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Abstract

In [4], the authors proved the uniqueness among the solutions which admit every exponential mo-
ments. In this paper, we prove that uniqueness holds among solutions which admit some given expo-
nential moments. These exponential moments are natural as they are given by the existence theorem.
Thanks to this uniqueness result we can strengthen the nonlinear Feynman-Kac formula proved in [4].

1 Introduction

In this paper, we consider the following quadratic backwardstochastic differential equation (BSDE in
short for the remaining of the paper)

Yt = ξ −

∫ T

t

g(s, Ys, Zs)ds +

∫ T

t

ZsdWs, 0 6 t 6 T, (1.1)

where the generator−g is a continuous real function that is concave and has a quadratic growth with
respect to the variablez. Moreoverξ is an unbounded random variable (see e.g. [8] for the case of
quadratic BSDEs with bounded terminal conditions). Let us recall that, in the previous equation, we
are looking for a pair of process(Y, Z) which is required to be adapted with respect to the filtration
generated by theRd-valued Brownian motionW . In [4], the authors prove the uniqueness among the
solutions which satisfy for anyp > 0,

E

[

ep sup06t6T |Yt|
]

< ∞.
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1 INTRODUCTION 2

The main contribution of this paper is to strengthen their uniqueness result. More precisely, we prove
the uniqueness among the solutions satisfying:

∃p > γ̄, ∃ε > 0, E

[

ep sup06t6T (Y −
t +

R

t
0

ᾱsds) + eε sup06t6T Y +
t

]

< +∞,

whereγ̄ > 0 and (αt)t∈[0,T ] is a progressively measurable nonnegative stochastic process such that,
P-a.s.,

∀(t, y, z) ∈ [0, T ]× R × R1×d, g(t, y, z) 6 ᾱt + β̄ |y| +
γ̄

2
|z|2 .

Our method is different of that in [4] where the authors applythe so-calledθ-difference method, i.e.
estimatingY 1−θY 2, for θ ∈ (0, 1), and then lettingθ → 0. Whereas in this paper, we apply a verification
method: first we define a stochastic control problem and then we prove that the first component of any
solution of the BSDE is the optimal value of this associated control problem. Thus the uniqueness follows
immediately. Moreover, using this representation, we are able to give a probabilistic representation of the
following PDE:

∂tu(t, x) + Lu(t, x) − g(t, x, u(t, x),−σ∗∇xu(t, x)) = 0, u(T, .) = h,

whereh andg have a “not too high” quadratic growth with respect to the variablex. We remark that the
probabilistic representation is also given by [4] under thecondition thath andg are subquadratic, i.e.:

∀(t, x, y, z) ∈ [0, T ]× Rd × R × R1×d, |h(x)| + |g(t, x, y, z)| 6 f(t, y, z) + C |x|p

with f > 0, C > 0 andp < 2.
The paper is organized as follows. In section 2, we prove an existence result in the spirit of [3] and

[4]: here we work with generators−g such thatg− has a linear growth with respect to variablesy and
z. As in part 5 of [3], this assumption allows us to reduce hypothesis of [4]. Section 3 is devoted to the
optimal control problem from which we get as a byproduct a uniqueness result for quadratic BSDEs with
unbounded terminal conditions. Finally, in the last section we derive the nonlinear Feynman-Kac formula
in this framework.

Let us close this introduction by giving the notations that we will use in all the paper. For the re-
maining of the paper, let us fix a nonnegative real numberT > 0. First of all, (Wt)t∈[0,T ] is a standard
Brownian motion with values inRd defined on some complete probability space(Ω,F , P). (Ft)t>0 is
the natural filtration of the Brownian motionW augmented by theP-null sets ofF . The sigma-field of
predictable subsets of[0, T ]× Ω is denotedP .

As mentioned in the introduction, we will deal only with realvalued BSDEs which are equations
of type (1.1). The function−g is called the generator andξ the terminal condition. Let us recall that
a generator is a random function[0, T ] × Ω × R × R1×d → R which is measurable with respect to
P ⊗ B(R) ⊗ B(R1×d) and a terminal condition is simply a realFT -measurable random variable. By a
solution to the BSDE (1.1) we mean a pair(Yt, Zt)t∈[0,T ] of predictable processes with values inR×R1×d

such thatP-a.s.,t 7→ Yt is continuous,t 7→ Zt belongs toL2(0, T ), t 7→ g(t, Yt, Zt) belongs toL1(0, T )
andP-a.s. (Y, Z) verifies (1.1). We will sometimes use the notation BSDE(ξ,g) to say that we consider
the BSDE whose generator isg and whose terminal condition isξ.

For any realp > 1, Sp denotes the set of real-valued, adapted and càdlàg processes (Yt)t∈[0,T ] such
that

‖Y ‖Sp := E

[

sup
06t6T

|Yt|
p

]1/p

< +∞.

Mp denotes the set of (equivalent class of) predictable processes(Zt)t∈[0,T ] with values inR1×d such
that

‖Z‖Mp := E





(
∫ T

0

|Zs|
2
ds

)p/2




1/p

< +∞.
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Finally, we will use the notationY ∗ := sup06t6T |Yt| and we recall thatY belongs to the class (D) as
soon as the family{Yτ : τ 6 T stopping time} is uniformly integrable.

2 An existence result

In this section, we prove a mere modification of the existenceresult for quadratic BSDEs obtained in [4]
by using a method applied in section 5 of [4]. We consider herethe case whereg− has a linear growth
with respect to variablesy andz. Let us assume the following on the generator.

Assumption (A.1). There exist three constantsβ > 0, γ > 0 andr > 0 together with two progressively
measurable nonnegative stochastic processes(ᾱt)06t6T , (αt)06t6T and a deterministic continuous non-
decreasing functionφ : R+ → R+ with φ(0) = 0 such that,P-a.s.,

1. for all t ∈ [0, T ], (y, z) 7→ g(t, y, z) is continuous;

2. monotonicity iny: for each(t, z) ∈ [0, T ]× R1×d,

∀y ∈ R, y(g(t, 0, z)− g(t, y, z)) 6 β |y|
2
;

3. growth condition:∀(t, y, z) ∈ [0, T ]× R × R1×d,

−αt − r(|y| + |z|) 6 g(t, y, z) 6 ᾱt + φ(|y|) +
γ

2
|z|2 .

Theorem 2.1 Let (A.1) hold. If there existsp > 1 such that

E

[

exp

(

γeβT ξ− + γ

∫ T

0

ᾱte
βtdt

)

+ (ξ+)p +

(
∫ T

0

αtdt

)p]

< +∞

then the BSDE (1.1) has a solution(Y, Z) such that

−
1

γ
log E

[

exp

(

γeβ(T−t)ξ− + γ

∫ T

t

ᾱre
β(r−t)dr

)
∣
∣
∣Ft

]

6 Yt 6 CeCT

(

E

[

(ξ+)p +

(
∫ T

t

αrdr

)p
∣
∣
∣Ft

])1/p

,

with C a constant that does not depend onT .

Proof. We will fit the proof of Proposition 4 in [3] to our situation. Without loss of generality, let us
assume thatr is an integer. For each integern > r, let us consider the function

gn(t, y, z) := inf
{
g(t, p, q) + n |p − y| + n |q − z| , (p, q) ∈ Q1+d

}
.

gn is well defined and it is globally Lipschitz continuous with constantn. Moreover(gn)n>r is increasing
and converges pointwise tog. Dini’s theorem implies that the convergence is also uniform on compact
sets. We have also, for alln > r,

h(t, y, z) := −αt − r(|y| + |z|) 6 gn(t, y, z) 6 g(t, y, z).

Let (Y n, Zn) be the unique solution inSp ×Mp to BSDE(ξ,−gn). It follows from the classical compar-
ison theorem that

Y n+1
t 6 Y n

t 6 Y r
t .
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Let us prove that for eachn > r

Y n
t > −

1

γ
log E

[

exp

(

γeβ(T−t)ξ− + γ

∫ T

t

ᾱre
β(r−t)dr

)
∣
∣
∣Ft

]

:= Xt.

Let (Ỹ n, Z̃n) be the unique solutionSp × Mp to BSDE(−ξ−,−g+
n ). It follows from the classical com-

parison theorem that̃Y n 6 Y n andỸ n 6 0. Then, according to Proposition 3 in [4], we haveỸ n > X
and soY n > X for all n > r. We setY = infn>r Y n and, arguing as in the proof of Proposition 3 in [4]
or Theorem 2 in [3] with a localization argument, we construct a processZ such that(Y, Z) is a solution
to BSDE(ξ,−g). For the upper bound, let(Ȳ , Z̄) be the unique solutionSp × Mp to BSDE(ξ+,−f ).
Then the classical comparison theorem gives us thatY 6 Ȳ and we apply a classical a priori estimate for
Lp solutions of BSDEs in [2] tōY . ⊓⊔

Corollary 2.2 Let (A.1) hold. We suppose thatξ− +
∫ T

0
ᾱtdt has an exponential moment of orderγeβT

and there existsp > 1 such thatξ+ ∈ Lp and
∫ T

0
αtdt ∈ Lp.

• If ξ− +
∫ T

0 ᾱtdt has an exponential moment of orderqeβT with q > γ then the BSDE (1.1) has a

solution(Y, Z) such thatE
[
eqA∗]

< +∞ with At := Y −
t +

∫ t

0 ᾱsds.

• If ξ+ +
∫ T

0 αtdt has an exponential moment of orderε then the BSDE (1.1) has a solution(Y, Z)

such thatE
[

eε(Y +)∗
]

< +∞.

Proof. Let us apply the existence result : BSDE (1.1) has a solution(Y, Z) and we have

At = Y −
t +

∫ t

0

ᾱsds 6
1

γ
log E

[

exp

(

γeβT

(

ξ− +

∫ T

0

ᾱrdr

))
∣
∣
∣Ft

]

︸ ︷︷ ︸

:=Mt

.

So eqAt 6 (Mt)
q/γ with q/γ > 1. SinceMp/γ is a submartingale, we are able to apply the Doob’s

maximal inequality to obtain

E

[

eqA∗
]

6 CqE

[

eqeβT (ξ−+
R T
0

ᾱsds)
]

< +∞.

To prove the second part of the corollary, we define

Nt := E

[

(ξ+)p +

∣
∣
∣
∣
∣

∫ T

0

αsds

∣
∣
∣
∣
∣

p
∣
∣
∣Ft

]

.

We setq > 1. There existsCε,p,q > 0 such thatx 7→ ex1/pε/q is convex on[Cε,p,q, +∞[. We have

eε/qY +
t 6 e(Cε,p,q+Nt)

1/pε/q. Sincee(Cε,p,q+N)1/pε/q is a submartingale, we are able to apply the Doob’s
maximal inequality to obtain

E

[

eε(Y +)∗
]

6 CE

[

eε(Cε,p,q+(ξ+)p+(
R

T
0

αsds)p)1/p
]

6 CE

[

eε(ξ++
R

T
0

αsds)
]

< +∞.

⊓⊔
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3 A uniqueness result

To prove our uniqueness result for the BSDE (1.1), we will introduce a stochastic control problem. For
this purpose, we use the following assumption ong:

Assumption (A.2). There exist three constantsKg,y > 0, β̄ > 0 andγ̄ > 0 together with a progres-
sively measurable nonnegative stochastic process(ᾱt)t∈[0,T ] such that,P-a.s.,

• for each(t, z) ∈ [0, T ]× R1×d,

|g(t, y, z) − g(t, y′, z)| 6 Kg,y |y − y′| , ∀(y, y′) ∈ R2,

• for each(t, y, z) ∈ [0, T ]× R × R1×d,

g(t, y, z) 6 ᾱt + β̄ |y| +
γ̄

2
|z|2 ,

• z 7→ g(t, y, z) is a convex function∀(t, y) ∈ [0, T ]× R.

Sinceg(t, y, .) is a convex function we can define the Legendre-Fenchel transformation ofg :

f(t, y, q) = sup
z

(zq − g(t, y, z)) , ∀t ∈ [0, T ], q ∈ Rd, y ∈ R.

f is a function with values inR ∪ {+∞} that verifies direct properties.

Proposition 3.1

• ∀(t, y, y′, q) ∈ [0, T ]× R × R × Rd such thatf(t, y, q) < +∞,

f(t, y′, q) < +∞ and |f(t, y, z) − f(t, y′, z)| 6 Kg,y |y − y′| .

• f is a convex function inq,

• f(t, y, q) > −ᾱt − β̄ |y| + 1
2γ̄ |q|2.

We setN ∈ N∗ such that
T

N
<

(
1

γ̄
−

1

p

)
1

β̄(1/p + 1/ε)
. (3.1)

For i ∈ {0, ..., N} we defineti := iT
N and

Ati,ti+1(η) :=

{

(qs)s∈[ti,ti+1],

∫ ti+1

ti

|qs|
2
ds < +∞ P − a.s.,

(M i
t )t∈[ti,ti+1] is a martingale, EQi

[

|η| +

∫ ti+1

ti

|f(s, 0, qs)| ds

]

< +∞,

with M i
t := exp

(∫ t

ti

qsdWs −
1

2

∫ t

ti

|qs|
2 ds

)

and
dQi

dP
:= M i

ti+1

}

.

Let q be inAti,ti+1(η). We definedW q
t := dWt − qtdt. Thanks to the Girsanov theorem,(W q

ti+h −

W q
ti

)h∈[0,1/N ] is a Brownian motion under the probabilityQi. So, we are able to apply Proposition 6.4 in
[2] to show this existence result:
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Proposition 3.2 There exist two processes(Y η,q, Zη,q) such that(Y η,q
t )t∈[ti,ti+1] belongs to the class

(D)
∫ ti+1

ti
|Zη,q

s |
2
ds < +∞ P − a.s.,

∫ ti+1

ti
|f(s, Y η,q

s , qs)| ds < +∞ P − a.s. and

Y η,q
t = η +

∫ ti+1

t

f(s, Y η,q
s , qs)ds +

∫ ti+1

t

Zη,q
s dW q

s , ti 6 t 6 ti+1.

We are now able to define the admissible control set:

A :=
{

(qs)s∈[0,T ], q|[tN−1,T ] ∈ AtN−1,T (ξ), ∀i ∈ {N − 2, . . . , 0} , q|[ti,ti+1] ∈ Ati,ti+1

(

Y q
ti+1

)

with Y q
ti+1

:= Y
Y q

ti+2
,q|[ti+1,ti+2]

ti+1
andY q

T := ξ

}

.

A is well defined by a decreasing recursion oni ∈ {0, . . . , N − 1}. For q ∈ A we can define our cost
functionalY q on [0, T ] by

∀i ∈ {N − 1, . . . , 0} , ∀t ∈ [ti, ti+1], Y q
t := Y

Y q
ti+1

,q|[ti,ti+1]

t .

Y q is also well defined by a decreasing recursion oni ∈ {0, . . . , N − 1}. Finally, the stochastic control
problem consists in minimizingY q among all the admissible controlsq ∈ A. Our strategy to prove the
uniqueness is to prove that given a solution(Y, Z), the first component is the optimal value.

Theorem 3.3 We suppose that there exists a solution(Y, Z) of the BSDE (1.1) verifying

∃p > γ̄, ∃ε > 0, E
[
exp (pA∗) + exp

(
ε(Y +)∗

)]
< +∞,

with At := Y −
t +

∫ t

0
ᾱsds. Then we haveY = ess infq∈A Y q, and there existsq∗ ∈ A such thatY = Y q∗

.
Moreover, this implies that the solution(Y, Z) is unique among solutions verifying such condition.

Proof. Let us first prove that for anyq admissible, we haveY 6 Y q. To do this, we will show that
Y|[ti,ti+1] 6 Y q

|[ti,ti+1]
by decreasing recurrence oni ∈ {0, N − 1}. Firstly, we haveYT = Y q

T = ξ. Then

we suppose thatYt 6 Y q
t , ∀t ∈ [ti+1, T ]. We sett ∈ [ti, ti+1],

τ i
n := inf

{

s > t, sup

{∫ s

t

|Zu|
2
du,

∫ s

t

|Zq
u|

2
du,

∫ s

t

|qu|
2
du

}

> n

}

∧ ti+1,

h(s, y, z) := −g(s, y, z) + zqs, and

hs :=







h(s, Y q
s , Zs) − h(s, Ys, Zs)

Y q
s − Ys

if Y q
s − Ys 6= 0

0 otherwise.

We observe that|hs| 6 Kg,y. Then, by applying Itô formula to the process(Y q
s − Ys)e

R

s
t

hudu we obtain

Y q
t −Yt = e

R τi
n

t hsds
[

Y q
τ i

n
− Yτ i

n

]

+

∫ τ i
n

t

e
R

s
t

hudu [f(s, Y q
s , qs) − h(s, Y q

s , Zs)] ds+

∫ τ i
n

t

e
R

s
t

hudu [Zq
s − Zs] dW q

s .

By definition,f(s, Y q
s , qs) − h(s, Y q

s , Zs) > 0, so

Y q
t − Yt > EQi

[

e
R τi

n
t hsds

[

Y q
τ i

n
− Yτ i

n

]
∣
∣
∣
∣
Ft

]

.
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Since

(

Y q
τ i

n
e

R τi
n

t hsds

)

n

tends toY q
ti+1

e
R ti+1

t hsds almost surely and is uniformly integrable, we have

lim
n→+∞

EQi

[

e
R τi

n
t hsdsY q

τ i
n

∣
∣
∣
∣
Ft

]

= EQi
[

e
R ti+1

t hsdsY q
ti+1

∣
∣
∣Ft

]

.

Moreover,

∣
∣
∣
∣
Yτ i

n
e

R τi
n

t hsds

∣
∣
∣
∣
6 (Y +)∗eTKg,y + (Y −)∗eTKg,y , so, by the dominated convergence theorem

we obtain

lim
n→+∞

EQi

[

e
R τi

n
t hsdsYτ i

n

∣
∣
∣
∣
Ft

]

= EQi
[

e
R ti+1

t hsdsYti+1

∣
∣
∣Ft

]

.

Finally,

Y q
t − Yt > lim

n→+∞
EQi

[

e
R τi

n
t hsds

[

Y q
τ i

n
− Yτ i

n

]

|Ft

]

= EQi
[

e
R ti+1

t hsds
(

Y q
ti+1

− Yti+1

)∣
∣
∣Ft

]

> 0,

becauseY q
ti+1

> Yti+1 by the recurrence’s hypothesis.

Now we settq∗s ∈ ∂zg(s, Ys, Zs) with ∂zg(s, Ys, Zs) the subdifferential ofz 7→ g(s, Ys, z) atZs. We
recall that for a convex functionl : R1×d → R, the subdifferential ofl at x0 is the non-empty convex
compact set ofu ∈ R1×d such that

l(x) − l(x0) > ut (x − x0), ∀x ∈ R1×d.

We havef(s, Ys, q
∗
s ) = zq∗s − g(s, Ys, Zs) for all s ∈ [0, T ], so

g(s, Ys, Zs) 6 Zsq
∗
s −

1

2γ̄
|q∗s |

2 + β̄ |Ys| + ᾱs

6
1

2

(

2γ̄ |Zs|
2

+
|q∗s |

2

2γ̄

)

−
1

2γ̄
|q∗s |

2
+ β̄ |Ys| + ᾱs

|q∗s |
2

4γ̄
6 −g(s, Ys, Zs) + γ̄ |Zs|

2 + β̄ |Ys| + ᾱs,

and finally,
∫ T

0 |q∗s |
2
ds < +∞, P-a.s.. Moreover,∀t, t′ ∈ [0, T ],

Yt = Yt′ +

∫ t′

t

f(s, Ys, q
∗
s)ds +

∫ t′

t

Zs(dWs + q∗sds).

Thus, we just have to show thatq∗ is admissible to prove thatq∗ is optimal, i.e.Y = Y q∗

. For this, we
must prove that(q∗s)s∈[ti,ti+1] ∈ Ati,ti+1(Yti+1) for i ∈ {0, . . . , N − 1}. We define

M i
t := exp

(∫ t

ti

q∗sdWs −
1

2

∫ t

ti

|q∗s |
2
ds

)

,
dQ∗,i

dP
:= M i

ti+1
,

τ i
n = inf

{

t ∈ [ti, ti+1], sup

(∫ t

ti

|q∗s |
2
ds,

∫ t

ti

|Zs|
2
ds

)

> n

}

∧ ti+1,
dQ∗,i

n

dP
:= M i

τ i
n
.

Let us show the following lemma:

Lemma 3.4 (M i
τ i

n
)n is uniformly integrable.
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Proof. Firstly, from

xy 6 exp(x) + y(log(y) − 1), ∀(x, y) ∈ R × R+∗,

we deduce
xy = px

y

p
6 exp(px) +

y

p
(log y − log p − 1) . (3.2)

Thus

EQ∗,i
n [A∗] = E

[

M i
τ i

n
A∗
]

6 E [exp(pA∗)] +
1

p
E

[

M i
τ i

n

(

log M i
τ i

n
− log p − 1

)]

6 Cp +
1

2p
EQ∗,i

n

[
∫ τ i

n

ti

|q∗s |
2
ds

]

,

and, in the same manner,

EQ∗,i
n
[
(Y +)∗

]
6 Cε +

1

2ε
EQ∗,i

n

[
∫ τ i

n

ti

|q∗s |
2
ds

]

.

Sinceg(s, Ys, Zs) = Zsq
∗
s − f(s, Ys, q

∗
s) and(M i

t∧τ i
n
)t∈[ti,ti+1] is a martingale, we can apply the Gir-

sanov theorem and we obtain

EQ∗,i
n

[

Yτ i
n

+

∫ τ i
n

ti

f(s, Ys, q
∗
s)ds

]

= EQ∗,i
n [Yti ] = E

[

M i
τ i

n
Yti

]

= E [Yti ] .

Moreoverf(t, y, q) >
1
2γ̄ |q|

2
− β̄ |y| − ᾱt andYτ i

n
> −Y −

τ i
n
, so

E [Yti ] > −EQ∗,i
n

[

Y −
τ i

n

]

− EQ∗,i
n

[
∫ τ i

n

ti

ᾱsds

]

+
1

2γ̄
EQ∗,i

n

[
∫ τ i

n

ti

|q∗s |
2
ds

]

− β̄EQ∗,i
n

[
∫ τ i

n

ti

|Ys| ds

]

> C − EQ∗,i
n [A∗] +

1

2γ̄
EQ∗,i

n

[
∫ τ i

n

ti

|q∗s |
2
ds

]

−
T

N

(

β̄EQ∗,i
n
[
(Y −)∗ + (Y +)∗

])

> Cp,ε +
1

2

(
1

γ̄
−

1

p
−

T

N

(
β̄

p
+

β̄

ε

))

︸ ︷︷ ︸

>0

EQ∗,i
n

[
∫ τ i

n

ti

|q∗s |
2 ds

]

.

This inequality explains why we take N verifying (3.1). Finally we get that

2E

[

M i
τ i

n
log M i

τ i
n

]

= EQ∗,i
n

[
∫ τ i

n

ti

|q∗s |
2 ds

]

6 Cp,ε. (3.3)

Then we conclude the proof of the lemma by using the de La Vallée Poussin lemma. ⊓⊔
Thanks to this lemma, we have thatE[M i

ti+1
] = 1 and so(M i

t )t∈[ti,ti+1] is a Martingale. Moreover,
applying Fatou’s lemma and inequality (3.3), we obtain

2E

[

M i
ti+1

log M i
ti+1

]

= EQ∗,i

[∫ ti+1

ti

|q∗s |
2
ds

]

6 lim inf
n

EQ∗,i
n

[
∫ τ i

n

ti

|q∗s |
2
ds

]

< +∞. (3.4)



3 A UNIQUENESS RESULT 9

So, by using this result and inequality (3.2) we easily show that EQ∗,i

[(Y +)∗ + (Y −)∗] < +∞. To

conclude we have to prove thatEQ∗,i
[∫ ti+1

ti
|f(s, 0, q∗s)| ds

]

< +∞:

EQ∗,i

[∫ ti+1

ti

|f(s, 0, q∗s)| ds

]

6 EQ∗,i

[∫ ti+1

ti

|f(s, Ys, q
∗
s)| + Kg,y |Ys| ds

]

6 EQ∗,i

[∫ ti+1

ti

|f(s, Ys, q
∗
s)| ds + Kg,yT

(
(Y +)∗ + (Y −)∗

)
]

6 C + EQ∗,i

[∫ ti+1

ti

f+(s, Ys, q
∗
s) + f−(s, Ys, q

∗
s)ds

]

.

Firstly,

EQ∗,i

[∫ ti+1

ti

f−(s, Ys, q
∗
s)ds

]

6 EQ∗,i

[∫ ti+1

ti

ᾱs + β̄ |Ys| ds

]

< +∞.

Moreover, thanks to the Girsanov theorem we have

EQ∗,i

[Yti ] = EQ∗,i

[

Yτ i
n

+

∫ τ i
n

ti

f(s, Ys, q
∗
s)ds

]

,

so

EQ∗,i

[
∫ τ i

n

ti

f+(s, Ys, q
∗
s)ds

]

6 EQ∗,i [
Yti − Yτ i

n

]
+ EQ∗,i

[
∫ τ i

n

ti

f−(s, Ys, q
∗
s)ds

]

6 C + EQ∗,i

[∫ ti+1

ti

f−(s, Ys, q
∗
s)ds

]

6 C

Finally, EQ∗,i
[∫ ti+1

ti
f+(s, Ys, q

∗
s)ds

]

< +∞ andEQ∗,i
[∫ ti+1

ti
|f(s, 0, q∗s)| ds

]

< +∞. Thus, we prove

thatq∗ is optimal, i.e.Y q∗

= Y .
The uniqueness ofY is a mere consequence of the fact thatY = Y q∗

= ess infq∈A Y q. The unique-
ness ofZ follows immediately. ⊓⊔

Remark 3.5 By taking into consideration the inequality (3.4) it is possible to restrict the admissible
control set by considering

Ãti,ti+1(η) := Ati,ti+1(η) ∩

{

(qs)s∈[ti,ti+1], EQi

[∫ ti+1

ti

|qs|
2
ds

]

< +∞

}

instead ofAti,ti+1(η).

Remark 3.6 If we haveg(t, y, z) 6 g(t, 0, z), thenf(t, y, q) > f(t, 0, q) >
1
2γ̄ |q|

2
− ᾱt and we do not

have to introduceN in the proof of lemma 3.4. So we have a simpler representationtheorem:

Yt = ess inf
q∈A0,T (ξ)

Y q
t , ∀t ∈ [0, T ].

For example, wheng is independent ofy, we obtain

Yt = ess inf
q∈A0,T (ξ)

EQ

[

ξ +

∫ T

t

f(s, qs)ds
∣
∣
∣Ft

]

, ∀t ∈ [0, T ].
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4 Application to quadratic PDEs

In this section we give an application of our results concerning BSDEs to PDEs which are quadratic with
respect to the gradient of the solution. Let us consider the following semilinear PDE

∂tu(t, x) + Lu(t, x) − g(t, x, u(t, x),−σ∗∇xu(t, x)) = 0, u(T, .) = h, (4.1)

whereL is the infinitesimal generator of the diffusionXt,x solution to the SDE

Xt,x
s = x +

∫ s

t

b(u, Xt,x
u )ds +

∫ s

t

σ(u)dWu, t 6 s 6 T, andXt,x
s = x, s 6 t. (4.2)

The nonlinear Feynman-Kac formula consists in proving thatthe function defined by the formula

∀(t, x) ∈ [0, T ]× Rd, u(t, x) := Y t,x
t (4.3)

where, for each(t0, x0) ∈ [0, T ]× Rd, (Y t0,x0 , Zt0,x0) stands for the solution to the following BSDE

Yt = h(Xt0,x0

T ) −

∫ T

t

g(s, Xt0,x0
s , Ys, Zs)ds −

∫ T

t

ZsdWs, 0 6 t 6 T, (4.4)

is a solution, at least a viscosity solution, to the PDE (4.1).

Assumption (A.3). Let b : [0, T ] × Rd → Rd andσ : [0, T ] → Rd×d be continuous functions and let
us assume that there existsK > 0 such that:

1. for all t ∈ [0, T ], |b(t, 0)| 6 K, and

∀(x, x′) ∈ Rd × Rd, |b(t, x) − b(t, x′)| 6 K |x − x′| ;

2. σ is bounded.

Lemma 4.1

∀λ ∈

[

0,
1

2e2KT ‖σ‖
2
∞ T

[

, ∃CT > 0, ∃C > 0, E

[

sup
06t6T

eλ|Xt0,x0
t |

2
]

6 CT eC|x0|
2

,

with T 7→ CT nondecreasing.

Proof. As in [4] we easily show that, for allε > 0, we have

sup
06t6T

∣
∣Xt0,x0

t

∣
∣ 6

(

|x0| + KT + sup
06t6T

∣
∣
∣
∣

∫ t

0

1s>t0σ(s)dWs

∣
∣
∣
∣

)

eKT

sup
06t6T

∣
∣Xt0,x0

t

∣
∣
2

6 Cε(T
2 + |x0|

2
) + (1 + ε)e2KT sup

06t6T

∣
∣
∣
∣

∫ t

0

1s>t0σ(s)dWs

∣
∣
∣
∣

2

.

We definẽλ := λ(1 + ε)e2KT . It follows from the Dambis-Dubins-Schwarz representation theorem and
the Doob’s maximal inequality that

E

[

sup
06t6T

exp

(

λ̃

∣
∣
∣
∣

∫ t

0

1s>t0σ(s)dWs

∣
∣
∣
∣

2
)]

6 E

[

sup
06t6‖σ‖2

∞T

eλ̃|Wt|
2

]

6 4E

[

eλ̃‖σ‖2
∞T |W1|

2
]

,

which is a finite constant if̃λ ‖σ‖
2
∞ T < 1/2. ⊓⊔

With this observation in hands, we can give our assumptions on the nonlinear term of the PDE and
the terminal condition.
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Assumption (A.4). Let g : [0, T ] × Rd × R × Rd → R andh : Rd → R be continuous and let us
assume moreover that there exist five constantsr > 0, β > 0, γ > 0, α > 0 andα′ > 0 such that:

1. for each(t, x, z) ∈ [0, T ]× Rd × R1×d,

∀(y, y′) ∈ R2, |g(t, x, y, z) − g(t, x, y′, z)| 6 β |y − y′| ;

2. for each(t, x, y) ∈ [0, T ]× Rd × R, z 7→ g(t, x, y, z) is convex onR1×d;

3. for each(t, x, y, z) ∈ [0, T ]× Rd × R × R1×d,

−r(1 + |x|2 + |y| + |z|) 6 g(t, x, y, z) 6 r + α |x|2 + β |y| +
γ

2
|z|2 ,

−r − α′ |x|
2

6 h(x) 6 r(1 + |x|
2
);

4. for each(t, x, x′, y, z) ∈ [0, T ]× Rd × Rd × R × R1×d,

|g(t, x, y, z) − g(t, x′, y, z)| 6 r(1 + |x| + |x′|) |x − x′| ,

|h(x) − h(x′)| 6 r(1 + |x| + |x′|) |x − x′| ;

5.

α′ + Tα <
1

2γe3βT ‖σ‖
2
∞ T

.

Thanks to Lemma 4.1, we see that there existq > γeβT andε > 0 such thath−(Xt0,x0

T ) +
∫ T

0

(

C +

α
∣
∣Xt0,x0

t

∣
∣
2
)

dt has an exponential moment of orderq andh+(Xt0,x0

T ) +
∫ T

0

(

r + r
∣
∣Xt0,x0

t

∣
∣
2
)

dt has

an exponential moment of orderε. So we are able to apply Corollary 2.2 and Theorem 3.3 to construct
a unique solution(Y t0,x0 , Zt0,x0) to the BSDE (4.4). Let us prove thatu is a viscosity solution to the
PDE (4.1).

Proposition 4.2 Let assumptions (A.3) and (A.4) hold. The functionu defined by (4.3) is continuous on
[0, T ]× Rd and satisfies

∀(t, x) ∈ [0, T ]× Rd, |u(t, x)| 6 C(1 + |x|
2
).

Moreoveru is a viscosity solution to the PDE (4.1).

Before giving a proof of this result, we will show some auxiliary results about admissible control sets. We
have already notice in Remark 3.6 that we have a simpler representation theorem whenT is small enough
to takeN = 1 in (3.1). So we define a constantT1 > 0 such that for allT ∈ [0, T1] we are allowed to
setN = 1. We will reuse notations of section 3. By using Remark 3.5, for all T ∈ [0, T1], t ∈ [0, T ],
x ∈ Rd, we define the admissible control set

A0,T (t, x) :=

{

(qs)s∈[0,T ],

∫ T

0

|qs|
2
ds < +∞ P − a.s., EQ

[
∫ T

0

|qs|
2
ds

]

< +∞,

(Mt)t∈[0,T ] is a martingale, EQ

[

∣
∣h(Xt,x

T )
∣
∣+

∫ T

0

∣
∣f(s, Xt,x

s , 0, qs)
∣
∣ ds

]

< +∞,

with Mt := exp

(∫ t

0

qsdWs −
1

2

∫ t

0

|qs|
2
ds

)

and
dQ

dP
:= MT

}

.

We will prove a first lemma and then we will use it to show that this admissible control set does not
depend ont andx.
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Lemma 4.3 ∃C > 0 such that∀T ∈ [0, T1], ∀t ∈ [0, T ], ∀x ∈ Rd, ∀q ∈ A0,T (t, x), ∀s ∈ [t, T ],

EQ
[∣
∣Xt,x

s

∣
∣
2
]

6 C

(

1 + |x|2 + T

∫ s

t

EQ
[

|qu|
2
]

du

)

.

Remark 4.4 q andQ depend onx andt but we do not write it to simplify notations.

Proof. For alls ∈ [t, T ] we have an obvious inequality

∣
∣Xt,x

s

∣
∣
2

6 C



1 + |x|
2

+

(∫ s

t

∣
∣Xt,x

u

∣
∣ du

)2

+ sup
t6t′6T

∣
∣
∣
∣
∣

∫ t′

t

σ(u)dW q
u

∣
∣
∣
∣
∣

2

+

(∫ s

t

|qu| du

)2


 .

Then, by applying Cauchy-Schwarz’s inequality and Doob’s maximal inequality, we obtain

EQ
[∣
∣Xt,x

s

∣
∣
2
]

6 C



1 + |x|
2
+ T

∫ s

t

EQ
[∣
∣Xt,x

u

∣
∣
2
]

du + EQ





∣
∣
∣
∣
∣

∫ T

t

σ(u)dW q
u

∣
∣
∣
∣
∣

2




+TEQ

[∫ s

t

|qu|
2
du

])

.

Finally, the Gronwall’s Lemma gives us the result. ⊓⊔

Proposition 4.5 A0,T (t, x) is independent oft andx, so we will write itA0,T .

Proof. Let x, x′ ∈ Rd, t, t′ ∈ [0, T ] andq ∈ A0,T (t, x). We will show thatq ∈ A0,T (t′, x′). Firstly,

EQ
[∣
∣
∣h(Xt′,x′

T )
∣
∣
∣

]

6 C

(

1 + EQ

[∣
∣
∣X

t′,x′

T

∣
∣
∣

2
])

6 C

(

1 +

∫ T

t′
EQ
[

|qu|
2
]

du

)

< +∞.

Moreover

−C(1 +
∣
∣
∣Xt′,x′

s

∣
∣
∣

2

) 6
1

2γ
|qs|

2 − C(1 +
∣
∣
∣Xt′,x′

s

∣
∣
∣

2

) 6 f(s, Xt′,x′

s , 0, qs),

and

f(s, Xt′,x′

s , 0, qs) 6 f(s, Xt,x
s , 0, qs) + C(

∣
∣Xt,x

s

∣
∣
2

+
∣
∣
∣Xt′,x′

s

∣
∣
∣

2

).

So,
∣
∣
∣f(s, Xt′,x′

s , 0, qs)
∣
∣
∣ 6 |f(s, Xt,x

s , 0, qs)| + C(|Xt,x
s |

2
+
∣
∣
∣Xt′,x′

s

∣
∣
∣

2

) and finally

EQ

[
∫ T

0

∣
∣
∣f(s, Xt′,x′

s , 0, qs)
∣
∣
∣ ds

]

< +∞.

⊓⊔
Now we will do a new restriction of the admissible control set.

Proposition 4.6 ∃T2 ∈]0, T1], ∃C̃ > 0, such that,∀T ∈ [0, T2], ∀t ∈ [0, T ], ∀s ∈ [0, T ], ∀x ∈ Rd,

∣
∣Y t,x

s

∣
∣ 6 C̃(1 + |x|

2
) and EQ∗

[
∫ T

t

|q∗u|
2
du

]

6 C̃(1 + |x|
2
).
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Proof. We are able to use estimations of the existence Theorem 2.1 and Lemma 4.1:

−C log E

[

sup
06s6T

exp
(

C + γeβT (α′ + Tα)
∣
∣Xt,x

s

∣
∣
2
)]

6 Y t,x
s 6 C

(

1 + E

[

sup
06s6T

∣
∣Xt,x

s

∣
∣
4
])1/2

−C̃(1 + |x|2) 6 Y t,x
s 6 C̃(1 + |x|2).

Then, according to the representation theorem, we have

Y t,x
0 = EQ∗

[

h(Xt,x
T ) +

∫ T

0

f(s, Xt,x
s , Y t,x

s , q∗s)ds

]

> −C − α′EQ∗
[∣
∣Xt,x

T

∣
∣
2
]

+
1

2γ
EQ∗

[
∫ T

0

|q∗u|
2
du

]

− αEQ∗

[
∫ T

0

∣
∣Xt,x

s

∣
∣
2
ds

]

− βEQ∗

[
∫ T

0

∣
∣Y t,x

s

∣
∣ ds

]

.

But, thanks to the uniqueness, we haveY t,x
s = Y

s,Xt,x
s

s for s > t, soEQ∗

[|Y t,x
s |] 6 C

(

1 + EQ∗
[

|Xt,x
s |

2
])

.

Moreover, we are allowed to use Lemma 4.3,

Y t,x
0 > −C(1 + |x|

2
) − C(α′ + Tα + βC)

(

1 + |x|
2

+ T

∫ T

t

EQ∗
[

|q∗u|
2
]

du

)

+
1

2γ
EQ∗

[
∫ T

0

|q∗u|
2
du

]

,

> −C(1 + |x|2) +

(
1

2γ
− CT

)

EQ∗

[
∫ T

0

|q∗u|
2 du

]

.

We set0 < T2 6 T1 such that 1
2γ − CT > 0 for all T ∈ [0, T2]. Finally,

EQ∗

[
∫ T

0

|q∗u|
2 du

]

6 C(1 + |x|2) + Y t,x
0 6 C̃(1 + |x|2).

⊓⊔
According to the Proposition 4.6 we know thatEQ∗

[∫ T

t
|q∗u|

2 du
]

6 C̃(1 + |x|2) so we are allowed

to restrictA0,T : for all r > 0 we define

Ar
0,T = A0,T ∩

{

(qs)s∈[0,T ], E
Q

[
∫ T

t

|qu|
2
du

]

6 C̃(1 + r2)

}

. (4.5)

With this new admissible control set we will prove a last inequality:

Proposition 4.7 ∃C > 0, ∀T ∈ [0, T2], ∀t, t′ ∈ [0, T ], ∀x, x′ ∈ Rd, ∀q ∈ A
|x|∨|x′|
0,T , ∀s ∈ [0, T ],

EQ

[∣
∣
∣Xt,x

s − Xt′,x′

s

∣
∣
∣

2
]

6 C
(

|x − x′|
2

+ (1 + |x|2 + |x′|
2
) |t − t′|

)

.
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Proof.

EQ

[∣
∣
∣Xt,x

s − Xt′,x′

s

∣
∣
∣

2
]

6 EQ

[∣
∣
∣Xt,x

s − Xt,x′

s

∣
∣
∣

2
]

+ EQ

[∣
∣
∣Xt,x′

s − Xt′,x′

s

∣
∣
∣

2
]

.

We have, fors > t,

Xt,x
s − Xt,x′

s = x − x′ +

∫ s

t

(

b(u, Xt,x
u ) − b(u, Xt,x′

u )
)

du.

So,

EQ

[∣
∣
∣Xt,x

s − Xt,x′

s

∣
∣
∣

2
]

6 C

(

|x − x′|
2

+

∫ s

t

EQ

[∣
∣
∣Xt,x

u − Xt,x′

u

∣
∣
∣

2
]

du

)

.

We apply Gronwall’s Lemma to obtain that

EQ

[∣
∣
∣Xt,x

s − Xt,x′

s

∣
∣
∣

2
]

6 C |x − x′|
2
.

Now we deal with the second term. Let us assume thatt 6 t′. For s 6 t, Xt,x′

s − Xt′,x′

s = 0. When
t 6 s 6 t′, we have

Xt,x′

s − Xt′,x′

s =

∫ s

t

b(u, Xt,x′

u )du +

∫ s

t

σ(u)dW q
u +

∫ s

t

σ(u)qudu.

So,

EQ

[∣
∣
∣Xt,x′

s − Xt′,x′

s

∣
∣
∣

2
]

6 C



EQ





(
∫ t′

t

∣
∣
∣b(u, Xt,x′

u )
∣
∣
∣ du

)2


+

∫ t′

t

|σ(u)|2 du + EQ





(
∫ t′

t

|σ(u)qu| du

)2








6 C

(

|t′ − t| + |t′ − t|

∫ t′

t

EQ

[∣
∣
∣Xt,x′

u

∣
∣
∣

2
]

du + |t′ − t|

∫ t′

t

EQ
[

|qu|
2
]

du

)

6 C |t′ − t|

(

1 + |x′|
2

+

∫ T

0

EQ
[

|qu|
2
]

du

)

6 C(1 + |x|
2

+ |x′|
2
) |t′ − t| .

Lastly, whent′ 6 s,

Xt,x′

s − Xt′,x′

s = Xt,x′

t′ − Xt′,x′

t′ +

∫ s

t′
b(u, Xt,x′

u ) − b(u, Xt′,x′

u )du.

So,

EQ

[∣
∣
∣Xt,x′

s − Xt,x′

s

∣
∣
∣

2
]

6 C(1 + |x|
2

+ |x′|
2
) |t′ − t| +

∫ s

t′
EQ

[∣
∣
∣Xt,x′

u − Xt′,x′

u

∣
∣
∣

2

du

]

,

and according to Gronwall’s Lemma,

EQ

[∣
∣
∣Xt,x′

s − Xt,x′

s

∣
∣
∣

2
]

6 C(1 + |x|
2

+ |x′|
2
) |t′ − t| .

⊓⊔
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Proof of Proposition 4.2. First of all, let us assume thatT < T2. With this condition, we are allowed
to use all previous propositions. Firstly, the quadratic increase ofu is already proved in Proposition 4.6.
Then, we will show continuity ofu in (t0, x0) ∈ [0, T ]× Rd. We have

∀(t, x) ∈ [0, T ]× Rd, |u(t, x) − u(t0, x0)| 6 |u(t, x) − u(t, x0)| + |u(t, x0) − u(t0, x0)| .

Let us begin with the fist term. We definer := |x| ∨ |x0|.Thanks to the representation theorem, we have

Y t,x
t = ess inf

q∈Ar
0,T

Y q,t,x
t and Y t,x0

t = ess inf
q∈Ar

0,T

Y q,t,x0

t .

So,
∣
∣Y t,x

t − Y t,x0

t

∣
∣ 6 ess sup

q∈Ar
0,T

∣
∣Y q,t,x

t − Y q,t,x0

t

∣
∣ .

But, for t 6 s 6 T ,

∣
∣Y q,t,x

s − Y q,t,x0
s

∣
∣ =

∣
∣
∣E

Q
[

h(Xt,x
T ) − h(Xt,x0

T )

+

∫ T

s

(
f(u, Xt,x

u , Y q,t,x
u , qu) − f(u, Xt,x0

u , Y q,t,x0
u , qu)

)
du
∣
∣
∣Fs

]∣
∣
∣

6 EQ
[

C(1 +
∣
∣Xt,x

T

∣
∣
2

+
∣
∣Xt,x0

T

∣
∣
2
)
]1/2

EQ
[∣
∣Xt,x

T − Xt,x0

T

∣
∣
2
]1/2

+

∫ T

s

EQ
[

C(1 +
∣
∣Xt,x

u

∣
∣
2
+
∣
∣Xt,x0

u

∣
∣
2
)
]1/2

EQ
[∣
∣Xt,x

u − Xt,x0
u

∣
∣
2
]1/2

du

+C

∫ T

s

EQ
[∣
∣Y q,t,x

u − Y q,t,x0
u

∣
∣
]
du,

thanks to Assumption (A.4) and Hölder’s inequality. According to Lemma 4.3, the definition ofAr
0,T and

Proposition 4.7, we obtain

EQ
[∣
∣Y q,t,x

s − Y q,t,x0
s

∣
∣
]

6 C(1 + |x|
2
+ |x0|

2
)1/2 |x − x0| + C

∫ T

s

EQ
[∣
∣Y q,t,x

u − Y q,t,x0
u

∣
∣
]
du.

Then, Gronwall’s lemma gives us
∣
∣Y q,t,x

t − Y q,t,x0

t

∣
∣ 6 C(1 + |x| + |x0|) |x − x0|. Since this bound is

independent ofq, we finally obtain that
∣
∣Y t,x

t − Y t,x0

t

∣
∣ 6 C(1 + |x| + |x0|) |x − x0| .

Now, we will study the second term. Without loss of generality, let us assume thatt < t0.

∣
∣Y t,x0

t − Y t0,x0

t0

∣
∣ 6

∣
∣Y t,x0

t − Y t0,x0

t

∣
∣+

∫ t0

t

∣
∣g(s, x0, Y

t0,x0
s , 0)

∣
∣ ds,

6
∣
∣Y t,x0

t − Y t0,x0

t

∣
∣+

∫ t0

t

C(1 + |x0|
2

+
∣
∣Y t0,x0

s

∣
∣)ds.

We apply Proposition 4.6 to obtain
∣
∣Y t,x0

t − Y t0,x0

t0

∣
∣ 6

∣
∣Y t,x0

t − Y t0,x0

t

∣
∣+ C(1 + |x0|

2
)(t − t0).

We still have
∣
∣Y t,x0

t − Y t0,x0

t

∣
∣ 6 ess sup

q∈Ar
0,T

∣
∣Y q,t,x0

t − Y q,t0,x0

t

∣
∣ .
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Moreover, exactly as the bound estimation forEQ |Y q,t,x
s − Y q,t,x0

s |, we have, fort 6 s 6 T ,

EQ
[∣
∣Y q,t,x0

s − Y q,t0,x0
s

∣
∣
]

6 EQ
[

C(1 +
∣
∣Xt,x0

T

∣
∣
2

+
∣
∣Xt0,x0

T

∣
∣
2
)
]1/2

EQ
[∣
∣Xt,x0

T − Xt0,x0

T

∣
∣
2
]1/2

+

∫ T

s

EQ
[

C(1 +
∣
∣Xt,x0

u

∣
∣
2

+
∣
∣Xt0,x0

u

∣
∣
2
)
]1/2

EQ
[∣
∣Xt,x0

u − Xt0,x0
u

∣
∣
2
]1/2

du

+C

∫ T

s

EQ
[∣
∣Y q,t,x0

u − Y q,t0,x0
u

∣
∣
]
du.

According to Lemma 4.3, the definition ofAr
0,T , Proposition 4.7 and Gronwall’s Lemma, we obtain

∣
∣Y q,t,x0

t − Y q,t0,x0

t

∣
∣ 6 C(1 + |x|

2
+ |x0|

2
) |t − t0|

1/2. Since this bound is independent ofq, we finally
obtain that

∣
∣Y t,x

t − Y t,x0

t

∣
∣ 6 C(1 + |x|

2
+ |x0|

2
) |t − t0|

1/2
.

So,
|u(t, x) − u(t0, x0)| 6 C(1 + |x| + |x0|) |x − x0| + C(1 + |x|2 + |x0|

2) |t − t0|
1/2 .

We now return to the general case (forT ) : we setN ∈ N such thatT/N < T2 and, fori ∈ {0, ..., N},
we defineti := iT/N . According to the beginning of the proof,u is continuous on[tN−1, T ] × Rd. We
definehN−1(x) := Y

tN−1,x
tN−1

. Since|hN−1(x) − hN−1(x
′)| 6 C(1+ |x|+ |x′|) |x − x′|, we are allowed

to reuse previous results to show the continuity ofu on [tN−2, TN−1] × Rd. Thus, we can iterate this
argument to show the continuity ofu on [0, T ] × Rd. Moreover the quadratic increase ofu with respect
to the variablex results from the quadratic increase ofu on each interval.

Finally, we will use a stability result to show thatu is a viscosity solution to the PDE (4.1). As in the
proof of Theorem 2.1, let us consider the function

gn(t, x, y, z) := inf
{
g(t, x, p, q) + n |p − y| + n |q − z| , (p, q) ∈ Q1+d

}
.

We have already seen that(gn)n>⌈r⌉ is increasing and converges uniformly on compact sets tog. Let
(Y n,t,x, Zn,t,x) be the unique solution inS2 × M2 to BSDE(h(Xt,x

T ),−gn(., Xt,x
. , ., .)). We define

un(t, x) := Y n,t,x
t . Then by a classical theorem (see e.g. [7]),un is a viscosity solution to the PDE

∂tu(t, x) + Lu(t, x) − gn(t, x, u(t, x),−σ∗∇xu(t, x)) = 0, u(T, .) = h.

Moreover, it follows from the classical comparison theoremthat (un)n>⌈r⌉ is decreasing and, by con-
struction, converges pointwise tou. Sinceu is continuous, Dini’s theorem implies that the convergence
is also uniform on compacts sets. Then, we apply a stability result (see e.g. Theorem 1.7. of chapter 5 in
[1]) to prove thatu is a viscosity solution to the PDE (4.1). ⊓⊔

Remark. The uniqueness of viscosity solution to PDE is considered byDa Lio and Ley in [6] and
[5].
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