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We develop a framework for the multiple scattering of a polarized wave. We consider particles with spin
propagating in a medium filled with scatterers. We write the amplitudes of each spin eigenstate in a local
mobile frame. One of the axes is in the direction of propagation of the particle. We use this representation to
define a directional Green’s operator of the homogeneous medium and also to write the spin-dependent
scattering amplitudes. We show that this representation reveals a Berry phase. We establish a generalized
Green-Dyson equation for the multiple-scattering problem in this framework. We show that the generalized
Green-Dyson equation can be solved by linear algebra if one uses a representation of the rotations based on
Wigner D matrices. The properties of light scattering are retrieved if we use spin 1 particles. Our theory allows
to take into account several kinds of anisotropies such as circular or linear dichroism and birefringence,
Faraday effects, and Mie scattering within the same formalism. Several anisotropies can be present at the same
time.
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I. INTRODUCTION

In optics, several phenomena involve the polarization of
light. Such phenomena, such as birefringence, dichroism,
and Faraday effect, are well understood and described in
textbooks �1�, usually in the case where the medium is ho-
mogeneous and linear. When filled with particles, the me-
dium is no longer homogeneous and, in addition to the trans-
port of light, one has to study its scattering by the particles.
A century ago, Mie discovered that the scattering of light by
small dielectric spheres is linear and also affects the polar-
ization �2,3�. The theory of light scattering has been ex-
tended for several different particles and studied in the con-
text of multiple scattering �4–6�. While the polarization is
well studied for a single scattering, the problem becomes
more difficult in multiple scattering and a scalar approxima-
tion is often used. Such an approximation makes it simpler to
investigate the coherent effects using sophisticated diagram
techniques �7,8�. As a consequence, polarization effects are
neglected whereas they may, in certain situations, be of in-
terest. In magnetochiral birefringence, for instance, a residual
degree of circular polarization persists in chiral media �9�.
Recent experiments of coherent backscattering of light by
cold atoms exhibit polarization-dependent enhancement fac-
tors �10�; this result is interpreted thanks to the quantum
nonlinear nature of the cold atoms �11�. Under certain con-
ditions, it was even forecast that an antilocalization effect
could be observed �12�. Quantum effects of light were also
introduced, in second quantization, for the study of dense
cold atomic gases �13�.

Remarkably, most of the scalar approximation techniques
are applicable not only to light but also to microwaves, ul-
trasound, and noninteracting electrons, as emphasized in Ref.
�7�. The existence of a polarization, alike, is not restricted to

light; other waves display polarization effects: the other elec-
tromagnetic waves, elastic waves, and electrons. More gen-
erally, every particle with a spin is, from a quantum point of
view, a polarized wave. The classical light polarization is a
consequence of the vectorial nature of the electromagnetic
field, whereas in the quantum-mechanical picture, photons
have two states called helicities. The origin of the helicity of
a particle follows from the spin. Relativity imposes that the
spin 0 state of massless particles does not exist in the direc-
tion of propagation; photons therefore possess only two he-
licities. The freedom of the relative phase between the two
helicity states is at the origin of the phenomenon of polariza-
tion as we experience it in optics. All quantum particles with
a nonzero spin also have helicities and hence may display
polarization effects. Therefore, the problem of polarization
transport in multiple scattering does not only arise in optics.
Polarization transport in multiple scattering is a more general
problem and optics can be seen as the most investigated par-
ticular case.

According to the quantum duality of particles and waves,
we may describe the propagation of particles as wave ampli-
tudes from a statistical, or probabilistic, point of view. Re-
ciprocally, the propagation of a wave can be described by the
statistics of particle paths, through techniques such as Feyn-
man’s path integration. Following this picture, many theoret-
ical calculations related to the multiple scattering of polar-
ized waves are performed by Monte Carlo techniques. Such
techniques have been developed for light, even in the pres-
ence of quantum scatterers �14�, and for elastic waves �15�.
Monte Carlo techniques are a pragmatic solution to the prob-
lem of taking into account each trajectory as a whole. Is it
possible to consider each trajectory entirely and perform sta-
tistics in a more formal way? A pioneering work on trajec-
tory statistics was made by Sato �16� with the introduction of
a directional Green’s function for the elastic energy �equiva-
lent to the optical intensity� in a three-dimensional medium
with nonisotropic scatterers. However, as his study con-*vincent.rossetto@grenoble.cnrs.fr
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cerned energy, polarization was not included in the model.
The trajectories of energy, or intensities, have been stud-

ied in a multiple-scattering context using Stokes parameters.
These parameters are preferentially used by experimentalists
because they are, as intensities, directly measurable quanti-
ties. They depend on the choice of the reference frame used
for their observation. Their ability to take coherence effects
into account is limited to intensity correlations. In order to
dispose of the reference frame indetermination, Kuščer and
Ribarič introduced harmonical functions to describe the
Stokes parameters �17�. Based on Wigner’s work concerning
group theory �18�, these functions have also been used under
the name “spin-weighted spherical harmonics,” though with
a different phase factor �19�. They are also implicitly used in
light-scattering studies under the name “vector spherical har-
monics” �3,5�. The seminal work of Kuščer and Ribarič mo-
tivated a large number of studies on the phase matrix �20–22�
and on the radiative transfer equation �23,24�.

The role of trajectories appears in a surprising effect in-
volving polarized light. A four-foiled pattern is observed in
backscattering experiments of polarized light from a medium
containing anisotropic scatterers �25–27�. In these experi-
ments, the source is not a planar infinite wave but a localized
beam. The effect does not exist if the source is extended on a
scale on the order of the four-foiled patterns. The same me-
dium does not exhibit such patterns if the observations are
made in transmission rather than in reflection, so that the
properties of polarization depend not only on the detailed
trajectory but also on the direction of observation, or more
precisely on the frame of observation. It has been suggested
that the appearance of these patterns is due to the existence
of a Berry phase for the photon �28�. In quantum mechanics,
Berry phases have been studied already in many situations
�29,30�. In optics, the literature is abundant in experimental
�31� and theoretical considerations �32,33�. If light is not
guided in an optical fiber but rather multiply scattered, the
Berry phase still exists �34�. The probability distribution of
the phase depends on the statistics of the paths followed by
the photons.

The purpose of the present paper is to introduce a general
framework for the multiple scattering of any polarized wave,
as simply and as pedagogically as possible. We will base our
construction on the concept of path statistics, in the spirit of
the Monte Carlo calculations, or Feynman’s path integral, to
account for local interactions and path-dependent effects. We
express the formalism for particles with an arbitrary spin S,
although we consider only linear media and scatterers and
thus leave the other quantum properties to further investiga-
tions. Our objective is not to provide a complete theory for
multiple scattering of polarized waves but rather to set up a
framework in which such a theory could be developed. On
that account, we assume the simplest possible point of view
and make several assumptions, which are briefly discussed.

We have organized our work as follows. The representa-
tion of the field and the geometry of rotations are discussed
in Sec. II. A directional Green’s operator is discussed in Sec.
III; it describes the transport in a homogeneous medium.
Using the same formalism, we introduce the scattering op-
erator between incoming and scattered state in Sec. IV. These
first three sections constitute the elements of the theory. We

demonstrate that our theory takes into account the Berry
phase without requiring any extra tool in Sec. V. We derive a
generalized Green-Dyson equation for multiple scattering of
polarized waves in Sec. VI, and we show that a solution of
this equation is obtained by means of the rotational harmon-
ics introduced in Sec. VII. We discuss the particular case of
rotational invariant scatterers in a rotational invariant me-
dium in Sec. VIII and conclude. Fundamental formulas con-
cerning the rotational harmonics are provided in Appendix
A, and some of the several notations used for them are listed
in Appendix B.

II. GEOMETRY AND POLARIZATION

We begin the presentation of our work with the introduc-
tion of the geometry elements used throughout this paper.
Mainly, the difference of our work relies on the representa-
tion of the state of waves in local frames. Polarization is
introduced as a transformation property of the wave state
under local rotations. We express all space coordinates in a
fixed reference frame XYZ. Any local frame X�Y�Z� is there-
fore obtained after a rotation of the reference frame. The
coordinates of the local frame unit vectors, written in the
reference frame, form a 3�3 matrix, which is the unique
rotation matrix mapping XYZ into X�Y�Z� and preserving
orientation. The group of rotations is SO�3�. Considering the
rotation associated to a frame is mathematically equivalent to
considering the frame itself. We henceforth only use the de-
scription in terms of matrices for mathematical convenience
and use exclusively the ZYZ Euler representation of rotation
matrices, such that any rotation R of SO�3� is decomposed
into

R = Z���Y���Z��� , �1�

where Z��� is the rotation around the Z axis of angle �.
Similarly, Y is a rotation around the Y axis. The decomposi-
tion �1� is unique if 0���� and 0�� ,��2�. For �=0 or
�, the decomposition is not unique.

In our discussion, we use the concept of trajectory or path
of a particle. Studying the propagation of a wave using the
particle picture would not be fully general if we were con-
cerned by the behavior of single particles. But as our goal is
to describe all possible trajectories as a whole, it is known
that this way of addressing the problem of multiple scattering
is correct. As a consequence, we will simultaneously use the
wave picture, as equivalent to the statistics of particle trajec-
tories, and the particle picture of the propagating wave. The
spin of the particle emerges as an essential ingredient of the
theory, after geometry considerations.

We study a medium filled with N scatterers and write ri
for the position of the scatterer i. The trajectory of the par-
ticle is a succession of displacements between points ri and
changes in direction at the points ri. We call such a change in
direction a scattering event. We consider the momentum pn
after n scattering events and decompose it into

pn = pnPnẑ �2�

where pn= �pn� is the modulus of pn, Pn is a rotation matrix
�expressed in the reference frame�, and ẑ is the unit vector of
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the reference frame along the third coordinate. We choose
the local frame for the segment of the path after the nth
scattering event and before the next one. The third coordinate
of the local frame is therefore always pointing in the direc-
tion of motion.

We remark immediately that the decomposition �2� of pn
is not unique. The Euler angle � of Pn can be taken arbi-
trarily; it is the spin gauge freedom. Here stands a crucial
point in our model. The introduction of the local frame is a
natural way of introducing the spin and, hence, the polariza-
tion, into a multiple-scattering formulation. If the wave has a
spin S, there are 2S+1 possible values for the spin compo-
nent along the direction of propagation that we label with “s”
�−S�s�S�. At a given point r, the field is a superposition of
partial fields, which we consider to be plane waves, with
different momenta. For simplicity, we may consider all di-
rections of propagation for a fixed absolute value of the mo-
mentum. The amplitude of probability for observing the spin
state s in the frame P at point r and time t is written
	�r , t , P ,s�. In this paper, we regularly use the bracket no-
tation for functions. The functions f of a variable x are writ-
ten as �x � f�, instead of f�x�. There is no consequence of this
notation concerning the physics itself, but we find it more
convenient for our purpose, in particular, for the introduction
of the rotational harmonics in Sec. VI. We then write the
amplitude as a bracket product

	�r,t,P,s� = �r,P,s�	�t�� . �3�

Polarization is related to the frame of observation and if
this frame is changed, polarization is modified according to
certain rules. Light polarization, for instance, is turned by an
angle −� if the frame of observation is turned by an angle �
around the direction of propagation. It is therefore natural to
change the basis of representation and use the eigenbasis of
rotation along the direction of propagation. Light has two
circular polarization states, corresponding to the helicities of
the photon. A rotation of angle � creates a phase shift for
each circular eigenstate. If s is an eigenvalue of the spin
operator along the direction of propagation, rotations along
this axis commute with the spin operator. Unitarity implies
that

�PZ���,s� = eis��P,s� �4�

on the on-shell states. After these remarks, we shall name the
third Euler angle, usually noted �, the spin angle.

We have presented a description of the field at a given
point that depends on the local frame and, thereby, taking
into account the spin. We still have to check the complete-
ness of the ket representation �P ,s�. As we have remarked,
the direction of propagation is Pẑ, so that �P ,s� and �P� ,s��
are orthogonal if Pẑ� P�ẑ. From relation �1�, we conclude
that nonorthogonal �P ,s� and �P� ,s�� have the same Euler
angles except the spin angle, which is arbitrary. Let R and R�
be two reference frames; we introduce the function

��R−1R�� to denote


��R−1R�� � 4�
�cos �� − cos ��
��� − �� , �5�

where � and � are the first two Euler angles of R and �� and
�� the first two Euler angles of R�. 
� is a kind of Dirac

function for rotation matrices, which select frames having
the same third unit vector. Using this notation, the condition
Pẑ= P�ẑ is imposed by defining �P� ,s� � P ,s� proportional to

��P−1P��. We remark that 
��P�−1P�=
��P−1P��. Finally,
the orthogonality of the spin eigenstates yields �s �s��=
ss�.
From the expression �4�, we get the product

�P�,s��P,s� = eis���−is�
��P−1P��
ss� �6�

where � and �� are the spin angles of P and P�, respectively.
The superposition of the partial fields for all directions of

propagations is expressed by

	
SO�3�

dP	�r,t,P,s�e−is�

=
1

8�2	
0

�

sin �d�	
0

2�

d�	
0

2�

d�

�	�r,t,Z���Y���Z���,s�e−is�

=
1

4�
	

0

�

sin �d�	
0

2�

d�	�r,t,Z���Y���,s� �	s�r,t� .

�7�

The presence of the term eis� is essential. Its role is to add
the amplitudes in such a way that the amplitudes in two
distinct frames with the same direction of propagation are in
phase and do not cancel out. Forgetting this term would
make all 	s vanish except 	0, because the exponential term
from Eq. �4� would be integrated to give 0. Multiple-
scattering theories for scalar waves actually only consider the
term 	0. The completeness of the Hilbert basis �P ,s� is ex-

pressed by the closure formula �1̂ is the identity operator�



s=−S

S 	
SO�3�

dP�P,s��P,s� = 1̂. �8�

The integral over SO�3� has been defined in Eq. �7�. The
description we have introduced in this section will be used in
the formulation of the multiple scattering for polarized
waves. In the next section, we introduce the Green’s operator
for the polarized states �P ,s� and its space dependence in the
absence of scatterers.

III. TRANSPORT IN A HOMOGENEOUS MEDIUM

Before studying multiple scattering, it is necessary to in-
vestigate the transport in a homogeneous medium. By the
word transport, we mean the response at a position r� and
time t� in the frame P� �see previous section for the intro-
duction of the frames� to a source at position r and time t in
the frame P. It is advantageous to use the Green’s functions
because the two situations of massive and massless particles
can both be handled with the same formalism. In the case of
a massless particle, such as the photon, transport follows
from Maxwell’s equations and is often formulated by the
Helmholtz equation. Massive particles transport is of a dif-
ferent nature and the dynamics of their wave function re-
sponds to the Schrödinger equation.
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We denote by G the Green’s function of the operator �2

�r2

+ �2

c2 or of the operator − �2

2m
�2

�r2 −E to describe the transport of
the electromagnetic field or of the wave function, respec-
tively. The equivalence between these two operators is ob-
tained through the relation

�

c
=

1

�
�2mE , �9�

so that we shall use in our formulas only the “massless”
notation � /c. The results we present can be extended to mas-
sive particles of arbitrary spin by using Eq. �9� and changing
the sign of G. If the medium is invariant under translation
and in time G�r , t ;r� , t�� depends on r�−r and t�− t. In this

section, we construct a Green’s operator Ĝ0, which depends
on the direction of motion at r and r�, and we call it the
directional free Green’s operator.

We introduce the free Green’s operator as the operator
transforming the wave function along the propagation of the
wave if no scattering events occur. The transition amplitudes
characterizing the response may depend on the spin. If we

note Ĝ0 the free Green’s operator, transport is described by

the matrix elements �r� , P� ,s��Ĝ0�t� , t��r , P ,s�. We have in-
troduced the position ket �r� and denoted �r , P ,s���r�
� �P ,s�. Naturally, it is not physical in quantum mechanics to
consider the position and the direction of motion of a particle
simultaneously. The directional Green’s operator that we
need for our theory can be seen as an intermediate element of
computation. The physical Green’s function is the superpo-
sition of the directional Green’s operators for all initial and
all final directions of motion. In Feynman’s picture of path
integrals, it corresponds simply to decompose the path-
integral formulation of G into path integrals over trajectories
with a constraint on the direction of motion at the initial and
final points. We have illustrated this feature in Fig. 1.

In a medium with translational invariance, the momentum

is conserved so that Ĝ0 has a factor �P � P��. Between two
scattering events, the wave travels in space from r to r�
along the direction p̂= Pẑ. The direction of the momentum
Pẑ is the same as the direction r�−r because of the relation
r�−r=c�t�− t�Pẑ, so that we have to impose this constraint
to the free Green’s operator. To express the directional con-
straint on r�−r, we write a similar equation as Eq. �2�,

r� − r = rDẑ �10�

so that the dependence of the Green’s operator Ĝ0 on D is
simply reduced to 
��DP−1�. Finally, we have the expression
for the dynamics Green’s operator

�r�,P�,s��Ĝdyn�t�,t��r,P,s�

= G�r,t;r�,t��
��DP−1��P�,s��P,s� . �11�

The factor 
��DP−1� in expression �11� is a very strong re-
striction imposed by rotational invariance. It states that a
rotation of the medium must be accompanied by the same
rotation of the frames P and P� �through the term
�P� ,s� � P ,s�� to leave the Green’s operator unchanged.

In the presence of scatterers, it has been observed in back-
scattering configurations that the transport of polarization de-
pends on the relative directions of the incident polarization
beam and the vector r�−r �26�. Moreover, in some cases,
such as in the presence of linear birefringence or dichroism,
the direction of propagation has a strong influence on the
transport. Such complex geometrical dependences will be
described by the dependence on P, P�, and D of the gener-
alized Green’s operator.

We now consider the evolution of the spin amplitudes
during the transport. In the simple case, where the time evo-
lution of the spin does not depend on position or time, it is
described by

Ĝspin�t�,t� = exp�−
i

�
Âspin�t� − t� , �12�

where Âspin is the evolution operator of the spin. If there is no
anisotropy associated with the spin and if the spin is con-

served during transport, then the terms �s��Ĝspin�s� form a
�2S+1�� �2S+1� diagonal unitary matrix. Effects depending
on the spin, such as circular birefringence or dichroism,

modify the diagonal terms of �s��Ĝspin�s� such that it is not
necessarily unitary anymore. Consider, for instance, a me-
dium with absorption length s

−1 and index ns for the spin s.
In this case, we have

�r�,P�,s��Ĝspin�t�,t��r,P,s�

= e−i�ns�−ics��t�−t�
�3��r� − r��P�,s��P,s� . �13�

In this expression, the index ns denotes the ratio of wave
celerity for a spin eigenstate s compared to the celerity con-
tained in G. Dichroism appears when the values of s depend
on s, birefringence when the values of ns depend on s. It is
also possible to introduce spin flips.

To summarize our construction of the Green’s operator of
the homogeneous medium, we have the following formula

for Ĝ0:

�r�,P�,s��Ĝ0�t�,t��r,P,s�

= G�r� − r,t� − t��s��Ĝspin�t�,t��s�

�
��DP−1�
��P−1P�ei�s���−s��. �14�

The dependence of the Green’s function as a function of
the distance is, according to the expression �14�, the product
of the scalar Green’s function G and the Green’s function of

the spin Ĝspin. If there is no absorption, the Green’s function
follows the well-known r−1 decrease in the Green’s function
in three dimensions. In this situation, the enhanced Green’s
function �14� verifies the conservation of energy by construc-
tion.

IV. DESCRIPTION OF A SCATTERING EVENT

In the previous section, we have constructed the Green’s
function for a homogeneous medium. In this section, we in-
clude the description of the scatterers into the same formal-
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ism. The problem of scattering with spin particles was origi-
nally discussed by Jacob and Wick �35� when two particles
with spins are colliding. We consider more general scatterers
in our formalism and describe an arbitrary interaction in the
far field. In this situation, we only need to know the so-called
on-shell “T matrix,” or transition matrix, in a theory of mul-
tiple scattering.

We use the following definition of the on-shell T matrix,
in the case of light scattering. Consider an incoming field Ein
and a scatterer at position r. At a far-field position, the scat-
tered field Esca depends linearly on Ein,

Esca�r�,t�� = G�r�,t�;r,t�TEin�r,t� . �15�

The T matrix can be computed or measured in several ways
that we will not discuss. In general, the T matrix depends on
the incoming and outgoing directions and on the polariza-

tion. These dependences will be rigorously taken into ac-
count in the present formalism.

The position in space of the scatterers are denoted by ri. A
scattering event corresponds to a change in the direction of
propagation at ri from Pnẑ to Pn+1ẑ. In the laboratory frame,
the rotation matrix corresponding to a scattering event is
R0= Pn+1Pn

−1. However, it is the local rotation, which is
physically relevant in a local description of scattering. The
expression of this local rotation is R= Pn

−1R0Pn= Pn
−1Pn+1.

This is the local rotation experienced from the point of view
of the particle during the scattering event. Using the decom-

position of R into Euler angles ��̃ , �̃ , �̃� �Eq. �1��, we rewrite
Pn+1= PnR as

Pn+1Z��̃�−1 = PnZ��̃�Y��̃� . �16�

�̃ is the scattering angle and �̃ and −�̃ will act as spin angles
in Eq. �4�. As a consequence of this relation, the modifica-
tions of the spin angles of Pn and Pn+1 transform according
to

Pn → PnZ��̃� , �17�

Pn+1 → Pn+1Z�− �̃� , �18�

and cast the rotation into local frames adapted to the scatter-
ing event �see Fig. 2�.
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FIG. 1. �Color online� Schematic view of the directional Green’s
operator. Without scatterers �upper figures�, the only situation for
which the Green’s operator does not vanish is when the three vec-
tors r�−r, Pẑ, and P�ẑ are colinear and have the same direction
�left-hand side of the figure�. In this situation, only one path is
possible: the straight line from r to r� sketched as a dashed line on
the right-hand side of the figure. In a complex medium �lower fig-

ures�, the directional Green’s operator �r� , P��Ĝ0�r , P� describes the
transport from r to r� with the constraint that the initial and final
directions of motion are Pẑ and P�ẑ, respectively. There are several
different paths, some examples of which are shown as dashed lines
on the right-hand side in the figure. Note that the vectors r�−r, Pẑ,
and P�ẑ need not to be colinear anymore.
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FIG. 2. �Color online� A single-scattering event. The freedom of
rotation of the incoming and outgoing frames is compensated by a
local rotation of the spin angle �4�. The azimuth angle �̃ of Pn

−1Pn+1

determines the scattering plane and the zenith angle �̃ of Pn
−1Pn+1 is

the scattering angle.
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FIG. 3. �Color online� Example in the case n=6 of the Berry
phase for a trajectory with identical initial and final frames. �Top�
Trajectory in real space. The thickness of the line changes along the
trajectory to give a three-dimensional effect: the closer it is to the
observer, the thicker the line is. On each segment is represented a
frame Pi such that Piẑ is the direction of the segment. �Bottom� The
path is represented on the unit sphere. Each segment with constant
direction Piẑ is a point on the sphere. Two successive points are
connected by an arc of a circle. The area enclosed by the path on the

sphere is the geometric phase � �in gray�. The angles �̃i �see text�
have been chosen exaggeratedly large for the readability of both
parts of the figure. In strong forward scattering, the trajectory on the
top part is very close to a straight line and the area enclosed on the
sphere of the bottom part is concentrated around P0ẑ.
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If there is a spherical scatterer at position r, the scattering
operator between incoming and outgoing states is

�r�,Pn+1,s��T̂�t�,t��r,Pn,s�

= 
�3��r� − r�
�t� − t�eis�̃+is��̃�Y��̃�,s��T̂�I,s� �19�

�Y is a rotation around the Y axis of the reference frame�. We
have used the spherical symmetry of the scatterer to bring the
incoming and outgoing frames back into the incoming one,

so that the outgoing frame is simply Y��̃�. In this formula-

tion, �Y��̃� ,s��T̂�I ,s� is just the usual T matrix written in the
spin eigenstates basis, which we write Tss��� , �̃�. We impose
that there is a scatterer at position r with the density operator
�r���̂�r�=
�3��r�−r���r�, with

��r� = 

i=1

N


�3��r − ri� . �20�

If there is no scatterer at position r, the scattered field van-
ishes. The scattered field is obtained using the closure rela-
tion �8�

�r�,P�,s��Ĝ0�t�,t�T̂�̂�r,P,s� = 	
V

d3r�	
SO�3�

dP� 

s�=−S

S

�r�,P�,s��Ĝ0�t,t��r�,P�,s���r�,P�,s��T̂��r,P,s�

= G�r� − r,t� − t�
��DP�−1���r� 

s�=−S

S

�s��Ĝspin�t� − t��s��ei�s�−s����eis�̃+is��̃Tss���, �̃� . �21�

To obtain the last equality, we have used the fact that the spin
angle of the rotation matrix P� is arbitrary and does not play
any role in the final expression and we have therefore used
the spin angle of P� to simplify the formula. The angles

��̃ , �̃ , �̃� are the Euler angles of P−1P�.

The T̂ operator in formula �21� stands for a single spheri-
cal scatterer, correlations or the influence of the other scat-

terers are, so far, ignored. The imaginary part of T̂ stands for
extinction. The extinction cross section for spin s is then

�ext
s = −

c

�
Im Tss��,� = 0� . �22�

It is constructive to compare �ext with the scattering cross
section for spin s

�scatt
s =

1

2 

s�=−S

S 	
0

�

sin �d��Tss���,���2. �23�

The total extinction and scattering cross sections are ob-
tained by summing over the spin eigenstates �ext=
s�ext

s and
�scatt=
s�scatt

s . By conservation of energy, the ratio a
=�scatt /�ext cannot exceed 1. The ratio a is called the albedo.
If �ext=�scatt, all energy captured by the particle is scattered.
This is known as the optical theorem. Let us remark that the
inequality a�1 valid for the total albedo is not necessarily
true for the albedoes as=�scatt

s /�ext
s at fixed spin.

V. BERRY PHASE

At this point of the discussion, it is interesting to point out
that our description of the trajectory is able to keep track of
the Berry phase of the wave. Originally, the Berry phase was
proposed as the phase factor that can appear after a cycle
during an adiabatic time evolution of a nondegenerated

quantum state �29�. Later, it was discovered that the concept
applies to light polarization as well �31,36� and that the time
evolution of the system does not need to be cyclic or unitary
�37�. More recently, it was shown that the Berry phase also
shows up in multiply scattered light �34�. The expression for
the Berry phase � involves two factors: the spin s of the
particle and a solid angle � �which we call the geometric
phase� or, more generally, the curvature of the phase space of
the system enclosed by the evolution of the system during
one cycle. The Berry phase expression is �29�

� = − s� . �24�

In polymer physics, time is replaced by a curvilinear space
coordinate and the geometric phase � is called writhe �38�.
The fluctuations of the writhe induced by thermal fluctua-
tions of the polymer’s shape have been studied numerically
using a Monte Carlo approach �39�. For long polymers, the
distribution of the Berry phase was found Gaussian. There is
no exact approach for the statistics of the Berry phase for
random paths.

For simplicity, we consider the equivalent of a nearly
adiabatic time evolution and compare the phases of the field
before and after a path for which the initial and final frames
are equal. Such a path corresponds to a closed circuit in the
phase space �31�. We also assume that the scattering is elastic
and that the spin is conserved in both scattering and propa-
gation. Between two scattering events, the state of a particle
is simply defined by the direction of its momentum, and the
phase space is thus the unit sphere. The adiabatic evolution
would correspond to a continuous and slow movement of the
direction of the momentum on the sphere. In case of strong
forward scattering, each scattering event corresponds to a
small change in the direction of propagation, which nearly
satisfies the adiabatic condition for the Berry phase to occur.
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The geometric phase is the solid angle enclosed by the unit
wave vector p̂= Pẑ along its trajectory on the unit sphere.

To reveal the Berry phase, we consider a trajectory made
of n scattering events and the n+1 local frames associated to
each propagation. We denote by ��i ,�i ,�i� the Euler angles
of each frame after the decomposition of Eq. �2�. An ex-
ample of this construction, with n=6, is shown on Fig. 3. We
consider the case of strong forward scattering so that the
coordinates ��i+1 ,�i+1� and ��i ,�i� of the frames Pi+1 and Pi
are close to one another. In Fig. 3, it corresponds to the case,
where the points Piẑ and Pi+1ẑ on the unit sphere are close to
each other, compared to the radius of the sphere. We call

��̃i , �̃i , �̃i� the Euler angles of the rotations Pi
−1Pi+1 in the

same way as we have done in Eq. �16�. The strong scattering

assumption corresponds to �̃i�1. To ensure readability of

Fig. 3, we have represented a path with large angles �̃i that
do not correspond to a strong forward scattering. By analogy
with a spinning top, for which the instantaneous rotation

around the third axis is expressed by �̇ cos �+ �̇ �40�, Chap.
VI, we deduce that the rotation around its direction of propa-

gation experienced by the particle is �̃i+ �̃i���i+1
−�i�cos �i+�i+1−�i. The Berry phase for a given component
of the field is, in our case, identified as the phase difference
between the values of this component expressed in the two
frames P0 and Pn. The original definition of the Berry phase
demands that the evolution be cyclic. So we have to impose
that the frames P0 and Pn are equal, which corresponds to
one cycle. Therefore, we have �n=�0 mod 2� and �n
=�0 mod 2�. The extra phase for a spin state s between the

frames 0 and n is, according to the phase factor ei�s�̃+s��̃� in
Eq. �21�,

� = s

i=0

n−1

�̃i + �̃i. �25�

We have used the conservation of the spin �s�=s�. We re-
write the sum using the quantities �1−cos �i� and we get, up
to a multiple of 2�,

� = − s

i=0

n−1

�1 − cos �i���i+1 − �i� = − s� mod 2� . �26�

We recognize that the sum in Eq. �26� is a spherical area
�Fig. 3�. It is equal to the geometric phase up to a multiple of
4� because of the indetermination of the solid angle �39�.
We have retrieved the expression of the Berry phase �24�.
The equality between the sum in expression �26� and the
geometric phase holds modulo 4�, rather than 2�, for topo-
logical reasons �28�. The indetermination modulo 4� plays
here no role because s is an integer or a half-integer, so the
phase is undetermined modulo 2�.

Remarkably, the Berry phase emerges in our local frame
model without any special effort. The geometrical nature of
the Berry phase appears here clearly. As it was already dem-
onstrated, the existence of the Berry phase is not restricted to
cyclic systems and can be extended to nonclose path and to
nonunitary evolution �in our theory, if there is absorption, for
instance� �37�. The statistics of the Berry phase for random

walks is a technical and difficult problem �41,42�. Our ap-
proach will make it possible to obtain exact results concern-
ing the Berry phase statistics.

A possible experiment to observe the Berry phase of light
consists in setting a directional linearly polarized source at
the edge of a slab of a medium filled with scatterers and
observe the outgoing light through a collimator and a linear
polarizer. To ensure strong forward scattering, the scatterers
must be large such that the anisotropy g defined as the aver-
age cosine of the scattering angle verifies 1−g�1. One can,
for instance, place the polarizer in front of the source, its
plane orthogonal to the direct beam and its axis making an
angle � with the polarization of the source. The intensity as a
function of � will display deviations from the expected
cos2 � behavior if there were no scatterers. If the slab depth
is large, the Berry phase will spread out on a width larger
than 2� and the intensity will be constant as a function of �.
The experiment has therefore to be performed with slab
depths of a few transport mean free paths ��=� / �1−g� �� is
defined in the next section�. Different concentrations will
lead to different deviations.

VI. GENERALIZED GREEN-DYSON EQUATION

The complexity in multiple scattering stems from the
summation of the contributions to the field of all the paths
from the source to the observer and potentially from their
interferences. In a first approximation, one often neglects
these interferences and assumes that the scattering events are
independent from each other. In a disordered system, the
averaging over disorder can thus be performed without the
sophisticated diagram techniques needed to preserve interfer-
ence effects. The elements of the theory that we have intro-
duced in Secs. III and IV are used in this section to write a
generalized Green-Dyson equation for the multiple scattering
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FIG. 4. Examples of functions dmn
l �cos �� for small values of l.

The only function with l=0, d00
0 =1 is not shown. Top: graphs of

functions with spin index 0 for l=1 and l=2. One recognizes the
unnormalized spherical harmonics. Middle: graphs of functions
with spin index 1 for l=1 and l=2. Bottom: graphs of functions
with spin index 1/2 for l=1 /2 and l=3 /2.
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of polarized waves under the assumption of independent
scattering events. This equation applies to the directional

Green’s operators. It relates the free Green’s operator Ĝ0 we
have introduced in Sec. III to the effective Green’s operator

Ĝ of the same medium filled with scatterers. In the second
part of this section, we introduce the Fourier transform of the
generalized Green-Dyson equation.

Consider a medium filled with scatterers at fixed positions
ri. The presence of the scatterers is equivalent to the intro-
duction of the perturbation in the transport equation. In the
formalism of the Green’s functions, it corresponds to intro-
ducing a transition matrix or T matrix. We now consider the

perturbed Green’s operator Ĝ developed as a Born expansion

in terms of Ĝ0,

Ĝ = Ĝ0 + Ĝ0T̂�̂Ĝ0 + Ĝ0T̂�̂Ĝ0T̂�̂Ĝ0 + ¯ . �27�

The first term of the right-hand side of Eq. �27� stands for the
unscattered field, the second term for the single scattering,
and so on. Note that the expansion stands for a classical field,
using a quantized electromagnetic field would require addi-
tional features �12�.

For a known distribution of scatterers, the operator Ĝ is
the Green’s function of the multiply scattering system for
polarized waves. If the functions G, Tss�� ,�� �defined in

Secs. III and IV, respectively� and the operator Âspin are

known, Eq. �27� for Ĝ solves the problem. But usually we
are interested in disordered systems, for which the exact po-
sition of scatterers is unknown. It will thus be impossible to
make a prediction depending on the particular realization of
disorder, but it is possible to average over all such realiza-
tions �ensemble average� and to write a generalized Green-
Dyson equation for the average operators. We formulate the
results using the simplest possible model of disorder. To per-
form the average over disorder, we neglect the volume of the
scatterers and consider that each position ri is uniformly dis-
tributed in the volume V. The contribution of disorder in Eq.
�27� comes exclusively from the averaging of the operator

T̂�̂. We introduce the self-energy �̂���

�̂��� = T̂����̂�r� . �28�

The line denotes the average over all positions for all the
scatterers, which we will explicitly define now for the calcu-

lation of the average density. The average of an operator Ō̂ is

simply defined for arbitrary �1� and �2� by �1�Ō̂�2�= �1�Ô�2�.
If the scatterers all have the same operator T̂���, the self-
energy becomes

�̂��� = T̂����̂�r� = T̂���	
V

dr1

V
¯	

V

drN

V 

i=1

N


�3��ri − r�

= T̂���

i=1

N
1

V = T̂���
N

V
� �T̂��� , �29�

where � is the mean density. Our approach of disorder is
nonetheless naive, we have neglected the possibility that a

trajectory visits several times the same scatterer and thereby
omitted some possible correlations in the averaging proce-
dure. The topic of correlations created by several visits to the
same scatterer is addressed abundantly in the literature. The
most remarkable result is that for a sufficiently small density
of scatterers; the expression of the Green-Dyson equation
remains the same, but with a modified self-energy expressed
as an expansion in powers of � �7�. The first order of the
expansion is exactly the expression we have found in for-
mula �28�, which is an encouraging fact in favor of an
equivalent expansion in our framework. Such an equivalent
expansion would extend the domain of validity of our results
to higher densities. We will address this question in our fu-
ture work.

Let us call Ḡ the average Green’s operator resulting from

the averaging over disorder of the operator Ĝ defined in Eq.
�27�. In the case where all scattering events are independent,

the average of the products involving several times �̂ are the
products of the averages; this is sometimes called the Twer-
sky approximation �6�. The Born expansion �27� becomes, in
this approximation, the series

Ḡ = Ĝ0 + Ĝ0�̂Ĝ0 + Ĝ0�̂Ĝ0�̂Ĝ0 + ¯ . �30�

We have so far expressed the functions only in the direct
space of position and frames. Physical problems however are
easier to formulate in the reciprocal space because convolu-
tions become products. We denote by �q� the reciprocal space
representation of �r� and we have the well-known contraction

�r�q� = eiq·r, �31�

which gives, together with the closure relation �d3r�r��r�
=1̂, the fundamental relations for the Fourier transform �47�.
Similarly, we use the representation in reciprocal time that
has the same properties as the reciprocal space.

As the system is invariant along time translations, the

operators T̂, Ĝ0, and Ḡ, noted as Ô, depend on one frequency
�. Similarly, in the average medium obtained after integra-
tion over disorder, the translational invariance is restored; the
operators only depend on one vector q. We introduce the

notation Ô�� ,q� for operators acting on the Hilbert space

made of the elements �P ,s�, so that �q�Ô����q�
= Ô�� ,q�
�3��q�−q�. The representation in reciprocal space
for rotation and spin has different properties and is presented
in the next section using an expression equivalent to Eq.
�31�.

The Born expansion written using the operators �̂���,
Ĝ0�q ,��, and Ḡ�q ,�� reduces to

Ḡ�q,�� = Ĝ0�q,�� + Ĝ0�q,���̂���Ĝ0�q,��

+ Ĝ0�q,���̂���Ĝ0�q,���̂���Ĝ0�q,�� + ¯ .

�32�

The operator �̂���Ĝ0�� ,q� has a norm ���extq
−1 and is

therefore smaller than 1 for large q or sufficiently small den-

sity �. Consequently, the series 
n��̂���Ĝ0�� ,q��n con-
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verges and we can rewrite the expansion �32� in a self-
consistent way

Ḡ�q,�� = Ĝ0�q,�� + Ĝ0�q,���̂���Ḡ�q,�� . �33�

Equation �33� is a generalized Green-Dyson equation for the
directional Green’s operators. The convergence of the series
occurs when q��1, where ��1 /��ext is the extinction
mean free path. The theory described by the generalized
Dyson equation does not apply to situations, where q��1,
because scatterers are not in the far field of each other any-
more. In the next section, we introduce the rotational har-
monics transform on the variable P to solve Eq. �33�.

In the expression of the free Green’s operator Ĝ0�� ,q�
�Eq. �14��, the factor 
��DP−1� modifies the usual expression
of the Green’s function �1 / ��

2

c2 −q2� i��, where the quantity
� is a infinitesimally small positive quantity. Using the
identity

	 d3r
ei�r/c

4�r
e−iq·r
��DP−1� =

1

4�

1

��
c

− q · Pẑ�2 ,

we get the Fourier transform

�P�,s��Ĝ0
R,A��,q��P,s�

=
1

��
c

− q · Pẑ�2

� i�

�s��Ĝspin����s��P��P� . �34�

The R ,A superscript stands for the retarded and advanced
Green’s operator. As we have already mentioned, the scalar
theory must be retrieved if we sum our expressions over P
and s. Here we can check that Eq. �34� integrated over P and
summed up on s yields formally



s=−S

S 	
SO�3�

dP
1

��
c

− q · Pẑ�2eis�	s�q,�� =
1

�2

c2 − q2

	0�q,�� .

�35�

The regularization by the infinitesimal imaginary term �i�
can be performed on the right-hand side term of Eq. �35� so
that we retrieve the usual Green’s function for the field com-
ponent with spin s=0. The superposition of all partial direc-
tional fields cancels out because of the phases of all the spins
with s�0. The final result depends on q= �q�: the directivity
of the directional Green’s operator �34� is lost. We call the
expression �� / c −q · Pẑ�−2 the directional factor of the
Green’s operator.

We can perform the same integration as in formula �35�
on each operator Ĝ0�� ,q� in formula �33�. We retrieve

the scalar Green-Dyson equation Ḡ�� ,q�=G�� ,q�
+G�� ,q�����Ḡ�� ,q� with

���� =
1

2
�	

0

�

sin �d�T00��,�� .

The Green’s operator Ḡ does not necessarily act sepa-
rately on �r , t� and �P ,s�. In optics, for instance, the Faraday
effect in a medium with Verdet constant V creates a phase
shift sVB ·p. In this case, provided that the spin is conserved
during propagation, Eq. �34� is modified and the Green’s

operator Ĝ0 becomes

�P�,s��Ĝ0
R,A�q,���P,s�

=
1

��c + �sVB − q� · Pẑ�2� i�
�s��Ĝspin����s��P��P� .

�36�

The separation of the paper into two parts to explain the
harmonic transforms is intended only to keep the explana-
tions simple. The Fourier transform presented in this section
and the rotational harmonics transform that we introduce in
the next section could have been presented simultaneously.
This is actually mandatory in the case of a spin-orbit cou-
pling involving �P ,s� and q like the Faraday effect, as illus-
trated by formula �36�.

VII. ROTATIONAL HARMONICS REPRESENTATION

The linear representation of compact Lie groups provides
a harmonical analysis on the group SO�3�, which is the
equivalent of Fourier series for periodic functions. These har-
monical analysis is different from the Fourier transform be-
cause SO�3� is a compact noncommutative Lie group. For
our purpose, there is no need to know this mathematical
theory in detail. Some formulas used in our theory are pre-
sented in Appendix A.

The reciprocal representations are labeled by a main index
l�0, which can be an integer or a half-integer and two sub-
indices m and n, taking the values −l ,−l+1, . . . , l. We denote
them by � l

mn � and we have

�R� l
mn� = in−m�2l + 1eim�dm,n

l �cos ��ein�, �37�

with �, �, and � the Euler angles of R. Plots of the first dm,n
l

function are displayed in Fig. 4. The closure relation,



l=�

�



m=−l

l



n=−l

l

� l
mn�� l

mn � = 1̂, �38�

is useful to obtain most of the result provided in the present
work. We call the function �R � l

mn � the rotational harmonics
�the misleading terminology “generalized spherical harmon-
ics” is often used�. These functions are normalized Wigner D
functions �18,43�. The indices of the sums on l, m, and n in
Eq. �38� have steps equal to 1. �, the lowest order of l,
depends on the spin S of the wave and takes the value 0 or
1/2 if the spin S is an integer or a half-integer, respectively. It
follows that the indices l, m, and n are either all integers or
all half-integers depending on S. For a given l �the order of
the harmonics�, there are �2l+1�2 orthogonal functions,
which seems a lot. We will see that for l�S, only �2S
+1��2l+1� harmonics components have to be taken into ac-
count. The functions dm,n

l are defined from ZYZ Euler angles
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and are real valued; their full expression is given in Eq. �A1�.
We have added the unconventional factor in−m to obey the
identity �R � l

mn ��= �R−1 � l
nm � �that is we have suppressed the

factor �−1�n−m in this latter relation�.
The rotational dependence of a state can be expressed as a

function of the frame P with the bracket notation �P �	� or
as a function of rotational harmonics indices � l

mn �	�. Our
computation uses this latter representation because it is re-
lated to the spin in a fundamental way. Let us use the closure

relation of the rotation representation �SO�3�dR�R��R�=1̂ to
get the expression

� l
mn ,s�	� = 	

SO�3�
dR� l

mn ,s�R,s��R,s�	� . �39�

According to relations �4� and �37�, the integration over the
spin angle just leaves a factor 
ns, stating that the represen-
tation for a spin eigenvalue s involves only the kets � l

ms �. In
the theory of multiple scattering, S is fixed and there is only
one species of particle involved. It means that in the Hilbert
space of physical states, the equality � l

mn � � �s�= � l
ms � � �s�
ns

is valid and the n index can be left out without any restriction
on the physical content of the theory.

We use the rotational harmonics to expressed the products
of the operators used in the generalized Dyson Eq. �33�,

� l�
m�s�

�ḠR,A�q,��� l
ms� = � l�

m�s�
�Ĝ0

R,A�q,��� l
ms�

+ 

�=−S

S



L=�

�



M=−L

L



��=−S

S



L�=�

�



M�=−L�

L�

� l�
m�s�

�Ĝ0
R,A�q,��� L

M��
�� L

M� ��̂���� L�
M����� L�

M���
�ḠR,A�q,��� l

ms� . �40�

Would we have used the representation in SO�3�, we would
have obtained integrals instead of the discrete sums. The
sums over L and L� are infinite. However, like in Fourier
series, it is possible to truncate the sum because the brackets
amplitudes decrease for large L like �L �for a certain �, 0
���1� such that high-order coefficients can be neglected.
The sums on indices L, M, and � can be seen as sums over a
single index. Equation �40� is therefore a discrete linear
equation and is, up to a one-to-one transformation of
�L ,M ,�� into a single index, a matrix equation. If the coef-

ficients of Ĝ0�q ,�� and �̂��� are known, one can compute

Ḡ�q ,�� with standard linear algebra and get a general solu-
tion for the transport of polarization in multiple scattering by

inverting the matrix of 1̂− Ĝ0�̂.

The directional Green’s operator Ḡ describes the transport
in an effective homogeneous medium. Paths statistics and
Berry phases are included in this description, which repre-
sent an improvement over the usual effective Green’s func-
tions used in multiple-scattering theories. In the presence of
several different kinds of scatterers, with densities �i and

scattering matrices T̂i, we get an effective Green’s operator

by replacing �̂ by 
i�iT̄i. The scattering properties of the
different scatterers are averaged and their respective weights

are proportional to their respective densities. If the scatterers
are not spherical and have random-independent orientations,

the effective T̂ matrix is the average over all orientations of

the orientation-dependent T̂ matrices. In particular, if the ori-

entation probability is uniform, the average T̂ matrix is

equivalent to a spherical scatterer’s T̂ matrix and the spheri-
cal symmetry can be used as it is described in the next sec-
tion.

To compute the rotational harmonics expansion of Ḡ up to
order L, one needs to use approximately �2S+1�L2 triplets
�l ,m ,n� for the incoming frame, and as much for the outgo-
ing frame. Therefore, the required number of rotational har-
monics coefficients for the computation of the Green’s op-
erator scales like �2S+1�2L4. The complexity of the
inversion of the linear system �40� scales approximately like
L5.

VIII. ROLE OF ROTATIONAL INVARIANCE

We have considered in the previous sections the general
case of a homogeneous medium invariant under translations,
and we have decomposed the vectors of the three-
dimensional space into a radius part and an angular part to
construct the general formalism for a directional Green’s op-
erator. A special and important case shows up when the me-
dium and the scatterers are also both invariant under rotation.
In the SO�3� representation, we have in this case for all
frames P and P� the equality already discussed in Sec. IV

�P�,s���̂����P,s� = �P−1P�,s���̂����I,s� . �41�

Using the closure relation �38�, we get

�P�,s���̂����P,s�

= 

l=�

�



m,n=−l

l

�P−1P�,s�� l
mn �� l

mn �̂����I,s� .

We expand the �P−1P� � l
mn � thanks to formula �A12� and sum

over n. After using formula �A13�, we obtain

�P�,s���̂����P,s�

= 

l=�

�



m,p=−l

l
1

�2l + 1
�P�� l

ps�
�� l

ms�
�̂����I,s��P� l

pm � .

By identification of the terms of the right-hand sum with the
rotational harmonics expansion in P and P� of the left-hand
term �A8�, we get

� l�
m�s�

���̂���� l
ms � =


ll�
mm�
�2l + 1

� l
s�s

��̂����I,s �

�

ll�
mm�
�2l + 1

�s�s
l ��� . �42�

If the medium and the scatterers are both invariant under

rotations, the free Green’s operator Ĝ0 and the Green-Dyson

operator Ḡ are both independent from the reference frame.
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These operators depend on q and on the incoming and out-
going directions of propagation Pẑ and P�ẑ; a rotation of the
reference frame acts simultaneously on these three vectors.
Using the decomposition

q = qQẑ , �43�

where Q is a rotation matrix and q= �q�, we express the in-
variance of the Green’s operators as

�P�,s��ĜR,A�q,���P,s� = �Q−1P�,s��ĜR,A�q,���Q−1P,s� ,

�44�

where Ĝ stands either for Ĝ0 or for Ḡ. In Eq. �44�, the op-
erator G depends only on q and �. Using formula �34�, one
can even simplify further the Green’s operators by defining

Ĝ0
R,A�q,�� =

c2

�2 ĝ0
R,A� cq

�
� , �45�

ḠR,A�q,�� =
c2

�2 ḡR,A� cq

�
� . �46�

As a consequence of formulas �14�, we find a symmetry
property for ĝ0

� l�
m�s�

�ĝ0
R,A� l

mn� � 
mm�.

The same symmetry has been observed for the T matrix in
Eq. �42� and we conclude that it will propagate to ĝ. A
straightforward calculation shows that Eq. �33� takes the
form

ḡR,A� cq

�
� = ĝ0

R,A� cq

�
� +

c2

�2 ĝ0
R,A� cq

�
��̂���ḡR,A� cq

�
� .

�47�

The nonvanishing rotational harmonics coefficients are re-
lated by

� l�
ms�

�ḡR,A� cq

�
�� l

ms �

= � l�
ms�

�ĝ0
R,A� cq

�
�� l

ms � +
c2

�2 

L=�

�
1

�2L + 1


�=−S

S



��=−S

S

� l�
ms�

�ĝ0
R,A� cq

�
�� L

m��
� � L

���
� L

m� �ḡR,A� cq

�
�� l

ms � . �48�

Thanks to invariance under rotations, we have obtained a
simplified formula for the generalized Green-Dyson equa-
tion. The matrices �s�s

l are already known for several spheri-
cal scatterers, such as Mie scatterers. Formula �48� contains
only three sums, two of which, over the indices � and ��, are
finite sums and correspond to a matrix product. The expan-
sion of ḡ into rotational harmonics coefficients is therefore a
single sum over a generalized index instead of a double sum
as in Eq. �40�. The computation of ḡ requires to know the
rotational harmonics coefficients of the � matrix and of ĝ0.
The coefficients of ĝ0 can be computed starting from expres-
sion �34�,

� l�
ms�

�ĝ0
R,A�x�� l

ms�

= is�−s�l +
1

2
�l� +

1

2
	

−1

1

d�
dms

l ���dms�
l� ���

�1 − �x�2� i�
.

�49�

For arguments x�1, there is a pole at 1 /x in the integral
�49�, which has the same physical origin as the pole of the
Green’s function in a scalar representation.

IX. CONCLUSION

We have presented a model for the transport of a polar-
ized wave in a complex medium containing anisotropies. In

our approach, the wave is represented in the particle picture
of quantum mechanics; the transport of the wave is described
as a superposition of trajectories with attached probabilities.
The polarization of the wave follows from the spin of the
particles. We express the amplitudes of the spin eigenstates
in local frames. A local frame is a rotation matrix, where the
third axis is colinear with the momentum of the particle.
Local frames form a convenient setting for polarized waves
because the phases of the spin eigenstates of a particle are
related to each other by frame-dependent factors. Based on
the local frame representation, we have established a theory
for the multiple scattering of particles with spin and we have
obtained a generalized Green-Dyson equation, which takes
into account the three-dimensional nature of the transport.
One can realize the three-dimensional nature of the formal-
ism by noticing that the Berry phase, by essence a three-
dimensional concept, naturally emerges from our equations.

We have suggested to solve the generalized Green-Dyson
equation using rotational harmonics, which transforms the
convolutions on SO�3� into matrix products. The solutions of
the generalized Green-Dyson equation are obtained by linear
algebra operations. The local frame description is able to
take into account several circular anisotropies, such as bire-
fringence and dischroism, Faraday effect, and anisotropic
scattering. In the special and important case where the scat-
terers and the medium are both invariant under rotations, the
generalized Green-Dyson equation takes a simpler form and
should be solvable with reasonably light numerical power.
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Linear birefringence and dichroism can also be described in
the theory but require a more complex mathematical treat-
ment, which was not presented here for the sake of simplic-
ity. Beyond the theory of multiple scattering, we believe that
the generalized Green-Dyson operator is a useful object for
the statistical study of random three-dimensional paths,
thanks to its ability to perform path integrals of direction-
dependent functionals.

The computation of the solution of the generalized Green-
Dyson equation using rotational harmonics is probably the
most efficient because it reproduces the properties of the
Fourier transform used to solve the usual Green-Dyson equa-
tion. On one hand, as the rotational harmonics form a dis-
crete basis of the algebra on SO�3�, one only needs to com-
pute for each value of cq /� a discrete set of coefficients. On
the other hand, the maximum order L one has to use to get a
physically relevant result grows with the strongest anisotropy
of the system. Despite the simplicity of the expression of the
solutions, it is not conceivable to draw the calculations ana-
lytically in general. The numerical difficulties lie in two
points: the inversion of the linear system �40� or �48� and the
expression of the operator ĝ0 �49�.

We have neglected the interactions between scatterers,
which can create correlations between their positions. Inter-
actions can be handled by the introduction of the pair-
correlation function �or a structure factor�, which would en-
ter as a factor in the second-order term of the Born expansion
�44�. In terms of higher order n of the Born expansion, one
should manipulate n-points correlation functions, which in-
troduce a supplementary difficulty. Much less is known con-
cerning the interacting scatterers than concerning the self-
energy. We also considered that the medium is globally
invariant under translation and that the density of scatterers
is homogeneous, which excludes small size systems and
leads out the effects of boundaries. Our theory concerns the
bulk of a system, but experiments are usually carried out
from the edges. It is therefore an important issue to investi-
gate the role of the boundaries.

As such, our work should rather be considered as a step
toward a full theory of polarization transport in the presence
of anisotropies. It may nonetheless already lead to experi-
mental applications and investigations in complex media. On
a more general point of view, our work suggests that polar-
ized waves in complex media contain more information con-
cerning anisotropies than scalar waves and that polarization
is therefore a relevant supplementary observable for the in-
vestigation of anisotropic systems. Our future work will be
dedicated to improve the domain of application of the pre-
sented framework to denser interacting or quantum systems.
First of all, the expression of the self-energy expansion in
powers of the density should be extended up to higher orders
and the formalism for intensity diagrams should be devel-
oped.
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APPENDIX A: THE ROTATIONAL HARMONICS

The rotational harmonics analysis is similar to the Fourier
analysis for periodic functions. It is the direct application of
the theorem of Peter and Weyl �45� to the representations of
the group SO�3�. Peter-Weyl theorem states that any complex
function f defined on SO�3� may be developed into rotational
harmonics series. The representations of SO�3� were intro-
duced in physics by Wigner �18� but remain confidential in
physical theories mostly because in spinless theories the ro-
tational harmonics simplify to spherical harmonics. An im-
portant application in physics was to establish Wigner-
Eckart’s theorem �18,46�. �One can notice that the Eq. �42� is
a particular case Wigner-Eckart’s theorem.� It was shown in
Sec. VII that the set of rotational harmonics useful in the
problem of scattering of spin particles depends on the spin S.
More precisely, it depends whether S is an integer or a half-
odd integer. The rotational harmonics with a half-odd integer
main index stand for fermions, while the ones with an integer
main index stand for bosons.

The rotational harmonics are given by formula �37� and

dmn
l �cos �� = ��l − m� ! �l + m� ! �l − n� ! �l + n�!

� 

p=max�0,m−n�

min�l+m,l−n�

�− 1�p

�

�cos
�

2
�2l+m−n−2p�sin

�

2
�n−m+2p

�l + m − p� ! p ! �n − m + p� ! �l − n − p�!
.

�A1�

Example of plots are displayed in Fig. 4. Remark that the
arguments of factorials and the powers are integers, in both
cases where l, m, and n are integers or half-integers. The
computations of the set of dmn

l functions are simplified by the
symmetries

dm,n
l �cos �� = �− 1�l+mdm,−n

l �− cos �� , �A2�

=�− 1�l+mdm,−n
l �cos�� − ��� , �A3�

=�− 1�m−nd−m,−n
l �cos �� , �A4�

=�− 1�m−ndn,m
l �cos �� . �A5�

One can also define the rotational harmonics from the spheri-
cal harmonics by means of an operator introduced in refer-
ences �19�. This result is sketched in Appendix B.

In our notations, the harmonics expansion is written

f�R� = �R�f� = 

l��



m,n=−l

l

�R� l
mn �� l

mn �f� , �A6�

where the harmonics coefficients are

V. ROSSETTO PHYSICAL REVIEW E 80, 056605 �2009�

056605-12



� l
mn �f� = 	

SO�3�
dR� l

mn �R��R�f� = 	
SO�3�

dR�R� l
mn ��f�R� .

�A7�

Similarly, the operators can be expressed in the basis of the
rotational harmonics,

O�R�,R� = �R��Ô�R� = 

l,l���



m,n=−l

l



m�n�=−l�

l�

� l�
m�n�

�Ô� l
mn�

��R�� l�
m�n���R� l

mn��
, �A8�

where

� l�
m�n�

�Ô� l
mn� = 	

SO�3�
dR�	

SO�3�
dRO�R�,R��R� l�

m�n����R� l
mn� .

�A9�

The product of operators Ĉ= ÂB̂ is expressed in direct space
as a convolution

�R��Ĉ�R� = 	
SO�3�

�R��Â�X��X�B̂�R�dX , �A10�

and in harmonics space as a series

� l�
m�n�

�Ĉ� l
mn� = 


L=�

�



M,N=−L

L

� l�
m�n�

�Â� L
MN�� L

MN �B̂� l
mn� .

�A11�

The sum over M and N is the usual matrix product. In our
calculations, we also use the relations



p

�R1� l
mp��R2� l

pn� = �2l + 1�R1R2� l
mn� , �A12�

�R−1� l
mn� = �R� l

nm��. �A13�

It is also interesting to note that we have the Parseval-
Plancherel formulas,

�f �f� = 	
SO�3�

�f�R��2dR = 

l=�

�



m,n=−l

l

�� l
mn �f��2, �A14�

	 dR	 dR���R��Ô�R��2

= 

l,l�=�

�



m,n=−l

l



m�,n�=−l�

l�

�� l�
m�n�

�Ô� l
mn��2. �A15�

APPENDIX B: ROTATIONAL HARMONICS UNDER
OTHER NAMES

In this appendix, we compile the relations between the
rotational harmonics and other special functions used in lit-
erature under several names and with a large variety of nor-
malizations. This appendix is intended to allow those famil-

iar with one the numerous forms of the rotational harmonics
to comprehend our presentations from a wider point of view.
Conventionally, the argument cos � may be written �.

Wigner introduced the rotational harmonics arranged in
matrices called Wigner’s D matrices of order l �18�. The
elements of D�l� are given by

Dm�m
l ��,�,�� = e−im��dm�m

l �cos ��e−im�. �B1�

1. Functions � and � used in the Mie expansion

The well-known Mie theory for spherical dielectric scat-
terers provides the general solution of the scattering of a
plane wave by a dielectric sphere of arbitrary size and refrac-
tion index �1,2�. Forward scattering appears for large spheres
of radius a�2� /�; this is sometimes called the Mie effect.
The scatterers are spherical, so they are invariant under rota-
tions and the T matrix is thus of the form of Eq. �42�. Written
in the spin eigenstates basis �also called circular polarization
basis�, the T-matrix coefficients take the form

Tss���,�� =
2i�c

�
is�S1��� + ss�S2���� s,s� = � 1,

�B2�

with the coefficients S1��� and S2��� as defined by van de
Hulst �4�.

Mie theory provides the expansion of the coefficients S1
and S2 into series of terms involving special functions re-
ferred as �n and �n in �4� and in many other textbooks. The
coefficients of the expansion are called an for S1 and bn for
S2. In the circular polarization basis, we obtain the main
coefficients as combination of �n and �n,

S1��� + S2��� = 

n=1

�

�2n + 1�
an + bn

2

�n�cos �� + �n�cos ��
n�n + 1�

,

S1��� − S2��� = 

n=1

�

�2n + 1�
an − bn

2

�n�cos �� − �n�cos ��
n�n + 1�

.

�B3�

The functions �l��� and �l��� are defined by �0=0, �1=1,
and

�l+1��� =
2l + 1

l
��l��� −

l + 1

l
�l−1��� , �B4�

�l�x� = l��l��� − �l + 1��l−1��� . �B5�

As it was shown by Domke �20�, we have the relations

�l��� = l�l + 1��d1,1
l ��� + d1,−1

l ���� , �B6�

�l��� = l�l + 1��d1,1
l ��� − d1,−1

l ���� . �B7�

�In �5�, the functions � and � are defined with the same
equations, without the factor l�l+1�.�

It appears that the Mie expansion is nothing but the rota-
tional harmonics expansion for spins s=�1 of a spherical
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scatterer’s T̂ matrix. In the low-density approximation used
in the paper, the self-energy matrix defined in Eq. �42� is
then

�1,�1
l = − �−1, 1

l = 2i��2l + 1�
�c

�

al� bl

2
.

One should not be surprised because Mie’s result comes
from the resolution of Maxwell’s equations, which are vec-
torial, thus by nature concerning fields of spin S=1.

2. Vector spherical harmonics

In electromagnetism, the introduction of spherical har-
monics is motivated by the possibility of multipole expan-
sion to solve several problems �3,5�. The multipolar expan-
sion of a vector field can be expressed in terms of “vector
spherical harmonics.” There does not seem to be a standard
notation for these vectors. In Ref. �3�, one finds the definition
of Xlm�� ,��, while in Ref. �5� we have

Ylm
�e��r� =

1
�l�l + 1�

r � Ylm, �B8�

Ylm
�m��r� = rXlm = r̂� Ylm

�e�, �B9�

Ylm
�o��r� = Ylmr . �B10�

The spherical harmonics Ylm being given by

Ylm��,�� =�2l + 1

4�
��l − m�!

�l + m�!
dm,0

l �cos ��eim�,

�B11�

we have in spherical coordinates �r̂ , �̂ , �̂�

Ylm
�e��r� =

�− 1�mil

�l�l + 1�
�2l + 1

4�
��l − m�!

�l + m�!

�
eim�

sin ��
0

1 − �2

2
�dm,1

l ��� + dm,−1
l ����

imdm,0
l ���

� .

�B12�

Only the vector spherical harmonics with m=�1 are used to

solve electromagnetic problems. We find again that it is more
natural to look for the solutions using the basis adapted to
spin S=1 in electromagnetism.

3. Generalized spherical harmonics

In the work of Kuščer and Ribarič, “generalized spherical
harmonics” have been introduced for the Stokes parameters
describing polarized light �17�. Stoked parameters are inten-
sities and therefore correspond to the amplitude of the wave
field squared. This is why the rotational harmonics appear in
this work and followers with a power of two �20,21,23�. In
other words, the expansion involves the functions dm,0

l and
dm,�2

l . The spherical functions are, in these papers, noted
Pmn

l �cos �� and are simply

Pmn
l ��� = in−mdmn

l ��� . �B13�

Our rotational harmonics �R � l
mn � only differ from these

spherical functions by a normalization factor �2l+1, which
we introduced to simplify the expression of the convolution
formulas.

4. Spin-weighted spherical harmonics sYl
m

Newman and Penrose introduced functions called the
“spin-weighted spherical harmonics” to study gravitational
radiations �which have a spin S=2� �19�. The spin-weighted
functions are obtained after derivation of the spherical har-
monics by the operator � �read “thop”� defined, for a spin-
weight s function fs, by

ðfs��,�� = − �sin ��s� �

��
+ i

1

sin �

�

��
�sin ��−sfs��,�� .

�B14�

The usual spherical harmonics are of spin-weight 0 and
the spin-weighted spherical harmonics of spin s are defined
by sYlm�� ,��= 1

2
��l−s�!

�l+s�!ð
sYlm for s�0 and sYlm�� ,��

= 1
2
��l−s�!

�l+s�! �−ð�sYlm for s�0. We have the relation

sYlm��,�� = �− 1�m+s�2l + 1

4�
dm,−s

l �cos ��eim�. �B15�
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