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1361 route des Lucioles, 06560 Valbonne, France
2 Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la
Cruz 3, Cantoblanco, Madrid 28049, Spain
3 Institut Langevin, ESPCI ParisTech, CNRS, Laboratoire d’Optique Physique,
10 rue Vauquelin, 75231 Paris Cedex 05, France
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Abstract. Atoms can scatter light and they can also amplify it by stimulated
emission. From this simple starting point, we examine the possibility of realizing
a random laser in a cloud of laser-cooled atoms. The answer is not obvious as both
processes (elastic scattering and stimulated emission) seem to exclude one another:
pumping atoms to make them behave as amplifier reduces drastically their
scattering cross-section. However, we show that even the simplest atom model
allows the efficient combination of gain and scattering. Moreover, supplementary
degrees of freedom that atoms offer allow the use of several gain mechanisms,
depending on the pumping scheme. We thus first study these different gain
mechanisms and show experimentally that they can induce (standard) lasing.
We then present how the constraint of combining scattering and gain can be
quantified, which leads to an evaluation of the random laser threshold. The
results are promising and we draw some prospects for a practical realization of a
random laser with cold atoms.
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1. Introduction: atoms as scatterers and amplifiers

Among atom-light interactions, elastic – or Rayleigh – scattering is one of the simplest
processes [1]. It has been known for a long time that in optically thick atomic
vapors, multiple scattering leads to diffusion of light, or “radiation trapping” [2, 3].
However, only the progress in laser cooling and trapping [4] allowed the more recent
demonstration and study of this effect with only true elastic scattering, by suppressing
the Doppler-induced frequency redistribution [5, 6, 7]. Many experiments have also
been performed to study the coherence properties of multiply-scattered light in such a
medium, especially using coherent backscattering as a probe [8, 9] (see [10, 11, 12, 13]
for review articles devoted to this topic).

Cold atoms have also driven a renewed interest in non linear spectroscopy, as the
suppression of Doppler broadening allows the resolution of narrow spectral resonances
in pump-probe spectroscopic schemes [14]. One example is Raman gain between
Zeeman sublevels [15, 16]. The idea of building a laser upon this gain followed soon
after its first observation [17]. Nevertheless, cold atoms in optical cavity have been
then mainly used for quantum optics purposes [18] and laser demonstrations with
different gain mechanisms are much more recent [19, 20].

If one could combine both gain and radiation trapping at the same time in a
cold atom cloud, this could give rise to a diffusive random laser, as predicted by
Letokhov [21]. Since his original “photonic bomb” prediction, great efforts have
been made to experimentally demonstrate this effect in different kinds of systems
[22, 23, 24, 25, 26, 27, 28], as well as to understand the basic properties of random lasing
[29, 30, 31, 32]. The broad interest of this topic is driven by potential applications
(see [33] and references therein) and by its connection to the fascinating subject of
Anderson localization [34, 35]. State-of-the-art random lasers [33, 36, 37, 38] are
usually based on condensed matter systems, and feedback is provided by a disordered
scattering medium, while gain is provided by an active material lying in the host
medium or inside the scatterers. In general, scattering and gain are related to different
physical entities.

The peculiarity of a random laser based on cold atoms would be that the same
microscopic elements (the atoms) would provide both ingredients (scattering and gain)
of random lasing. On the one hand, it leads to an easier characterization and modelling
of the microscopic properties of the system, which can be extremely valuable for a
better understanding of the physics of random lasers. Moreover, cold atoms are “clean”
and perfectly characterized samples. In addition, relaxation of optical coherences is
limited by radiative processes, which makes the transition to cooperative emission,
such as superfluorescence [39, 40], more accessible than in condensed matter systems.
On the other hand, it is clear that pumping atoms to induce gain reduces drastically
their scattering cross-section, due to the saturation effect [1]: atoms spend less time
in their ground state, in which they can scatter light. It is thus not obvious at all that
reasonable conditions for random lasing can be obtained in cold atoms. Moreover,
these conditions are expected to be different for each gain mechanism.

The purpose of this article is to present the status of our experimental and
theoretical investigations on this issue. In the next section we present our work
on lasing with cold atoms, with a standard cavity [20]. Experimentally, this
demonstration of a cold-atom-based laser with different gain mechanisms is a first
important step towards the building of a random laser. More fundamentally, this
experiment can be compared to theory to validate or improve the modelling of such
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gain media, including saturation effect, laser dynamics or statistics. We present a part
of this modelling in section 3. Ultimately, when studying the random laser properties,
it will be of first importance to be able to discriminate which behaviour originates
from the particular used gain medium and mechanism and which one is specific to the
feedback mechanism (standard cavity or scattering). The cavity-laser thus serves as a
reference, to be compared with theory and with the (forthcoming) random laser.

The second important step of this project, presented in section 4, is to quantify
the constraint of combining gain and scattering at the same time. This leads to the
evaluation of the random laser threshold [41, 42]. The goal is first to establish the
feasibility of a random laser with cold atoms, which was not obvious, and second
to compare the different gain mechanisms in order to experimentally choose the
more appropriate one with the best pumping parameters. This is necessary before
conducting further experimental efforts to achieve the threshold. As the results are
promising, we draw some prospects for our future work in the last section.

2. Gain and lasing with cold atoms: experimental investigation

In this section, we briefly describe our experimental setup and then the different
gain mechanisms we have studied. Mollow gain is the simplest as it involves only
one pumping field and two-level atoms [43, 44]. By using the more complex atomic
structure of rubidium atoms, we can create two-photon transitions between two non-
degenerate ground states. This can produce Raman gain [15, 16, 17]. Finally, the
atomic non-linearity can give rise to parametric gain, for example with four-wave
mixing. We have demonstrated laser action with each of these mechanisms (figure 1)
[20]. We mention also briefly some other gain mechanisms that could be used.

(a)

(c)

(b)

(d)

Figure 1. Transverse modes of cold-atom lasers. (a) Gaussian TEM00 mode,
obtained by inserting a small diaphragm in the cavity. Typical modes of: (b) the
Mollow laser, (c) the Raman laser, and (d) the four-wave mixing laser respectively.

2.1. Experimental setup

Our experiment uses a cloud of cold 85Rb atoms confined in a vapour-loaded Magneto-
Optical Trap (MOT) [4] produced by six large independent trapping beams, allowing
the trapping of up to 1010 atoms at a density of 1010 atoms/cm3, corresponding
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to an on-resonance optical thickness b0 ∼ 10. A linear cavity, formed by two mirrors
separated by a distance L = 0.8 m, is placed outside the vacuum chamber. Reflections
on the vacuum cell yields a low finesse F = 16. To add gain to our system, we
use either one or two counter-propagating pump beams, denoted F (forward) and B
(backward), produced from the same laser with a waist wpump = 2.6 mm, with linear
parallel polarizations and a total available power P = 80 mW, corresponding to a
maximum pump intensity I = 2P/(πw2

pump) ≈ 750 mW/cm2. The pump is tuned
near the F = 3 → F ′ = 4 cycling transition of the D2 line of 85Rb (frequency ω0,
wavelength λ = 780 nm, natural linewidth Γ/2π = 6.1 MHz), with an adjustable
detuning ∆ = ωF,B − ω0 and has an incident angle of about 20◦ with the cavity axis.
An additional beam P is used as a local oscillator to monitor the laser spectrum or
as a weak probe to measure transmission or reflection spectra (figures 4(b) and 5(b))
with a propagation axis making an angle with the cavity axis smaller than 10◦. Its
frequency ωP can be swept around the pump frequency with a detuning δ = ωP−ωF,B.
Both lasers, pump and probe, are obtained by injection-locking of a common master
laser, which allows to resolve narrow spectral features. In our experiments, we load a
MOT for 29 ms, and then switch off the trapping beams and magnetic field gradient
during 1 ms, when lasing or pump-probe spectroscopy are performed. In order to
avoid optical pumping into the dark hyperfine F = 2 ground state, a repumping laser
is kept on all time.

2.2. Gain mechanisms

2.2.1. Mollow gain The most simple gain mechanism we can imagine in cold atoms
was described by Mollow [43] and observed soon afterwards [44]. It involves a two-
level atom and one strong pumping field. Amplification comes from a three-photon
transition from the ground state to the excited state via two absorptions of pump
photons (figure 2(a)). This process can also be described in the dressed-state basis
[1], in which a population inversion occurs (figure 7(a)).

The main amplification feature appears for a pump-probe detuning δ =
sign(∆)

√
∆2 + Ω2, where Ω is the Rabi frequency of the pump-atom coupling, related

to the pump intensity I by Ω2 = C2Γ2I/(2Isat) (Isat = 1.6 mW/cm2 is the saturation
intensity and C is the averaged squared Clebsch-Gordan coefficient of the F = 3 →
F ′ = 4 transition) and has a typical width on the order of Γ. Note that another,
dispersion-like feature appears around δ = 0, which is associated with two-photon

(a) (b)

ωF,B

ωP

∆

ωF,B

δ/Γ

T   
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Figure 2. (a) Principle of the Mollow gain depicted as a three-photon transition
from the ground state to the excited state. It can also be viewed as a population
inversion in the dressed-state basis (figure 7(a)). (b) Transmission spectrum,
computed for typical experimental parameters b0 = 10, Ω = 2Γ and ∆ = Γ.
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Figure 3. Laser power versus pump power. Points are experimental data
obtained after an average of 1000 experiments, the continuous line is the
theoretical fit (see section 3) with a single fit parameter η ≃ 8 (corresponding
to N ∼ 108 atoms in the cavity mode) and all other parameters fixed at their
experimental values, b0 = 11, ∆ = Γ, F = 16, L = 0.8 m, and cavity waist
at the MOT location w = 500 µm. The horizontal axis is normalized by the
threshold value of the squared Rabi frequency Ω2

thr
; the vertical axis is normalized

by the maximum value of the electromagnetic field intensity reached at about
(Ω/Ωthr)

2 ∼ 5.

spontaneous emission processes [45]. This contribution also induces gain but with
a much smaller amplitude. Note that this can generate lasing without population
inversion [46, 47, 48].

In our experiment, we have measured single-pass gain as high as 50 %, which is
more than enough to induce lasing even with a low-finesse cavity [20]. This Mollow
laser has an output intensity reaching 35 µW achieved for |∆| ∼ 2Γ. Its threshold
in pump intensity is in agreement with the corresponding measured single-pass gain
and the losses of the cavity. The laser polarization is linear, parallel to the pump
polarization, because this is the configuration for which gain is maximum, as the
driven atomic dipole is then parallel to the probe field. We have also measured the
output power as a function of the pump intensity, as reported in figure 3. We observe
a threshold and the maximum intensity is reached for a pump power about 5 times
larger than at the threshold. This behaviour is well described by the theoretical model
presented in section 3.

The Mollow laser works for pump detuning |∆| < 4Γ. When the pump frequency
in detuned farther away from the atomic resonance, Raman gain becomes dominant,
and the system switches to another regime of laser, based on Raman gain.

2.2.2. Raman gain Raman gain relies on the pump-induced population inversion
among the different light-shifted mF Zeeman sublevels of the F = 3 hyperfine level
[15, 16], as depicted in figure 4(a). The optical pumping induced by the π-polarized
pump laser leads to a symmetric distribution of population with respect to the mF = 0
sublevel of the ground state, with this sublevel being the most populated and also the
most shifted, due to a larger Clebsch-Gordan coefficient [49]. To record a transmission
spectrum, atoms are probed with a π-polarized (with perpendicular direction) probe
beam, thus inducing ∆mF = ±1 Raman transitions. Depending on the sign of the
pump-probe detuning δ, the population imbalance induces gain or absorption. Each
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Figure 4. (a) Principle of the Raman mechanism, depicted here for a F =
1 → F ′ = 2 transition. (b) Experimental transmission spectra, plotted as a
function of the pump-probe detuning δ. Without pumping, spectrum (1) shows
only the atomic absorption. A pump beam of detuning ∆ = −3.8 Γ and intensity
13 mW/cm2, corresponding to a Rabi frequency Ω = 2.5 Γ, is added to obtain
spectrum (2), which then exhibits a Raman resonance in the vicinity of δ = 0.
Moreover, the atomic absorption is shifted due to the pump-induced light shift
and the absorption is reduced due to saturation.

pair of neighboring sublevels contributes with a relative weight depending on the
population inversion. In practice however, the contributions of different pairs are not
resolved and only two structures (with opposite signs) are visible, one corresponding
to amplification for δ = −δR and one to absorption for δ = δR. Note that this situation
corresponds to a red detuning for the pump (∆ < 0) and that the signs are inverted
for blue-detuning (∆ > 0). As δR comes from a differential light-shift (because of
different Clebsch-Gordan coefficients), it is usually on the order of Γ/10, whereas ∆
is a few Γ. The width γ of the resonances is related to the elastic scattering rate,
also much smaller than Γ [16]. Far from the main atomic absorption resonance, the
Raman resonance is thus a narrow spectral feature, as in figure 4(b)

The laser obtained with Raman gain has an output polarization orthogonal to
the pump one (contrary to the Mollow laser) and less power (2 µW). Moreover, the
sharpness of the gain curve makes the Raman gain very sensible to any Doppler shift.
The radiation pressure from the pump beam makes thus the laser emission to stop
after only ∼ 20 µs. On the other hand, the narrow spectrum of the laser can be easily
characterized by a beat-note experiment [20].

2.2.3. Parametric gain The Mollow and Raman lasers only require one pump
beam. By using a second pump beam, we can induce four wave mixing (FWM):
the two pumps of frequencies ωF and ωB and one probe – or initial fluctuation –
of frequency ωP generate a fourth field at frequency ωC, called the conjugate field
[50, 51, 52]. The frequencies and wave-vectors of all the fields are related by energy
and momentum conservations. If we want to obtain gain for the probe, we have to
choose a configuration where the conjugate frequency equals the probe one: ωC = ωP.
Then, the pump frequencies have to fulfill the condition ωF + ωB = 2ωP. From an
experimental point of view, the most simple configuration consists of all frequencies
to be the same (“degenerate FWM”). This is the experimental situation that we have
studied so far, and we did obtain lasing in cold atoms with this mechanism [20]. Note
that this mechanism has been observed a long time ago with hot atoms [53, 54, 55].

Due to the phase matching condition, however, the gain is not in the forward
transmission of the probe beam, but in backward reflection, provided that the two
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Figure 5. (a) Principle of four-wave mixing. (b) Typical experimental reflection
spectrum.

pumps are counterpropagating. The conjugate beam is actually the phase-conjugate
of the probe beam. This property has a number of consequences for the laser [20].
First, it leads to a different threshold condition [54]: a reflectivity of only 1 % is enough
to generate lasing, despite the much larger losses of the cavity (32 % for a round trip).
This is due to constructive interferences between transmitted and reflected waves, as
observed in double-pass experiments [56]. Second, it leads to more complex transverse
modes (figure 1(d)), because the phase conjugation mechanism allows any transverse
pattern to be stable through the resonator [57].

Finally, these properties lead to a much larger power than with Mollow and
Raman gain, as up to 300 µW have been obtained. Moreover, this laser might find
application for other topics like pattern formation [58, 59] or the production of twin
beams for quantum optics [60, 61] and even quantum imaging [62]. Note also that
the use of two pump beams allows a longer laser emission (figure 6(b)) because the
effect of radiation pressure on the cloud is suppressed (other effects can arise due to
the dipole force, see [63]).

2.2.4. Other gain mechanisms Our previous study on the gain mechanisms that can
be used in cold atoms is not exhaustive. For example, the two hyperfine ground states
of rubidium atoms can also be used to produce Raman gain [64].

Other, more complicated, schemes, involve quantum interference to induce gain
without population inversion (whatever the basis) [48]. This can be realized with a
Λ scheme [65] or a V scheme [66, 67]. In this last configuration, a large detuning
between the pump and the gain frequency can be reached by using the two D lines of
rubidium, whose separation is 15 nm. If used to produce a random laser, this can be
highly valuable to make the detection easier (see the discussion of section 5).

Another possibility is to use the atomic external degrees of freedom, i.e., their
kinetic energy. Transitions between different velocity classes produce recoil-induced
resonances [68], and high gain can be achieved [69]. These resonances can ultimately
lead to a “Collective atomic recoil laser” [70, 71], which has been demonstrated with
cold atoms [19].

Finally, one could also consider higher-order photonic processes, such as two-
photon dressed-state lasers [72].
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2.3. Laser dynamics

We have been interested so far only in steady-state properties. Our cold-atom-based
laser could also reveal interesting dynamical properties.

For example, we have observed that the Mollow laser switches on very quickly,
whereas the FWM laser switches on very slowly (figure 6 – notice the change in the
time scales). The laser rise-times are related to the spectral properties of the gain
mechanism. We are indeed in the bad cavity limit, where the decay rate of the cavity
is not smaller than the spectral width of the amplification. The measured orders of
magnitude (∼ 0.2 µs for the Mollow laser, more than 100 µs for the FWM laser) are
consistant with the inverse of the laser spectral width (a few MHz for the Mollow
laser, a few kHz for the FWM laser). Note that the spectral width of the FWM
laser, measured by a beating with a local oscillator (inset of figure 6(b) – note the
logarithmic scale), is substantially smaller than the width of the reflectivity spectrum
(figure 5(b)).

Clearly, further experimental and theoretical studies would be needed to fully
understand the dynamical behaviour of these different lasers. However, a first insight
is given in the next section.
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Figure 6. Temporal evolution of the Mollow (a) and FWM lasers (b). The
pump beams are switched on at t = 0. Note the change in the time scales. The
Mollow laser switches on very fast (the initial decrease is due to optical pumping
to the dark hyperfine state), whereas the FWM laser needs more time. Inset of
(b): Power spectrum, with a logarithmic scale, of the FWM laser measured by
a beating with a local oscillator of frequency ν0. All data are the result of an
average of 1000 cycles.

3. Model of the Mollow laser

We present in this section a theoretical analysis of our cold-atom laser based on Mollow
gain.
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3.1. Formalism

We consider an ensemble of N identical two-level atoms pumped by a strong field of
frequency ωL, detuning ∆ and intensity characterized by the Rabi frequency Ω. They
are placed inside a cavity of eigenfrequencies ωm, and am, a†

m are the annihilation and
creation operators, corresponding to the mode m. The cavity is partly open and the
energy of the electromagnetic field can escape at a rate 2κ. We recall that we are in
in the bad cavity limit [73].

To describe the dynamics of the coupled system of atoms and modes of the
electromagnetic field, we use the master equation approach [1, 73, 74]. The density
matrix operator obeys

.
ρ = −i [H, ρ] + LAρ + LF ρ , (1)

where we set ~ = 1 and the Hamiltonian is

H =
1

2

N
∑

j=1

[

−∆ · σ3j + Ω
(

σj + σ†
j

)

+

M
∑

m

(

gjmσ†
jam + h.c.

)

]

+

M
∑

m=1

δma†
mam . (2)

Here the rotating-wave approximation was used and the operators σ3j , σ†
j and σj

are standard Pauli matrices, describing the populations (σ3j) and the coherences (σj)
of the j-th atom. The detuning of the mode frequency from the pump frequency
is δm and gjm are the coupling constants between atoms and cavity modes, which
we assume to be independent of the mode index m and to have the same absolute
value g for all atoms and random phases φj : gjm = g exp(iφj). In the Hamiltonian
of equation (2), only a part of modes of the electromagnetic field in the cavity (M
modes) are treated explicitly, whereas spontaneous emission into other modes is taken
into account through the first non-Hamiltonian term of the master equation (1):

LAρ =
Γ

2

N
∑

j=1

(

2σjρσ†
j − σ†

jσjρ − ρσ†
jσj

)

. (3)

The second non-Hamiltonian term in equation (1) describes cavity damping of the
electromagnetic modes:

LF ρ = κ

M
∑

m=1

(

2amρa†
m − a†

mamρ − ρa†
mam

)

. (4)

The physical processes described by the set of equations (1–4) become especially
clear in the dressed-state basis [1]. The dressed states are eigenstates of the system
“atoms + pump field”. In the dressed-state basis, the states |1〉j and |0〉j of the
two-level atom j become |+〉j = (cos θ) |1〉j + (sin θ) |0〉j and |−〉j = −(sin θ) |1〉j +

(cos θ) |0〉j , respectively, where Ω = Ω′ sin 2θ and ∆ = −Ω′ cos 2θ with Ω′ =
√

Ω2 + ∆2

being the generalized Rabi frequency (figure 7(a)). Equations (2) and (3) can then be
transformed (equation (4) remains unchanged) and equation (1) leads to the following
semi-classical equations for quantum-mechanical expectation values of operators σj ,
σ3j and am [73, 74]:

.
σ3j = − γ1 (σ3j − σ̄3j) + Φ(σj , am) , (5)
.
σj = − (γ2 + iΩ)σj + Ψ(σj , σ3j , am) , (6)
.
am = − (κ + iδm) am + Θ(σ3j , σj) , (7)
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Figure 7. (a) Coupling of the bare atomic states |0, n〉, |1, n〉 (left) to the dressed
states |−, n〉, |+, n〉 (right), where n stands for the number of pump photons.
The population inversion and the subsequent gain is sketched on the dressed-
state representation. (b) Laser power versus pump power for a laser with a single
cavity mode interacting with atoms (M = 1). Values of parameters are chosen as
in the experiment, b0 = 11, ∆ = Γ, F = 16, L = 0.8 m, w = 500 µm, and we
have taken η ≃ 15, corresponding to N = 2.3 × 108. δm = 1.8Γ is chosen at the
maximum of the measured gain curve. Regions I, II and III correspond to three
different types of behaviour illustrated in figure 8. Regions III (chaotic behaviour)
appear only when η is large enough. (i.g., no chaotic behaviour is observed for
η = 8 as in figure 3).

where σ̄3j = −2 cos 2θ/(1+cos2 2θ), γ1 = (Γ/2)
(

1 + cos2 2θ
)

, γ2 = (Γ/4)
(

2 + sin2 2θ
)

and the expressions of functions Φ, Ψ, Θ are given in Appendix A. The equations
for σ∗

j and a∗
m are complex conjugates of equations (6) and (7), respectively. These

equations describe respectively the evolution of the populations, the coherences and
the cavity field. The first term of each right-hand-side contains the natural evolution
associated with rates γ1, γ2 and κ as well as the driving by the pump field (Rabi
frequency Ω). The equations are coupled by their second terms (equations A.1–A.3),
which contain the atom-field coupling g and the atom number N coupled to the cavity
mode, which are in the mode of the cavity. For a Gaussian cavity mode with waist w
one obtains [75] g ≃

√

3cΓ/L/k0w, N ≃ (k0w)2b0/12 where k0 = ω0/c = 2π/λ, b0 is
the optical thickness of the cloud at resonance without pump and L the length of the
cavity. To take into account the fact that volumes and shapes of the atomic cloud and
cavity modes are different and not Gaussian, we will multiply N by a free parameter
η that will be adjusted to fit experimental results.

Equations (5–7) can be solved numerically following the procedure described in
Appendix A.

3.2. Dynamics of the laser

The dynamics of the laser depends strongly on how the different time scales associated
with the evolutions of populations, coherences and field can be compared. Following
the classification introduced in [76, 77], class A lasers are those in which population
and polarization decay much faster than the field so that the dynamics is governed by
the single field equation (for example He-Ne, Ar+, Kr+, dye lasers), class B lasers are
those for which the population decays slowly and two equations are necessary (e.g.
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Figure 8. Laser power versus time (left) and corresponding power spectra (right)
for the three different regimes of lasing: I – single-mode lasing, II – multi-mode
lasing, and III – chaotic behaviour. The spectra are calculated in the stationary
regime Γt > 100. The parameters used in the calculation are the same as in figure
7.

ruby, Nd, CO2 lasers) and finally, class C lasers are those for which the three time
scales are of the same order of magnitude. The last ones are known to exhibit chaotic
behaviour [76, 77].

For our cold atom sample, the relaxation rate of atomic coherences is only given
by optical processes (no collision, e.g.). As a consequence, and with Mollow gain,
the time scales for the evolution of the populations and coherences are both on the
order of Γ−1 (note that this is not the case with Raman gain or FWM). The cavity
damping rate κ is related to the finesse F of the cavity by κ = πc/2LF . With our
experimental parameters, it gives κ/2π ≃ 5.9 MHz, i.e., κ ∼ Γ and we are thus
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in a regime corresponding to class C lasers. This is consistent with the behaviour
observed in our numerical simulation, as described in figures 7(b) and 8. We show
the dependence of the laser power on the pump power in figure 7(b) for the case of
when only a single mode (M = 1) with a well-defined frequency (detuning δ = 1.8Γ)
is present. The non-monotonic character of this dependence is accompanied by a
complex dynamic behaviour that we illustrate in figure 8. Three distinct dynamic
regimes are possible, depending on the pump strength: the laser emits at a single
frequency (I) or at several frequencies at a time (II). In addition, chaotic behaviour
appears for certain Ω (III). These results show that Mollow gain, associated to a low-
finesse cavity, is perfectly suited for the study of chaotic regimes in lasers, as already
predicted in [73].

We did not observe this kind of dependence of laser power as a function of the
pump intensity in our experiment. This behaviour appears indeed only for some values
of atom number or detuning δm and a specific experimental implementation would be
needed. To model the experimental results, we solved the coupled laser equations
with a well-defined single mode of the field (M = 1, detuning δ1 = δ) and average
the resulting laser intensity |a|2 over 200 equidistant δ between −2Γ and 5Γ. This is
supposed to account for the fact that the exact frequency of the cavity mode is not
precisely known in the experiment and fluctuates shot to shot, as well as for averaging
over many consecutive measurements (1000 in the experiment). Using η as a free
parameter, we are then able to obtain a good fit to experimental data (solid line in
figure 3). The obtained value of η = 8 is in qualitative agreement with the observation
of high-order transverse laser modes: the corresponding cavity modes have a larger
overlap with the atom cloud compared to a gaussian TEM00 mode.

4. Threshold of a random laser with cold atoms

We now turn to the more specific question of realizing a random laser based upon
one of the gain mechanisms studied in the previous section. As explained in the
introduction, gain is not the only necessary ingredient for building a random laser, as
scattering should also be present to provide feedback. In the previous laser experiment,
scattering was not considered, and the optimum conditions for the laser operation are
those which optimize the single-pass transmission though the cloud, which are very
probably not the one that optimize scattering. To establish the best conditions for
random lasing, we thus have to quantify more precisely the constraint of combining
gain and scattering. This condition is already contained in the seminal Letokhov’s
paper [21], and leads indeed to the evaluation of the random laser threshold.

4.1. Random laser threshold

Although different kinds of random lasers have been achieved experimentally, several
points are still under debate. Random lasers may be divided into two categories,
depending on the feedback mechanism [37]. In the regime of incoherent (or intensity)
transport, feedback is provided by an increase of the photon path lengths (or lifetime)
in the system. This regime has been observed experimentally in many systems, such
as powdered laser crystals [22], dye solutions containing microparticles [23], solid-
states materials [38], or porous glass infiltrated by a dye solution in liquid crystal [26].
In a regime in which interference effects survive the random scattering process, a
coherent (or field) feedback is expected, leading to a behaviour closer to that taking
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place in conventional lasers. This behaviour is expected to become substantial close
to the Anderson localization regime [34]. Experiments in this direction have been
carried out, e.g., on zinc oxide powders [25, 37], and signatures of coherent feedback
on the random lasing mechanism have been discussed recently [31, 32, 35]. For a given
practical realization of a random laser, discriminating between a coherent or incoherent
feedback mechanism is a complicated task. For example, narrow emission peaks above
threshold can be observed, even far from the localization threshold [37, 78]. The
existence of such peaks in experiments can be attributed to exponential gain along
very long diffusion paths [78], or to interferences and coherent feedback in the weak
scattering limit [31]. On the route towards a random laser with cold atoms, we first
consider a diffusive random laser (with intensity feedback). This approach is motivated
by the fact that experiments that should be carried out in the near future are expected
to work in this regime. Another motivation is the identification of specific signatures
of the incoherent feedback regime that could guide the experimental observations. A
deviation from these signatures could be a measure of the onset of a coherent feedback
mechanism.

4.2. Letokhov’s threshold for cold atoms

From Letokhov’s diffusive description of light transport in a homogeneous, disordered
and active medium of size L, we know that the random laser threshold is governed
by two characteristic lengths: the elastic scattering mean free path∗ ℓsc [79] and the
linear gain length ℓg (ℓg < 0 corresponds to absorption or inelastic scattering). In
the diffusive regime, defined as L ≫ ℓsc, the lasing threshold is reached when the
unfolded path length, on the order of L2/ℓsc, becomes larger than the gain length.
More precisely, the threshold is given by [21, 36]

Leff > βπ
√

ℓsc ℓg/3 , (8)

where β is a numerical factor that depends on the geometry of the sample (β = 1 for a
slab, β = 2 for a sphere, which is the case we consider in the following), and Leff = ηL
is the effective length of the sample, taking into account the extrapolation length [79].
For L > ℓsc and a sphere geometry, η = 1 + 2ξ/ [L/ℓsc + 2ξ] with ξ ≃ 0.71 [80, 81].
Note that deeply in the diffusive regime (L ≫ ℓsc), η ∼ 1. Another important length
scale is the extinction length ℓex, as measured by the forward transmission of a beam
through the sample, T = e−L/ℓex . The extinction length is related to the other lengths
by ℓ−1

ex = ℓ−1
sc − ℓ−1

g . Note that this reasoning may not be appropriate for backward
gain such as produced by FWM.

For an atomic vapour, these characteristic lengths can both be computed as a
function of the atomic polarizability α(ω) at frequency ω. The extinction cross-section
is indeed given by σex(ω) = k × Im[α(ω)] and the elastic scattering cross-section by
σsc(ω) = k4/6π × |α(ω)|2 [82] (k = ω/c is the wave vector). Note that the first
relation is general to any dielectric medium whereas the second one is specific to dipole
scatterers. The characteristic lengths are then ℓ−1

ex,sc = ρ σex,sc, where ρ is the atomic
density. The gain cross-section can be defined the same way by ℓ−1

g = ρ σg. The vapour
is supposed at constant density and homogenously pumped, so that both ρ and α are
position-independent. Even though this is not the precise geometry of a cold-atom

∗ We consider only isotropic scattering so that the transport length equals the scattering mean free
path.
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experiment, it allows us to perform analytical estimations. As we consider resonant
scatterers, we deal only with quasi-resonant light and we shall use k = k0 = ω0/c
with ω0 the atomic eigenfrequency. In the following, we shall also use a dimensionless
atomic polarizability α̃, defined as α = α̃ × 6π/k3

0, and omit the dependence on ω.
We can now rewrite σsc = σ0|α̃|2 and σg = σ0

(

|α̃|2 − Im(α̃)
)

, where σ0 = 6π/k2
0 is

the resonant scattering cross-section (for a J = 0 → J = 1 transition), such that the
threshold condition, as expressed by equation (8), reduces to [41]

ρσ0Leff = ηb0 >
2π

√

3|α̃|2 (|α̃|2 − Im(α̃))
, (9)

where b0 is the on-resonance optical thickness of the cloud. This condition is valid as
soon as the medium exhibits gain, i.e., |α̃|2 − Im(α̃) > 0. Interestingly, the condition
Im(α̃) < 0, corresponding to single-pass amplification (T > 1), is not a necessary
condition.

The threshold condition is thus given by a critical on-resonance optical thickness,
which is an intrinsic parameter of the cloud, expressed as a function of the complex
atomic polarizability only, which depends on the pumping parameters. Although the
initial condition of equation (8) involves two characteristic lengths, we emphasize here
that this is really one single independent parameter, as real and imaginary parts of
the atomic polarizability are related via Kramers-Kronig relations [83]. This point
is due to the originality of the system that we are considering, in which the same
atoms are used to amplify and scatter light. This property can be fruitfully used to
experimentally determine the threshold, as only one single measurement can provide
enough information. A weak probe transmission spectrum, which we can rewrite with
our notations,

T (ω) = e−b0 Im[α̃(ω)] , (10)

allows indeed the full characterization of α̃(ω).

4.3. Application to Mollow and Raman gain

We now apply the previous results to Mollow gain and to Raman gain. For the first
one we use the ab initio knowledge of the polarizability of a strongly pumped two-level
atoms. For the second one, we use experimental transmission spectra T (ω) to extract
the atomic polarizability via equation (10) and Kramers-Kronig relations.

With Mollow gain, the polarizability is exactly and analytically known [43],
assuming a weak probe field, which is a good hypothesis for calculating the threshold
of the random laser:

α̃(δ, ∆, Ω) = − 1

2

1 + 4∆2

1 + 4∆2 + 2Ω2

× (δ + i)(δ − ∆ + i/2)− Ω2δ/(2∆ − i)

(δ + i)(δ − ∆ + i/2)(δ + ∆ + i/2)− Ω2(δ + i/2)
,

(11)

where ∆, δ and Ω are in unit of Γ.
For each pair of pumping parameters {∆, Ω}, the use of the polarizability (11)

into the threshold condition (9) allows the calculation of the critical on-resonance
optical thickness b0 as a function of the pump-probe detuning δ. Then, the minimum
of b0 and the corresponding δ determine the optical thickness b0cr that the cloud must
overcome to allow lasing, and the frequency δRL of the random laser at threshold. The
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Figure 9. Threshold of random lasing based on Mollow gain (left) and Raman
gain (right) for each pair of pumping parameters ∆ (detuning) and Ω (Rabi
frequency). We use the theoretical knowledge of the atomic polarizability (11)
for Mollow gain whereas the prediction for Raman gain is based on experimental
spectra (see text). In both cases, we obtain a minimum optical thickness of about
200.

result is presented in figure 9(a) for a spherical geometry (β = 2). The result for b0cr

is independent of the sign of ∆. The minimum optical thickness that allows lasing is
found to be b0cr ≈ 200 and is obtained for a large range of parameters, approximately
along the line Ω ≈ 3∆. The optimum laser-pump detuning is near the gain line of
the transmission spectrum, i.e., δRL ∼ sign(∆)

√
∆2 + Ω2, with however a small shift

compared to the maximum gain condition due to the additional constraint of combined
gain and scattering.

With Raman gain, we do not have a simple analytical expression of the
polarizability. Nevertheless, we can measure its imaginary part by a transmission
spectrum (equation (10)). A fit of the result, followed by its transformation by
Kramers-Kronig relations [83], allows us to recover the full complex polarizability
and to use equation (9) [42]. Note that this method is general and could be applied to
any gain mechanism. However, Raman gain is perfectly suited for this analysis as we
can fit the corresponding transmission profile by two inverted Lorentzian lines (see the
Raman structure on figure 4(b), near δ = 0), the transformation of which via Kramers-
Kronig relations is analytic and well-known (it gives a standard dispersion profile). As
the two Lorentzians are not well separated (for most parameters, δR < γ), it leads for
the scattering cross-section (∝ |α̃|2) to a bell-shaped curve centered near δ ∼ 0 [42].
Note that besides creating gain, the Raman transition adds some scattering.

As for Mollow gain, we have varied the pump parameters {∆, Ω} and for each pair,
we have recorded a transmission spectrum and deduced the corresponding random
laser threshold. We report the result on figure 9(b). The calculation contains
corrections due to the peculiar polarization used in the experiment but deals only
with the Raman resonance. It takes into account neither the main atomic absorption
line at ω0 (which adds elastic scattering), nor the losses due to inelastic scattering.
Doing so, the two corrections almost compensate each other, and leads to b0cr ∼ 200
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as the correct order of magnitude, obtained for Ω = ∆ ∼ 3 − 4 Γ [42].
These results are very promising. Indeed, by using well-established techniques to

compress magneto-optical traps (see, e.g., [84, 85]), achieving an optical thickness of
200 should not be too difficult.

4.4. Beyond the diffusive model

The calculation of the lasing threshold based on Lethokov’s approach leads, for the
optimum pumping parameters, to ratio L/ℓsc = b0cr|α̃|2 ∼ 0.5 for Mollow gain and
L/ℓsc ∼ 2 for Raman gain. Because these values are not consistent a priori with the
domain of validity of the diffusion approximation, a more refined transport model is
needed in order to check the relevance of the approach. A model for random lasers with
incoherent feedback, going beyond the diffusion model, was introduced by Noginov et

al. [86], based on a phenomenological one-dimensional modelling of light transport. In
this work, we use a more advanced three-dimensional model based on the Radiative
Transfer Equation (RTE), that was introduced as a tool to predict the threshold of
“classical” random lasers [87], and that we extended recently to describe a cold-atom
random laser with Mollow gain [41].

The RTE is a Boltzmann-type transport equation [88], that has a wider range
of validity with respect to the ratio L/ℓsc than the diffusion equation [89]. The basic
quantity is the specific intensity Iω(r,u, t), which describes the number of photons
at frequency ω, at point r, propagating along direction u at time t. In order to
compare the diffusive and RTE predictions, we will consider a slab geometry, with
the z axis normal to the slab surfaces. In the case of plane-wave illumination at
normal incidence, and for isotropic scatterers, the specific intensity only depends on
the space variable z and the angular variable µ = cos θ, with θ the angle between the
propagation direction u and the z-axis. In a system exhibiting gain and (isotropic)
scattering, the RTE reads:

1

c

∂Iω

∂t
(z, µ, t) + µ

∂Iω

∂z
(z, µ, t) = (ℓ−1

g − ℓ−1
sc ) Iω(z, µ, t) + (2 ℓsc)

−1

∫ +1

−1

Iω(z, µ′, t) dµ′

(12)
where c is the energy velocity in the medium.

A feature of the RTE is that a modal expansion is available, whose asymptotic
behaviour at large length and time scales leads to the modal expansion of the diffusion
equation [80]. Therefore, under the conditions of uniform (in space) and constant (in
time) gain, it is possible to build a modal theory of random lasers with incoherent
feedback based on the RTE, that generalizes Lethokov’s approach beyond the diffusive
regime [87]. We focus on the slab geometry (β = 1) since the modal expansion of
the RTE is well known in this case [80] (to our knowledge, no simple expansion is
available for a sphere in the RTE approach). The modal approach consists in looking
for solutions of the form I(z, µ, t) = Iκ,s(µ) exp(iκz) exp(st), where I(z, µ, t) is the
specific intensity and the dependence on ω has been omitted for simplicity. κ can be
chosen as a real parameter, and s can take complex values. For a given real κ, s(κ) and
Iκ,s form a set of eigenvalues and eigenfunctions of the RTE. For isotropic scattering,
eigenvalues and eigenfunctions can be obtained analytically [80]. In a passive medium,
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the eigenvalue corresponding to the mode with the longest lifetime reads♯:

s0(κ)/c = ℓ−1
g −

[

ℓ−1
sc − κ/ tan(κ ℓsc)

]

, for κ ℓsc <
π

2
. (13)

In the presence of gain, the lasing threshold is reached when this modes starts to
display an exponential amplification in time. Determining the threshold parameters
amounts to calculating the gain length and scattering mean free path generating an
eigenvalue s0(κ) > 0. Exactly at threshold, one has s0(κ) = 0. For a slab of width
L, the dominant mode corresponds to κ = π/Leff = π/(L + 2ξℓsc). In practice, the
determination of κ is meaningful as long as ξ = 0.71 can be taken as a constant
(independent on L). Although not shown for brevity, we have verified with a full
numerical solution of the RTE that this is the case as soon as L > ℓsc. This condition
sets a limit of accuracy of the modal approach.

It is well known that the diffusion approximation is asymptotically reached from
the RTE in the limit of long time and large length scales. Indeed, in the limit κℓsc ≪ 1,
a first-order expansion of equation (13) yields

s
(DA)
0 (κ)/c = ℓ−1

g − κ2ℓsc/3, (14)

which is the dispersion relation of the modes of the diffusion equation (DA) [80, 90].

The associated threshold condition s
(DA)
0 (κ = π/Leff) = 0 corresponds exactly to the

result obtained with Letokhov’s approach, with β = 1. A careful look at equations (13)
and (14) shows that the predictions of the RTE and diffusion approximation should
not be substantially different. Firstly, we note that the gain contribution to s0(κ)
is the same in both models (the first term is the same in equations (13) and (14)).
Secondly, the scattering contribution (the second term in the equations) is larger in
the RTE model, but by a factor that remains smaller than 1.13 (when L ∼ ℓsc).
This means that the correction introduced by the RTE remains relatively small, at
least for the slab geometry. Numerically, it corresponds to an increase of η b0cr of at
most a few percents [41]. We can conclude that the model based on the diffusion
approximation gives accurate results, even in the regime L ∼ ℓsc. Also note that the
accuracy should be better with Raman gain, for which the optimum conditions are
reached for L/ℓsc ∼ 2 (instead of L/ℓsc ∼ 0.5 for Mollow gain). Finally, we stress that
our prediction shows that in a cold-atom system, random lasing could be achieved
even in a regime of low scattering. This is a feature of a system exhibiting a high level
of gain, in which the threshold can be reached even with a low-quality feedback (i.e.,
a cavity with a poor quality factor).

4.5. Emitted intensity above threshold

In this section we focus on the characterization of the Mollow random laser above
threshold. The threshold of a random laser with Mollow gain can be predicted using
the lasing condition (9) together with the polarizability given by equation (11). This
polarizability is obtained in the weak probe limit [43]. When the lasing threshold is
surpassed, Letokhov’s theory leads to an exponential growth of the laser intensity
versus time, and hence steady state cannot be reached. In order to avoid this
unphysical effect, as already pointed in [21], saturation effects must be included in
the description of the atomic polarizability at both pump and probe frequencies.

♯ Note that a misprint occurred in the published version of [41] and that the correct expression is
given here.
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Figure 10. Continuous line: Emitted random laser power normalized to the
pump fluorescence power, as a function of the pump intensity. Dashed line:
Normalized laser detuning δRL. The random medium is a spherical cloud of
two level atoms with an on-resonance optical-thickness b0 = 600.

To do so, optical Bloch equations in the strong probe regime can be numerically
solved in order to obtain the atomic polarizability. In this case the atomic

polarizability depends on the lasing intensity in the medium I
(in)
RL through its associated

Rabi frequency |ΩRL|2 ∝ I
(in)
RL . Hence, α̃ = α̃(δ, ∆, Ω, ΩRL) (all frequencies will be in

unit of Γ in the following equations). The steady-state value of the random laser
Rabi frequency is considered as the value at which losses exactly compensate gain.

In this situation, the output power of the random laser P
(out)
RL equals the generated

power in the lasing medium, i.e., P
(out)
RL ∝ σg|ΩRL|2, with σg = σ0

(

|α̃|2 − Im(α̃)
)

the gain cross-section. On the other hand, the pump-induced fluorescence power is
PFluo ∝ σ0|Ω|2/(1 + 4∆2 + 2|Ω|2).

Hence, in this regime the ratio of the lasing power to the fluorescence power
induced by the pump can be estimated. This ratio is an important step towards the
performance characterization of the random laser, as it allows to quantify the amount
of laser signal that can be extracted from the fluorescence background. From the
previous results we get

P
(out)
RL

PFluo
=

|ΩRL|2
|Ω|2

(

|α̃|2 − Im(α̃)
) (

1 + 4∆2 + 2|Ω|2
)

. (15)

As can be seen in figure 10, the ratio of lasing power to fluorescence background
is on the order of 5% for a pump detuning ∆ = 1, leading to a measurable signal.
One interesting characteristic of this random laser concerns the laser frequency at its
maximum emission power. As shown in figure 10, this maximum emission frequency
shifts as the pump intensity increases. This effect is due to the shift in the Mollow
gain as the pumping power changes.

4.6. Limitations of the model

Of course these crude estimations neglect different effects. We assume homogeneous
pump intensity across the whole system [86]. We are considering one pump frequency
and one lasing frequency, neglecting thus effects resulting from mode competition [32]
and inelastic scattering of laser light [91] among others. Despite neglecting those
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effects, these estimations seem to be reasonable at least in recovering the orders of
magnitude of the lasing threshold and power.

The inhomogeneities in the atomic cloud density, in the pump intensity and
in the gain distributions could be incorporated in the RTE model, at the cost of
a full numerical treatment of coupled equations for the pump beam and emitted
light intensities. Such an approach has been developed previously in the case of
a “classical” random laser, i.e., with gain and scattering as separate entities [87].
Another improvement would be to deal with a spherical geometry, that is closer to
the real conditions. Finally, including the Raman gain mechanism into the RTE
approach, using experimental data as input parameters, would be of great interest
in view of experiments since the threshold conditions seem easier to reach than with
Mollow gain, in view of our first estimates.

5. Outlook and conclusion

We have presented in this paper our recent investigations on the issue of achieving a
diffusive random laser in a cloud of cold atoms. We have especially studied different
gain mechanisms in a situation of standard laser, and we have quantified the random
laser threshold for two of them. These evaluations show that random laser in cold
atoms is possible. This is undoubtly our main result. Moreover, we point out that
the peculiarity of our system would lead to a random laser with a low amount of
scattering, that is, low feedback. This regime is similar to that encountered in certain
semiconductor lasers with a very poor cavity, and is different from the working regime
of random lasers realized to date.

Moreover, from our experience, we can now draw some preliminary conclusions
about the comparison of the different gain mechanisms. Application of Letokhov’s
criteria leads to similar critical optical thickness for Mollow gain and Raman gain.
Nevertheless, the optimum for Mollow gain is obtained outside the range of validity
of our transport model whereas the amount of scattering is larger with Raman gain.
Moreover, polarization is better taken into account in our prediction for Raman gain.
Finally, the optimum pumping parameters are such that pump penetration through
the cloud will be higher with Raman gain, since detuning and power are larger. For
all these reasons, Raman gain seems more appropriate to achieve random lasing.

However, achieving random lasing is not enough, as we need also to detect the
random laser emission. In our system, gain is almost at the same wavelength than the
pump (and thus its fluorescence), and this makes the detection challenging. In this
respect, Raman gain is worse than Mollow gain, as the very small detuning δR between
the pump and the gain frequency prevent the use of a Fabry-Perot interferometer to
distinguish between the laser emission and the pump-induced fluorescence. This could
be done more easily with Mollow gain (see, e.g., [92]). Moreover, from our preliminary
evaluations of the intensity of the random laser emission with Mollow gain (section
4.5), we know that the random laser emission should not be too small to be detected.

For Raman gain we can imagine other ways to extract the optical spectrum of the
emitted light, by looking at the intensity correlations of the fluorescence, measured
by a heterodyne technique [93] or a homodyne technique [94] or a correlator [95].
Nevertheless it does not allow to filter the light, contrary to the Fabry-Perot technique.
Filtering the random laser light could be very useful to study the random laser
properties, for example the intensity temporal correlations. Note that this kind of
experiments could be interesting also below the random laser threshold [96, 97].
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The third gain mechanism that we have studied is four-wave mixing, which has
lead to a very efficient cavity-laser. Nevertheless, the configuration we have used so
far, that is degenerate FWM, is not appropriate at all for the random laser problem,
as the pump fluorescence and the random laser emission would be exactly at the
same frequency. However, another configuration of parametric gain is possible, that is
non-degenerate FWM, for which two different frequencies ωF and ωB are used for the
two pump fields, and amplification occurs at frequency ω = (ωF + ωF) /2. Then, it
should be possible to choose a large enough detuning to facilitate the detection, and
to adjust the gain frequency close to the atomic frequency ω0 to enhance scattering.
Preliminary numerical simulations indicate that this configuration is promising [98],
and its experimental test constitutes our next work.

Finally, we may also use some extra degrees of freedom that atoms offer, for
example the use of magnetic fields to engineer the multiple scattering properties of
atoms [99, 100] to better control the random laser based on cold atoms.
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Appendix A. Laser dynamics equations

We give here the expressions of the functions Φ, Ψ and Θ that describe the coupling
terms in the laser dynamics coupled equations (5–7) [73, 74]:

Φ(σj , am) = 2iλ1

M
∑

m=1

(

exp[−iφj ]σja
∗
m − exp[iφj ]σ

∗
j am

)

(A.1)

+ 2iλ2

M
∑

m=1

(

exp[−iφj ]σ
∗
j a∗

m − exp[iφj ]σjam

)

+ 2γ3

(

σj + σ∗
j

)

,

Ψ(σj , σ3j , am) = −i

M
∑

m=1

(exp[iφj ]λ1σ3jam + exp[−iφj ]λ2σ3ja
∗
m)(A.2)

− 2iλ0

M
∑

m=1

(exp[−iφj ]σja
∗
m + exp[iφj ]σjam) + γ0 + γ3σ3j − γ4σ

∗
j ,

Θ(σ3j , σj) = −i
N

∑

j=1

exp[−iφj ]
(

λ1σj − λ2σ
∗
j + λ0σ3j

)

, (A.3)

where γ0 = (Γ/2) sin 2θ, γ3 = (Γ/4) sin 2θ cos 2θ, γ4 = (Γ/4) sin2 2θ, λ0 = (g/4) sin 2θ,
λ1 = (g/4) (1 + cos 2θ) and λ2 = (g/4) (1 − cos 2θ).

The procedure to numerically solve the equations (5–7) follows the method
presented in [73]. We introduce a family of n-photon polarizations Sn =
∑

j exp[−inφj]σj and S3n =
∑

j exp[−inφj]σ3j . Equations (5,6) cast then into an
infinite set of hierarchical equations for Sn and S3n. In this paper, we truncate this
set of equations at |n| = 5, which, in the case of M = 1, leaves us with a total of
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35 equations and corresponds to the generalized effective theory GET35, if we use
terminology of [73]. The hierarchical equations for macroscopic polarizations Sn and
S3n, supplemented with equations for amplitudes of modes am of the electromagnetic
field, are then solved numerically.
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