
HAL Id: hal-00391368
https://hal.science/hal-00391368v1

Preprint submitted on 3 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mechanised grading: the next step
Christian Queinnec

To cite this version:

Christian Queinnec. Mechanised grading: the next step. 2009. �hal-00391368�

https://hal.science/hal-00391368v1
https://hal.archives-ouvertes.fr


Mechanised grading: the next step

Christian Queinnec
Université Pierre et Marie Curie

LIP6, 4 place Jussieu, 75252 Paris Cedex 05
France – Email: Christian.Queinnec@upmc.fr

ABSTRACT

Mechanised grading is now mature: lots of experiments proved
it. In this paper, we propose elements for the next step:
standardisation.

We propose — an architecture for a grading component
able to be embedded into various learning environments, —
a set of extensible Internet-based protocols to interact with
this component, and — a self-contained file format to thor-
oughly define an exercise in order to ease deployment. The
architecture was designed to be scalable, robust and secure.

First experiments with a partial implementation of this
platform show the versatility and the neutrality as well of the
grading component. It does not impose an IDE, it respects
the tenets of the embedding learning environment or course-
based system.

1. HISTORY
Around 2000, with the help of some colleagues from UPMC,

we set up two experimentations involving mechanised grad-
ing. In the first experiment (reported in [9]), we adjoined
to the DrScheme programming environment (an Integrated
Development Environment (or IDE) devoted to the Scheme
programming language [13]) a mechanised grading facility:
the student chooses an exercise, reads the stem, types then
debugs his program and finally hits the “Check” button to
obtain a mark and a page explaining the tests that were
performed and led to that mark. This mechanised grader is
a stand-alone plug-in to DrScheme; every year since 2001,
around 700 students have had used it on their home com-
puter (at every moment) or during lab sessions.

In the second experiment (reported in [19]), we organ-
ised general programming examinations or contests where
we had several hundreds of undergraduate students to grade
in a short time. Centralised mechanised grading was our
sole option. Therefore we wrote unit tests to check stu-
dents’ programs considered as black boxes. Soon after-that,
we designed a framework and implemented some libraries
to ease the production of mechanised graders that is, spe-

cialised programs that grade students’ files for a given ex-
ercise. From 2001, we have been grading several hundred
examinations per year.

Around 2005, our various experiences with different pro-
gramming languages such as Scheme, C, Ada, php, Perl,
Java, make or shell convince us that mechanised grading
was mature enough for courses that mainly rely on some
programming language(s) both for exercises and/or exam-
inations. We proposed to unify our previous experiments
into a generalised framework and a multi-language grading
architecture to ease the production of graders and to lessen
the associated chores. Our goal was to build

1. an autonomous and scalable grading component that
may be embedded within various systems,

2. REST-based protocols to interact with this compo-
nent,

3. a file format for self-contained deployable exercises.

We will first present the advantages of mechanised grad-
ing and some of our goals. The second section will present
an overview of the framework, nicknamed FW4EX, and the
prominent features. In the third section, we will summarise
the results of our lattest experiments using the FW4EX plat-
form. Related works is addressed in the fourth section.

2. MECHANISED GRADING
Among the many ways that exist to grade students, quizzes

are probably the most usual. Every virtual leaning environ-
ment such as Blackboard [1] or Sakai [2], proposes tools to
build assessments with questions such as true/false questions
or multiple choice questions. Even if more elaborate quizzes
exist [3], quiz technology is poor with respect to program-
ming languages.

Writing a program is a complex activity requiring (i) to
understand a specification, (ii) to imagine a solution, (iii)
to write it down in some programming language and (iv)
finally to test it to make sure it complies with the specifica-
tion. Any problem that arises during this life-cycle forces
the student to re-iterate parts of this cycle. A way to assess
this skill is to let students program with professional tools
and to check programmatically whether their programs com-
ply with the specification. Professionally, this is called “unit
testing” and popular frameworks such as JUnit [4] were de-
veloped for that activity. To use professional tools and to
obey professional rules was something we wanted our stu-
dents to be exposed to.

There are some differences though with usual unit testing.



• Unit testing is designed to give a binary answer: 1
(pass) or 0 (fail). In a grading context, we want to
give a more representative and accurate mark for the
student’s work say a mark between 0 and 20 (as usual
in French universities). This may be done by multi-
plying the tests and summing their partial results.

• Unit testing frameworks often depend on one program-
ming language. However some specifications leave the
choice of the programming language to use up to the
student. Therefore, a grading framework has to cope
with multiple languages.

To design mechanised graders is a hot topic as illustrated
by the numerous papers presented at ITiCSE these last years
like Quiver [11], RoboProf [10], TorqueMOODa [16], gradem
[18], APOGEE [14] or ALOHA [8]. Among well known sys-
tems containing graders are CourseMaker [15] and BOSS
[17].

Mechanised graders offer multiple advantages:

• consistency: students are graded uniformly (and anony-
mously) without the biases due to (multiple) human
grader(s).

• fairness: if one student finds a problem in the specifi-
cation or the associated tests then all students benefit
from the upgraded grader.

• persistence: once created, assessments are forever avail-
able for students who may practise them whenever
they want, in the same conditions the assessment was
initially offered. We dubbed this “dynamic annals”
[19].

Therefore a grading component must be able to grade ex-
ercises in various programming languages, various settings:
complete programs (stand-alone, client or/and server), pro-
gram fragments (function, method, class). A grading com-
ponent must be able to be put to work as part of a learning
environment or other systems: it must not dictate whether
exercises are summative or formative, it must be as inde-
pendent as possible from scholar databases.

Of course, it must also be simple to use, robust in face of
crashes, secure (respect privacy and anonymity, resistant to
pirates and malicious student’s works). Finally, our dreamt
grading component ought to be scalable in order take ben-
efit of new technologies such as cloud computing (Amazon
EC2 for instance) or Internet-based storage (Amazon S3 for
instance) if demand for grading should increase.

3. THE FW4EX PLATFORM
The FW4EX framework takes benefit of our previous ex-

periments and tries to address a variety of use cases. In this
Section, we present the main lines of the architecture, the
protocols and the format of exercises.

Figure 1 shows a simplified sketch of the architecture of
the FW4EX platform. This architecture supposes the pres-
ence of Internet and heavily relies on REST-based services
[12].

From the student’s point of view, after choosing (or be as-
signed) an exercise, his browser (or any FW4EX-compliant
client, see Section 3.4) fetches a zipped file (from an exercises
server e) containing the stem and all the necessary files or
documents required to practise the exercise. When ready,

Figure 1: sketch of the FW4EX platform. The arrow
tells which machine initiates connections.

the student submits his work (to an acquisition server a)
where it will be picked by a grading server gd that will in-
stantiate an appropriate grading slave (m1 or m2) to grade
the student’s files. Once graded, a final report (an XML file)
is made available to the student (on some storage server s)
as well as its initial submitted work.

Acquisition Servers a are stand-alone servers that must be
as robust as possible since they must be always available to
accept students’ works. To increase their robustness, they do
not depend on the presence of the central database. Storage
Servers s only serve reports i.e., static files and therefore
are robust: students may then get feedback whenever they
want. To preserve anonymity, reports may only be fetched
via non guessable md5-based urls.

Teachers prescribe sets of exercises to students and may
access their resulting reports. A teacher may also collect
students’ works (jobs) by any convenient mean and submit
a batch of jobs for grading. Teachers have (authenticated)
access to grades and names through the t server.

The author of an exercise also has access to the anonymous
reports produced by his exercise in order to improve it.

3.1 Exercise format
An exercise is a tar gzipped file (not dissimilar to a Java

jar file) containing an XML descriptor and all the files re-
quired to operate the exercise. This central descriptor rules
the various aspects of the life-cycle of the exercise, succes-
sively: autocheck, publish, download, install, grade. These
phases are shortly explicited hereafter in increasing com-
plexity order.

download The descriptor specifies the stem and the files
required by the student in order to practise the exer-
cise. The descriptor also describes for each question,
the expected work and may contain additional hints
such as a template to fill for an answer or the size of
the expected work. In the case of an exercise with
a single question expecting a single file, an FW4EX-
compliant client (see Section 3.4) may use these hints
to display an appropriate widget to capture interac-
tively an answer on one or multiple lines.

grade The descriptor defines which scripts (written in what-
ever scripting language) are used to grade student’s
files within a grading slave and how these scripts may
be combined.

install The descriptor defines how an exercise is installed



on a grading slave (usually a virtual machine (QEMU,
VMware)) or on a student’s computer. This installa-
tion may require to uncompress data files, to compile
libraries, etc. The installation on a grading slave is dif-
ferent from the installation on the student’s computer
since grading scripts are not disclosed to the student
nor they are communicated to the student’s computer.

autocheck The descriptor defines a number of“pseudo jobs”
paired with the expected grade they should get. This
allows — to check whether the grading slave contains
all the software required to grade a specific exercise,
— to ensure non regression when an author evolves an
exercise.

Most often it is advised to have at least three pseudo
jobs: the null one that contains nothing and expects
to obtain a 0/20 grade. The perfect one that should
be graded 20/20 and an intermediate one that checks
that in-between grades are indeed possible!

publish When installed and autochecked, an exercise is
ready to grade real students works. It is then pub-
licly available.

The descriptor also defines some meta-data to char-
acterise the exercise: name, requirements, summary,
tags, etc. These are needed by the e server to in-
form students and teachers about the exercises that
are ready to be selected.

The XML descriptor is the file that ties all the informa-
tion required to operate the exercise through all the steps
of its life-cycle. Stems, reports and other information com-
ing out of the grading platform are XML documents (JSON
and CSV are also possible) therefore, they are skinnable via
XSLT style sheets to fit university look and feel. They may
also be processed to fill databases or any other tool that
needs information about grading.

3.2 Confinement
Our experience shows us that students make mistakes (in-

finite loops, deadlocks, etc.). Their programs need to be
confined in time and cpu consumption. Their production
must also be limited: not much than a given number of
bytes written to files or on output streams. Though rare,
some students’ programs are malicious and must be tightly
restricted (are they allowed to post mails, to open sockets,
to destroy resources to prevent grading other student’s files,
etc.) For all these reasons, we run students’ programs un-
der students’ accounts (so they do not harm teachers’ files)
within virtual machines (QEMU or VMware) and pay much
attention to offer the same initial conditions for all jobs.

Our experience also shows us that authors make mistakes.
Their programs need to be similarly confined otherwise they
may bog down servers, destroy common resources and harm
student’s experience. To grade an exercise is therefore a
complex task where student’s errors should appear in stu-
dent’s report, author’s errors should appear in author’s re-
ports and FW4EX errors should be routed to FW4EX main-
tainers.

3.3 Grading script
Scripts are regular programs written in whatever language

fits the task. They are run within the directory where stu-
dent’s files are deployed, they may read or run author’s

owned files (stored elsewhere) as well as read or run FW4EX
libraries (stored elsewhere).

Grading may be performed by comparison or by verifica-
tion. The general (suggested) shape of a grading script is
the following:

1. Check expectations — The framework verifies that
the files expected from the student are present, non
empty, executable, etc. as specified in the exercise
descriptor.

2. Feedback — Make student’s files appear in the grad-
ing report. This is useful for the student since he may
check that these are really the files he submitted. It
is also useful for the author of the exercise since the
report is self-contained.

3. Loop — For all test cases:

(a) Setup — Set up the test that is: populate then
jump to a directory, uncompress some data files,
etc. Depending on the author of the exercise, the
test may be explicited or kept secret.

(b) RunStudent — Run the student’s programs

(c) ShowStudentAnswer — Show the results of
the student’s programs. The result may be ad-
ditionally formated in order to improve its ap-
pearance (use multiple columns, plot the result,
split lines, etc.)

(d) NormalizeStudentAnswer — Normalise the re-
sults, for instance: remove superfluous spaces, ap-
ply regular expressions, etc.

(e) Gauge — Gauge the normalised result (see be-
low).

(f) EvaluateGain — Determine the final grade for
this test case. This phase may be disseminated
through the previous phases but it is cleaner to
separate these phases so the ponderation may evolve
independently.

When comparing to a known correct solution, the Gauge
phase is often done as follows:

1. RunAuthor – Run the author’s programs

2. ShowAuthorAnswer — Show the results of the au-
thor’s program.

3. NormalizeAuthorAnswer — Normalise the results
as before. These results may be computed ahead of
time in the install phase of the exercise.

4. Compare — compare the student’s and author’s re-
sults. The comparison may compare integers, exit
codes, small strings (with a Levenshtein distance) or
files (with the diff utility), etc. The comparison may
also be approximate using regular expressions.

Verification is specific to the exercise and must check that
some property is obtained or not. As a side-remark, the
author must pay attention to the fact that in response to a
yes/no property, it is too easy for students to come with a
program that constantly answer ’yes’ and pass half of the
tests.

For all these phases, libraries were developed to ease writ-
ing these grading scripts.



3.4 FW4EX-compliant clients
We strongly believe that programming should be done

with professional tools such as usual programming environ-
ment (IDE). Browsers, applets cannot be considered as de-
cent substitutes for real IDE. An FW4EX-compliant client
is an IDE (often an IDE plug-in) able to speak to the three
types of public servers (e, a and s) according to some REST
protocols [12].

These protocols allow a student to authenticate, to obtain
stem, to submit work and to, finally, get a report. When
submitting a job and following REST principles, the client
receives the URL where the report will pop up on some s

server.
From an author’s point of view, it is similarly possible to

submit an exercise, get the corresponding autocheck report
leading to the grading reports of the pseudo-jobs. Additional
services exist for FW4EX maintainers to manage jobs, ex-
ercises, configuration.

Presently we only offer an AJAX FW4EX-compliant client
running in any regular browser. It fulfills all of the needs but
for the installation of the exercise on the student’s computer
which cannot be fully automated for security reason. It man-
ages the display to accommodate various types of exercises
(see experiments in Section 4): one-liners are captured via a
one-line text widget, short scripts are captured via a textarea
widget, multiple files are captured via a file upload widget.

Since it mostly handles XML documents, the AJAX FW4EX-
compliant client imposes its own XSLT style sheets to dis-
play them with the wished look and feel. Additional treat-
ments may also be performed such as using a tree widget
to holophrast series of lengthy tests in the grading report.
The report is therefore largely independent of the display
technology.

The AJAX FW4EX-compliant client may be embedded
in a university portal.

We plan to provide two more clients: one for Eclipse (for
Java, C, php, etc.) and one for Scite [5]. In these IDE,
similarly to what we did for DrScheme [9], a single button
or menu will manage authentication, show stem, install ac-
companying files, pack student’s work, submit it and display
the associated report possibly, if available, as annotations to
source code.

4. EXPERIMENTS WITH FW4EX
We deployed the FW4EX platform in September 2008.

Two experiments were conducted in the first semester, a
third one will take place at the end of January 2009. The
first two experiments will be reconducted for the next semester
with different modalities.

4.1 One-liners
For a course on Posix skill (mainly shell and Makefile)

we deploy approximately 40 exercises. These exercises are
“one liners” since they contain a single question that asks
for options (for utilities such as tr, sort, sed, etc.) or for
whole commands for various tasks (sifting, sorting, regexp-
ing, etc.). Stems are terse (but always give an example of
use) in order to let students think about limit cases such as
empty streams, empty files, files out of the current directory,
files with weird names, etc. The goal of these exercises was
to encourage students to read the associated man pages in
order to be familiar with the 2 to 4 most useful options with
each of these utilities.

These exercises are permanently available for all students,
they are not limited in number of submissions. Reports are
very detailed, every test is explicited, results are shown and
reasons for success or failure are verbalised. Students have
to analyse these reports and sometimes discover that some
limit cases are indeed possible with respect to the stem. In
the actual deployment, grading reports are obtained after
20 seconds. Such a duration compels students to consider
that the grader is not a fast debugging tool so debug should
be done appropriately on their computer before asking to be
graded.

We offer roughly 5 exercises per week for 7 weeks. We
start from exercises asking for options and end with exer-
cises asking for small shell scripts (less than 10 lines). On
the 120 students enrolled for the course, half of them tried
at least one exercise. The platform had been serving 3500
submissions.

The exercises were not prescribed, only voluntary students
try them. As already reported in [20], students did not vol-
unteer easily. Apart the initial curiosity of the first week,
we noted the usual peak during the week that precede ex-
aminations.

Next semester, these one-liners will become mandatory,
the resulting marks will be taken into consideration.

4.2 Examinations
In the same course, we use the FW4EX platform to grade

the mid-term examination and the two final examinations.
The examinations contain three exercises each containing 1
to 6 rather independent questions. Contrarily to the one-
liners, examinations are very carefully specified. Stems are
precise, they ask for scripts (or Makefile rules) performing
various tasks. Examples are always given, deliverables are
specified and some hints are given about how grading will
be performed.

These examinations last 3 hours. As usual the mid-term
examination mainly serves to prepare the students for the
final examinations. The student’s works are sent to the
grader after the examination therefore students do no have
any feedback during the examination.

In this setting, we had 120 sets of students’ files to grade.
The exercise file (containing the examination) was prepared
with 6 pseudo jobs. We grade the whole set of students’
files 4 times in order to tune the grader: we had to cope
with misnamed scripts or files, to fix an encoding problem
(UTF8 versus Latin1) and to slightly alter the weight of
two questions. Approximately 60 seconds were necessary to
grade one student.

The mid-term examination was also made available as a
regular (although huge) exercise provided by the platform
so students may (re-)try it in a less stressed context. Only
6 students retried it, 1 among them reach a grade greater
than 19/20 in 4 attempts, the other topped at 6/20 with 1
to 6 attempts.

Final examinations were similarly proposed and graded.
We tried to correlate the success to the final examination
with the overall usage of the FW4EX platform (see Figure
2). We only consider students having attempted at least 5
exercises. The best found correlation was between the final
mark and the ratio of completed versus attempted exercises.

The examination was held on the computers of the lab-
oratories where no plagiarism was possible. Plagiarism de-
tection will be considered as an option for batch grading.



Figure 2: Percentage of completed/attempted exer-
cises with respect to the final mark (between 0 and
20). Only students having attempted at least 5 ex-
ercises are considered. The line is the principal axis
of the cloud of points.

4.3 Programming contest
The “Journée Francilienne de Programmation” is a pro-

gramming contest for undergraduate students from various
Parisian universities. The contest lasts 5 hours during which
12 teams of voluntary students regularly submit their work
(120 uploads) and get their grade (the average grading time
was 45 seconds) in order to appreciate where they are with
respect to the other teams. Besides individual grading, addi-
tional scripts use the reports from FW4EX to deliver bonus
points to teams’ works (mainly based on the speed of pro-
grams).

5. RELATED WORK
While there are many mechanised graders on the market,

we only compare FW4EX to CourseMaker [15] and BOSS
[17].

The BOSS Online Submission System [6] is a course man-
agement tool. It allows students to submit assignments on-
line securely, and contains a selection of tools to allow staff
to mark assignments online and to manage their modules
efficiently. Plagiarism detection software is included. Inter-
action with BOSS may use an application or a web front
end.

CourseMaker [7] is a web-based, easy-to-use course cre-
ation package commercialised by Connect. It is now roughly
similar in functionalities to Blackboard or Sakai. Like BOSS,
it contains a number of tools – to check typography, syntax,
comments, – and to detect plagiarism.

These systems are complete solutions that contain courses
documents, exchange information with scholar databases,
deploy student clients application or web-based forms to col-
lect work. Contrarily, FW4EX is only an Internet-accessible
grader that offers some libraries and runs teachers scripts.
FW4EX is helped with a small constellation of specialised
servers to take into account scalability.

Strong points of FW4EX are its focus on grading: — con-
finement to ensure security is tantamount and is not to be
improvised — accessibility via Internet easing delegation of
grading by learning environments and freeing the platform
from any programming language dependency. The exercise

self-contained file format allows a very simple deployment.
We propose these protocols and format as steps towards
standardisation.

6. CONCLUSION
In this paper, we present the FW4EX platform, an at-

tempt to build a grading component that can be embedded
into various learning environments. A set of REST-based
protocols allows these systems to operate the grader, a“stan-
dard” descriptor and a file format specification are proposed
to ease the deployment of new exercises. We finally de-
scribed the different experiments that show the neutrality
and versatility of this platform: one-liners, full examina-
tions, programming contests.

For the future, our next work is to develop an authoring
IDE (based on Eclipse) to help authors design, test, deploy
exercises onto the platform.

More information on the FW4EX project is available on
the site paracamplus.org.

7. REFERENCES
[1] www.blackboard.com.
[2] www.sakaiproject.org.
[3] www.gradiance.com/idea.html.
[4] www.junit.org.
[5] www.scintilla.org.
[6] http://sourceforge.net/projects/cobalt/.
[7] www.coursemaker.co.uk.
[8] T. Ahoniemi, E. Lahtinen, and T. Reinikainen. Improving

pedagogical feedback and objective grading. In SIGCSE
’08: Proceedings of the 39th SIGCSE technical symposium
on Computer science education, pages 72–76, New York,
NY, USA, 2008. ACM.

[9] A. Brygoo, T. Durand, P. Manoury, C. Queinnec, and
M. Soria. Experiment around a training engine. In IFIP
WCC 2002 – World Computer Congress, Montréal
(Canada), Aug. 2002. IFIP.

[10] C. Daly and J. Waldron. Assessing the assessment of
programming ability. In SIGCSE ’04: Proceedings of the
35th SIGCSE technical symposium on Computer science
education, pages 210–213, New York, NY, USA, 2004.
ACM.

[11] C. C. Ellsworth, J. James B. Fenwick, and B. L. Kurtz.
The quiver system. In SIGCSE ’04: Proceedings of the 35th
SIGCSE technical symposium on Computer science
education, pages 205–209, New York, NY, USA, 2004.
ACM.

[12] R. T. Fielding and R. N. Taylor. Principled design of the
modern web architecture. ACM Trans. Interet Technol.,
2(2):115–150, 2002.

[13] R. B. Findler, J. Clements, C. Flanagan, M. Flatt,
S. Krishnamurthi, P. Steckler, and M. Felleisen. Drscheme:
A programming environment for scheme. Journal of
Functional Programming, 12:369–388, 2002.

[14] X. Fu, B. Peltsverger, K. Qian, L. Tao, and J. Liu. Apogee:
automated project grading and instant feedback system for
web based computing. In SIGCSE ’08: Proceedings of the
39th SIGCSE technical symposium on Computer science
education, pages 77–81, New York, NY, USA, 2008. ACM.

[15] C. A. Higgins, G. Gray, P. Symeonidis, and A. Tsintsifas.
Automated assessment and experiences of teaching
programming. J. Educ. Resour. Comput., 5(3):5, 2005.

[16] C. Hill, B. M. Slator, and L. M. Daniels. The grader in
programmingland. In SIGCSE ’05: Proceedings of the 36th
SIGCSE technical symposium on Computer science
education, pages 211–215, New York, NY, USA, 2005.
ACM.



[17] M. Joy, N. Griffiths, and R. Boyatt. The boss online
submission and assessment system. J. Educ. Resour.
Comput., 5(3):2, 2005.

[18] R. E. Noonan. The back end of a grading system. In
SIGCSE ’06: Proceedings of the 37th SIGCSE technical
symposium on Computer science education, pages 56–60,
New York, NY, USA, 2006. ACM.

[19] C. Queinnec and E. Chailloux. Une expérience de notation
en masse. In TICE 2002 – Technologies de l’Information et
de la Communication dans les Enseignements d’Ingénieurs
et dans l’industrie – Conférences ateliers, pages 403–404,
Lyon (France), Nov. 2002. Institut National des Sciences
Appliquées de Lyon. version complète disponible en
http://lip6.fr/Christian.Queinnec/PDF/cfsreport.pdf.

[20] D. Woit and D. Mason. Effectiveness of online assessment.
In SIGCSE ’03: Proceedings of the 34th SIGCSE technical
symposium on Computer science education, pages 137–141,
New York, NY, USA, 2003. ACM.


