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We investigate a two-level model with a large number of opecagt channels in order to describe avoided
level crossing statistics in open chaotic billiards. Thisd®l allows us to describe the fundamental changes of
the probability distribution of the avoided level crossmgpmpared with the closed case. Explicit expressions
are derived for systems with preserved and broken Time Rav&ymmetry (TRS). We find that the decay
process induces a modification at small spacings of the piliyadistribution of the avoided level crossings
due to an attraction of the resonances. The theoreticalghi@ts are in complete agreement with the recent
experimental results of Die&t al. (Phys. Rev. E73 (2006) 035201).

PACS numbers: 05.45.Mt,05.60.Gg,03.65.Nk

It is by now established, that classical chaos manifests iteistribution for closed systems with and without TRS, which
self in universal spectral fluctuation properties of theeaig is based on an ensemble of two-dimensional random matrices
values of the corresponding quantum system. They coincid@].
with those of random matrices from the Gaussian Orthogo- We develop our approach within the framework of an ef-
nal Ensemble (GOE), if Time Reversal Symmetry TRS holdsfective Hamlitonian model[[34]. To describe statisticabpr
from the Gaussian Unitary Ensemble (GUE), if TRS is brokenerties of avoided crossings in open systems, we introdwee th
[, QBE’J effective Hamiltonian. sy which depends on a continuous

Investigations of the universality of spectral fluctuation parametey through its Hermitian parmS]
properties of classically chaotic systems range from raucle '
physics [p,| B], to systems in other areas, like microwave bil _ _tyyT
liards |4 EE] optical experimen 12], quantustsd Hegs () = Hp) 2VV ' @)

13, [14], and acoustic setugds]{5] {6, 17]. In systems depend . o

ing on a global parameter, the correlations between eigenvaHere H (1) is the Hamiltonian of the closed system modeled
ues at different parameter values show a universal behaviopy @2 x 2 random matrix andV'V'"' /2 is an imaginary po-
which again is well described by random matrix theory (RMT) tential describing the coupling to the environment in teohs
8, £9.[2D,[21L]. In some cases, implying a local parameter}/ open channels. Thex M matrix V" contains the coupling
RMT fails, as reported in referende]22]. amplitudesV,™ which couple thenth level to themth open

In an experiment presented 23] the spectral properfies 0channel. As aresult, the e|gienvalues of the effective Hamil
a superconducting microwave billiard, whose boundary wadlian are complex.,. = Ey. —5I'x., where£y andl';. are, re-
varied parametrically, were investigated. It models a quan  SPeCtively, the two eigenenergies and the two spectrahsidt
billiard of corresponding shape, whose classical dynaisics ©f the 2-level model. For the study of statistical propestie
chaotic. The observed deviations from the expected GOE be? 1S replaced by a Gaussian random matfR] [25] and the ma-
havior were attributed to the measurement process. IndeeliX €lementsV;; are chosen to be Gaussian-distributed with
resonance spectra of a microwave billiard are measured b?ero mean and variangg = 2)\A, where) is the coupling
connecting it to the exterior via emitting and receivingemt ~ Suength andy is the mean level spacing of the closed system
nas. Thus the resonator is an open system with the antennbed]- I the eigenbasis ol () (the i-dependence is omitted
acting as single scattering channels. The influence of tie flull the following), the effective Hamiltonian is written as
of microwave power flowing from the emitting to the receiv- ,
ing antenna on the spectral properties of the system is sk wea Hepp = (El 0 ) _r (Fll Fl?) ’ 2)
that it cannot be detected through spectral measures lke th ' 0 By 2 \I'21 T2
nearest neighbor spacing distribution or & statistics at a _ )
fixed value of the parameter. The distribution of the avoidedVhereE, ; are theu-dependent eigenenergiesidf(E; > £y
crossings of the eigenvalues as function of the parameter ds assumed) an,,, = ch\il V"V, Note that the model is
the other hand showed deviations from the GOE result, whiclapplicable only as long as the coupling is weak enough so that
were attributed to the openness of the resonator. These al$ie spectral widths remain of the same order of magnitude [27
sumptions were confirmed by numerical simulations based o]. The complex eigenvalues of the effective Hamiltonian
a random matrix model for parameter dependent, chaotic anl.¢ in Eq. @) read
open systems. The aim of the present paper is the derivdtion o
an analytic expression for the avoided-crossings diginbu Ey+ By — £(T11 +Ta92) £ VD
of such systems. It goes in line with that for the correspogdi €&+ = D) 3)




with where o fixes the average aof. Note that the behavior of
i 2 p(c) at small spacings differs strongly from the GOE predic-
D = ((E1 — Ey) + §(F22 - Fu)) —T12T21. (4)  tion (@). The linear behavior of the distribution inducesip d
and the local minima of the spacings have a zero-crossings
The spacing between the two eigenergies; e, —e_ canbe  contribution leading to the presence of-peak at the origin.
read off from [B) and[{4), This peak is neither restricted to 2-level models nor toIEgdar
B number of channels. It was also found numerically|in [23]
d=Re(vVD). () where an effective Hamiltonian with 1000 levels ahd= 3
Considering the limit of a large number of open chanigls open channels was considered and is characteristic of non-
in the weak coupling regime, we may apply the central limitHermitian Hamiltonians of the form Eq](1) [3fL.]42] $3] 34].
theorem and replace the random variables depending on the In the experimental setup [23], only finite spacings could be

coupling amplitudes by their averages, measured due to the discrete sampling of the data. Therefore
) A to compare theory and experiment it is more convenient to
(Tnn) = Mo (Tnpl'pn) = Mo®. (6)  consider the distribution of non zero avoided crossirigs
Then the spacing is given by / \/T o e—(c?+Ma")/(20%) "
L [VF =T it s> Vio® - ple) = Werfc(@f)m' ()
0 otherwise  ’

The analysis can be extended to open, parameter depen-
dent, chaotic systems with broken TRS. For closed systems of
rHgisorype the probability distribution of avoided crossif3]
[eads

wheres = F, — E; is the spacing of the eigenenergies of
the closed system. Note thafo* = var(I')/2 implies that
the modifications on the spacings due to the openness of t
system are related to the fluctuations of the spectral width
[B9]. In the limit M — oo ando? — 0 with Mo? = (') (s) = 8 =5%/(4a%)
fixed, vafT') — 0 and thus the spacing between eigenenergies p ’

 2a2
of the open system converges to that of the closed system, . . I . .
d — s, in spite of non-vanishing losses. One of the effects O:EJs_mg the same effectlvt_a Hamiltonian mocﬁl (2? I.€. consid-
ering real coupling amplitudes, the probability distribuatof

the imaginary potential is that the eigenvalues mutuathaat ; ; . ) .
each other along the real axs|[30]. As this attraction iases avoided level crossings is derived usifip (8) dnd (12),

whens decreases, the local minima of betlands coincide. P c 2 4 5

In other words, the values of the parameteat the avoided ~ P(c) = (1 —e™ ™7 /EeNs(e) + ﬁ‘f—(c M et
crossings are the same for the closed and the open system. (13)
Accordingly, in the derivation of the distribution of aveid  Again aj-peak appears at = 0 due to the attraction of the
crossings: of the open system, the spacingare assumed to eigenvalues on the real axis. However, in contrast to the GOE
be distributed as the avoided crossings of the correspgndircase, the probability distribution of the non zero avoidaet|
closed system. With Ecf](7) the probability distributiortieé  crossings coincides with that of the closed system given in
avoided level crossings(¢) is given by Eq. (12)

(12)

p(e) = (3()0(VMo® — 5) ) p(e) = e/ aat). (1)

202
—1/g2 4 A/ 2
+ <5(C 0= Mo )9(8 Mo )> . (8) This robustness of GUE was previously observed in room

where ¢ is the Heaviside step function and the triangulari€Mperature microwave billiards with Pfo,ke”_T[35]-
brackets denote averaging with respect to the spacing To analyze the evolution of both d|str|but|9ns for a small
For closed chaotic systems with TRS the probability dis-O" not too large number of channels, numerical random ma-

tribution of avoided crossings has been calculated by 7alrix simulations were performed, where the eigenvaluebef t
krzewski and KuS|E8] closed, parameter dependent system were chosen as the eigen

values of the random matrix
2

_s2 o2
P = ogze ©) H(s) = Hy cos i+ Hysings, (15)
where the mean value @fis given by(s) = «+/2/7. Aver-  simulating the closed system (s¢€|[23]). H&feand H, be-
aging overs yields long to the GOE or the GUE for the simulation of systems
with or without TRS, respectively, and the coupling ampli-
_ erf VMo? 5 tudesV,™ withn = 1,--- ,N andm = 1,--- , M are ran-
p(c) = er ( Jra ) (c) dom Gaussian variables. Note that this model ensures that
5 ¢ o— (Mo /(20%) the mean level spgcing is independenpq]. In the sim-
I ., (10) ulations, the matrice$¢/; and H, are of size1000 x 1000,
ma? /2 + Mo* the variances of their elements are chosen equal and such tha
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A = 1/1000, the parameten € [0, x| is discretized in steps For the GOE case a good agreement between the numer-
of u = =/1300. To ensure a fairly constant mean level ical and analytical descriptions is found féf > 5. For a
spacing only the 400 resonances at the center of the Wignemaller number of channels, the histograms are reproduced
semicircle were kept. To mimic the experimental resolution by choosing the coupling strength= o2/(2A) in Eq. )
a cut-off¢y = 0.1A is introduced such that only valuesof as a parameter to obtain an effective coupling strengi
larger thancy are used to build the numerical distributions. by means of a fit based on a least square algorithm. Thus,
Furthermore the average of the spectral widths is fixed tat appears that the expressi(ll), derived using the aentr
(I') = 0.5A, well away from the strong coupling regirT|E|[23]. limit theorem, can be extended to afy, considering\ as a
A comparison between analytic and numerical results is prefree parameter.
sented in Fig]1. The right column of Fig[]1 shows the results obtained for
the GUE case. The prediction is in excellent agreement with
the numerical results except for the cae = 1. This is
due to the small number of events at small distances of
GUE Indeed, while important changes appear for the GOE due to
the large number of small avoided crossings, the GUE case
is only slightly modified because of a vanishing density of
avoided crossings at the origin for the closed case. Note tha
the distribution @4) is independent of the coupling sttang
such that a fitting procedure is not possible.

M =

|
—

0~8 T L] T T T L T
0.7 k p(c) -

0.6 F x J
0.5} \ i
04 | TR ]

T

M=5 0.3 A -
0.2 -
0.1 -

0

M =10

FIG. 2: (color online) In boxes the experimental distributiof
avoided crossingstS]. The continuous line shows the &naly
prediction withA=0.058 (obtained through a least square procedure).
The vertical bars represent the numerically obtainedibdisgion with

M = 3 and)=0.02 ]. For all curves, the average is chosen such
that(c’) = 1.

#

M =20

Now, let us finally compare the analytical predicti(ll)
with the experimental results om23] obtained using a su-
perconducting microwave cavity, thus minimizing dissiypat
processes. Three antennas were attached to the cavity: they
FIG. 1: (color online) Probability distributions of hon peavoided correqund,_ in our model, 88/ = 3 open Channelsl__[_EG].
level crossings for GOE (left side) and for GUE (right siddhe Ab$9rpt'0n into the walls could be mimicked by add't'on_al
number of open channels &=1, 3, 5, 10, 20 and the coupling fictitious weakly coupled channelf J10 6] 37], howeva, it
strength\ = ¢%/(2A) equals\ = 0.250, 0.083, 0.05, 0.025, 0.013 influence can be safely neglected in the analysis of the ex-
from top to bottom. The histograms show the numerical sitioia, ~ perimental data. Due to the lack of an analytic expression
the analytic distributions are shown as straight lines. @ashed for the distribution of avoided crossings in open systeims, t
curves result from a fit of Eq[(11) with as a parameter to the experimental distribution was compared with numerical-sim
numerical distributions, resulting in the effective cdnplstrengths  ylations based on an effective Hamiltonian of the form Eﬂ (a
Aeyy = 0.020,0.038,0.036,0.028, 0.016. For all curvesqis cho- yjth the parameter dependent Hamiltonian of the closed sys-
sen such thafc’) = 1. tem given in Eq.[[@5). In referencf]23], a good agreement

ﬁ\[\;
w
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beween both distributions was shown for valuea af 0.02. number of open channéll > 5 in the GOE case and for
Note that due to the lack of an analytical expression thiseval M > 3 for GUE systems. For systems preserving TRS with
was not determined from a fit and thus is only vague. A com-a small number of open channels good agreement is achieved
parison between the experimental (boxes) and numerical hiby using the coupling strengthas a fit parameter.

tograms (vertical bars) is shown in F[¢. 2. The numerical dis  Finally, let us mention that the 2-level model can also be
tribution has been computed with = 0.02. The analytic  used to calculate the nearest level spacing distributiars()
result obtained through a fit usingas a parameter (contin- for open chaotic systems with a large number of channels.
uous curve) is also shown in Fig. 2. The 2-level model re\Whereas, for the strong coupling regime, the NLSD is sub-
sult follows closely the experimental histogram. This con-stantially modified by the introduction of dissipatidn ]38

firms the interpretation drawn ifi [R3] that the deviationtit the weak coupling case, due to a vanishing density at small
avoided-crossings distribution from the predicted GOHiltes spacings for both GOE and GUE, the NLSD for open systems
for closed systems is due to the measurement procesthe  will only be moderately modified, as pointed out above.
influence of the three antennas, which couple the resonator
modes inside the resonator to the exterior.

In summary, we have derived an analytic expression for
the distribution of the avoided crossings of the resonantes
guantum chaotic open systems based on a simple two-level
random matrix model. Analytical results prove that the epen  We would like to thank Patricio Lebceuf for fruitful discus-
ness essentially modifies the avoided crossing distribatad  sions and Ulrich Kuhl for a critical reading of the manustrip
small spacings. The theoretical predictions are in exatlle B. D. and A. R. are grateful for the financial support by the
agreement with numerical random matrix simulations for aDFG within SFB 634.

Acknowledgments

[1] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev..l5t (1993).
1(1984). [21] P. Leboeuf and M. Sieber, Phys. Re\6® 3969 (1999).
[2] M. L. Mehta, Random Matrice¢Academic Press, 1991). [22] M. Barth, U. Kuhl, and H.-J. Stockmann, Phys. Rev. L8%
[3] O. Bohigas, M. J. Giannoni, A. M. O. de Almeida, and 2026 (1999).
C. Schmit, Nonlinearityd, 203 (1995). [23] B. Dietz, A. Heine, A. Richter, O. Bohigas, and P. Lebbeu
[4] T. Guhr, A. Muller-Groeling, and H. A. Weidenmdllerhlgsics Phys. Rev. E73, 035201 (2006).
Reports299 (1998). [24] J. Okolowicz, M. Ploszajczak, and |. Rotter, Phys. R,
[5] J.B. Garg, J. Rainwater, J. S. Petersen, and W. W. HatRys., 271 (2003).
Rev.134, B985 (1964). [25] H.-J. Stockmann,Quantum Chaos: an introductiofCam-
[6] H. A. Weidenmuller and G. E. Mitchell, Rev. Mod. Phy&l, bridge University Press, 1999).
539 (2009). [26] D. V. Savin, O. Legrand, and F. Mortessagne, Europhst. L
[7] H.-D. Graf, H. L. Harney, H. Lengeler, C. H. Lewenkopf, 76, 774 (2006).
C. Rangacharyulu, A. Richter, P. Schardt, and H. A. Wei-[27] F. Haake, F. Izrailev, N. Lehmann, D. Saher, and H.-Jnbo
denmdiiller, Phys. Rev. Let89, 1296 (1992). mers, Z. Phys. B8, 359 (1992).
[8] P. So, S. M. Anlage, E. Ott, and R. N. Oerter, Phys. Revt.Let [28] N. Lehmann, D. Saher, V. Sokolov, and H.-J. Sommers,INuc
74, 2662 (1995). Phys. A582 (1995).
[9] H.-J. Stockmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuh [29] C. Poli, D. Savin, O. Legrand, and F. Mortessagne, sttbohi
and |. Rotter, Phys. Rev. 6, 066211 (2002). to Phys. Rev. E (2009).

[10] J. Barthélemy, O. Legrand, and F. Mortessagne, Phgs. R [30] M. Miller, F.-M. Dittes, W. Iskra, and I. Rotter, PhyRev. E
71, 016205 (2005). 52, 5961 (1995).

[11] C. Gmachl, F. Capasso, E. E. Narimanov, J. U. NockelDA. [31] C. Dembowski, H.-D. Graf, H. L. Harney, A. Heine, W. D.
Stone, J. Faist, D. L. Sivco, and A. Y. Cho, Scie286, 1556 Heiss, H. Rehfeld, and A. Richter, Phys. Rev. L&, 787
(1998). (2001).

[12] C. Michel, V. Doya, O. Legrand, and F. Mortessagne, Phys[32] W. D. Heiss, M. Miller, and I. Rotter, Phys. Rev.58, 2894
Rev. Lett99, 224101 (2007). (1998).

[13] C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopki  [33] W. D. Heiss, Phys. Rev. &L, 929 (2000).
and A. C. Gossard, Phys. Rev. Lé9, 506 (1992). [34] F. Keck, H. J. Korsch, and S. Mossmann, J. Phys. A: Ma#n.G

[14] Y. Alhassid, Rev. Mod. Phy§2, 895 (2000). 36, 2125 (2003).

[15] R. L. Weaver, J. Acoust. Soc. Aré5 (1989). [35] U. Stoffregen, J. Stein, H.-J. Stockmann, M. Kus, &nHaake,

[16] C. Ellegaard, T. Guhr, K. Lindemann, H. Q. Lorensen, Phys. Rev. Lett74, 2666 (1995).
J. Nygard, and M. Oxborrow, Phys. Rev. L&ts, 1546 (1995).  [36] H. Alt, H. D. Graf, H. L. Harney, R. Hofferbert, H. Lentgs,
[17] P. Bertelsen, C. Ellegaard, T. Guhr, M. Oxborrow, and A. Richter, P. Schardt, and H. A. Weidenmdiiller, Phys. Rett.L

K. Schaadt, Phys. Rev. Le83, 2171 (1999). 74 (1995).
[18] J. Zakrzewski and M. Kus, Phys. Rev. Ld7, 2749 (1991). [37] P. W. Brouwer and C. W. J. Beenakker, Phys. ReB5B4695
[19] J. Zakrzewski and D. Delande, Phys. Rev & 1650 (1993). (1997); Erratun®6, 209901 (2002).

[20] J. Zakrzewski, D. Delande, and M. Kus, Phys. Re47E1665 [38] F. Haake, M. Kus, P. Seba, H.-J. Stockmann, and Ufiggn,



J. Phys. A: Math. Gerg9, 5745 (1996).



