
HAL Id: hal-00391186
https://hal.science/hal-00391186

Submitted on 3 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedded software energy characterization: Using
non-intrusive measures for application source code

annotation
Nicolas Fournel, Antoine Fraboulet, Paul Feautrier

To cite this version:
Nicolas Fournel, Antoine Fraboulet, Paul Feautrier. Embedded software energy characterization: Us-
ing non-intrusive measures for application source code annotation. Journal of Embedded Computing,
2009, 3 (3), pp.10. �10.3233/JEC-2009-90�. �hal-00391186�

https://hal.science/hal-00391186
https://hal.archives-ouvertes.fr


Embedded Software Energy Characterization:

using non-intrusive measures for application

source code annotation

Nicolas Fournel† and Antoine Fraboulet‡ and Paul Feautrier†
†INRIA/Compsys ENS de Lyon/LIP, Lyon F-69364 France

‡INRIA/Compsys INSA-Lyon/CITI, Villeurbanne F-69621 France

Abstract

In this paper we propose a complete system energy model based on

non-intrusive measurements. This model aims at being integrated in fast

cycle accurate simulation tools to give energy consumption feedback for

embedded systems software programming. Estimations take into account

the whole system consumption including peripherals. Experiments on a

complex ARM9 platform show that our model estimates are in error by

less than 10% from real system consumption, which is precise enough for

source code application design, while simulation speed remains fast.

1 Introduction

With present day technologies, it is possible to build very small platforms with
enormous processing power. However, physical laws dictate that high processing
power is linked to high energy consumption. Embedded platforms are mostly
used in hand-held appliances, and since battery capacity does not increase at the
same pace as clock frequency, designers are faced with the problem of minimizing
power requirements under performance constraints.

The first approach is the devising of low-energy hardware technologies, but
this is outside the scope of this paper. The second approach is to make the best
possible use of the available energy e.g. by adjusting the processing power to
the instantaneous needs of the application, and by shutting down unused parts
of the system. These tasks can be delegated to the hardware. However it is well
known that the hardware only source of knowledge for scheduling is the past of
the application; only software can anticipate future needs. Energy can also be
minimized as a side effect of performance optimization. For instance, replacing a
conventional Fourier transform by an FFT greatly improves the energy budget;
the same can be said of data locality optimization, which aims at replacing
costly main memory accesses by low-power cache accesses.

The ultimate judge in the matter of energy consumption is measurement
of the finished product. However, software designers, compilers and operating

1



systems need handier methods for assessing the quality of their designs and
directing possible improvements. Hence designers need simple models which
must be expressed in term of software visible events like instructions, cache
hits and misses, peripheral activity and the like. There are several ways of
constructing such models. One possibility is electrical simulation of the design;
this method is too time-consuming for use on systems of realistic size. Another
method is to interpolate/extrapolate from measurements on a prototype. This
is the method we have applied in this work.

The paper is organized as follows. After reviewing state of the art techniques
in section 2 we present in section 3 a methodology to build complete platform
energy consumption models for software development. Section 4 presents the
resulting model for an ARM9 development platform. This section also validates
our model on more significant pieces of code, multimedia applications, thanks
to its implementation in a fast and cycle accurate simulation tool. We then
conclude and discuss future work.

2 Related Works

Many works focus on energy characterization of VLSI circuits. They can be
organized using two main criteria: their level of hardware abstraction and the
calibration method. For the first criterion, we can group the models in three
main categories which are, by increasing level of abstraction, transistor/gate
level models, architectural level models and finally instruction level models.
Among these models there are usually three methods for building consumption
models. The first method is analytical construction, the second one is simulation
based, and the third is based on physical measurements.

In transistor (gate) level models, all transistor (gate) state changes are com-
puted to give an energy consumption approximation for a VLSI component.
This method is highly accurate, but a complete description of the component
is needed. Models built at this level of abstraction are generally reserved to
hardware designers and are very long to simulate.

Upper level of abstraction, architectural or RTL level, models the system
using functional units. Each unit can be represented by a specific model adapted
to its internal structure.(e.g. bit-dependent or bit-independent models for Chen
et al. [2]). To be more accurate, some works like Kim et al. [8], subdivide the
block into sub-blocks to apply different models on each sub-block. This set of
models allows to extend models to a complete platform.

The highest level is instruction/system level of abstraction. At this level,
models are based on events such as instructions execution ([19, 10, 13]). Ti-
wari et al. in [19] propose to characterize hardware activity down to the inter-
instructions energy consumption, which represents the logic switching activity
between two different instructions. Others works also take into account the
logic switching due to data parameters [17]. Systems considered in these mod-
els are generally composed of CPU, bus and memory. Only few works focus on
modeling a complete platform with peripherals. Among them, EMSIM [18] is

2



a simulator based on Simunic et al. [15] which includes the StrongARM SA110
energy characterization. This simulator poorly characterizes the peripherals and
focuses on the microprocessor. The SoftWatt simulator proposed in [6] uses a
complete system simulator based on SimOS to monitor a complex operating
system and interactions among CPU, memory hierarchy and hard disk opera-
tions. Their simulator is modified to include analytical energy models and the
output reports kernel and user mode energy consumption up to the operating
system services. Data are sampled during simulation and dumped to log files
at a coarser granularity than cycle level, leading to average power consumption
figures. The closest work to ours, AEON’s model [9], is a complete platform
energy consumption model based on measurement and uses simulator internal
energy counters. The targeted platform is an 8 bit AVR micro-controller based
sensor network node that does not include CPU pipelines, complex memory hi-
erarchy and peripherals. Our model allows the simulation of much more complex
hardware architectures while being independant of simulator internals. Some
other works, like SoftExplorer [14], even propose to model energy consump-
tion by relying on higher parameters like algorithmic parameters, or application
implementation parameters like variable size in Mutterja et al. [11].

As far as calibration methods are concerned, analytical models are usually
based on manufacturers data, e.g. in Simunic et al. [15] the model is built thanks
to datasheet informations. Simulation based calibration needs a full knowledge
of the underlying level architecture, which means that it needs a description
of low level hardware (VHDL, or Verilog descriptions). Measurement based
methods only need few informations on the hardware and works like [19, 3]
have shown that it is possible to extract internal unit consumption from system
measurements.

In this paper we propose a methodology for complete platform energy con-
sumption model construction based on simple and non-intrusive measurements.
The model is built at a level of abstraction close to the system level presented
before, but is extended to the complete platform by coupling it with architec-
tural level principles presented by Kim et al. in [8]. We also take peripherals
energy models and dynamic frequency and voltage scaling into account. Our
model is geared toward user feedback at the application source level.

3 Model construction basics

We present in this section our methodology to build complete platform models.
We first give more details on the structure and the parameters of the energy
model. Section 4 will present the target dependent model parameters through
a case study on an ARM9 based platform.

3.1 Model structure and parameters

Our choice among all the modeling methods which have been presented in Sect. 2
is to build an architectural level model, in which the system is divided into its

3



main functional blocks at the platform based level such as CPU, interconnection
bus, memory hierarchy, peripherals. . . The energy consumption of an application
Eapp is obtained be adding all blocks consumptions Ebl.

Each block can have its own energy consumption model. To have a platform
model better suited for software development, we use instruction level abstrac-
tion for CPU. CPU energy consumption ECPU is described in equation (1).

ECPU = Einsn + Ecache + EMMU (1)

The energy consumption is the sum of the energy consumed by instruction
execution, plus cache and MMU overheads consumptions, and consumption of
all other blocks of the platform.

Eapp = ECPU +
∑

Ebl (2)

This model aims at being integrated in a full platform cycle accurate simula-
tion tool. The most interesting way of writing the model for this kind of purpose
is to define a time slot energy consumption. The chosen time slot is the CPU
instruction execution. There are two reasons for choosing this time reference.
The first is that it is the finest time reference since CPU have generally the
highest clock frequency in embedded platforms. Secondly, interrupt requests,
the only mean for the hardware peripherals to interact with the software, are
managed at the end of instructions execution. From a software point of view,
there is no need to use a finer time reference to report hardware events more
precisely. From a precision point of view we do not model inter-instruction
switch activity nor data dependent. These parameters can be ignored at this
level of abstraction as we will see in section 4.4.

The model can be rewritten in a form where the consumption of CPU and
other blocks are reported for the currently executed instruction. All E∗ will be
kept for overall application consumptions, for the sake of notation simplicity the
consumption at instruction level of granularity will be noted as E∗. This new
model formula is expressed in the following equation:

Eslot = ECPU +
∑

blocks

Ebl (3)

The last peculiarity in this model is the measurement based data collection.
As we only get global measures for the platform consumption, we can foresee
that the base consumptions of each block will not be easily distinguishable. We
mean here that once the embedded system is put in its laziest state, idle state for
example with all possible units powered off, the resulting consumption is consid-
ered as a base consumption regrouping the base consumption of every powered
peripherals. Obviously, a part of this consumption is static power dissipation.
We will call this term Ebase, it is important to note that this consumption is
reported to the current executed instruction on the CPU. It can be expressed
as in equation (5), as it is dependent on the instruction length linsn in terms of

4



clock cycles. Equation (3) becomes equation (4).

Eslot = Ebase + ECPU +
∑

Ebl (4)

Ebase = linsn × Ec base (5)

The CPU and other blocks consumption are then expressed as overhead
against the idle state. As described in equation (1), CPU energy consumption
is given by the executed instruction energy cost. This model can be simplified
by regrouping instructions in classes as proposed in [10]. As far as other blocks
are concerned, we can expand them as bus, memories and other peripherals.
This is interesting since bus and memories will be subject to events generated
by the processor, such as memory writes. The peripherals will be then modeled
by state machines giving consumption of the peripheral during the time slot.

The last step in model construction consists in defining all possible parame-
ters for these components. Due to the limited information available, developers
do not necessarily know the behavior of intra-blocks logic. The parameters for
the CPU are already selected, since it is modeled thanks to instructions con-
sumptions. The same can be done for cache, MMU and even co-processors
consumptions. The parameters for other blocks are limited to behavioral pa-
rameters (UART sending a byte) and their states such as operating modes.

Each energy cost in this model is function of the running frequency and
power supply voltage to allow dynamic and frequency scaling capabilities of the
platform to be modeled. An example of this is presented in the next section.

4 Model Construction Case Study

In this section we propose an extended example of our methodology application.
This methodology was applied on a ARM based development board. This plat-
form uses an ARM922T and usual embedded systems peripherals (e.g. UART,
Timers, network interface) on the same chip. Our hardware architecture explo-
ration shows that the platform has three distinct levels of memory, a cache, a
scratchpad and main memory. All peripherals are accessible through two lev-
els of AMBA bus. We will give details about the energy consumption model
construction for this platform, then we will check the accuracy of the resulting
model.

4.1 Methodology application

The complete platform modeling method presented in section 3.1 is applied on
our ARM9 platform in this section. The measurement setup used for these
experiments is close to the one depicted in [13]. We used a digitalizing oscil-
loscope, the shunt resistor is replaced by a current probe and we also used a
voltage probe.

Calibration benchmarks. We built benchmarks to calibrate our model, more
precisely our block models. The hardware exploration gives us the main blocks

5



Table 1: Benchmarks results for simple operation energy calibration
bench name length energy (nJ) error (pJ)
loop-calibration 4 69.084 5.1777
insn-nop 1 16.747 1.2884
AHB1-access 6 101.33 7.7132
AHB2-access 18 300 22.998
Dcache-access 1 17.146 1.3007
mem-access 40 775.44 54.551
spm-access 8 131.72 10.168
timer-test on(nop) 1 16.754 1.2857

to be modeled, namely the CPU, the different bus levels, the memory levels,
and the other peripherals such as UART, interrupt controller or timers.

For example, the selected parameters for our CPU model are the CPU in-
structions, or possibly class of instructions, plus the caches and MMU activities.
We thus built benchmarks to evaluate the cost of possible parameters, in order
to select only relevant ones. Here are examples of benchmarks that were used,
and their target event:
• loop-calibration: Measurement loop overhead benchmark. By running an
empty loop, we can estimate the loop overhead.
• insn-XXX: Comparison of CPU instructions execution costs (add, mov, . . . ).
The target instruction is executed many times inside a loop.
• XXX-access: Calibration of costs of each bus level (AHB1/2) and memory
level (cache, scratchpad or main memory), depending on the address accessed.
• timer-test: Example of peripherals energy characterization, this benchmark
allows us to measure the timer power consumption. It is subdivided into two
benchmarks, one in which the timer is stopped and the second in which the
timer is running. The structure of the loop is the same as the insn-XXX bench-
mark with a nop instruction.

Calibration results. Benchmark energy results examples are listed in table 1.
Full results are available in [4]. These results represent for each benchmark
the length of the calibrated event in CPU clock cycles (second column), the
per-event raw energy cost measured on the complete platform (third column)
and the measurement error (fourth column). Energy costs reported here give
the consumption of the complete platform for a full event execution. These raw
costs have to be refined to get the final parameters.

As an example, the scratchpad memory access benchmark result (spm-access)
gives the energy consumption of the CPU executing a load instruction, the bus
conveying the load request and response and finally the scratchpad memory.
The bus access cost includes the register accesses in the targeted peripherals
since it is impossible to dissociate their costs. By removing the consumption
of the CPU (one load and seven nop) and bus consumption, we finally obtain
the scratchpad memory access cost. Experiments reported in [4] shows that the

6



scratchpad memory does not consume more energy than a register accessed via
the bus.

Other model simplifications are possible. For example, the CPU cache mod-
els are simplified by taking into account only memory access bursts in case of
misses since the overhead can be neglected.

The basic model presented in section 3.1 can be rewritten, by using models
simplifications obtained by calibration. We found that most instructions have
the same energy consumption as long as they stay inside the CPU and that
control and data logic switching between instruction execution can be neglected.
Currently only ARM32 instruction set is modeled. Thumbs (16bit) instruction
set can be modeled using the same benchmark methodology. In our setup, it
is not possible to isolate the instruction cache consumption, which is lumped
with the instruction consumption. ICache misses can be modeled as memory
accesses.

We finally have a model for which CPU instructions are grouped in two
classes, arithmetic and logic intra-CPU instructions, and load / store instruc-
tions. A memory load access is modeled as a load instruction, plus a bus over-
head, plus a memory overhead. Peripherals energy consumption are taken into
account thanks to state machines that give their consumption during instruc-
tions execution. The final model is written on equation (6).

Eslot = Ebase + Einsn + Ebus access + Emem +
∑

Eperiph state (6)

Eslot is the energy consumption of the instruction execution time slot, Einsn

is the cost of instruction given by its class cost, Ebus access is the bus overhead
cost for load or store instructions, Emem is the overhead for memory accesses.
The last term represents the sum of the energy overhead of peripherals state.
These cost are all overhead costs, since the full consumption of a peripheral cost,
for example, is given by its base energy cost comprised in Ebase and the overhead.

Frequency Scaling. The model presented before is valid for full speed software
execution. However, the Integrator CM922T has frequency scaling capabilities
but no dynamic voltage scaling (DVS) capabilities, hence when frequency is re-
duced, energy consumption does not decrease. When repeating five benchmarks
at different frequencies, we obtain the curves in Fig. 1. This figure represents
the per event energy values for the five benchmarks as a function of the clock

divisor, r = fref

f
where fref is the nominal frequency (198 MHz here).

These curves show that energy per event increases when frequency is de-
creased, and this may seem counter-intuitive. To understand these results ob-
serve first that a given event, e.g. the execution of some specific instruction,
entails an almost constant number of bit flips, and that each flip uses a fixed
amount of energy. Hence, to a first approximation, and in the absence of volt-
age scaling, the energy for a given event should be a constant. However, in our
platform, frequency scaling acts only on the processor and Excalibur embedded
peripherals; the consumption of other peripherals and external memories is not
affected. Hence, the addition of a parasitic term which is roughly proportional

7



1 3 5 7 9 11 13 15 17
0.0e+00

2.0e−07

4.0e−07

6.0e−07

8.0e−07

1.0e−06

1.2e−06

1.4e−06

1.6e−06

1.8e−06

2.0e−06

clock divisor

en
er

gy
 p

er
 e

ve
nt

 (
J)

+ +

+

+

+

+
+ +

+

+

+ + + +
+

+
+

+

+

+

+

+

+

+

+

loop−cal

insn−cmp_mul
insn−cmp_nop

AHB1−reg−write
AHB2−reg−write

Figure 1: Multiple frequencies experiments: This figure shows that the energy

per event increases linearly with the clock period (fixed voltage).

Table 2: Linear regression from curves of Fig. 1 based on the formula 7
Benchmark name Erp base (nJ) Emc (nJ) error (pJ)

insn-mul 10.91 26.37 572.36
loop-calibration 10.52 19.22 258.90

insn-nop 10.54 6.35 105.61
access-AHB1 11.06 36.72 1085.37
access-AHB2 11.06 106.32 3431.46

to the duration of the event or inversely proportional to frequency. This is
clearly the case for the curves of Fig. 1.

We must underline that all five benchmarks generate activity in the modified
clock domain (CPU), but not on the remaining part of the platform. On top
of that, we kept all peripherals in the modified clock domain in an idle state.
Hence, the event energy cost namely Eevt can be an instruction execution or
a bus access for example. In this consumption we can identify two types of
sources. The first is the energy due to modified clock domain Emc, which is
constant. The second is the one due to the remaining part of the platform
Erp base. Their relation in the total consumption of event is given by relation:

Eevt = Erp base × linsn × r + Emc (7)

The first term is dependent on the frequency ratio r and the instruction
length linsn, whereas the second is not. Linear regressions on the results pre-
sented in Fig. 1 are shown on table 2. As shown in this table, equation (7) give
a good explanation for the experiments on clock frequency variation. These
results gives us an estimation of what we can consider as base energy, which is
not changing against software execution. The last two columns are the events
real consumption and the regression error. The value for the base energy can be
approximated by the mean value 10.82 nJ per cycle (with a standard deviation

8



of ±2.6 10−2).

4.2 Large targeted architecture range

The model building method was successfully applied on a second platform. This
second platform is a wireless sensor network node, a WSN430 [1]. This system
is based on a 16bits microcontroller, Ti MSP430, which has a completely dif-
ferent architecture compared to the ARM one. This second model construction
validates the fact that the model is generic enough to be adapted on a large
range of target.

On top of that, model adaptation to more complex peripherals is also verified
since WSN430 embeds a wireless network interface. This interface is a good
example of complex peripheral with multiple running states and dynamically
modifiable parameters such as transmitting power.

4.3 Model usage

To ease their use, models obtained thanks to previous methodology are designed
to be implemented in a simulation tool. The goal of such an implementation
is to keep the main advantages of the model in its usage, namely simplicity
and speed, and to offer higher level information on the application execution
consumption.

Simulation architecture. To ensure a simple and fast usage of the model
in software evaluation of energy consumption, we implemented it in a two step
simulation tool as depicted on figure 2.

Application

Network

OS tools

Cross−compiler Binary 

Elf file

Deployment

Real target

Full system

Simulator

Execution

Trace

Energy

profiles

Energy

Calibration

eSimu

Performance profile

Energy profile

Debug

Figure 2: Simulation tool architecture

First, this implementation extends a standard development flow for embed-
ded systems. As can be seen on figure 2, once software is written the first step
consists in application compilation to produce application binary which will be
executed on final system. However the process is iterative and debug phase is
a cycle where user compiles, runs application either on real platform or on a
simulator to identify bugs and correct them.

9



The simulation tool proposed replaces the previous one to offer energy and
performance information on application execution on top of helping the devel-
opper to debug it. The two steps of this tool are first a full platform simulation
and secondly an analysis of the trace produced by the first step simulation.

The first step of this tool is responsible of simulating the software execution
on the full hardware platform in a reliable manner. It has to be functionally
correct to accurately describe platform activities for energy consumption eval-
uation. It is also time accurate since energy consumption is dependent of time.
Activities of the hardware platform are reported in an execution trace which
fed the second tool step. The trace describes on an instruction execution time
basis (the slot) all activities of the hardware platform, the instruction itself and
peripheral events. These slots contain information on time and cycles spent in
order to allow a DVFS support on platform natively embedding this technology.

The second step, eSimu, implements the model to produce energy consump-
tion estimations based on information in the trace. This step processes the trace
to get parameters, weights them with costs given by calibration informations to
obtain energy consumption of the platform during an instruction execution. On
top of energy consumption evaluation, this tools processes the instruction costs
to report them in a higher level metric, at the source code level.

By relying on a given format for the execution trace, we can use the same
implementation of the model for different platform adaptation. All platform
dependent information are contained in the execution trace and the calibration
data, given as input of eSimu. On top of that, the first step of this toolchain
can be made thanks to a standard simulator, provided its sources are avail-
able, by extending it with a library distributed with eSimu. This extension
consists in fetching some behavior information in the simulation loop and filling
corresponding structures.

However, the main drawbacks of this architecture is the execution trace
size and the I/O accesses necessary to write it. This is the reason why the
library proposed for trace generation can produce diverse formats ranging from
an ASCII human readable format to a binary Z compressed one. For example,
the simulation of 60s of the sensor node sending packets produces a 0.57 MB
compressed trace whereas raw ASCII trace size would have been 114 MB large.

Result outputs.

To ease the developper result interpretation, eSimu provides three kind of
results output: global information, linear trace and source code annotation.

The first one is a summary of the temporal and energetic metrics for the
application execution. This type of output can be used for quick software im-
plementation comparition. Linear traces depicts the consumption of peripherals
over time, which can be used to detect energy hungry peripheral behavior or
misbehavior of a peripheral. Last but not least, source code annotation is the
main source of information for developpers for application optimization. The
format of this input is an emerging one used in current performance analysis
tool such as the open-source project Callgrind, plugin of Valgrind. Using
this standard format allows to reuse existing application for visualization like

10



Figure 3: Linear Trace Example

the open-source project KCachegrind [7].
Figure 3 shows an exemple of linear trace output whereas figures 4 and 5

are respectively examples of annotated call graph and source code annotation
visualization with KCachegrind.

Simulator Integration. Our models, the ARM Integrator and WSN430 ones,
are implemented in this simulation tool suite. The first step, complete platform
functional simulation, is accomplished thanks to two different simulators. For
the ARM9 platform, the open-source project Skyeye [16] is extended to produce
the cycle-accurate execution trace of the software. To fulfill this first task for
the WSN430 platform, we augmented another simulator named WSim [5].

For the second step of the simulation tool suite, energy evaluation, eSimu
was used for both platforms. As we said before, using an execution trace allows
us to implement the model in the tool in a generic manner. The implementation
of the model in eSimu enforces model properties, simplicity and genericity.

4.4 Model validation

We describe here our accuracy tests experiments. Our model is implemented in
a simulator, and its results were compared to physical measurements.

Validation Methodology. To check the accuracy of the resulting model, we
propose here a comparition between consumption estimations of the model, thus
implemented in our tool and physical measurement on the real platform. This
comparition is here given for the most complex tested platform, the ARM9

11



Figure 4: Call graph annoted with energy consumption information visualized
thanks to KCachegrind

based one.
The test application chosen for this model validation are widely spread mul-

timedia applications : MP3, JPEG, JPEG2000 and MPEG2. The implemen-
tations of these four applications are Linux standard libraries. Hence they use
operating system services and standard libc functions. All experiments could
have been made with Linux (or even uClinux), since the simulation tools are
complete enough to run these operating systems. For limited measurement
duration reasons, we decided to replace these heavy OS by a lightweight one,
Mutek [12]. Linux hardware layer abstraction makes interrupt request manag-
ment too long to allow a reasonable sized image or sound to be decoded in our
measure time window. Four applications are executed in the simulation tools
to get estimations of their execution.

Accuracy.

Results of model estimations and physical measurements are presented in
table 3. The third column reports the physical measurement results, in terms
of execution duration in CPU clock cycles and in terms of energy consumption
in Joules. Fourth column gives the same kind of informations concerning the
simulation results. Finally, the last column gives the percentile error of simu-
lation errors of the simulation results against the physical measurement on the

12



Figure 5: Source code annotation visualization obtained with the KCachegrind

tool

benchmark metric measure estimation error (%)
mp3 cycles 13928480 14168406 +1.7

energy (mJ) 233 243 +4.4
jpeg cycles 6916836 7131529 +3.1

energy (mJ) 114 120 +5.3
jpeg2k cycles 7492173 7679416 +2.4

energy (mJ) 126 137 +8.5
mpeg2 cycles 13990961 14542406 +3.9

energy (mJ) 233 251 +7.7

Table 3: Simulators results: the results obtained for execution time and energy
consumption by real hardware measurement are shown in third column, the
simulation ones in fourth column. The last column gives the error percentile of
the simulation

13



target hardware platform. These results show that a 10% error rate can be
achieved by our complete platform energy model. These results validate that
inter-instruction costs simplification is a reasonible choice to get fast yet pre-
cise estimations of the energy consumption. These estimations are obtained in
roughly less than a minute (25s for the first simulation plus 20s for the sec-
ond). We think that the error rate of 10% is largely acceptable in regard of the
simulation time.

5 Conclusion

In this paper we have explained how an accurate energy consumption model for
a full embedded system can be built from external measurements and micro-
benchmarks. Our methodology requires a prototype platform of comparable
technology. Quantitative energy data are gathered at the battery output and
are translated into per instruction energy figures by data analysis. The resulting
model is thus driven by the embedded software activity and can be used with
a simulation execution trace as input. It is thus possible to very easily add
an energy estimator to a software functional simulator so as to get feedback
at the source level. As simulation tools modifications are kept at a minimum
the simulation speed is not impacted. Consumption data clearly identify power
hungry operations, thus offering hints for software design tradeoffs. The model
built on an ARM9 based development board using this methodology achieved
an error rate of less than 10 % at the source level, which is acceptable compared
to its simplicity of implementation and its fast running time.

References

[1] O. Brevet, G. Chelius, E. Fleury, and A. Fraboulet. Wsn430:
Ultra low power wireless module for sensor network applications.
http://worldsens.citi.insa-lyon.fr/.

[2] R. Y. Chen, M. J. Irwin, and R. S. Bajwa. Architecture-level power estima-
tion and design experiments. In ACM TODAES, volume 6, pages 50–66,
January 2001.

[3] G. Contreras, M. Martonosi, J. Peng, R. Ju, and G.-Y. Lueh. XTREM: a
power simulator for the Intel XScale core. In LCTES ’04, pages 115–125,
2004.

[4] N. Fournel, A. Fraboulet, and P. Feautrier. Embedded Systems Energy
Characterization using non-Intrusive Instrumentation. Research Report
RR2006-37, LIP - ENS Lyon, Nov 2006.

[5] A. Fraboulet, G. Chelius, and E. Fleury. Worldsens: Development and
Prototyping tools for Application Specific Wireless Sensors Networks. In
IPSN’07/SPOTS, April 2007.

14

http://worldsens.citi.insa-lyon.fr/


[6] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan,
M. Kandemir, T. Li, and L. K. John. Using complete machine simulation
for software power estimation: The softwatt approach. In International
Symposium on High Performance Computer Architecture, 2002.

[7] Available online, http://kcachegrind.sourceforge.net/, nov 2006.

[8] N. S. Kim, T. Austin, T.r Mudge, and D. Grunwald. Power Aware Com-
puting, chapter Challenges for Architectural Level Power Modeling. Kluwer
Academic, 2001.

[9] O. Landsiedel, K. Wehrle, and S. Götz. AEON: Accurate Prediction of
Power Consumption in Sensor Nodes. In SECON, Santa Clara, October
2004.

[10] M. T.-C. Lee, M. Fujita, V. Tiwari, and S. Malik. Power analysis and
minimization techniques for embedded dsp software. IEEE Transactions
on VLSI Systems, 1997.

[11] A. Muttreja, A. Raghunathan, S. Ravi, and N. Jha. Automated en-
ergy/performance macromodeling of embedded software, 2004.

[12] F. Pétrot and P. Gomez. Lightweight Implementation of the POSIX
Threads API for an On-Chip MIPS Multiprocessor with VCI Interconnect.
In DATE 03 Embedded Software Forum, pages 51–56, 2003.

[13] J. T. Russell and M. F. Jacome. Software power estimation and optimiza-
tion for high performance, 32-bit embedded processors. In International
Conference on Computer Design, October 1998.

[14] E. Senn, J. Laurent, N. Julien, and E. Martin. Softexplorer: estimation,
characterization and optimization of the power and energy consumption at
the algorithmic level. In IEEE PATMOS 2004, 2004.

[15] T. Simunic, L. Benini, and G. De Micheli. Cycle-accurate simulation of
energy consumption in embedded systems. In 36th Design Automation
Conference, pages 867–872, May 1999.

[16] Available online, http://www.skyeye.org/, nov 2006.

[17] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An accurate and
fine grain instruction-level energy model supporting software optimizations.
In PATMOS, 2001.

[18] T. K. Tan, A. Raghunathan, and N. K. Jha. EMSIM: An Energy Simulation
Framework for an Embedded Operating System. In ISCAS 2002, May 2002.

[19] V. Tiwari, S. Malik, A. Wolfe, and M. Lee. Instruction level power analysis
and optimization of software. Journal of VLSI Signal Processing, 1996.

15

http://kcachegrind.sourceforge.net/
http://www.skyeye.org/

	Introduction
	Related Works
	Model construction basics
	Model structure and parameters

	Model Construction Case Study
	Methodology application
	Large targeted architecture range
	Model usage
	Model validation

	Conclusion

