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ABSTRACT

Codon usage bias and relative abundances of
tRNA isoacceptors were analysed in the obligate
intracellular symbiotic bacterium, Buchnera aphidi-
cola from the aphid Acyrthosiphon pisum, using
a dedicated 35mer oligonucleotide microarray.
Buchnera is archetypal of organisms living with
minimal metabolic requirements and presents a
reduced genome with high-evolutionary rate. Codon
usage in Buchnera has been overcome by the high
mutational bias towards AT bases. However, several
lines of evidence for codon usage selection are
given here. A significant correlation was found
between tRNA relative abundances and codon com-
position of Buchnera genes. A significant codon
usage bias was found for the choice of rare codons
in Buchnera: C-ending codons are preferred in
highly expressed genes, whereas G-ending codons
are avoided. This bias is not explained by GC skew
in the bacteria and might correspond to a selection
for perfect matching between codon–anticodon pairs
for some essential amino acids in Buchnera pro-
teins. Nutritional stress applied to the aphid host
induced a significant overexpression of most of the
tRNA isoacceptors in bacteria. Although, molecular
regulation of the tRNA operons in Buchnera was not
investigated, a correlation between relative expres-
sion levels and organization in transcription unit
was found in the genome of Buchnera.

INTRODUCTION

Associated with agricultural aphid pests, Buchnera aphidicola
is one of the best-known symbiotic intracellular bacteria of
insects. Aphids rely on Buchnera to support the rapid growth
and reproductive potential that make them such versatile and
notorious pests. Buchnera furnishes some vitamins and most

essential amino acids that the aphid host cannot synthesize
or find in sufficient quantities in plant phloem sap (1,2).

The Buchnera genome presents all the characteristics of
a vertically transmitted intracellular bacterium (3): (i) a small
size of 400–600 kb, depending on host species (4); (ii) a
highly biased base composition towards A and T (5); and
(iii) a high-evolutionary rate due to drastic bottlenecks and
the absence of recombination, occurring in the population
dynamics of the bacteria following transmission through
host generations (6). During its intracellular evolution,
Buchnera has conserved most of the genes encoding vital
physiological functions for the symbiotic entity. As an exam-
ple, enzymes of the essential amino acid biosynthesis path-
ways were conserved whereas most of the genes encoding
proteins involved in non-essential amino acid biosynthesis
(those the aphids would produce) are deleted. DNA repli-
cation and repair mechanisms have been partly deleted, as
compared to its free-living relative Escherichia coli. The
same observations can be made regarding the transcription
machinery (i.e. lack of many transcriptional regulators, as
well as recognizable terminator and promoter sequences).
Such genes and structures have been lost during the genome
shrinkage of Buchnera, probably early in the intracellular life
style of the bacteria (7,8).

As generally in all bacteria, protein translation machinery
is also highly conserved in Buchnera. Hence, Koonin (9),
based on comparative genomics, determined a ‘consensus’
prokaryotic gene set composed of �60 proteins, primarily
those involved in translation functions. Genome comparison
between Buchnera and E.coli, using the KEGG database
(http://www.genome.jp/kegg/), reveals that all of the 55 ribo-
somal proteins, the 12 translation factors and the 21 tRNA
amino-acyl transferases found in E.coli are also present in
Buchnera. It is noticeable that rRNA genes are present as a
single copy in Buchnera, whereas seven copies are present
in E.coli. This point is generally interpreted as a property
of slow-growing organisms (10,11).

The tRNA set of Buchnera is composed of 32 isoacceptors
and is almost minimal, being only surpassed in compactness
by 8 organisms of the TIGR CMR (http://www.tigr.org), all
of them from small genome Mollicutes (Mycoplasma), and
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the euryarcheotaMethanopyrus kandleri.Mycoplasma mobile
is the only bacterium with a putative remnant set of 28 tRNA
genes in its genome (11), including just two tRNA-Met.

When analysing the codon distribution of the tRNA genes
present in the Buchnera genomes (Table 1), it seems clear
that the occurrence of genes is almost optimized to fulfil a
minima the standard wobble rule (encoded anticodons starting
with G or U, i.e. codons ending with C or A). The charging
of proline and isoleucine through a single tRNA implies, for
these two amino acids (and arginine), that a part of the tRNA
population is modified with non-standard bases to ensure a
proper recognition of the three non-perfect match codons.
For arginine and proline, it is noteworthy that the encoded
anticodons do not follow the general rule, and that the
tRNAs matching the CGC and CCC codons were avoided,
in contrast to all the other C-terminated codons, which have
their matching tRNAs. This situation is not unique among
small genomes, as many other bacteria displayed very
similar sets of tRNA-Arg, including Wolbachia pipientis,
Wiggelsworthia glossinidia brevipalpis and Blochmania
floridanus.

The frequency of alternative synonymous codons varies
among bacterial species and often also among genes from a
single genome. Factors influencing codon usage in bacteria
are the GC skew (i.e. differential mutation rate between
lagging and leading strand) (12), horizontal gene transfer
between bacteria exhibiting different codon usage bias (13)
and selection for translation efficiency. The latter hypothesis
was formulated first in E.coli. Ikemura (14,15) showed that
tRNA abundances are correlated with codon usage: highly
expressed isoacceptors are those corresponding to the more
frequently used codons (rule 1). This correlation has also
been found in a few other bacteria [for a review see (11)].
In contrast, selection for codon usage is often inefficient
in bacteria with extreme GC content (16–18). In the case of
Buchnera, several authors have claimed the absence of selec-
tion for codon usage (19,20).

As each isoacceptor recognizes several codons, additional
rules are needed to fully explain codon choice in bacteria

[listed in (21): rule 2: modified uridines such as thiolated
uridine and 5-carboxymethyluridine at the wobble position
produce a preference for A over G at the codon third position;
rule 3: an inosine at the anticodon wobble position produces
a preference for T or C over A at the third position; rule 4: in
two-codon sets of the (A/T)-(A/T)-pyrimidine type, C rather
than T at the third position promotes an optimal interaction
strength between codon and anticodon (the ‘good choice’
codon rule of Grosjean et al. (22) and Grantham et al. (23)].

Regulation of rRNA and tRNA expression is complex in
bacteria. In E.coli, rRNA and tRNA operons are negatively
regulated by the free nontranslating ribosomes (24). How-
ever, the regulation mechanism is unclear and probably
occurs during the four following steps: transcription, process-
ing of precursors, degradation of precursors and degradation
of mature tRNA (25). Recently, it has been shown that tRNA
levels corresponding to major isoacceptors increase while
those corresponding to minor isoacceptors decrease when
the bacterial growth rate increases (26,27). Dittmar et al.
(25) also demonstrated, in Bacillus subtilis, that the relative
abundances of tRNA were higher when the bacteria were
placed in nutritional conditions producing high growth rates.

In Buchnera, the 32 tRNA genes are organized into
18 groups of contiguous sequences (dashed lines in the
Table 2). Two of them include the rRNA genes rrs
(BU243) and rrf-rrl (BU490-BU491), and the associated
tRNAs are highly expressed. As a comparison, E.coli K-12
has 88 tRNA genes organized in 40 transcription units, of
which 7 are associated with rRNA and are highly expressed.
Global transcriptional regulators are known to be involved in
the regulation of tRNA expression (28). Among them, the
histone-like proteins FIS and H-NS are preponderant. Such
regulators are conserved in the genome of Buchnera but
their role in tRNA regulation has not yet been demonstrated.

This work addresses the following two questions: (i) Is
codon usage only driven by mutational bias in Buchnera, as
is generally claimed? and (ii) To what extent is the regulation
of tRNA expression functional in the degenerate genome of
Buchnera? tRNA relative abundances were measured with

Table 1. Codon usage and tRNA isoacceptors in the genome of B.aphidicola

T C A G
coda AA RCSUb N cod AA RCSU N cod AA RCSU N cod AA RCSU N

T TTT Phe 1.83 8662 TCT Ser 2.56 5821 TAT Tyr 1.73 5882 TGT Cys 1.64 1874
TTC 0.17 814 TCC 0.25 570 TAC 0.27 910 TGC

c 0.36 409
TTA Leu 3.87 12 029 TCA 1.49 3388 TAA STOP 2.27 433 TGA STOP Trp 0.34 65
TTG 0.62 1932 TCG 0.21 468 TAG 0.39 75 TGG 1 1701

C CTT Leu 0.73 2251 CCT Pro 1.89 2678 CAT His 1.75 3470 CGT Arg 2 2384
CTC 0.1 320 CCC 0.29 404 CAC 0.25 504 CGC 0.29 342
CTA 0.56 1727 CCA 1.52 2144 CAA Gln 1.74 5226 CGA Arg 0.95 1128
CTG 0.12 370 CCG 0.3 423 CAG 0.26 790 CGG 0.09 102

A ATT Ile 1.65 11 901 ACT Thr 1.82 3900 AAT Asn 1.72 11 599 AGT Ser 1.23 2801
ATC 0.25 1783 ACC 0.26 551 AAC 0.28 1864 AGC 0.26 596
ATA Ile 1.11 8013 ACA 1.71 3674 AAA Lys 1.84 17 059 AGA Arg 2.5 2962
ATG Met 1 4023 ACG 0.21 453 AAG 0.16 1514 AGG 0.18 211

G GTT Val 1.8 4102 GCT Ala 1.76 3688 GAT Asp 1.76 7153 GGT Gly 1.67 4244
GTC 0.28 640 GCC 0.25 524 GAC 0.24 966 GGC 0.3 782
GTA 1.61 3665 GCA 1.72 3618 GAA Glu 1.82 9417 GGA 1.78 4529
GTG 0.32 726 GCG 0.27 572 GAG 0.18 942 GGG 0.25 643

aPerfect match codons are bold-underlined (codons with a corresponding perfect match anticodon-harbouring isoacceptor tRNA in Buchnera).
bRSCU, relative synonymous codon usage (SRSCU ¼ n, the degeneracy level for each amino acid); boldfaced figures are prefered codons (RCSU > 1).
cBU330 described as pseudo-tRNA (GCA anticodon) in the automated annotation of TIGR-CMR.
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an oligonucleotide microarray dedicated to the Buchnera
genome when the aphid Acyrthosiphon pisum diet is depleted
of tyrosine and phenylalanine, two important amino acids for
which Buchnera furnishes the phenolic nucleus to its host
when supply is low. An analysis of the different rules for
assigning optimal codons in Buchnera is presented.

MATERIALS AND METHODS

Aphids and artificial diets

A long-established parthenogenetic clone (LL01) of A.pisum
(Harris) was maintained at 21�C with a 16 h light photo-
period. Alate viviparous adults, reared at low density on
Vicia faba seedlings for 2 days, were allowed to lay progeny
on young plants. Neonate aphids (aged 0–12 h) were used for
all the experiments. All experiments were initiated by trans-
ferring 2-day-old aphids from plants to artificial diets. Two
diet formulations were used in this study, differing only
in their amino acid composition. Diet AP3 was nutritionally
optimized, and based on the total amino acid profiles of

whole aphid tissues, as described by Febvay et al. (29). The
YF0 diet shared the omission of both phenylalanine and
tyrosine from the AP3 complete diet, and was designed to
stimulate the biosynthetic activities of Buchnera for the
important classes of essential amino acids harbouring the
phenolic nucleus. For the microarray experiments, Buchnera
were purified from the aphids as described by Charles and
Ishikawa (30).

Microarray experiments

Protocols for RNA isolation and labelling, microarray manu-
facturing (including probe design), hybridization reaction and
washing, microarray scanning and statistical analyses of data
are available on the SITRANS Database under the project
name ‘faromat’ (31). Details of RNA preparation are pro-
vided in Calevro et al. (32). tRNA relative and g-normalized
expressions (see further) are given in Table 2. Microarray
data are also available in the Array Express database
(accession no. E-TABM-83). The complete physiological
and metabolic analysis has been submitted elsewhere.

The procedure is described briefly below. Oligonucleotide
probe sequences (35 bases) were defined using the software
ROSO (33). RNA was purified using the Trizol method
and indirectly labelled by incorporating aminoallyl-dUTP
into reverse transcript cDNA. Cy3 and Cy5 fluorescent dyes
were then coupled with the targets in a dye swap experi-
mental design including 2 · 3 microarrays (Cy3-YF0/Cy5-
AP3 and Cy3-AP3/Cy5-YF0).

QMT aldheyde slides (Interchim, Montluçon, France) were
used and hybridizations were performed manually and
automatically using a Ventana Discovery automated station.
Manual hybridization took place under a glass cover slip
(24 · 60 mm) in a humidified slide chamber (Proteigene,
Saint Marcel, France) and incubated at 50�C overnight for
16 h. The slides were washed twice in 2· SSC/0.1% SDS
buffer for 10 min at room temperature and four times in
0.1· SSC for 1 min at room temperature, rinsed in distilled
water and dried by centrifugation. In the case of automatic
hybridization, target solution was inserted under an oil
droplet (mineral oil LCS) at 45�C for 8 h followed by several
washes of variable stringencies in a Ventana Medical
Systems hybridization apparatus (Ventana Inc., Tucson, AZ).

Scanning was performed with a GeneTAC LSIV scanner
(Genomic Solutions, Huntingdon, UK). Signal intensity val-
ues for each spot (pixel median) were recorded and quality
analysis was performed with the GenePix 4.0 image analysis
software (Axon Instruments, Foster City, CA).

Normalization and statistical analysis of microarray data
were performed with the Bioconductor libraries (http://
www.bioconductor.org/) of the R software (http://www.
rproject.org). Dye and slide normalizations were performed
on an invariant set of genes that was determined a posteriori
following the non-parametric methods of Tseng et al. (34).
A printTip Loess normalization was then applied using the
R library ‘marray’ developed by Dudoit et al. (35). Statistical
tests applied on microarray data are modified t-test (36)
and ANOVA analysis using the R library ‘maanova’ (37).
Non-parametric tests (i.e. simulated Pearson’s Chi-squared,
median and Wilcoxon tests) were performed with the
R software.

Table 2. Chromosome location and isoacceptor tRNA expression in

B.aphidicola from A.pisum reared on YF0 and control medium (AP3)

Labelsa nameS g-A M FC Up/down

BU017 tRNA-Phe-GAA 12.53 �0.175 0.885 0
BU041 tRNA-Thr-GGU 10.84 �0.030 0.979 0
BU042 tRNA-Gly-GCC 12.61 0.646 1.565 +
BU043 tRNA-Tyr-GUA 15.40 0.244 1.184 0
BU044 tRNA-Thr-UGU 16.09 0.406 1.325 +*
BU068 tRNA-Lys-UUU 11.76 0.154 1.113 0
BU069 tRNA-Val-GAC 13.44 0.231 1.173 0
BU071 tRNA-Ala-GGC 14.25 �0.028 0.980 0
BU111 tRNA-Val-UAC 11.85 0.176 1.130 0
BU244 tRNA-Ile-GAU 28.08 0.490 1.405 +
BU245 tRNA-Ala-UGC 15.54 0.026 1.018 0
BU249 tRNA-Asp-GUC 12.77 0.013 1.009 0
BU329 tRNA-Leu-GAG 15.95 0.851 1.804 +**
BU330 tRNA-Cys-PseudoGCA 15.31 0.258 1.200 +*
BU331 tRNA-Ser-GCU 10.72 0.934 1.911 +
BU379 tRNA-Leu-UAA 20.41 �0.276 0.825 �
BU405 tRNA-Ser-GGA 16.43 0.373 1.295 +
BU406 tRNA-Arg-ACG 12.77 0.115 1.083 0
BU412 tRNA-Gln-UUG 15.27 0.297 1.228 +
BU413 tRNA-Leu-UAG 15.19 0.510 1.424 +*
BU414 tRNA-Met-CAU 10.99 0.072 1.051 0
BU457 tRNA-Met-CAU 11.29 0.193 1.143 0
BU485 tRNA-Arg-CCG 10.63 0.404 1.324 +
BU492 tRNA-Glu-UUC 20.28 �0.456 0.728 �
BU540 tRNA-Ser-UGA 21.73 0.967 1.955 +
BU557 tRNA-Asn-GUU 25.57 �0.016 0.988 0
BU558 tRNA-Met-CAU 10.11 0.417 1.335 +
BU575 tRNA-Gly-UCC 14.26 0.271 1.207 +
BU593 tRNA-Pro-UGG 19.59 0.923 1.896 +
BU594 tRNA-His-GUG 8.78 0.179 1.132 0
BU595 tRNA-Arg-UCU 10.00 0.226 1.169 0*
BU601 tRNA-Trp-CCA 10.18 0.246 1.186 0

Expression levels (g-A) are given as g-normalized A values with
A ¼ log 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YF� · AP3

p
Þ, Logratio areM ¼ log 2ðYF�/AP3Þ and fold changes

(FC) are 2M. + and � are up- and down-regulated genes with fold changes
greater than 1.2 or smaller than 0.83. Genes marked with an asterisk show
M value statistically not equal to 0 (**P-value < 0.05, *P-value < 0.1). Dashed
lines in the table separate non-contiguous genes on the chromosome.
aThe three numerical digits represent chromosome locations (gene numbering
from the origin of replication).

Nucleic Acids Research, 2006, Vol. 34, No. 16 4585

http://
http://www


Microarray technique usually does not allow absolute
expression measurements because the hybridization reaction
between the probes and their targets is highly variable. How-
ever, in bacteria, the use of genomic DNA (g-normalization)
offers the facility to calibrate absolute gene expressions (38).
This calibration was used here to estimate the expressions
of the 32 tRNA isoacceptors of Buchnera, all sharing similar
thermodynamic properties (i.e. length and GC content).
Genomic DNA was classically purified with phenol/
chloroform/isoamyl alcohol (25:24:1) protocol, followed by
an RNase A treatement (Sigma-Aldrich, St Quentin Fallavier,
France). The labelling was performed using the Nick
Translation kit (Amersham) with 5 mg genomic DNA and
incorporating the dUTP-Cy3 fluorochrome (Amersham).
Non-incorporated fluorescent dyes were eliminated by puri-
fication on AutoseqTM G-50 columns (Amersham). Obtained
targets have been independently hybridized on four addi-
tional slides to estimate the relative hybridization rate of
each Buchnera gene probe. As no gene repeat occurs in
Buchnera, genomic DNA fluorescence signals (gFg) should
be homogeneous over the 617 Buchnera genes. Assuming
this homogeneity, we calculated a calibration coefficient for
each gene Kg ¼ 617*gFg/

P617
1 gFg. g-Normalized tRNA

expressions were then expressed as percentage values within
the group of tRNA genes.

Expression datasets and codon usage indices

Highly and poorly expressed gene sets (n ¼ 50 for each,
Supplementary Table 1) were selected based on expression
data obtained with the Buchnera microarray on AP3 diet.
The highly expressed genes included 19 ribosomal proteins,
8 flagellar genes, tuf, mopA, mopB and several other genes
coding for metabolic enzymes.

Codon usage indices (RSCU and Nc) were calculated
using the codonw software developed by J. Peden (http://
sourceforge.net/projects/codonw/). RSCU (relative synony-
mous codon usage) were computed by dividing the observed
frequency for one codon by the frequency expected if all syn-
onyms for that amino acid were used equally. Thus, RSCU
values close to unity indicate a lack of bias. Differential
RSCU were the ratio between RSCU obtained with the highly
expressed genes versus RSCU of the poorly expressed genes.
Comparisons were made using codon effectives (Nc, see
below) and Pearson’s Chi-squared tests.

Nc is the effective number of codons used by a gene, and
varies between 20, when only one codon is used for each
amino acid, and 61, when codons are randomly used for each
amino acid. Expected values of Nc can be estimated under the
assumption that codon bias is only due to mutational bias
(GC3s) using the following formula:

N̂N c ¼ 2þ GC3sþ 29

GC3s2 þ ð1� GC3sÞ2

 !
:

RESULTS

Isoacceptors and codon usage

Boldface and underlined codons in Table 1 represent the per-
fect match codons for the 32 tRNA isoacceptors in Buchnera.

The Buchnera tRNA repertory and comparison with other
small genome bacteria have been described previously in
Introduction. Codon usage is presented in Table 1 with the
RSCU computed for each codon. It is very clear from the
table that preferred codons in Buchnera are those ending
with A or T. Codon usage in Buchnera is hence mainly
governed by the mutational AT bias and most often the
‘good choice’ rule is violated.

tRNA expression and isoacceptor abundances

Unexpectedly, the expression of genes encoding tRNAs could
only be quantified using manual hybridization. Figure 1C
and D shows that when automated hybridization was per-
formed tRNAs were systematically over-labelled with red
fluorescence. The hypothesis of a direct interaction between
Cy5 and tRNA can be rejected because when hybridization
was performed manually (i.e. under a glass cover slip in
a hybridization chamber, Material and Methods), the dye
swap was observed for the tRNA genes (Figure 1A and B).
We hypothesize that this artefact, which is specific to tRNA
genes, is caused by an interaction between tRNAs and the
mineral oil (LCS) used in Ventana automated hybridization.
Indeed, the fluorescence of the oil at the same wavelength
as Cy5 is described in the technical notes of the manufacturer.
To explain this measurement artefact, secondary structures of
tRNA molecules might be involved. However, examination
of dye swap responses on the other Buchnera genes harbour-
ing secondary structures (such as rRNA) did not show the
same over-labelling problem (data not shown). As tRNAs are
GC-rich sequences, the influence of GC content was tested,
but again no significant effect was observed (data not shown).
Specific properties of tRNAs, such as their link to amino acid,
were suspected to be responsible for the artefact, but this pos-
sibility was not explored further here. Unexplained dye bias
was also reported by Dittmar et al. (25) in the fluorophore-
labelling reaction for some tRNA species.

g-Normalized expression levels for the 32 tRNA iso-
acceptors, corresponding to the control nutritional conditions
for the host aphids (AP3 diet), are presented in Table 2
(‘g-A’ column). Figure 2 represents the correlation between
g-normalized tRNA relative abundances and codon frequen-
cies for the 50 most expressed genes of Buchnera. A signifi-
cant correlation was observed (r ¼ 0.38, P ¼ 0.02), moreover
removing the AT-rich codon (AAA) returns an higher
correlation (r ¼ 0.61, P ¼ 4 · 10�4). Similar results were
obtained with the whole set of Buchnera genes (data not
shown). In Buchnera, the abundances of isoacceptors tRNA
are therefore adjusted to their matching codon frequencies.
These results confirm that rule 1 is respected in Buchnera.
However, the expression of the tRNAUUU

Lys , which pairs
the overused codons AAA (representing about 12% of all
the Buchnera codons), has not been increased in the bacteria.

Codon usage bias and codon–anticodon pairing rules

Differential RSCU values were computed using the two sets
of highly and poorly expressed genes in Buchnera (Table 3,
column Hi/Lo). Significant differences in codon effectives
(Chi-squared test) were found for the following amino acids:
leucine, isoleucine, valine, tyrosine, histidine, asparagine
and arginine. For these amino acids (except Ile and Val),
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the highly expressed genes prefer C-ending codons as com-
pared to the low expression group. It is also noteworthy
that for all of the 16 C-ended codons in Table 3, the differen-
tial RSCU is above or equal to 1. This distribution is therefore
highly biased (median test, P ¼ 10�5) and is partly explained
by the optimal codon choice rule 4 for the amino acids Phe,
Tyr, Asn, Asp and His. These C-ending codons are optimal
for a majority of microorganisms (21). Although rare in
Buchnera due to the AT bias, they could be selected for
high expression due to their optimal pairing capacities.

Furthermore, the ATA Ile codon (requiring modified
tRNA) is more rejected in the highly expressed genes.
A similar rejection is observed for the arginine CGA codon
which might be explained by the cost of the base modification
required on the corresponding two tRNAs (rule 3).

Finally, G-ending codons are often rejected in highly
expressed genes as compared to poorly expressed genes
(with the exception of Leu, Ser, Thr and Val). This might
be explained by rule 2 involving thiolated or carboxymethy-
lated urididine facing the codon third position; however, the
preference for A-ending codons is not clearly observable in
our dataset.

The plot of the effective number of codons (Nc) versus GC
content in the third position of synonymous codons (GC3s) is
also well adapted to visualize codon usage bias (Figure 3).
Gene distribution is nearly symmetrical around the expected
curve (dashed line in Figure 3) revealing that codon usage is
mainly directed by GC3s composition. However, the distribu-
tion of highly expressed genes is slightly biased toward small
Nc values (codon usage bias) and higher GC3s, comforting

Figure 1. Normalized MA-plots for four slides in a dye swap experiment. (A and B) Manual hybridization; (C and D) automated hybridization.
A ¼ log 2

ffiffiffiffiffiffiffiffiffiffiffiffi
R · G

p
represents raw mean expression value. M ¼ log 2ðR/GÞ represents YF0 versus AP3 logratio in (A) and (C) plots, whereas reverse

hybridizations are found in (B) and (D) plots. tRNA genes are highlighted with red (over-expressed) and green (repressed) colours on graphs. Dye swap is clearly
visible with manual hybridization, whereas in automated hybridization tRNA are always over-labelled in red (Cy5 fluorescence).

Nucleic Acids Research, 2006, Vol. 34, No. 16 4587



the hypothesis of C-ending preferred codons, revealed by the
differential RSCU analysis.

Codon usage bias and GC skew

GC skew is high in Buchnera (http://pbil.univ-lyon1.fr/
software/Oriloc/NC_002528.html) and a bias distribution of
highly expressed genes on the leading strand might explain
the observed codon usage bias (12). However, as the leading
strand is more G+T rich, the C-ending codon preference in
Buchnera should be attenuated (rather than accentuated) by
strand distribution bias. Moreover, no significant differences
were found when ratios of gene numbers located on leading

strand versus lagging strand were compared for the two
expression groups. Ratios were equal to 1.33 and 1.52 for
the highly and poorly expressed genes, respectively. A more
biased distribution, with numerous highly expressed genes
located on the leading strand, might have been expected.
However, this distribution is consistent with the work of
Rocha and Danchin (39) showing, in different bacteria, that
distribution of genes between the two replicating strands is
driven by gene essentiality and not by gene expressivity.

To quantify GC skew influence on codon usage in
Buchnera, the two datasets (highly and poorly expressed)
were split following the strand localization of each gene,
and differential RSCU analyses were performed within
both strands. The C-ending preference was enhanced in the
CT-rich lagging strand and attenuated in the AG-rich leading
strand. However, the tendency was still significant in both
groups (data not shown). The rejection of G-ending codons
(except the GTG-Val) was also observed for the two strands.

The results presented here are contradictory with the work
of Sharp et al. (11) who studied the strength of codon usage
selection in 80 bacterial taxa. Based on a set of putative
highly expressed genes mostly composed of ribosomal pro-
teins, the authors observe that T-ending codons are unexpect-
edly preferred in Buchnera sp. and explain the bias by the GC
skew in the bacteria. Two factors were probably misleading
in this interpretation: (i) ribosomal protein genes are not the
only and the highest expressed genes in Buchnera and (ii) no
strand distribution asymmetry is observed with the highly
expressed genes of Buchnera, whereas the essential ribo-
somal proteins are mainly located on the leading strand.

Regulation of tRNA gene expression

Depletion of the aromatic amino acids tyrosine and pheny-
lalanine in aphid artificial diet results in up-regulation of
most tRNA genes of Buchnera (Table 2, M column). Fold
change measurements reveal positive values for 26 tRNA
out of 32. This proportion is highly significant (median test,

Table 3. tRNA g-normalized expression and differential RSCU

T C A G
coda AA Expb Hi/Lo cod AA Exp Hi/Lo cod AA Exp Hi/Lo cod AA Exp Hi/Lo

T TTT Phe 12.53 0.97c TCT Ser — 0.98 TAT Tyr* — 0.94 TGT Cys — 1
TTC 1.35 TCC 16.43 1.25 TAC 15.4 1.42 TGC

c 15.31 1
TTA Leu* 20.41 0.97 TCA 21.73 0.99 TAA STOP — 0.92 TGA STOP — 1.35
TTG — 0.77 TCG — 0.56 TAG — 1.13 TGG Trp 10.18 1

C CTT Leu* — 1.25 CCT Pro — 0.9 CAT His* — 0.93 CGT Arg* 12.77 1.36

CTC 15.95 1.55 CCC — 1.11 CAC 8.78 1.6 CGC — 1.35

CTA 15.19 1.1 CCA 19.59 1.1 CAA Gln 15.27 1.01 CGA Arg* — 0.87

CTG — 1.1 CCG — 1.08 CAG — 0.93 CGG 10.63 0.5

A ATT Ile* — 1.06 ACT Thr — 1.03 AAT Asn* — 0.96 AGT Ser — 1.04
ATC 28.08 1.04 ACC 10.84 1.1 AAC 25.57 1.28 AGC 10.72 1.34

ATA Ile* — 0.89 ACA 16.09 1.01 AAA Lys 11.76 1 AGA Arg* 10 0.87

ATG Met 10.81 1 ACG — 0.66 AAG — 1 AGG — 0.33

G GTT Val* — 0.98 GCT Ala — 0.91 GAT Asp — 0.97 GGT Gly — 0.99
GTC 13.44 1 GCC 14.25 1.26 GAC 12.77 1.23 GGC 12.61 1.19
GTA 11.85 0.93 GCA 15.54 1.04 GAA Glu 20.28 1.01 GGA 20.28 0.98
GTG — 1.71 GCG — 1.08 GAG — 0.95 GGG — 0.96

aPerfect match codons are bold-underlined (codons with a corresponding perfect match anticodon-harbouring isoacceptor tRNA in Buchnera).
bExpression measurement (g-normalized fluorescence) of the tRNA isoacceptor.
cDifferential ratio of RSCU between the high and low expressed genes in Buchnera (boldface values are extreme values and asterisks are amino acids associated
with significant Chi-squared test, a ¼ 0.05).

AAA_K

Figure 2. Plot of g-normalized tRNA relative abundances (expressed as
percentage of total tRNA) versus matching codon compositions (i.e. the sums
of codons associated to the corresponding tRNA species) of the 50 most
expressed genes in Buchnera. Solid line, complete regression; dashed line,
regression without the AAA-Lysine codon.
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P-value ¼ 2 · 10�4). If genes with fold changes close to
1 (i.e. >0.83 or <1.2) are grouped in an ‘invariant class’,
the proportion of up-regulated genes remains significant
(P-value ¼ 2 · 10�3).

The metabolic analysis of the experiment is not detailed
in this paper. However, we can mention that six other
genes related to tRNA metabolism were differentially
expressed in the YF0 conditions. The genes glnS (Glutaminyl-
tRNA synthetase), gltX (Glutamyl-tRNA synthetase) and
glyS (Glycyl-tRNA synthetase beta chain) were up-regulated
in YF0 condition, whereas pheT (Phenylalanyl-tRNA syn-
thetase beta chain) was significantly down-regulated on the
aromatic-depleted medium. Two genes involved in tRNA
modification, trmE and trmD, were both significantly induced
in the YF0 condition. Several ribosomal proteins were also
regulated in the experiment. The TrmE protein is invol-
ved in the biosynthesis of the hypermodified nucleoside
5-methylaminomethyl-2-thiouridine, found in the wobble
position on some tRNAs. Translation regulation efficiency
might therefore be regulated via the modification of the
wobble position of isoacceptor tRNAs. Overexpression of
tRNA synthase genes is consistent with tRNA overexpres-
sion. Moreover, in the context of limiting aromatic amino
acids, the specific repression of the pheT gene encoding the
Phenylalanyl-tRNA synthetase might appear as a regulatory
mechanism to increase the flux of the free phenylalanine
exportation toward the host rather than incorporating this
free amino acid for its own protein biosynthesis (‘altruistic’
response of endosymbiont). However, the latter two hypothe-
ses are as yet speculative, and the mechanisms underlying
this regulatory response are completely unknown.

Expression regulation of genes encoding tRNA isoaccep-
tors is usually determined by their association to the different
transcription units (e.g. rRNA operons). In E.coli, genome
location of tRNA genes explains �15% of their expression
variation at a given growth rate (40). In Buchnera, tRNA
genes are located on 18 different contiguous chromosome

locations (pTU, putative transcription units) visualized by
dashed lines in Table 2. Although not significant (P ¼ 0.12),
between-pTU variance of M values is always bigger than
within-pTU variance (data not shown). To obtain more robust
data, the M column was reduced to the up/down column
of Table 2, and a contingency table was built between the
two qualitative variables, ‘pTU’ and ‘up/down’. A Pearson’s
Chi-squared test was then applied with simulated P-values to
prevent bias of small effectives. A significant dependency
was observed (P-value ¼ 0.05) between the two variables,
indicating that there is a tendency for tRNA belonging to
the same transcription unit, and most probably controlled
by the same promoter, to be regulated similarly.

DISCUSSION

To our knowledge, the results presented here are the first
analysis of tRNA gene expression in Buchnera, the pre-
viously published microarray work having been developed
on a cDNA-chip lacking this set of short genes (41). Also,
this is the first time that real sets of high/low expression
genes have been used in the same species, characterized by
extreme GC content composition, to analyse the link between
expressivity and codon usage biases. In Buchnera, previous
studies either analysed E.coli codon adaptation of ortholo-
gous genes to detect high expression (42) or used limited
sets of genes from different species to infer those of the
BuchneraAPS set (20).

With only 32 molecular species, Buchnera set of tRNAs is
almost minimal. Further reduction may have been possible, as
was occurred in some mollicutes (2 tRNA-Met, 1 tRNA-Ala
or 2 tRNA-Arg in M.mobile). Two reductions in tRNA num-
bers, observed in Buchnera, seem very widespread in small
genomes, namely the charging of proline and isoleucine
through a single tRNA. This implies, for these two amino
acids (and for arginine), that a part of the tRNA population

Figure 3. Effective number of codons used (Nc) plotted against GC3s (gc3) for 571 Buchnera genes. Dashed line represents the expected value of Nc if bias is
only due to GC content; left panel: all Buchnera genes; right panel: open squares are the 50 genes with the highest expression rates and open triangles are the
50 genes with the lowest expression rates. Note that the square distribution is slightly decentred in the bottom and right area of the graph.
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is hypermodified to ensure proper codon–anticodon recogni-
tion. Hence, all the enzymes involved in the hypermodif-
ication of the tRNAs (rnpA, pth, trmU, cca, trmD, gidA,
trmE and truA) are conserved in Buchnera, as well as in
other intracellular endosymbionts, whereas they are not all
essential in E.coli (43). Owing to reduction in tRNA sets,
we propose that this set of genes is trully essential in small
genomes, confirming their inclusion in the minimal cell
gene set proposed by Gil et al. (43).

In bacteria, translational control of gene expression is
partly regulated by changes in the charging of tRNA due to
differential expression of single isoacceptors (44). Indeed
during amino acid limitation, the concentration of the charged
tRNAs corresponding to the most abundant codons tends to
zero whereas concentrations of the other charged-tRNA will
be unchanged. The theory of selective tRNA charging is
the basis of the attenuation system described in E.coli (45),
but in Buchnera, most if not all attenuation systems have
been lost, and the reduction of tRNA species might be an
adaptation to the metabolic constraints of the intracellular
environment characterized by extreme limitations of several
amino acids: reducing tRNA species and limiting codon
usage would reduce the waste of free amino acids for
charging useless tRNAs.

The first question we addressed in this study concerned
the forces driving codon usage in Buchnera. Mutational
bias has a major influence on codon choice in the bacteria
and is independent of gene expressivity. However, a signifi-
cant correlation between codon composition of Buchnera
genes and tRNA production was observed with the exception
of the isoacceptor tRNAUUU

Lys . For the latter, adjustment of its
expression has been overcome by the effect of mutational
bias increasing drastically the frequencies of the correspond-
ing lysine codon in proteins. These results indicate that
growth rate is probably not the main factor governing
evolution of Buchnera. Indeed, Buchnera’s environment is
highly constrained by the metabolic demand from the aphid
host. In that context, Rocha and Danchin (46) suggested
that the higher energy cost and limited availability of G
and C over A and T/U could explain the AT-enrichment of
all obligate intracellular organisms including bacteria, viruses
and plasmids. Such metabolic constraints are not restricted
to the bacteria and occur on the whole symbiocosme (e.g.
the associated organisms). Hence, the AT-enrichment of the
pea-aphid genome observed by Sabater-Munoz et al. (47)
might also be explained by the strict intracellular feeding of
the insect.

In Buchnera, a significant codon usage bias was also
observed for the choice of rare codons: C-ending codons
are preferred for the majority of amino acids in highly
expressed genes. There is experimental evidence that rare
codons can reduce the rate of translation in E.coli (48,49).
In organisms with efficient selection for translational effici-
ency, one might expect rejection of rare codons in highly
expressed genes. It has been demonstrated in Drosophila
that accuracy of translation is increased when using
perfect match codon–anticodons pairs (50). Conservation of
C-ending rare codons within essential or highly expressed
genes might correspond to selection for translation efficiency
of functionally important protein amino acids in Buchnera
(C. Rispe, personal communication).

To test this hypothesis, we analysed the codon composition
of the groEL Buchnera gene (one of the most highly
expressed in the bacteria) and no clear evidence for selection
was found. Of the 28 C-ending codons of the protein 3 were
functionally important and highly conserved codons (51).
When compared to the proportion of all the C-ending
codon possibilities within the gene, the distribution was not
significantly biased. Surprisingly, more C-ending codons
accumulated within the positively selected regions of the pro-
tein described by Fares et al. (52) (P-value ¼ 0.06). However,
the distributions were not significantly biased in some
other Buchnera species (e.g. those from the aphids Schizaphis
graminum and Baizongia pistacea) and further studies are
needed to analyse whether this codon bias is functional
(selected) or whether it is a remnant trait derived from
ancestral bacteria.

The second question was directed towards the tRNA tran-
scriptional regulation capacities of the bacteria. We have
shown here that Buchnera is able to respond to the variation
in nutritional demand of the aphid host, even though most
specific transcriptional regulators are absent from its
genome. Overexpression of tRNA genes is generally corre-
lated with increase of metabolic activities and cell division
in bacteria. In our experiment, the biological parameters of
aphids feeding on the depleted diet are good. Indeed, only
larval growth was slightly affected (�20%), but neither sur-
vival nor fecundity is affected by the lack of phenylalanine
and tyrosine (Supplementary Figure 1). These results are
consistent with a global increased compensatory metabolism
of Buchnera upon phenolic amino acid deficiency in the
aphid diet and the correlation between differential gene
expression and transcription unit organization in the chro-
mosome of Buchnera may indicate a functional regulation
activity in the bacteria.

In conclusion, this paper addresses the question of deter-
minants that shape the evolution of codon usage, as well as
tRNA isoacceptors abundance and diversity. Translation
speed is optimized when tRNA abundances are adjusted to
fit to codon usage of highly expressed genes for the highest
growth rates in E.coli (53). However, as reviewed in Bailly-
Bechet et al. (54), the efficiency of translation is probably not
the only force driving codon usage and tRNA evolution.
Metabolism limitation, proper folding of the nascent protein,
horizontally transferred genes and local recycling of rare
tRNAs are other factors that might influence selection of
the translational machinery. These factors might be even
more crucial for slow growers and intracellular bacteria
(55). In the aphid-Buchnera association, the strong metabolic
constraints affecting the two partners (i.e. both are intra-
cellular feeders) have probably shaped the evolution of the
translation machinery, explaining both the codon usage and
the genome AT-enrichment.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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