

+
∣∣Ũ
∣∣
W 1,∞([0,T ]×Rd)

≤M,

where M is independent of ǫ1, ǫ2 and µ. Thus, we can apply Lemma 3.2, and one has

∣∣Rµ(t)
∣∣
Hs ≤ C

∫ t

0

CeK(t−s)∣∣f
∣∣
Hsds ≤ µC(

1

h
, γ, δ, µmax,

∣∣U
∣∣
Hs , T ).

4 Links to other models

4.1 Rigid lid in the shallow water/shallow water case

In [7], Bona, Lannes and Saut presented a model for internal waves in the shallow water regime, with the
rigid lid assumption. They showed that a nonlocal operator has to appear for d = 2 (see observations
in [14]). This operator cannot be seen in our model (37), so that it is a purely two dimensional, rigid lid
effect. However, we show in the following how to make it appear from (37).

Indeed, the rigid lid assumption means that ǫ1 = 0, when ǫ2 remains > 0, so that α = 0. The system
(37) becomes 





∇ · (h1∇ψ1) + ∇ · (h2∇ψ2) = 0,
∂tζ2 + ∇ · (h2∇ψ2) = 0,

∂t∇ψ1 +
ǫ2
2
∇
(
|∇ψ1|2

)
= 0,

∂t∇ψ2 + (1 − γ)∇ζ2 +
ǫ2
2
∇
(
|∇ψ2|2

)
= 0,

(50)

where h1 = 1 − ǫ2ζ2 and h2 = 1
δ − βb+ ǫ2ζ2.

For simplicity, we restrict ourself to the case of a flat bottom (β = 0), but we could do the same
calculations with β > 0. We first define the shear velocity

v := ∇ψ2 − γ∇ψ1.

From the first line, we deduce :

∇ · (h2v) = −∇ · ((h1 + γh2)∇ψ1) = −γ + δ

δ
∇ · ((1 +

γ − 1

γ + δ
δǫ2ζ2)∇ψ1).

Then we define the nonlocal operator Q :
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Definition 4.1. Assuming that ζ ∈ L∞(Rd), we define the mapping

Q[ζ] :=
L2(Rd)d → L2(Rd)d

W 7→ V

where V is the unique gradient vector in L2(Rd)d, solution of the equation

∇ · ((1 + ζ)V ) = ∇ ·W.

So from the definition, we have

∇ψ1 = Q[
γ − 1

γ + δ
δǫ2ζ2](−

δ

γ + δ
h2v).

We plug this expression into (50), and obtain immediately





∂tζ2 + δ

γ+δ∇ ·
(
h1Q[γ−1

γ+δ δǫ2ζ2](h2v)
)

= 0,

∂tv + (1 − γ)∇ζ2 +
ǫ2
2
∇
(
|v − γδ

γ+δQ[γ−1
γ+δ δǫ2ζ2](h2v)|2 − γδ2

(γ+δ)2 |Q[γ−1
γ+δ δǫ2ζ2](h2v)|2

)
= 0,

(51)

where h1 = 1 − ǫ2ζ2 and h2 = 1
δ + ǫ2ζ2. This is exactly the system derived in [7].

Using the same method, we could derive rigid-lid models from (44) and (46). The rigid-lid model in
the Boussinesq regime has already been exhibited in [7], and a fully nonlinear model is presented in [9].

4.2 The layer-mean equations

In the literature, the water-wave system is often given by layer-mean equations (see for example [25]),
using as unknowns the depth-mean velocity across the layers :

u1(X) :=
1

h1

∫ 1+ǫ1ζ1

ǫ2ζ2

∇φ1(X, z)dz with h1 := 1 + ǫ1ζ1 − ǫ2ζ2,

u2(X) :=
1

h2

∫ ǫ2ζ2

−1/δ+βb

∇φ2(X, z)dz with h2 :=
1

δ
− βb+ ǫ2ζ2,

The systems under this form (obtained for example in [10] and [3]) are equivalent to the the system we
derived, since one can approximate u1 and u2 thanks to our previous unknown ψ1 and ψ2 (as we see in
the following Proposition), and conversely. Thus, our study gives a rigorous justification of these models,
and we are able to offer consistency results.

Proposition 4.2. Let t0 > d/2 and s ≥ t0 + 1/2, ∇ψ1, ∇ψ2 ∈ Hs+11/2(R2), ζ1 ∈ Hs+7/2(R2), ζ2 ∈
Hs+9/2(R2) and b ∈ Hs+11/2(R2), such that (11) is satisfied. Then one has

∣∣u1 −∇ψ1

∣∣
Hs+1 ≤ µC0, (52)

∣∣u2 −∇ψ2

∣∣
Hs+1 ≤ µC0, (53)

∣∣u1 −∇ψ1 − µD1(∇ψ1,∇ψ2)
∣∣
Hs+1 ≤ µ2C1, (54)

∣∣u2 −∇ψ2 − µD2∇ψ2

∣∣
Hs+1 ≤ µ2C1, (55)
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with Cj = C( 1
h , β

∣∣b
∣∣
Hs+7/2+2j , ǫ2

∣∣ζ2
∣∣
Hs+5/2+2j , ǫ1

∣∣ζ1
∣∣
Hs+3/2+2j ,

∣∣∇ψ1

∣∣
Hs+7/2+2j ,

∣∣∇ψ2

∣∣
Hs+7/2+2j ), and where

D1 and D2 are defined by

D1(∇ψ1,∇ψ2) = − 1

h1

(
T1 −

1

2
(h2

1∇A2) − (h1ǫ1∇ζ1A2)
)
,

D2∇ψ2 = − 1

h2
T2,

with the notations of Proposition 2.5.

Proof. Using the Green formula with φ1 the solution of (13), and a test function ϕ̃ := (X, z) 7→ ϕ(X), we
have

∫

Ω1

ϕ̃∆µ
X,zφ1dXdz = −

∫

Ω1

∇µ
X,zφ1 · ∇µ

X,zϕ̃dXdz +

∫

Γ1

ϕ∂n1φ1dn1 +

∫

Γ2

ϕ∂n2φ1dn2

= − µ

∫

Rd

∇ϕ
∫ 1+ǫ1ζ1

ǫ2ζ2

∇φ1dzdX +

∫

Rd

ϕG1(ψ1, ψ2)dX −
∫

Rd

ϕG2ψ2dX.

Thus, we deduce

∇ · (h1u1) =
−1

µ
(G1(ψ1, ψ2) −G2ψ2). (56)

Identically, we have

∇ · (h2u2) =
−1

µ
G2ψ2. (57)

We now prove the estimate (52), and the other are obtained in the same way.
Using the Propositions 2.2 and 2.5 together with (56), and since (11) is satisfied, one has immediately

∣∣∇ · (u1 −∇ψ1)
∣∣
Hs ≤ µC0,

so that we only have to obtain an L2-estimate on u1 −∇ψ1. Using the definition of u1 and the mappings
defined on Section 2, we obtain

u1 −∇ψ1 =

∫ 1

0

∇(φ̃1 − ψ1) + ∇s1∂z̃φ̃1dz̃,

with φ̃1 : (X, z̃) ∈ S+ 7→ φ1(X, s1(X, z̃)). We deduce
∣∣u1−∇ψ1

∣∣
2
≤ C(ǫ1

∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞)

∥∥
2
∇X,z̃(φ̃1−

ψ1)
∥∥. The estimate follows now from Step 3 of Section A.2, together with the estimates (64) and (65).

4.2.1 The shallow water/shallow water regime : µ≪ 1, ǫ = O(1)

We use (52) and (53) in the system (37), and with a straightforward linear combination, we obtain





∂th1 + ǫ2∇ · (h1u1) = 0,
∂th2 + ǫ2∇ · (h2u2) = 0,

∂tu1 + ∇h2 + β∇b + ∇h1 +
ǫ2
2
∇
(
|u1|2

)
= 0,

∂tu2 + ∇h2 + β∇b + γ∇h1 +
ǫ2
2
∇
(
|u2|2

)
= 0.

(58)

Proposition 4.3. The full system (14) is consistent with (58), at the precision µC0, with
C0 = C( 1

h , β
∣∣b
∣∣
W 1,∞Hs+7/2 , ǫ2

∣∣ζ2
∣∣
W 1,∞Hs+5/2 , ǫ1

∣∣ζ1
∣∣
W 1,∞Hs+3/2 ,

∣∣∇ψ1

∣∣
W 1,∞Hs+7/2 ,

∣∣∇ψ2

∣∣
W 1,∞Hs+7/2).

Proof. We know that from Proposition 2.12 that (14) is consistent with (37), at the precision µC0. From
(52) and (53), we deduce that (ζ1, ζ2, u1, u2) satisfies (58) up to a residual of the same order.
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Remark 4.4. Note that the first two equations of (58) are equalities (where the last two equations are first
order approximations in µ), as we can see from (14), (56) and (57). They reveal the conservation of mass.
Conservation of momentum and energy are the one obtained in Section 2.3.1, when we substitute ui for
∇ψi (i = 1, 2). These conservation laws, and the one of higher order systems, had already been introduced
in the flat-bottom case in [3].

4.2.2 The Boussinesq/Boussinesq regime : µ ∼ ǫ2 ∼ ǫ1 ≪ 1

We now restrict ourself to the flat-bottom case, since it considerably simplifies the notations, but the
following could be derived with β 6= 0 without any difficulty. The estimates (54) and (55) with ǫ2 ∼ µ and
β = 0 give the following formal relations

u1 ≈ ∇ψ1 + µ(
1

3
∇∆ψ1 +

1

2δ
∇∆ψ2), (59)

u2 ≈ ∇ψ2 + µ
1

3δ2
∇∆ψ2. (60)

Plugging this into (43) we obtain the system






∂th1 + ǫ2∇ · (h1u1) = 0,
∂th2 + ǫ2∇ · (h2u2) = 0,

∂tu1 + α∇ζ1 +
ǫ2
2
∇
(
|u1|2

)
= µ∂t(

1
3∆u1 + 1

2δ∆u2),

∂tu2 + (1 − γ)∇ζ2 + αγ∇ζ1 +
ǫ2
2
∇
(
|u2|2

)
= µ∂t

(
( 1
3δ2 + γ

δ )∆u2 + γ
2∆u1

)
.

(61)

Remark 4.5. This set of equations had been revealed in [10]. It corresponds to (44), with the choice of
parameters : a1 = − 1

2 , a2 = − 1
3 , b1 = − 1

3 . This particular choice of parameters leads to a linearly ill-
posed system. That is why it is interesting to obtain, as in Section 2.3.2, a larger class of models, allowing
well-posed systems.

Since this system is a particular case of the Boussinesq/Boussinesq model (44), we can apply the
Proposition 2.15.

Proposition 4.6. The full system (14) is consistent with (61), at the precision µ2C1, with
C1 = C( 1

h , β
∣∣b
∣∣
W 1,∞Hs+11/2 , ǫ2

∣∣ζ2
∣∣
W 1,∞Hs+9/2 , ǫ1

∣∣ζ1
∣∣
W 1,∞Hs+7/2 ,

∣∣∇ψ1

∣∣
W 1,∞Hs+11/2 ,

∣∣∇ψ2

∣∣
W 1,∞Hs+11/2).

4.2.3 The higher order system

We now do the same study, without assuming any smallness on ǫ1, ǫ2. We plug (54) and (55) into (46),
and obtain






∂th1 + ǫ2∇ · (h1u1) = 0,
∂th2 + ǫ2∇ · (h2u2) = 0,

∂tu1 + α∇ζ1 +
ǫ2
2
∇
(
|u1|2

)
= µǫ2∇N1 + µǫ2∇(u1 · D1) + µ∂tD1,

∂tu2 + (1 − γ)∇ζ2 + γα∇ζ1 +
ǫ2
2
∇
(
|u2|2

)
= µ

(
∂t(γ∇H + D2) + ǫ2∇(γu1 · ∇H

+u2 · D2 + N2 + γN1)
)
,

(62)

with the notations of Proposition 4.2 and 46 when we substitute ui for ∇ψi (i = 1, 2).

Proposition 4.7. The full system (14) is consistent with (62), at the precision µ2C1, with
C1 = C( 1

h , β
∣∣b
∣∣
W 1,∞Hs+11/2 , ǫ2

∣∣ζ2
∣∣
W 1,∞Hs+9/2 , ǫ1

∣∣ζ1
∣∣
W 1,∞Hs+7/2 ,

∣∣∇ψ1

∣∣
W 1,∞Hs+11/2 ,

∣∣∇ψ2

∣∣
W 1,∞Hs+11/2).
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Proof. Let t0 > d/2 and s ≥ t0 +1/2. Let (ζ1, ζ2,∇ψ1,∇ψ2) be a sufficiently smooth solution of (14), such
that (11) is satisfied. We know from Proposition 2.16 that (ζ1, ζ2,∇ψ1,∇ψ2) satisfies (46) up to a residual
bounded by µ2C1. Then, the estimates (54) and (55) give that (ζ1, ζ2, u1, u2) satisfies (62) up to a residual
of the same order.

A Proof of Proposition 2.5

Our proof contains three parts. First we introduce u the correction to the expansion of φ1 formally obtained
in Section 2.2, and we present the system solved by u. Then, we use the elliptic form of the operator to
obtain Hs estimates on u. Finally, we use these estimates to prove the desired inequalities.

A.1 System solved by u

We first define the second order correction to the formal expansion :

u := φ1 − ψ1 + µh1

(
h1

( (z − 1)2

2
+ (z − 1)

)
∆ψ1 − (z − 1)ǫ2∇ζ2 · ∇ψ1 + (z − 1)∇ · (h2∇ψ2)

)

︸ ︷︷ ︸
:=φ1

.

From the computation carried out in Section 2.2, we know that u satisfies the following equalities :

∇X,z · P1∇X,zu = µ2∇ · P 1∇φ1 in S+,

u = 0 on {z = 1},
∂nu = G2ψ2 + µ∇ · (h2∇ψ2) + µ2(∂P

1

n φ1) on {z = 0}.

Moreover, we notice that (57) gives G2ψ2 + µ∇ · (h2∇ψ2) = ∇ · V , with V = µh2(∇ψ2 − u2). Thus, using
the definition of P1 in (17), we finally have the system






∇µ
X,z · Pµ∇

µ
X,zu = µ2 ∇µ

X,z · h in S+,

u = 0 on {z = 1},
∂nu = ∇ · V + µ2ed+1 · h on {z = 0},

(63)

where we have introduced the notation ∇µ
X,z := (

√
µ∇T , ∂z)

T , and with h := Pµ∇µ
X,zφ

1 and

Pµ :=

(
h1Id −√

µ∇s1
−√

µ∇s1T 1+µ|∇s1|2
h1

)
.

We now give the useful estimates of the right-hand side of the system. It is straightforward to check
that ∥∥h

∥∥
Hs+1/2,1 ≤ C(

1

h
, ǫ1
∣∣ζ1
∣∣
Hs+3/2 , ǫ2

∣∣ζ2
∣∣
Hs+5/2 , β

∣∣b
∣∣
Hs+5/2 ,

∣∣∇ψ1

∣∣
Hs+7/2 ,

∣∣∇ψ2

∣∣
Hs+7/2). (64)

Moreover, the Proposition 4.2 gives

∣∣V
∣∣
Hs ≤ µ2C(

1

h
, β
∣∣b
∣∣
Hs+5/2 , ǫ2

∣∣ζ2
∣∣
Hs+3/2 ,

∣∣∇ψ2

∣∣
Hs+5/2). (65)

A.2 H
s,1-estimate (s ≥ 0) on u

We follow the sketch of the proof of Proposition 3 in [7], which contains five steps.
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Step 1. Coercivity of the operator. Since ζ1, ζ2 ∈ W 1,∞ and satisfy (11), we can check (see Proposition
2.3 of [1]) that for any Θ ∈ Rd+1,

Θ · PµΘ ≥ 1

k

∣∣Θ
∣∣2,

with k =
∥∥h1

∥∥
∞ + 1

h (1 + µ
∥∥∇s1

∥∥2

∞). The operator is uniformly coercive in µ.

Step 2. Existence and uniqueness of the solution. The result is given by the coercivity of the operator.
From the assumptions on ζ1, ζ2, b, ψ1 and ψ2, we know that h ∈ Hs+1/2,1(S+)d+1 and V ∈ Hs+1(Rd).
For s ≥ 1/2, the proof of Proposition 2.1 works for the system (63), so that we know that there exists a
unique solution in H2(S+). We know prove by induction that for k ∈ N,

h ∈ Hk+1 and V ∈ Hk =⇒ u ∈ Hk+2. (66)

We assume that h ∈ Hk+2 and V ∈ Hk+1. We thus know that u ∈ Hk+2, so that v := Λu ∈ Hk+1 ⊂ H1.
Hence, v is the classical solution of






∇µ
X,z · Pµ∇µ

X,zv = µ2 ∇µ
X,z · h̃ in S+,

v = 0 on {z = 1},
∂nv = ∇ · ΛV + µ2ed+1 · ∂xh̃ on {z = 0},

(67)

with µ2h̃ = µ2Λh + [Λ, Pµ]∇µ
X,zu. Thanks to Theorem 6 of [18] : for t0 >

d
2 , one has

∥∥[Λ, Pµ]∇µ
X,zu

∥∥
2
≤ Ct0

∥∥∇Pµ
∥∥
Ht0

∥∥∇µ
X,zu

∥∥
2
,

so that h̃ ∈ Hk+1 and ΛV ∈ Hk. The inductive hypothesis are satisfied, so that we know that v ∈ Hk+2.
Finally, we use the coercivity of the operator (Step 1) with the nth derivative of (63), and obtain

∥∥∂2
z∂

nu
∥∥

2
≤ k

∥∥∇µ
X,z · Pµ∇

µ
X,z∂

nu
∥∥

2
+
∥∥∆X∂

nu
∥∥

2
.

It follows that u ∈ Hk+3, and (66) is proved. The interpolation theory leads to the final result : for
s ≥ 1/2, there exists a unique solution u ∈ Hs+3/2 of (63).

Step 3. L2-estimate on ∇µ
X,zu. We multiply (63) by u, integrate by parts on both sides, and use the

boundary conditions to finally obtain
∫

S
∇µ
X,zu · Pµ∇µ

X,zu = µ2

∫

S
∇µ
X,zu · h +

∫

{z=0}
∇u · V.

From the coercivity and the Cauchy-Schwarz inequality, we deduce

∥∥∇µ
X,zu

∥∥2

2
≤ k(µ2

∥∥h
∥∥

2

∥∥∇µ
X,zu

∥∥
2

+
∣∣V
∣∣
H1/2

∣∣∇u|z=0

∣∣
H−1/2).

Then, a trace theorem (see Métivier [20] pp.23-27) gives
∣∣∇u|z=0

∣∣
H−1/2 ≤ Cst(

∥∥∇u
∥∥

2
+
∥∥Λ−1∂z∇u

∥∥
2
)

≤ Cst(
1√
µ

+ 1)
∥∥∇µ

X,zu
∥∥

2
.

This finally gives the estimate

∥∥∇µ
X,zu

∥∥
2
≤ C(

1

h
, ǫ1
∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞)(µ2

∥∥h
∥∥

2
+

1 +
√
µ

√
µ

∣∣V
∣∣
H1/2). (68)
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Step 4. L2-estimate on Λs∇µ
X,zu (s ≥ 0). We define v = Λsu. Multiplying (63) by Λs on both sides,

one obtains 




∇µ
X,z · Pµ∇

µ
X,zv = µ2 ∇µ

X,z · h̃ in Rd × (0, 1),

v = 0 on {z = 1},
∂nv = ∇ · ΛsV + µ2ed+1 · h̃ on {z = 0},

(69)

with µ2h̃ = µ2Λsh + [Λs, Pµ]∇µ
X,zu. We can use Step 3 with v and obtain

∥∥∇µ
X,zv

∥∥
2
≤ C(

1

h
, ǫ1
∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞)(µ2

∥∥Λsh
∥∥

2
+
∥∥[Λs, Pµ]∇µ

X,zu
∥∥

2
+

1 +
√
µ

√
µ

∣∣V
∣∣
Hs+1/2).

We obtain the commutator estimate thanks to Theorem 6 of [18] : for s > − d
2 and t0 >

d
2 , one has

∥∥[Λs, f ]g
∥∥

2
≤ Cs,t0

∥∥∇f
∥∥
Hmax{t0,s−1}

∥∥g
∥∥
Hs−1 .

In our case, it gives

∥∥[Λs, Pµ]∇µ
X,zu

∥∥
2
≤ Cs,t0(

1

h
, ǫ1
∣∣ζ1
∣∣
Hmax{t0+2,s+1} , ǫ2

∣∣ζ2
∣∣
Hmax{t0+2,s+1})

∥∥Λs−1∇µ
X,zu

∥∥
2
.

We finally get an estimate on
∥∥Λs∇µ

X,zu
∥∥

2
in terms of

∥∥Λs−1∇µ
X,zu

∥∥
2
. Step 3 is the case when s = 0. By

induction, and interpolation when s ∈ (0, 1), we obtain the following relation for all s ≥ 0 :

∥∥Λs∇µ
X,zu

∥∥
2
≤ Cs,t0(

1

h
, ǫ1
∣∣ζ1
∣∣
Hmax{t0+2,s+1} , ǫ2

∣∣ζ2
∣∣
Hmax{t0+2,s+1})(µ

2
∥∥Λsh

∥∥
2

+
1 +

√
µ

√
µ

∣∣V
∣∣
Hs+1/2). (70)

Step 5. L2-estimate (s ≥ 0) on Λs∂z∇µ
X,zu. The equation (63) gives the formula

1 + µ
∣∣∇s1

∣∣2

h1
∂2
zu = µ2∇µ

X,z · h − µ∇ · (h1∇u −∇s1∂zu) + µ∂z(∇s1 · ∇u) − ∂z(
1 + µ

∣∣∇s1
∣∣2

h1
)∂zu,

from which we deduce

∥∥Λs∂2
zu
∥∥

2
≤ C(

1

h
, ǫ1
∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞)(µ2

∥∥Λs∇µ
X,z · h

∥∥
2

+
√
µ
∥∥Λs+1∇µ

X,zu
∥∥

2
).

Thus, we have the estimate

∥∥Λs∂z∇µ
X,zu

∥∥
2
≤ C(

1

h
, ǫ1
∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞)(µ2

∥∥Λs∇µ
X,z · h

∥∥
2
+
√
µ
∥∥Λs+1∇µ

X,zu
∥∥

2
),

and Step 4 allows us to conclude

∥∥Λs∂z∇µ
X,zu

∥∥
2
≤ Cs,t0(

1

h
, ǫ1
∣∣ζ1
∣∣
Hmax{t0+2,s+2} , ǫ2

∣∣ζ2
∣∣
Hmax{t0+2,s+2} , µ

max)(µ2
∥∥h
∥∥
Hs+1,1 +

∣∣V
∣∣
Hs+3/2).

A.3 Proof of the inequalities

To obtain the first estimate, we remark that

G1(ψ1, ψ2) + µ(A1 + A2) = ∂nu|z=1 − µ2 |ǫ1∇ζ1|2
(
h1∆ψ1 − ǫ2ζ2 · ∇ψ1 + ∇ · (h2∇ψ2)

)

︸ ︷︷ ︸
:=u0

.
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We have immediately

∣∣u0

∣∣
Hs ≤ C(

1

h
, β
∣∣b
∣∣
Hs+1 , ǫ2

∣∣ζ2
∣∣
Hs+1 , ǫ1

∣∣ζ1
∣∣
Hs+1 ,

∣∣∇ψ1

∣∣
Hs+2 ,

∣∣∇ψ2

∣∣
Hs+2),

so that we just have to bound
∣∣∂nu|z=1

∣∣
Hs . We now use the trace theorem to get

∣∣∂nu|z=1

∣∣
Hs ≤ C(

1

h
, ǫ1
∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞)(µ

∣∣∇u|z=1

∣∣
Hs +

∣∣∂zu|z=1

∣∣
Hs)

≤ C(
1

h
, ǫ1
∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞)(

√
µ
∥∥∇µ

X,zu
∥∥
Hs+1/2,0 +

∥∥∂z∇µ
X,zu

∥∥
Hs−1/2,0). (71)

The estimates obtained in Steps 4 and 5, together with (64) and (65), give immediately the desired result.
To obtain the second estimate, one has to carry on the proof with the higher order approximate solution

obtained in Section 2.2 :
ũ := φ1 − φapp,21 ,

and one would obtain the estimates exactly as above. We omit this technical step.
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