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A Resurrection of the Condorcet Jury Theorem

Yukio Koriyama� and Balázs Szentesyz

September 19, 2008

Abstract

This paper analyzes the optimal size of a deliberating committee where, (i) there is no

con�ict of interest among individuals, and (ii) information acquisition is costly. The committee

members simultaneously decide whether or not to acquire information, and then, they make

the ex-post e¢ cient decision. The optimal committee size, k�, is shown to be bounded. The

main result of this paper is that any arbitrarily large committee aggregates the decentralized

information more e¢ ciently than the committee of size k��2. This result implies that oversized
committees generate only small ine¢ ciencies.

1 Introduction

The classical Condorcet Jury Theorem (CJT) states that large committees can aggregate decen-

tralized information more e¢ ciently than small ones. Its origin can be traced to the dawn of

the French Revolution when Marie Jean Antoine Nicolas Caritat le Marquis de Condorcet (1785,

translation 1994) investigated the decision-making processes in societies.1 A recent literature on

committee design has pointed out that if the information acquisition is costly, the CJT fails to hold.

The reasoning is that if the size of a committee is large, a committee member realizes that the

probability that she can in�uence the �nal decision is too small compared to the cost of information

acquisition. As a result, she might prefer to avoid this cost and free-ride on the information of

others. Therefore, larger committees might generate lower social welfare than smaller ones. These

results suggest that in the presence of costly information acquisition, optimally choosing the size

of a committee is both an important and delicate issue. In this paper, we characterize the welfare

loss associated to oversized committees, and we show that this loss is surprisingly small in certain

environments. Therefore, as long as the committee size is large enough, the careful design of a

�Département d�Economie, Ecole Polytechnique, Palaiseau Cedex 91128, France.
yDepartment of Economics, University College London, Gower Street, London WC1E 6BT, United Kingdom.
zThe authors are grateful to seminar participants at the University of Chicago, University of Rochester, UCL,

Ecole Polytechnique, Arizona State University, Maastricht University, and University of Hawaii for helpful comments.
1Summaries of the history of the CJT can be found in, for example, Grofman and Owen (1986), Miller (1986),

and Gerling, Grüner, Kiel, and Schulte (2003).
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committee might not be as important as it was originally thought to be. In fact, if either the in-

formation structure is ambiguous, or the committee has to make decisions in various informational

environments, it might be optimal to design the committee to be as large as possible.

Committee design receives a considerable attention by economists because, in many situations,

groups rather than individuals make decisions. Information about the desirability of the possible

decisions is often decentralized: individual group members must separately acquire costly informa-

tion about the alternatives. A classical example is a jury trial where a jury has to decide whether

a defendant is guilty or innocent. Each juror individually obtain some information about the de-

fendant at some e¤ort cost (paying attention to the trial, investigating evidences, etc.). Likewise,

when a �rm is facing the decision whether or not to implement a project each member of the

executive committee can collect information about the pro�tability of the project (by spending

time and exerting e¤ort). Yet another example is the hiring decisions of academic departments.

Each member of the recruiting committee must review the applications individually before making

a collective decision. What these examples have in common is the fact that information acquisition

is costly and often unobservable.

The exact setup analyzed in this paper is described as follows. A group of individuals has to

make a binary decision. There is no con�ict of interest among the group members, but they have

imperfect information about which decision is the best. First, k individuals are asked to serve

in a committee. Then, the committee members simultaneously decide whether or not to invest

in an informative signal. Finally, the committee makes the optimal decision given the acquired

information. We do not explicitly model how the committee members communicate and aggregate

information. Instead, we simply assume that they end up making the ex-post e¢ cient decision.2

The only strategic choice an individual must make in our model is the choice whether or not to

acquire a signal upon being selected to serve in the committee.

The central question of our paper is the following: how does the committee size, k, a¤ect social

welfare? First, for each k, we fully characterize the set of equilibria (including asymmetric and

mixed-strategy equilibria). We show that there exists a kP (2 N) such that whenever k � kP , there
is a unique equilibrium in which each committee member invests in information with probability

one. Furthermore, the social welfare generated by these equilibria is an increasing function of

k. If k > kP , then there are multiple equilibria and many of them involve randomizations by

the members. We also show that the social welfare generated by the worst equilibrium in the

game, where the committee size is k, is decreasing in k if k > kP . The optimal committee size,

k�, is de�ned such that (i) if the committee size is k�, then there exists an equilibrium that

maximizes social welfare, and (ii) in this equilibrium, each member invests in information with

positive probability. We prove that the optimal committee size, k�, is either kP or kP + 1. This

2Since there is no con�ict of interest among the individuals, it is easy to design a mechanism which is incentive

compatible and e¢ ciently aggregates the signals. Alternatively, one can assume that the collected information is

hard.
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implies that the CJT fails to hold: large committees can generate smaller social welfare than

smaller committees. Nevertheless, we show that if the size of the committee is larger than k�, even

the worst equilibrium generates higher social welfare than the unique equilibrium in the committee

of size k� � 2. That is, the welfare loss due to an oversized committee is quite small.

Literature Review

Although the Condorcet Jury Theorem provides important support for the basis of democratic

decision making, many of the premises of the theorem have been criticized. Perhaps most impor-

tantly, Condorcet assumes sincere voting. That is, each individual votes as if she were the only

voter in the society. This means that an individual votes for the alternative that is best, conditional

on her signal. Austen-Smith and Banks (1996) showed that in general, sincere voting is not con-

sistent with equilibrium behavior. This is because a rational individual votes not only conditional

on her signal, but also on her being pivotal. Feddersen and Pesendorfer (1998) have shown that as

the jury size increases, the probability of convicting an innocent can actually increase under the

unanimity rule.

A variety of papers have shown, however, that even if the voters are strategic, in certain

environments the outcome of a voting converges to the e¢ cient outcome as the number of voters

goes to in�nity. Feddersen and Pesendorfer (1997) investigate a model in which preferences are

heterogeneous and each voter has a private signal concerning which alternative is best. They

construct an equilibrium for each population size, such that the equilibrium outcome converges

to the full information outcome as the number of voters goes to in�nity. The full information

outcome is de�ned as the result of a voting game, where all information is public. Myerson (1998)

has shown that asymptotic e¢ ciency can be achieved even if there is population uncertainty; that

is, a voter does not know how many other voters there are.

In contrast, the Condorcet Jury Theorem might fail to hold if the information acquisition is

costly. Mukhopadhaya (2003) has considered a model, similar to ours, where voters have identical

preferences but information acquisition is costly. He has shown by numerical examples that mixed-

strategy equilibria in large committees may generate lower expected welfare than pure-strategy

equilibria in small committees.3

Martinelli (2006) also introduced cost of information acquisition and, he allows the precision

of the signals to depend continuously on the amount of investment. Martinelli (2006) proves that

if the cost and the marginal cost of the precision are zero at the zero level of precision, then the

decision is asymptotically e¢ cient. More precisely, if the size of the committee converges to in�nity,

then there is a sequence of symmetric equilibria in which each member invests only a little, and

the probability of a correct decision converges to one.4

3The results are quite di¤erent if the voting, rather than the information acquisition, is costly, see e.g. Borgers

(2004).
4 In his accompanying paper, Martinelli (2007) analyzes a model in which information has a �xed cost, voters

are heterogeneous in their costs, and abstention is not allowed. On the one hand, the author shows that if the
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We think that Martinelli (2006) contributed substantially towards the understanding of the

e¢ ciency properties of group decision making if there is no �xed cost associated to information

acquisition. However, we believe that this �xed cost aspect is an essential feature of many environ-

ments. Indeed, one has to pay the price of a newspaper even if he decides to throw it away later.

The management of a company has to pay for a consultant even if the work of the consultant will

be completely ignored. Similarly, a juror has to sit through the trial even if he decides not to pay

any attention. Hence, we think that our paper is an important complementary result to Martinelli

(2006).

Numerous papers have analyzed the optimal decision rules in the presence of costly information.

Persico (2004) discusses the relationship between the optimal decision rules and the accuracy of

the signals. He shows that a voting rule that requires a strong consensus in order to upset the

status quo is only optimal if the signals are su¢ ciently accurate. The intuition for the extreme

case, where the decision rule is the unanimity rule, is the following: under the unanimity rule,

the probability of being pivotal is small. However, this probability increases as the signals become

more accurate. Therefore, in order to provide a voter with an incentive to invest in information,

the signals must be su¢ ciently accurate.

Li (2001), Gerardi and Yariv (2006), and Gershkov and Szentes (2004) have shown that the

optimal voting mechanism sometimes involves ex-post ine¢ cient decisions. That is, the optimal

mechanism might specify ine¢ cient decisions for certain signal pro�les. We believe that there are

many situations where such a commitment device is not available. That is why we simply restrict

attention to ex post e¢ cient decision rules. We believe that this is the appropriate assumption in

the context of a deliberating committee in which there is no con�ict of interest among individuals.

Section 2 describes the model. The main theorems are stated and proved in Section 3. Section

4 concludes. Some of the proofs are relegated to the Appendix.

2 The Model

There is a population consisting of N(> 1) individuals. The state of the world, !, can take one of

two values: 1 and �1. Furthermore, Pr [! = 1] = � 2 (0; 1). The society must make a decision, d,
which is either 1 or �1. There is no con�ict of interest among individuals. Each individual has a
bene�t of u (d; !) if decision d is made when the state of the world is !. In particular,

u (d; !) =

8>><>>:
0 if d = !;

�q if d = �1 and ! = 1;
� (1� q) if d = 1 and ! = �1;

support of the cost distribution is not bounded away from zero, asymptotic e¢ ciency can be achieved. On the other

hand, if the cost is bounded away form zero and the number of voters is large, nobody acquires information in any

equilibrium.

4



where q 2 (0; 1), indicates the severity of type-I error5 . Each individual can purchase a signal at
a cost c (> 0) at most once. Signals are iid across individuals conditional on the realization of the

state of the world. The ex-post payo¤ of an individual who invests in information is u � c. Each
individual maximizes her expected payo¤.

There are two stages of the decision-making process. At Stage 1, k (� N)members of the society
are designated to serve in the committee at random. At Stage 2, the committee members decide

simultaneously and independently whether or not to invest in information. Then, the e¢ cient

decision is made given the signals collected by the members.

We do not model explicitly how committee members deliberate at Stage 2. Since there is

no con�ict of interest among the members, it is easy to design a communication protocol that

e¢ ciently aggregates information. Alternatively, one can assume that the acquired information is

hard. Hence, no communication is necessary for making the ex-post e¢ cient decision. We focus

merely on the committee members�incentives to acquire information.

Next, we turn our attention to the de�nition of social welfare. First, let � denote the ex-post

e¢ cient decision rule. That is, � is a mapping from sets of signals into possible decisions. If the

signal pro�le is (s1; :::; sn), where n is the number of acquired signals, then

� (s1; :::; sn) = 1, E! [u (1; !)j s1; :::; sn] � E! [u (�1; !)j s1; :::; sn] .

The social welfare is measured as the expected sum of the payo¤s of the individuals, that is,

Es1;��� ;sn;! [Nu (� (s1; :::; sn) ; !)� cn] ; (1)

where the expectation also takes into account the possible randomization of the individuals. That

is, n can be a random variable.

If the committee is large, then a member might prefer to save the cost of information acquisition

and choose to rely on the opinions of others. On the other hand, if k is too small, there is too

little information to aggregate, and thus the �nal decision is likely to be ine¢ cient. The question

is: What is the optimal k that maximizes ex-ante social welfare? To be more speci�c, the optimal

size of the committee is k, if (i) the most e¢ cient equilibrium, in the committee with k members,

maximizes the social surplus among all equilibria in any committee, and (ii) each member acquires

information with positive probability in this equilibrium.

Since the signals are iid conditional on the state of the world, the expected bene�t of an

individual from the ex post e¢ cient decision is a function of the number of signals acquired. We

de�ne this function as follows:

� (n) = Es1;��� ;sn;! [u (� (s1; � � � ; sn) ; !)] .

We assume that the signals are informative about the state of the world, but only imperfectly.

That is, as the number of signals goes to in�nity, the probability of making the correct decision
5 In the jury context, where ! = 1 corresponds to the innocence of the suspect, q indicates how severe error it is

to convict an innocent.
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is strictly increasing and converges to one. Formally, the function � is strictly increasing and

limn!1 � (n) = 0. An individual�s marginal bene�t from collecting an additional signal, when n

signals are already obtained, is

g (n) = � (n+ 1)� � (n) :

Note that limn!1 g (n) = 0. For our main theorem to hold, we need the following assumption.

Assumption 1 The function g is log-convex.

This assumption is equivalent to g (n+ 1) =g (n) being increasing in n (2 N) : Whether or not
this assumption is satis�ed depends only on the primitives of the model, that is, on the distribution

of the signals and on the parameters q and �. An immediate consequence of this assumption is

the following.

Remark 1 The function g is decreasing.

Proof. Suppose by contradiction that there exists an integer, n0 2 N, such that, g (n0 + 1) >
g (n0). Since g (n+ 1) =g (n) is increasing in n, it follows that g (n+ 1) > g (n) whenever n � n0.
Hence, g (n) > g (n0) > 0 whenever n > n0. This implies that limn!1 g (n) 6= 0, which is a

contradiction.

Next, we explain that Assumption 1 essentially means that the marginal value of a signal

decreases rapidly. Notice that the function g being decreasing means that the marginal social

value of an additional signal is decreasing. We think that this assumption is satis�ed in most

economic and political applications. How much more does Assumption 1 require? Since g is

decreasing and limn!1 g (n) = 0, there always exists an increasing sequence fnmg1m=1 � N, such
that g (nm) � g (nm + 1) is decreasing in m. Hence, it is still natural to restrict attention to

information structures where the second di¤erence in the social value of a signal, g (n)� g (n+ 1),
is decreasing. Recall that Assumption 1 is equivalent to (g (n)� g (n+ 1)) =g (n) being decreasing.
That is, Assumption 1 requires that the second di¤erence in the value of a signal does not only

decrease, but decreases at an increasing rate.

In general, it is hard to check whether this assumption holds because it is often di¢ cult (or

impossible) to express g (n) analytically. The next section provides examples where Assumption 1

is satis�ed.

2.1 Examples for Assumption 1

First, suppose that the signals are normally distributed around the true state of the world. The

log-convexity assumption is satis�ed for the model where � + q = 1. That is, the society would

be indi¤erent between the two possible decisions if information acquisition were impossible. The

assumption is also satis�ed even if � + q 6= 1 if the signals are su¢ ciently precise. Formally:

6



Proposition 1 Suppose that si � N (!; �).
(i) If q + � = 1 then Assumption 1 is satis�ed.

(ii) For all q; �, there exists an "q;� > 0, such that Assumption 1 is satis�ed if "q;� > �.

Proof. See the Appendix.

In our next example the signal is ternary, that is, its possible values are f�1; 0; 1g. In addition,

Pr (si = !j!) = pr; Pr (si = 0j!) = 1� r; and Pr (si = �!j!) = (1� p) r:

Notice that r (2 (0; 1)) is the probability that the realization of the signal is informative, and p is
the precision of the signal conditional on being informative.

Proposition 2 Suppose that the signal is ternary. Then, there exists a p (r) 2 (0; 1) such that, if
p > p (r), Assumption 1 is satis�ed.

Proof. See the Appendix.

Next, we provide an example where the log-convexity assumption is not satis�ed. Suppose that

the signal is binary, that is, si 2 f�1; 1g and

Pr (si = !j!) = p; Pr (si = �!j!) = 1� p:

Proposition 3 If the signal is binary then Assumption 1 is not satis�ed.

Proof. See the Appendix.

3 Results

This section is devoted to the proofs of our main theorems. To that end, we �rst characterize the

set of equilibria for all k (2 N). The next subsection shows that if k is small, the equilibrium is

unique and each member incurs the cost of information (Proposition 4). Section 3.2 describes the

set of mixed-strategy equilibria for k large enough (Propositions 5). Finally, Section 3.3 proves the

main theorems (Theorems 1 and 2).

3.1 Pure-strategy equilibrium

Suppose that the size of the committee is k. If the �rst k � 1 members acquire information, the
expected gain from collecting information for the kth member is g(k � 1). She is willing to invest
if this gain exceeds the cost of the signal, that is, if

c < g (k � 1) : (2)

This inequality is the incentive compatibility constraint guaranteeing that a committee member is

willing to invest in information if the size of the committee is k.6

6 In what follows, we ignore the case where there exists a k 2 N such that c = g (k). This equality does not hold

generically, and would have no e¤ect on our results.
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Proposition 4 Let k denote the size of the committee. There exists a kP 2 N; such that, there
exists a unique equilibrium in which each member invests in a signal with probability one if and only

if k � min
�
kP ; N

	
. Furthermore, the social welfare generated by these equilibria is monotonically

increasing in k
�
� min

�
kP ; N

	�
.

Proof. Recall from Remark 1 that g is decreasing and limk!1 g (k) = 0: Therefore, for any

positive cost c < g (0)7 , there exists a unique kP 2 N such that

g
�
kP
�
< c < g

�
kP � 1

�
: (3)

First, we show that if k < kP then there is a unique equilibrium in which each committee member

invests in information. Suppose that in an equilibrium, the �rst k�1members randomize according
to the pro�le (r1; :::; rk�1) ; where ri 2 [0; 1] denotes the probability that the ith member invests.
Let I denote the number of signals collected by the �rst (k � 1) members. Since the members
randomize, I is a random variable. Notice that I � k � 1, and

Er1;:::;rk�1 [g (I)] � g (k � 1)

because g is decreasing. Also notice that from k � kP and (3), it follows that

g (k � 1) > c.

Combining the previous two inequalities, we get

Er1;:::;rk�1 [g (I)] > c.

This inequality implies that no matter what the strategies of the �rst (k � 1) members are, the
kth member strictly prefers to invest in information. From this observation, the existence and

uniqueness of the pure-strategy equilibrium follow. It remains to show that if k > kP , such a pure-

strategy equilibrium does not exist. But if k > kP , then g (k � 1) < c: Therefore, the incentive

compatibility constraint, (2), is violated and there is no equilibrium where each member incurs the

cost of the signal.

Finally, we must show that the social welfare generated by these pure-strategy equilibria is

increasing in k
�
� min

�
kP ; N

	�
. Notice that since N > 1,

c < g (k � 1) = �(k)� �(k � 1) < N (�(k)� �(k � 1)) .

After adding N�(k � 1)� ck, we get

N�(k � 1)� c (k � 1) < N�(k)� ck.

The left-hand side is the social welfare generated by the equilibrium in committee of size k � 1,
while the right-hand side is the social welfare induced by the committee of size k.
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Figure 1: Expected gain g (k) and the cost c

Figure 1 is the graph of g (k) and c, where si � N (!; 1), � = :3, q = :7, and c = 10�4. The
expected gain is decreasing and log-convex. In this example, kP = 11.

The statement in Proposition 4 is what Mukhopadhaya (2003) has shown in the case where the

signal is binary. He has also shown by numerical examples that mixed-strategy equilibria in large

committees can yield lower expected welfare than small committees. Our analysis goes further by

analytically comparing the expected welfare of all mixed-strategy equilibria.

The amount of purchased information in equilibrium is ine¢ ciently small. This is because

when a committee member decides whether or not to invest, she considers her private bene�t

rather than the society�s bene�t. Since information is a public good, its social bene�t is bigger

than the individual bene�t. Hence, the total number of signals acquired in an equilibrium is smaller

than the socially optimal amount. This is why the social welfare is monotonically increasing in the

committee size k, as long as k � kP .
7 If c > �(1)� �(0); then nobody has incentive to collect information, hence kP = 0:
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3.2 Mixed-strategy equilibrium

Suppose now that the size of the committee is larger than kP . We consider strategy pro�les in

which the committee members can randomize when making a decision about incurring the cost of

information acquisition. The following proposition characterizes the set of mixed-strategy equilibria

(including asymmetric ones).

We show that each equilibrium is characterized by a pair of integers (a; b). In the committee, a

members invest in a signal with probability one, and b members acquire information with positive

but less than one probability. The rest of the members, a k� (a+ b) number of them, do not incur
the cost. We call such an equilibrium a type-(a; b) equilibrium.

Proposition 5 Let the committee size be k
�
> kP

�
. Then, for all equilibria there is a pair (a; b),

such that a members invest for sure, b members invests with probability r 2 (0; 1), and k � (a+ b)
members do not invest. In addition

a � kP � a+ b � k; (4)

where the �rst two inequalities are strict whenever b > 0.

Proof. First, we explain that if, in an equilibrium in which one member invests with probability

r1 2 (0; 1) and another invests with probability r2 2 (0; 1), then r1 = r2. Since the marginal bene�t
from an additional signal is decreasing, our games exhibit strategic substitution. That is, the more

information the others acquire, the less incentive a member has to invest. Hence, if r1 < r2 then

the individual who invests with probability r1 faces more information in expectation and has less

incentive to invest than the individual who invests with probability r2. On the other hand, since

r1; r2 2 (0; 1) both individuals must be exactly indi¤erent between investing and not investing, a
contradiction. Now, we formalize this argument. Let ri 2 [0; 1] (i = 1; � � � ; k) be the probability
that the ith member collects information in equilibrium. Suppose that r1, r2 2 (0; 1), and r1 > r2.
Let I�1 and I�2 denote the number of signals collected by members 2; 3; :::; k and by members

1; 3; :::; k, respectively. Notice that since r1 > r2 and g is decreasing,

Er2;r3;:::;rk [g (I�1)] > Er1;r3;:::;rk [g (I�2)] . (5)

On the other hand, a member who strictly randomizes must be indi¤erent between investing and

not investing. Hence, for j = 1; 2

Erj ;r3;:::;rk [g (I�j)] = c. (6)

This equality implies that (5) should hold with equality, which is a contradiction. Therefore, each

equilibrium can be characterized by a pair (a; b) where a members collect information for sure, and

b members randomize but collect information with the same probability.

It remains to show that there exists a type-(a; b) equilibrium if and only if (a; b) satis�es

(4). First, notice that whenever k > kP , in all pure-strategy equilibria kP members invest with

10



probability one, and the rest of the members never invests. In addition, the pair
�
kP ; 0

�
satis�es

(4). Therefore, we only have to show that there exists an equilibrium of type-(a; b) equilibrium

where b > 0 if and only if (a; b) satis�es

a < kP < a+ b � k: (7)

Suppose that in a committee, a members invest in information for sure and b� 1 invests with
probability r. Let G(r; a; b) denote the expected gain from acquiring information for the (a+ b)th

member. That is,

G(r; a; b) =
b�1X
i=0

�
b� 1
i

�
ri (1� r)b�1�i g (a+ i) .

We claim that there exists a type-(a; b) equilibrium if and only if there exists an r 2 (0; 1) such
that G (r; a; b) = c. Suppose �rst that such an r exists. We �rst argue that there exists a type-

(a; b) equilibrium in which b members invest with probability r. This means that the b members,

those that are randomizing, are indi¤erent between investing and not investing. The a members,

who invest for sure, strictly prefer to invest because the marginal gain from an additional signal

exceeds G (r; a; b). Similarly, those members who don�t invest, a k � (a+ b) number of them, are
strictly better o¤ not investing because their marginal gains are strictly smaller than G (r; a; b).

Next, we argue that if G (r; a; b) = c does not have a solution in (0; 1) then there exists no type-

(a; b) equilibrium. But this immediately follows from the observation that if b members are strictly

randomizing, they must be indi¤erent between investing and not investing and hence G (r; a; b) = c.

Therefore, it is su¢ cient to show that G (r; a; b) = c has a solution in (0; 1) if and only if (7) holds.

Notice thatG(r; a; b) is strictly decreasing in r because g is strictly decreasing. Also observe that

G(0; a; b) = g (a) and G(1; a; b) = g (a+ b� 1). By the Intermediate Value Theorem, G(r; a; b) = c
has a solution in (0; 1) if and only if G(1; a; b) < c < G(0; a; b), which is equivalent to

g (a+ b� 1) < c < g (a) : (8)

Recall that kP satis�es

g
�
kP
�
< c < g

�
kP � 1

�
:

Since g is decreasing, (8) holds if and only if a < kP and a + b > kP . That is, the two strict

inequalities in (7) are satis�ed. The last inequality in (7), must hold because a+ b cannot exceed

the size of the committee, k.

Figure 2 graphically represents the set of pairs (a; b) which satisfy (4).

According to the previous proposition, there are several equilibria in which more than kP

members acquire information with positive probability. A natural question to ask is: can these

mixed-strategy equilibria be compared from the point of view of social welfare? The next propo-

sition partially answers this question. We show that if one �xes the number of members who

acquire information for sure, then the larger the number of members who randomize is, the smaller

11



Figure 2: The set of mixed-strategy equilibria

the social welfare generated by the equilibrium is. This proposition plays an important role in

determining the optimal size of the committee.

Proposition 6 Suppose that k 2 N, such that there are both type-(a; b) and type-(a; b+ 1) equilib-
ria. Then, the type-(a; b) equilibrium generates strictly higher social welfare than the type-(a; b+ 1)

equilibrium.

In order to prove this proposition we need the following results.

Lemma 1 (i) G (r; a; b) > G (r; a; b+ 1) for all r 2 (0; 1], and
(ii) ra;b > ra;b+1, where ra;b and ra;b+1 are the solutions for G (r; a; b) = c and G (r; a; b+ 1) =

c in r, respectively.

Proof. See the Appendix.

Proof of Proposition 6. Suppose that a members collect information with probability one, and

b members invest with probability r. Let f (r; a; b) denote the bene�t of an individual, that is,

f(r; a; b) =
bX
i=0

�
b

i

�
ri(1� r)b�i�(a+ i):

12



Clearly

@f (r; a; b)

@r
=

bX
i=1

�
b

i

�
iri�1(1� r)b�i� (a+ i)�

b�1X
i=0

�
b

i

�
ri (b� i) (1� r)b�i�1� (a+ i) .

Notice that
�
b

i

�
i = b

�
b� 1
i� 1

�
and

�
b

i

�
(b� i) = b

�
b� 1
i

�
. Therefore, the right-hand side of the

previous equality can be rewritten as

bX
i=1

b

�
b� 1
i� 1

�
ri�1(1� r)b�i� (a+ i)�

b�1X
i=0

b

�
b� 1
i

�
ri(1� r)b�i�1� (a+ i) .

After changing the notation in the �rst summation, this can be further rewritten:

b�1X
i=0

b

�
b� 1
i

�
ri(1� r)b�i�1� (a+ i+ 1)�

b�1X
i=0

b

�
b� 1
i

�
ri(1� r)b�i�1� (a+ i)

= b
b�1X
i=0

�
b� 1
i

�
ri(1� r)b�i�1

�
� (a+ i+ 1)� � (a+ i)

�
.

This last expression is just bG (r; a; b), and hence, we have

@f (r; a; b)

@r
= bG (r; a; b) .

Next, we show that

f (ra;b; a; b)� f (ra;b+1; a; b+ 1) > b (ra;b � ra;b+1) c. (9)

Since f(0; a; b) = f(0; a; b+ 1) = �(a)

f (ra;b; a; b)� f (ra;b+1; a; b+ 1) =
�
f (ra;b; a; b)� f (0; a; b)

�
�
�
f (ra;b+1; a; b+ 1)� f (0; a; b+ 1)

�
= b

Z ra;b

0

G (r; a; b) dr � b
Z ra;b+1

0

G (r; a; b+ 1) dr.

By part (i) of Lemma 1, this last di¤erence is larger than

b

Z ra;b

0

G (r; a; b) dr � b
Z ra;b+1

0

G (r; a; b) dr = b

Z ra;b

ra;b+1

G (r; a; b) dr.

By part (ii) of Lemma, we know that ra;b+1 < ra;b. In addition, since G is decreasing in r, this

last expression is larger than

b (ra;b � ra;b+1)G (ra;b; a; b) .

Recall that ra;b is de�ned such that G (ra;b; a; b) = c and hence we can conclude (9).

Let S(a; b) denote the social welfare in the type-(a; b) equilibrium, that is:

S(a; b) = Nf (ra;b; a; b)� c (a+ bra;b) .

13



Then,

S (a; b)� S (a; b+ 1) = Nf (ra;b; a; b)� c (a+ bra;b)� [Nf (ra;b+1; a; b+ 1)� c (a+ bra;b+1)]

> Nb (ra;b � ra;b+1) c� cb (ra;b � ra;b+1)

= (N � 1) cb (ra;b � ra;b+1) > 0;

where the �rst inequality follows from (9), and the last one follows from part (ii) of Lemma 1.

3.3 The Proofs of the Theorems

First, we show that the optimal committee size is either kP or kP + 1. Second, we prove that

if k > k� then even the worst possible equilibrium yields higher social welfare than the unique

equilibrium in the committee of size k� � 2:

Theorem 1 The optimal committee size, k�, is either kP or kP + 1:

We emphasize that for a certain set of parameter values, the optimal size is k� = kP , and for

another set, k� = kP + 1.

Proof. Suppose that k� is the optimal size of the committee and the equilibrium that maximizes

social welfare is of type-(a; b). By the de�nition of optimal size, a + b = k�. If b = 0, then all of

the committee members invest in information in this equilibrium. From Proposition 4, k� � kP

follows. In addition, Proposition 4 also states that the social welfare is increasing in k as long as

k � kP . Therefore, k� = kP follows. Suppose now that b > 0. If there exists an equilibrium of

type-(a; b� 1), then, by Proposition 6, k� is not the optimal committee size. Hence, if the size of
the committee is k�, there does not exist an equilibrium of type-(a; b� 1). By Proposition 5, this
implies that the pair (a; b� 1) violates the inequality chain (4) with k = k�. Since the �rst and

last inequalities in (4) hold because there is a type-(a; b) equilibrium, it must be the case that the

second inequality is violated. That is, kP � a + b � 1 = k� � 1. This implies that k� � kP + 1.
Again, from Proposition 4, it follows that k� = kP or kP + 1.

Next, we turn our attention to the potential welfare loss due to oversized committees.

Theorem 2 In any committee of size k (> k�), all equilibria induce higher social welfare than the

unique equilibrium in the committee of size k� � 2.

The following lemma plays an important role in the proof. We point out that this is the only

step of our proof that uses Assumption 1.

Lemma 2 For all k � 1 and i 2 N,

g (k � 1) fg (i)� g (k)g � fg (k)� g (k � 1)g f� (i)� � (k)g ; (10)

and it holds with equality if and only if i = k or k � 1.

14



Proof of Theorem 2. Recall that S (a; b) denotes the expected social welfare generated by an

equilibrium of type-(a:b). Using this notation, we have to prove that S (k� � 2; 0) < S (a; b). From
Theorem 1, we know that k� = kP or kP + 1. By Proposition 4, S

�
kP � 2; 0

�
< S

�
kP � 1; 0

�
.

Therefore, in order to establish S (k� � 2; 0) < S (a; b), it is enough to show that

S
�
kP � 1; 0

�
< S (a; b) ; (11)

for all pairs of (a; b) which satisfy (4).

Notice that if a+i members invests in information, which happens with probability
�
b

i

�
ria;b(1�

ra;b)
b�i in a type-(a; b) equilibrium, the social welfare is N�(a+ i)� c(a+ i). Therefore,

S (a; b) =
bX
i=0

�
b

i

�
ra;b

i (1� ra;b)b�i
h
N� (a+ i)� c (a+ i)

i
=

(
bX
i=0

�
b

i

�
ra;b

i (1� ra;b)b�i
h
N� (a+ i)� ci

i)
� ca

= N

(
bX
i=0

�
b

i

�
ra;b

i (1� ra;b)b�i � (a+ i)
)
� c (a+ bra;b) :

In the last equation, we used the identity
Pb

i=0

�
b
i

�
ra;b

i (1� ra;b)b�i i = bra;b. Therefore, (11) can
be rewritten as

N�
�
kP � 1

�
� c

�
kP � 1

�
< N

(
bX
i=0

�
b

i

�
ria;b (1� ra;b)

b�i
� (a+ i)

)
� c (a+ bra;b) .

Since a � kP �1 by (4) and b � N , the right hand side of the previous inequality is larger than

N

(
bX
i=0

�
b

i

�
ria;b (1� ra;b)

b�i
� (a+ i)

)
� c

�
kP � 1 +Nra;b

�
Hence it su¢ ces to show that

N�
�
kP � 1

�
� c

�
kP � 1

�
< N

(
bX
i=0

�
b

i

�
ria;b (1� ra;b)

b�i
� (a+ i)

)
� c

�
kP � 1 +Nra;b

�
:

After adding c
�
kP � 1

�
to both sides and dividing through by N , we have

�(kP � 1) <
(

bX
i=0

�
b

i

�
ria;b(1� ra;b)b�i�(a+ i)

)
� cra;b: (12)

The left-hand side is a payo¤ of an individual if kP � 1 signals are acquired by others, while
the right-hand side is the payo¤ of an individual who is randomizing in a type-(a; b) equilibrium

with probability ra;b. Since this individual is indi¤erent between randomizing and not collecting

information, the right-hand side of (12) can be rewritten as

b�1X
i=0

�
b� 1
i

�
ria;b(1� ra;b)b�1�i�(a+ i):
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Hence (12) is equivalent to

�(kP � 1) <
b�1X
i=0

�
b� 1
i

�
ria;b(1� ra;b)b�1�i�(a+ i): (13)

By Lemma 2

g
�
kP � 1

�(b�1X
i=0

�
b� 1
i

�
ria;b(1� ra;b)b�1�ig(a+ i)� g

�
kP
�)

(14)

>
�
g
�
kP
�
� g

�
kP � 1

�	(b�1X
i=0

�
b� 1
i

�
ria;b(1� ra;b)b�1�i�(a+ i)� �

�
kP
�)
:

Notice that
b�1X
i=0

�
b� 1
i

�
ria;b(1� ra;b)b�1�ig(a+ i) = c < g

�
kP � 1

�
; (15)

where the equality guarantees that a member who is randomizing is indi¤erent between investing

and not investing, and the inequality holds by (3). Hence, from (14) and (15),

g
�
kP � 1

� �
g
�
kP � 1

�
� g

�
kP
�	

>
�
g
�
kP
�
� g

�
kP � 1

�	(b�1X
i=0

�
b� 1
i

�
ria;b(1� ra;b)b�1�i�(a+ i)� �

�
kP
�)
:

Since g
�
kP � 1

�
� g

�
kP
�
> 0; the previous inequality is equivalent to

g
�
kP � 1

�
> �

�
kP
�
�
b�1X
i=0

�
b� 1
i

�
ria;b(1� ra;b)b�1�i�(a+ i).

Finally, since �
�
kP
�
� g

�
kP � 1

�
= �

�
kP � 1

�
, this inequality is just (13).

The two graphs of Figure 3 show the social welfare in the worst equilibrium as a function of

the committee size. In this numerical example, the prior is symmetric and the parameters are

chosen such that N = 100; si � N (!; 1), � = :3; p = :7; and c = 10�4: In addition, kP = 11 and
k� = 12: The two graphs are indeed the same graph except that the scalings of the vertical axes

are di¤erent. One can see that the welfare loss due to oversized committees is quite small.

4 Conclusion

In this paper, we have discussed the optimal committee size and the potential welfare losses associ-

ated with oversized committees. We have focused on environments in which there is no con�ict of

interest among individuals but information acquisition is costly. First, we have con�rmed that the

optimal committee size is bounded. In other words, the Condorcet Jury Theorem fails to hold, that

is, larger committees might induce smaller social welfare. However, we have also showed that the

welfare loss due to oversized committees is surprisingly small. In an arbitrarily large committee,
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Figure 3: Social Welfare, as a function of the committee size k
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even the worst equilibrium generates a higher welfare than an equilibrium in a committee in which

there are two less members than in the optimal committee. Our results suggest that carefully

designing committees might be not as important as it was thought to be.

5 Appendix

Lemma 3 Suppose that �
�
2 C1 (R+)

�
is absolutely continuous, strictly increasing and �0 (k + 1) =�0 (k)

is strictly increasing for k > "; where " � 0. Let g (k) = � (k + 1) � � (k) for all k � 0: Then

g (k + 1) =g (k) < g (k + 2) =g (k + 1) for k � ":

Proof. Fix a k (� ") : Notice that �0 (k + 2) =�0 (k + 1) < �0 (t+ 2) =�0 (t+ 1) is equivalent to

�0 (k + 2) �0 (t+ 1) < �0 (k + 1) �0 (t+ 2). Therefore,

�0 (k + 2)

Z k+1

k

�0 (t+ 1) dt < �0 (k + 1)

Z k+1

k

�0 (t+ 2) dt

, �0 (k + 2) [� (k + 2)� � (k + 1)] < �0 (k + 1) [� (k + 3)� � (k + 2)] .

It follows that
�0 (k + 2)

�0 (k + 1)
<
� (k + 3)� � (k + 2)
� (k + 2)� � (k + 1) =

g (k + 2)

g (k + 1)
: (16)

Similarly, for all t 2 (k; k + 1), �0 (k + 2) =�0 (k + 1) > �0 (t+ 1) =�0 (t) is equivalent to �0 (k + 2) �0 (t) >
�0 (k + 1) �0 (t+ 1). Therefore,

�0 (k + 2)

Z k+1

k

�0 (t) dt > �0 (k + 1)

Z k+1

k

�0 (t+ 1) dt

, �0 (k + 2) [� (k + 1)� � (k)] > �0 (k + 1) [� (k + 2)� � (k + 1)] .

It follows that
�0 (k + 2)

�0 (k + 1)
>
� (k + 2)� � (k + 1)
� (k + 1)� � (k) =

g (k + 1)

g (k)
: (17)

From (16) and (17) it follows that

g (k + 1)

g (k)
<
g (k + 2)

g (k + 1)

for all k � ":
Proof of Proposition 1. The sum of normally distributed signals are also normal;

Pk
i=1 si �

N
�
!k; �

p
k
�
. The density function of

Pk
i=1 si conditional on ! is

1

�
p
k
�

0@
�Pk

i=1 si

�
� !k

�
p
k

1A
where �(x) = (2�)�1=2 exp

�
�x2=2

�
: The ex post e¢ cient decision rule is given by

� (s1; � � � ; sk) = 1 if s1 + � � �+ sk � �; and

� (s1; � � � ; sk) = �1 if s1 + � � �+ sk < �;
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where � =
�
�2=2

�
log [(1� q) (1� �) =q�] is the cut-o¤ value. Hence, for k 2 Nn f0g,

� (k) = �q�Pr [� (s1; � � � ; sk) = �1j! = 1]

� (1� q) (1� �) Pr [� (s1; � � � ; sk) = 1j! = �1]

= �q��
�
� � k
�
p
k

�
� (1� q) (1� �) �

�
�� + k
�
p
k

�
(18)

where � is the cdf of standard normal distribution. If k = 0,

� (0) = max f�q�;� (1� q) (1� �)g : (19)

Notice that the right hand side of (18) converges to that of (19) as k goes to zero.

Part(i) If q + � = 1; then q� = (1� q) (1� �) and � = 0. Hence

� (k) = �2q��
 
�
p
k

�

!
and �0 (k) =

q�

�

1p
k
�

 p
k

�

!
for k > 0:

Therefore,
�0 (k + 1)

�0 (k)
=

r
k

k + 1
exp

�
� 1

2�2

�
is increasing in k (> 0) : From Lemma 3, setting " to be zero, it follows that g (k + 1) =g (k) is

increasing in k 2 N:
Part(ii) First, we argue that for any " (> 0) ; �0 (k + 1) =�0 (k) is increasing for all k > " if � is

su¢ ciently small. For k > 0;

�0 (k + 1)

�0 (k)
=

r
k

k + 1

�
�
��(k+1)
�
p
k+1

�
�
�
��k
�
p
k

� =

r
k

k + 1

exp
�
� 1
2�2

�
�2

k+1 � 2� + k + 1
��

exp
�
� 1
2�2

�
�2

k � 2� + k
��

=

r
k

k + 1
exp

�
1

2�2

�
�2

k (k + 1)
� 1
��

=

r
k

k + 1
exp

�
L2�2

8k (k + 1)

�
exp

�
�1
2�2

�
(20)

where L = log f(1� q) (1� �) = (q�)g : Now suppose that k > ". The last term in (20) has no

in�uence on whether �0 (k + 1) =�0 (k) is increasing or not. The second term converges to 1 as �

goes to 0. Obviously, the �rst term is strictly increasing in k. Hence, �0 (k + 1) =�0 (k) is increasing

in k (> ") ; if � is su¢ ciently small. By setting " 2 (0; 1) and using Lemma 3, we have shown that
g (k + 1) =g (k) < g (k + 2) =g (k + 1) for all k � 1:
It remains to be shown that g (1) =g (0) < g (2) =g (1) : From the argument in the proof of

Lemma 3, it follows that �0 (2) =�0 (1) < �0 (t+ 1) =�0 (t) for all t 2 (1; 2) implies �0 (2) =�0 (1) <
g (2) =g (1) : Hence, it is enough to show that g (1) =g (0) < �0 (2) =�0 (1) for su¢ ciently small �:

Since lim�!0 g (0) = �� (0) > 0; it is enough to show that lim�!0 [g (1) = f�0 (2) =�0 (1)g] = 0. In
order to establish this equality, it is obviously enough to show that

lim
�!0

� (k)

�0 (2) =�0 (1)
= 0 for k 2 f1; 2g : (21)
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Remember L = log f(1� q) (1� �) = (q�)g : By (18), for k > 0,

� (k) = �q�
(
�

 
L�

2
p
k
�
p
k

�

!
+ exp (L) �

 
� L�

2
p
k
�
p
k

�

!)

which implies � (k) 2 OE
�
�
�
�
p
k=�

��
as � ! 0:8 Using (20), �0 (2) =�0 (1) 2 OE

�
exp

�
�1=2��2

��
=

OE (� (1=�)) as � ! 0. By l�Hôpital�s Rule, for k 2 f1; 2g ;

lim
�!0

�
�
�
p
k=�

�
� (1=�)

= lim
�!0

�
�
�
p
k=�

��p
k=�2

�
� (1=�) (1=�3)

= 0;

which implies (21).

Proof of Proposition 2. First, we claim that the ex post e¢ cient decision rule � : f�1; 0; 1gk !
f�1; 1g is the following cut-o¤ rule:

� (s1; � � � ; sk) =

8>>>><>>>>:
1 if

kX
i=1

si � b�;
�1 if

kX
i=1

si < b�; (22)

where b� = log [(1� q) (1� �) =q�] = log [p= (1� p)] : Suppose that the signal sequence (s1; � � � ; sk)
is a permutation of 8><>:1; � � � ; 1| {z }

a

; 0; � � � ; 0| {z }
k�a�b

;�1; � � � ;�1| {z }
b

9>=>; : (23)

Then � (s1; � � � ; sk) = 1 if

E! [u (!; 1) js1; � � � ; sk] = � (1� q) (1� �)
Pr [s1; � � � ; skj! = �1]

Pr [s1; � � � ; sk]

> E! [u (!;�1) js1; � � � ; sk] = �q�
Pr [s1; � � � ; skj! = 1]
Pr [s1; � � � ; sk]

:

In addition,

Pr [s1; � � � ; skj! = 1] = (pr)
a
(1� r)k�a�b (r (1� p))b and

Pr [s1; � � � ; skj! = �1] = (pr)
b
(1� r)k�a�b (r (1� p))a :

Hence, � (s1; � � � ; sk) = 1 if

� (1� q) (1� �) pb (1� p)a > �q�pa (1� p)b ;

or equivalently,

a� b >
log
�
(1�q)(1��)

q�

�
log
�

p
1�p

� = b�:
8OE is a version of Landau�s O, which describes the exact order of the expression. Formally, �f (x) 2 OE (g (x))

as x! a� i¤ 9M > 0 s.t. limx!a jf (x) =g (x)j =M:
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Since
Pk

i=1 si = a� b, (22) follows.
Now, we shall consider the case where p converges to 1. Let " denote 1 � p and let Pr [a; b]

denote the probability of a signal sequence which is a permutation of (23). Then,

Pr [a; bj! = 1] = Ck (a; b) (1� ")a "b;

Pr [a; bj! = �1] = Ck (a; b) (1� ")b "a;

where Ck (a; b) = [k!=(a!b! (k � a� b)!)] ra+b (1� r)k�a�b.9 Notice that Ck (a; b) is independent of
" and symmetric with respect to a and b. We have10

Pr [a� b � �1j! = 1] = Ck (0; 1) "+O
�
"2
�
; and

Pr [a� b � 0j! = �1] = Ck (0; 0) + fCk (1; 0) + Ck (1; 1)g "+O
�
"2
�
:

Observe that
���b���� < 1 if p is close enough to one. Without loss of generality, assume that

q + � � 1: Then �1 < b� � 0: Hence,
� (k) = �q�Pr [a� b � �1j! = 1]� (1� q) (1� �) Pr [a� b � 0j! = �1]

= �q�Ck (0; 1) "� (1� q) (1� �) [Ck (0; 0) + fCk (1; 0) + Ck (1; 1)g "] +O
�
"2
�
:

Then

g (k) = � (k + 1)� � (k) = A (k) +B (k) "+O
�
"2
�
;

where

A (k) = � (1� q) (1� �)Dk (0; 0) ; (24)

B (k) = �q�Dk (0; 1)� (1� q) (1� �) [Dk (1; 0) +Dk (1; 1)] ;

and Dk (a; b) = Ck+1 (a; b)� Ck (a; b) : Using these notations,

g (k + 1)

g (k)
=

A (k + 1) +B (k + 1) "+O
�
"2
�

A (k) +B (k) "+O ("2)
=
A (k + 1)

�
1 + B(k+1)

A(k+1)"+O
�
"2
��

A (k)
�
1 + B(k)

A(k)"+O ("
2)
�

=
A (k + 1)

A (k)

�
1 +

�
B (k + 1)

A (k + 1)
� B (k)
A (k)

�
"

�
+O

�
"2
�
: (25)

We want to show that g (k + 1) =g (k) is increasing in k if " is su¢ ciently small. SinceA (k + 1) =A (k) =

1� r; it is su¢ cient to show that B (k) =A (k) is convex in k: It is straightforward to see that

Dk (0; 1)

Dk (0; 0)
=
Dk (1; 0)

Dk (0; 0)
=
(k + 1) r (1� r)k � kr (1� r)k�1

(1� r)k+1 � (1� r)k
=
(k + 1) r (1� r)� kr
(1� r)2 � (1� r)

is a polynomial of k with degree 1, hence it has no in�uence on the convexity of B (k) =A (k) : On

the other hand,

Dk (1; 1)

Dk (0; 0)
=
(k + 1) kr2 (1� r)k�1 � k (k � 1) r2 (1� r)k�2

(1� r)k+1 � (1� r)k
=
(k + 1) kr2 (1� r)� k (k � 1) r2

(1� r)3 � (1� r)2

9De�ne Ck (a; b) = 0 if k < a+ b.
10f (x) 2 O (g (x)) as x! 0 if and only if 9� > 0;M > 0 s.t. jxj < � implies jf (x) =g (x)j < M:
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has a positive coe¢ cient of k2: Hence we conclude B (k) =A (k) is convex in k.

Proof of Proposition 3. As in the proof of Proposition 2, the ex post e¢ cient decision rule is

de�ned by

� (s) =

(
1 if

P
si � �;

�1 otherwise,

where � = log [(1� q) (1� �) =q�] = log [p= (1� p)] : By symmetry, we can assume � � 0 without

loss of generality. First, suppose � > 1: Then � (k) = �q� for k < �; and the marginal bene�t from
an additional signal is zero for k < � � 1. Therefore, g (k + 1) =g (k) is not well-de�ned. Second,
suppose 0 � � < 1: We shall consider two di¤erent cases depending on whether k is even or odd.
Case 1: Suppose k = 2m; where m 2 N. Then, the (2m+1)-st signal makes a di¤erence if and

only if the �rst 2m signals have a tie between positive and negative signals and the (2m + 1)-st

signal is positive (denote this situation as pive). In such a case, the social decision changes from �1
to 1. Hence the gain is q if ! = 1; and the loss is (1� q) if ! = �1: Therefore, expected marginal
bene�t is

g (2m) = qPr [! = 1; pive]� (1� q) Pr [! = �1; pive]

= q

�
�

�
2m

m

�
pm (1� p)m p

�
� (1� q)

�
(1� �)

�
2m

m

�
pm (1� p)m (1� p)

�
= fpq� � (1� p) (1� q) (1� �)g

�
2m

m

�
pm (1� p)m :

Case 2: Suppose k = 2m + 1; where m 2 N. Then, the (2m + 2)-nd signal makes a di¤erence
if and only if the �rst (2m + 1) signals contains (m + 1) positive and m negative signals and the

(2m + 2)-nd signal is negative (denote this situation as pivo). In such a case, the social decision

changes from 1 to �1. Hence the loss is q if ! = 1; and the gain is (1� q) if ! = �1: Therefore,
expected marginal bene�t is

g (2m+ 1) = �qPr [! = 1; pivo] + (1� q) Pr [! = �1; pivo]

= �q
�
�

�
2m+ 1

m

�
pm+1 (1� p)m+1

�
+ (1� q)

�
(1� �)

�
2m+ 1

m

�
pm+1 (1� p)m+1

�
= f�q� + (1� q) (1� �)g

�
2m+ 1

m

�
pm+1 (1� p)m+1 :

Recall that 0 � � < 1; which is equivalent to pq�� (1� p) (1� q) (1� �) > 0 and (1� q) (1� �)�
q� � 0: If � > 0;

g (2m+ 2)

g (2m+ 1)
=
pq� � (1� p) (1� q) (1� �)

(1� q) (1� �)� q� ;

which is a constant function of m, and hence, Assumption 1 does not hold. If � = 0; then

g (2m+ 1) = 0 and g (2m+ 2) =g (2m+ 1) is not well-de�ned.

Proof of Lemma 1. Part (i). Notice that

G (r; a; b) =
b�1X
i=0

�
b� 1
i

�
ri(1� r)b�i�1g (a+ i) :
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Since ri(1� r)b�i�1 = ri (1� r)b�i + ri+1 (1� r)b�i�1,

G (r; a; b) =
b�1X
i=0

�
b� 1
i

��
ri (1� r)b�i + ri+1 (1� r)b�i�1

�
g (a+ i) .

Since g is decreasing

G (r; a; b) >
b�1X
i=0

�
b� 1
i

�
ri (1� r)b�i g (a+ i) +

b�1X
i=0

�
b� 1
i

�
ri+1 (1� r)b�i�1 g (a+ i+ 1)

=
b�1X
i=0

�
b� 1
i

�
ri (1� r)b�i g (a+ i) +

bX
i=1

�
b� 1
i� 1

�
ri (1� r)b�i g (a+ i)

=
bX
i=0

��
b� 1
i

�
+

�
b� 1
i� 1

��
ri (1� r)b�i g (a+ i) ,

where the �rst equality holds because we have just rede�ned the notation in the second summation,

and the second equality holds because, by convention,
�
n

�1

�
=

�
n

n+ 1

�
= 0 for all n 2 N. Finally,

using
�
b� 1
i

�
+

�
b� 1
i� 1

�
=

�
b

i

�
, we have

G (r; a; b) >
bX
i=0

�
b

i

�
ri (1� r)b�i g (a+ i) = G (r; a; b+ 1) .

Part (ii). By the de�nitions of ra;b and ra;b+1, we have

c = G (ra;b; a; b) = G (ra;b+1; a; b+ 1) ;

and by part (i) of this lemma,

G (ra;b+1; a; b+ 1) < G (ra;b+1; a; b) :

Therefore

G (ra;b; a; b) < G (ra;b+1; a; b)

Since G (r; a; b) is strictly decreasing in r; ra;b > ra;b+1 follows.

Proof of Lemma 2. The statement of the lemma is obvious if i 2 fk � 1; kg. It remains to show
that (10) hold with strict inequality whenever i =2 fk � 1; kg. First, notice that for any positive
sequence, fajg10 , if aj+1=aj < aj+2=aj+1 for all j 2 N, then

ak
ak�1

>

Pk
j=i+1 ajPk�1
j=i aj

for all k > 1 and for all i 2 f0; :::; k � 2g :

Assumption 1 allows us to apply this result for the sequence aj = g (j), and hence, for all k � 1

g (k)

g (k � 1) >
Pk

j=i+1 g (j)Pk�1
j=i g (j)

=
� (k + 1)� � (i+ 1)

� (k)� � (i) for all i 2 f0; :::; k � 2g :
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Since � (a) > � (b) if a > b, this implies that for all i 2 f0; :::; k � 2g

g (k) [� (i)� � (k)] < g (k � 1) [� (i+ 1)� � (k + 1)] . (26)

Similarly, for a positive sequence fajg10 if aj+1=aj < aj+2=aj+1 for all j 2 N, then

ak
ak�1

<

Pi
j=k+1 ajPi�1
j=k aj

for all k � 1 and for all i � k + 1:

Again, by Assumption 1, we can apply this result to the sequence aj = g (j) and get

g (k)

g (k � 1) <
Pi

j=k+1 g (j)Pi�1
j=k g (j)

=
� (i+ 1)� � (k + 1)

� (i)� � (k) for all i > k.

Multiplying through by g (k � 1) (� (i)� � (k)), we get (26). That is, (26) holds whenever i =2
fk � 1; kg. After subtracting g (k � 1) (� (i)� � (k)) from both sides of (26) we get (10).
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