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Transductive versions of the LASSO and the Dantzig Selector

Transductive methods are useful in prediction problems when the training dataset is composed of a large number of unlabeled observations and a smaller number of labeled observations. In this paper, we propose an approach for developing transductive prediction procedures that are able to take advantage of the sparsity in the high dimensional linear regression. More precisely, we define transductive versions of the LASSO [Tib96] and the Dantzig Selector [CT07]. These procedures combine labeled and unlabeled observations of the training dataset to produce a prediction for the unlabeled observations. We propose an experimental study of the transductive estimators, that shows that they improve the LASSO and Dantzig Selector in many situations, and particularly in high dimensional problems when the predictors are correlated. We then provide non-asymptotic theoretical guarantees for these estimation methods. Interestingly, our theoretical results show that the Transductive LASSO and Dantzig Selector satisfy sparsity inequalities under weaker assumptions than those required for the "original" LASSO.

Introduction

In many modern applications, a statistician often have to deal with very large datasets. They may involve a large number p of covariates, possibly larger than the sample size n. Let an observation be a pair instance-label. In this paper, we tackle such high dimensional settings which moreover involve a large amount of unlabeled data (say m instances) in addition to the n labeled observations.

In contrast to inductive or supervised methods, transductive procedures exploit the knowledge of the unlabeled data to improve prediction. It is argued in the semi-supervised learning literature (see for example [START_REF] Chapelle | Semi-supervised learning[END_REF] for a recent survey) that taking into account the information on the design given by the new additional instances has a stabilizing effect on the estimator. In transductive methods, we furthermore take into account the objective of the statistician: estimation of the value of the regression function only on the set of unlabeled data; see Vapnik [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF] for a pioneer work. To leverage unlabeled data, the transductive or semi-supervised methods exploit the geometry of the marginal distribution. Initially introduced in the classification framework, the good performance of these methods has been observed in several practical fields. From a theoretical point of view we refer to the transductive version of SVM [START_REF] Vapnik | Statistical Learning Theory[END_REF][START_REF] Joachims | Transductive inference for text classification using support vector machines[END_REF][START_REF] Chapelle | Semi-supervised classification by low density separation[END_REF][START_REF] Wang | On transductive support vector machines[END_REF], to the study of classifiers under the clustering assumption [BM98, NMTM99, CS99, ZBL + 03, XGL03, AZ05], and to transductive versions of the Gibbs estimators [START_REF] Catoni | PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical Learning)[END_REF] among many others. According to the applications arrays, see for instance the detection of spam email [BM98, AG03, BBC + 05], genetics applications [START_REF] Xiao | Gene function prediction by a combined analysis of gene expression data and protein-protein interaction data[END_REF], but also the well-known Netflix challenge.

In this paper we focus on the linear regression model in the case p > n. In this setting dimension reduction is a major issue and can be performed through the selection of a small amount of relevant covariates. Numerous inductive or supervised methods have been proposed in the literature, ranging from the classical information criteria such as AIC [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] and BIC [START_REF] Schwarz | Estimating the dimension of a model[END_REF] to the more recent ℓ 1 -regularized methods, as the LASSO [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], the Dantzig Selector [START_REF] Candès | The dantzig selector: statistical estimation when p is much larger than n[END_REF], the non-negative garrote [START_REF] Yuan | On the non-negative garrotte estimator[END_REF]. We also refer to [Kol09a, Kol09b, MVdGB09, vdG08, DT07, CH08] for related works. Such regularized regression methods have recently witnessed several developments due to the attractive feature of computational feasibility, even for high dimensional data (i.e., when the number of covariates p is large). Formally we assume

y i = x i β * + ε i , i = 1, . . . , n, (1) 
where the design x i = (x i,1 , . . . , x i,p ) ∈ R p is deterministic, β * = (β * 1 , . . . , β * p ) ′ ∈ R p is the unknown parameter and ε 1 , . . . , ε n are i.i.d. centered Gaussian random variables with known variance σ 2 . Let X denote the matrix with i-th line equal to x i , and let X j denote its j-th column, with i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. In this way, we can write

X = (x ′ 1 , . . . , x ′ n ) ′ = (X 1 , . . . , X p ).
For the sake of simplicity, we will assume that the observations are normalized in such a way that X ′ j X j /n = 1. We denote by Y the vector Y = (y 1 , . . . , y n ) ′ . Let x n+1 , . . . x m be observed unlabeled instances with x i ∈ R p for n + 1 ≤ i ≤ m (with m > n). Let moreover Z = (x ′ 1 , . . . , x ′ m ) ′ . For all α ≥ 1 and any vector v ∈ R d , we set • α , the ℓ α -norm: v α = (|v 1 | α + . . . + |v d | α ) 1/α . In particular • 2 is the euclidean norm. Moreover for all d-dimensional vector v with d ∈ N, we use the notation v 0 = d i=1 1(v i = 0). From a theoretical point of view, Sparsity Inequalities (SI) have been proved for the regularized estimators mentioned above under different assumptions, in the inductive setting only, i.e., without the knowledge of the matrix Z. That is upper bounds of order of O σ 2 β * 0 log(p)/n for the errors (1/n) X β -Xβ * 2 2 and ββ * 2 2 have been derived, where β is one of those estimators. Such bounds involve the number of non-zero coordinates in β * (multiplied by log(p)), instead of dimension p. Such bounds guarantee that under some assumptions, X β and β are good estimators of Xβ * and β * respectively. For the LASSO, these SI are given for example in [START_REF] Bunea | Aggregation for Gaussian regression[END_REF][START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF], whereas [START_REF] Candès | The dantzig selector: statistical estimation when p is much larger than n[END_REF][START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF] provided SI for the Dantzig Selector. On the other hand, Bunea [START_REF] Bunea | Consistent selection via the Lasso for high dimensional approximating regression models[END_REF] established conditions which ensure that the LASSO estimator and β * have the same null coordinates. Analog results for the Dantzig Selector can be found in [START_REF] Lounici | Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators[END_REF]. An important issue when we establish these theoretical results is the assumption that is needed on the Gram matrix n -1 X ′ X. We refer to [START_REF] Van De Geer | On the conditions used to prove oracle results for the lasso[END_REF] for a nice overview of these assumptions.

In this paper we are interested in the estimation of Zβ * : namely, we care about predicting what would be the labels attached to the additional x i 's. Hence we develop transductive versions of the LASSO or the Dantzig Selector to tackle the problem of estimating the vector Zβ * in the high dimensional setting. According to [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF] this estimator should differ from an estimator tailored for the estimation of β * or Xβ * like the LASSO. Indeed, a naive plug-in method would be to build an estimator β(X, Y ) and then to compute Z β(X, Y ) to estimate Zβ * . We rather consider here an approach where the estimators β(X, Y, Z) exploit the knowledge of Z, and finally compute Z β(X, Y, Z). These transductive procedures observe several interesting properties:

• they take advantage of the unlabeled points to satisfy SIs with weaker assumptions on the Gram matrix than those required for the usual inductive methods (cf. the examples of Section 4.3);

• they perform well in practice compared to the inductive methods in most of the situations. This is illustrated by a comparison between the performance of the Transductive LASSO and the LASSO.

Let us mention that the study established in this paper consists in a generalization of the LASSO and the Dantzig Selector. They actually do not only consider the transductive setting since they can be adapted to other objectives desired by the statistician. Indeed, the estimators depend on a q × p matrix A, with q ∈ N, whose choice allows to consider the problem of the estimation of Aβ * . In this way, the estimation of Zβ * appears as a particular case.

The rest of paper is organized as follows. In the next section, we give the definition of the considered estimators. We then display, in Section 3, a set of experiments that show how the Transductive estimators can improve on the LASSO and the Dantzig Selector in many applications. A non-asymptotic study is provided in Section 4 whereas all the proofs of the theorems are postponed to Section 6.

Definition of the estimators

Here we define the family of estimators we consider in the sequel and more specifically the Transductive LASSO and the Transductive Dantzig Selector.

Definitions

Let us first remind that the LASSO estimate can be defined by

βL λ = arg min β∈R p Y -Xβ 2 2 + 2λ β 1 , (2) 
where λ is a positive tuning parameter. Let us make simple remarks to optimize comprehensibility of the paper and the notation inside. Since Y = Xβ * + ε, the response vector Y can be seen as an estimator for Xβ * . Then let us write Y = Xβ * to convey this fact. Actually, if σ ≃ 0, Y could even be a good estimator. However, in the general case, it is not expected to be a particularly interesting estimator and then Y = Xβ * is only used as a preliminary estimator of the vector Xβ * . Based on this preliminary estimate, the LASSO defined by (2) ensures in the case where β * is sparse, a good estimation of Xβ * by X βL λ (cf. [START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF] for instance).

Let us now generalize the previous comments. Let Aβ * be a quantity of interested for a general (and given) q × p matrix A with q ∈ N * . Then an analog of the LASSO estimator (2) can be given by the following definition.

Definition 2.1 (The Transductive LASSO). Let Aβ * be a preliminary estimator (that can be a very poor estimator) of Aβ * and define βA,λ = arg min

β∈R p Aβ * -Aβ 2 2 + 2λ β 1 .
In particular, when A = n/mZ, the estimator βA,λ is the Transductive LASSO.

The Dantzig Selector is defined as:

βDS λ =    arg min β∈R p β 1 s.t. X ′ (Y -Xβ) ∞ ≤ λ, (3) 
where λ is a positive tuning parameter. In the same way as for the LASSO estimator, we underline the role of Y = Xβ * and propose the following definition.

Definition 2.2 (The Transductive Dantzig Selector). Let Aβ * be a preliminary estimator of Aβ * and define

βA,λ =      arg min β∈R p β 1 s.t. A ′ ( Aβ * -Aβ) ∞ ≤ λ.
In particular, when A = n/mZ, the estimator βA,λ is the Transductive Dantzig Selector.

In Definitions 2.1 and 2.2, the matrix A is not specified. Hence, we cover here a general objective. However, we mainly focus in this paper on the transductive setting. Then our principal study deals with the estimation of Zβ * . In other works, this means that we set in the above definitions A = n/mZ, the unlabeled data matrix (with a normalization term m/n that is here for the sake of convenience, see Section 4). An important issue in this paper is also the preliminary estimator Aβ * that should be used. An explicit condition on this estimator can be found in Section 4. It ensures the good theoretical performance for βA,λ and βA,λ . Let us now propose some examples of preliminary estimators.

Examples 2.1. i) The most simple idea is to estimate β * by the least square estimator. Even if p > n, that implies that (X ′ X) is not invertible, we can choose any pseudo-inverse (X ′ X) -1 of (X ′ X) and use in this way

Aβ * = A (X ′ X) -1 X ′ Y,
as preliminary estimator of Aβ * . Remark that if Ker(A) ⊂ Ker(X), this quantity is uniquely defined (it does not depend on the choice of the particular pseudo-inverse (X ′ X) -1

). We will see later that in this case, we may have theoretical guarantees for the performance of βA,λ and βA,λ .

ii) One may think about more sophisticated regularization procedures, based for instance on

Aβ * = A(γA ′ A + X ′ X) -1 X ′ Y,
for (a small) γ > 0 when the matrix A ′ A is invertible (in the idea of ridge regression). iii) Finally, practitioners may prefer to use as a preliminary estimator something known to work well in practice, like:

Aβ * = A βL λ ′ , with λ ′ ≥ 0.
We pay a particular attention to this initial estimator in the rest of the paper.

A discussion on the matrix A

These novel estimators depend on two tuning parameters. First λ > 0 is a regularization parameter, it plays the same role as the tuning parameter involved in the LASSO and will be discussed in our simulations and our theoretical results. The second one is the matrix A, that allows to adapt the estimator to the objective of the statistician. In this paper, we are mainly interested in the following objective:

• transductive objective: the estimation of Zβ * , by Z βA,λ or Z βA,λ with A = n/mZ.

Note that in the case n < p < m, it is possible that the matrix Z ′ Z is invertible, while X ′ X may not.

Other choices of the matrix A are possible and help to deal with other objectives. We display here two additional feasible and well-known choices:

• denoising objective: the estimation of Xβ * , that is a denoised version of Y . For this purpose, we consider the estimator βA,λ , with A = X. In this case, if we keep Y as our preliminary estimator of Xβ * , our estimators are exactly the LASSO and the Dantzig Selector, so this case is not of particular interest in this paper;

• estimation objective: the estimation of β * itself, by βA,λ , with A = √ nI p where I p is the identity matrix of size p.

Thanks to the unifying notation A, the theoretical performance of the estimators based on the above choices are considered in the same time in Section 4. However, we mention that the main contribution relates to the transductive objective.

Experimental results

In this section we compare the empirical performance of the Transductive LASSO and the LASSO estimators on simulated and real datasets according to the transductive task. We consider both low and high dimensional simulated data. The real dataset comes from a genetic study, devoted to learn the complex combinatorial code underlying gene expression. More precisions are given in Section 3.3. In this dataset, there are p = 666 predictor variables and the total number of available labeled data is 2587. The conclusions of our experiments is that the transductive LASSO outperforms the LASSO estimator in most settings and specifically when the variables are correlated.

Implementation

Since the paper of Tibshirani [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], several effective algorithms to compute the LASSO have been proposed and studied (for instance Interior Points methods [KKL + 07], LARS [START_REF] Efron | Least angle regression[END_REF], Pathwise Coordinate Optimization [START_REF] Friedman | Pathwise coordinate optimization[END_REF], Relaxed Greedy Algorithms [START_REF] Huang | Risk of penalized least squares, greedy selection and L1 penalization for flexible function libraries[END_REF]). For the Dantzig Selector, a linear method was proposed in the first paper [START_REF] Candès | The dantzig selector: statistical estimation when p is much larger than n[END_REF]. The LARS algorithm was also successfully extended in [START_REF] James | Connections between the dantzig selector and lasso[END_REF] to compute the Dantzig Selector.

Note that these methods allow to compute our estimators βA,λ and βA,λ as they just appear as the LASSO and the Dantzig Selector computed on modified data. Namely, after the computation of the preliminary estimator Aβ * of Aβ * , the transductive estimator βA,λ is obtained as a usual LASSO solution where the usual data (X, Y ) are replaced by (A, Aβ * ).

We use the version of the Transductive LASSO proposed in Section 2.1 based on the LASSO as preliminary estimator. That is, we set A = Z in Definition 2.1 and refer to Example 2.1-iii) for the definition of the preliminary estimator Aβ * . In other words, for a given λ 1 , we first compute the LASSO estimator βX,λ 1 = βL λ 1 . In this way we have Zβ * = Z βL λ 1 . However, recalling that Z = (x ′ 1 , . . . , x ′ n , . . . , x ′ m ) ′ , it is worth noting that we should keep the n first components of Zβ * equal to Y . Indeed the n first components correspond to the labeled samples and then do not require to be replaced by an estimation. Given this adjustment, the Transductive LASSO is given by βT

L (λ 1 , λ 2 ) =      arg min β∈R p n m Zβ 2 2 s.t. n m Z ′ (Z βL λ 1 -Zβ) ∞ ≤ λ 2 ,
for a given λ 2 (cf. Section 4 for a theoretical study of this estimator). Let us mention that the good performance of this estimator are stated in Theorem 4.6 under some assumptions. We compare this two steps procedure with the procedure obtained using the usual only LASSO βL λ = βX,λ for a given λ that may differ from λ 1 . In both cases, the solutions are computed using the glmnet 1 package, introduced by Friedman et al., to provide the LASSO solution, between others. We compute βL λ and βT L (λ 1 , λ 2 ) for (λ, λ 1 , λ 2 ) ∈ Λ 3 where Λ is some grid defined in a data driven way by the glmnet algorithm. In all the experiments, we choose the best tuning parameters. That is, the choice is based on the truth. In other words, we only compare the oracle in our family of estimators. This way to select the tuning parameter is even suitable in our real data experiments. Indeed, the initial data we get consist only in labeled data. We then hide many responses values and construct the estimators without their knowledge. Finally the best estimators (tuning parameters) are chosen based on those hidden responses.

Synthetic data

The comparison between the LASSO and the Transductive LASSO is made through the study of the distribution of

P ERF (Z) = min (λ 1 ,λ 2 )∈Λ 2 Z( βT L (λ 1 , λ 2 ) -β * ) 2 2 min λ∈Λ Z( βL λ -β * ) 2 2 ,
over 100 replications for each experiment. Since the LASSO is a special case of the Transductive LASSO (with λ 2 = 0), P ERF (Z) belong to [0, 1]. This ratio measures the improvement made by the Transductive LASSO according to the transductive objective. The smaller P ERF (Z) is, the more attractive the use of the Transductive LASSO is. Analog study can be considered to compare the performance of the Transductive LASSO and the LASSO in term of the denoising and the estimation tasks respectively based on the ratio

P ERF (X) = min (λ 1 ,λ 2 )∈Λ 2 X( βT L (λ 1 , λ 2 ) -β * ) 2 2 min λ∈Λ X( βL λ -β * ) 2
Table 1: Evaluation of the mean (M ean), the median (M ed) and the quantile Q 3 of order 0.3 of the quantities P ERF (Z), P ERF (X) and P ERF (I), when the methods are used in the artificial low dimensional case p < n. and

P ERF (I) = min (λ 1 ,λ 2 )∈Λ 2 βT L (λ 1 , λ 2 ) -β * 2 2 min λ∈Λ βL λ -β * 2 2 .
Data description. We consider several simulations from the linear regression model

y i = x i β * + ε i ,
for i ∈ {1, . . . , n}, β * ∈ R p and the ε i are i.i.d. N (0, σ 2 ). The design matrix comes from a centered multivariate normal distribution with covariance structure Cov(X j ; X k ) = ρ -|j-k| with ρ ∈]0, 1[. Dimension p, sample sizes (n, m), noise level σ and correlation parameter ρ are left free. They will be specified during the experiments in order to check the robustness of the results. The regression vector β * is s-sparse where s ≥ 1 is an integer and corresponds to the sparsity index. That is, β * consists in s non-zero components. Since the LASSO and the Transductive LASSO do not take care of the ordering of the variables let us define β * such as its s first components are non-zero and equal 5.

Our study covers several combinations of the parameters p, s, (n, m), ρ and σ 2 . In the next paragraph, we examine the performance of each estimator according to the value of the regularization parameters.

Results. We consider separately the low and the high dimensional case.

The low dimensional case. Several examples have been studied and we illustrate the performance of the methods in this case through some specific experiments. The main parameter seems to be the sparsity index s. More precisely, the behavior of the Transductive LASSO compared to the LASSO is related to how large the sparsity index is in comparison to the dimension p. This is illustrated in Table 1, where the two cases are separated by two horizontal lines. Hence, when s is small, we notice a good improvement while using the Transductive LASSO instead of the LASSO estimator. This is displayed in lines 1 to 3 of Table 1, where all of the ratios P ERF (Z), P ERF (X) and P ERF (I) are most of the time between 0.5 and 0.8. We remark also that the performance of the Transductive LASSO are even better when the parameters ρ and σ increase (line 2). On the other hand, when the sparsity index s is large (with respect to the dimension p), it turns out that the Transductive LASSO does not improve enough the LASSO estimator (lines 7 and 9) when p is large, whereas it is still satisfying for small values of p. By poor improvement, we mean that min

(λ 1 ,λ 2 )∈Λ 2 Z( βT L (λ 1 , λ 2 ) -β * ) 2 2 is not far from min (λ 1 ,0)∈Λ 2 Z( βT L (λ 1 , 0) -β * ) 2 2 which coincides with the LASSO error min λ∈Λ Z( βL λ -β * ) 2 2 .
An important observation is that even when s is large and in the case where the variables are highly correlated, that is when ρ is large, the Transductive LASSO can be a good alternative to the LASSO estimator (lines 6, 8 and 10). This observation is true for both of the transductive error ratio P ERF (Z) and the denoising error ratio P ERF (X). On the other hand, even with high correlations between variables, the Transductive LASSO does not make the estimation error ratio P ERF (I) better in this last situation. In the low dimensional case, it seems that increasing the number m of unlabeled data does not lead to an improvement of the performance of the Transductive LASSO. This is for instance displayed in line 4 of Table 1 where m = 200 or in lines 7 and 8 of the same table, where m = 100. Finally, note that when n is large, the LASSO estimator behaves in a good way and it becomes difficult to improve it thanks to the Transductive LASSO.

The high dimensional case. Table 2, Figure 1 and Figure 2 summarize the results in this case. The main observation is that the behavior of the quantities P ERF (Z), P ERF (X) and P ERF (I) highly depends on whether the sparsity index s is larger than the sample size n or not. Let us distinguish these two cases.

-When s > n: in this difficult case, the performance of the Transductive LASSO varies with the dimension p. Indeed, for moderates p (a dimension smaller than about 100), the Transductive LASSO has good performance compared to the LASSO, as observed in the first three lines of Table 2, where n = 5 < 8 = s. Note that in this case, the improvements using the Transductive LASSO are particularly observed for the denoising error P ERF (X), with a median value equal to 0.23 and 0.42 respectively when ρ = 0.1 and ρ = 0.9 (and with σ 2 = 1). Nevertheless, we notice that the transductive error ratio P ERF (Z) is altered when the noise level increases. In this case the denoising error ratio P ERF (X) is even more affected (see line 3 in Table 2). Despite this alteration, the Transductive LASSO has still a nice behavior in this setting. The same conclusions can be made in the experiments related to Figure 1 where p = 50, s = 20 and n = 10. Note that in this example, and when the parameters ρ = 0.1 and σ 2 = 1, the median values of the P ERF (Z) and P ERF (X) are respectively 0.82 and 0.14. On the other hand for large p (and when s > n), it turns out that the Transductive LASSO does improve the LASSO estimator only when the variables are correlated. This is illustrated in Table 2 (line 4 and 5) when p = 1000, s = 50 and n = 20.

-When s ≤ n: we can consider two sub-cases, making a difference between problems with a large sparsity index s (in comparison to p) and the others with a small one. The last three columns of Table 2 summarize the performance of the methods when s is large. First, note that the Transductive LASSO improves poorly the LASSO in terms of the transductive error P ERF (Z) when ρ = 0.1 and σ 2 = 1. Nevertheless, it remains satisfying when we deal with the prediction error P ERF (X). On top of that, the Transductive LASSO, seems to be particularly interesting when the predictors are highly correlated (line 7 in Table 2 with ρ = 0.9), even in presence of noise (last line in Table 2 where ρ = 0.9 and σ 2 = 25). In this case, increasing the correlations between variables ρ and the noise level σ 2 seems to imply better performance of the Transductive LASSO compared to the LASSO. On the other hand, Figure 2 illustrates the case where the sparsity index s is small compared to p. Here, p = 1000 and s = 1. It turns out that the Transductive LASSO is either very useful, or useless. Indeed, as observed in the displayed histograms, the distribution of the quantities P ERF (Z) (top) and P ERF (X) (bottom) are mainly concentrated around 0 (meaning very big improvement using the Transductive LASSO) and around 1 (meaning almost no improvement using the Transductive LASSO). The Transductive LASSO significantly improves the LASSO in general. Nevertheless the degradation of the behavior of the Transductive LASSO is here sensitive to the increase of σ 2 . One can compare for this purpose the third column in Figure 2 and the last line of Table 2.

In the high dimensional setting, increasing the size m of the unlabeled dataset is not advantageous to the performance of the Transductive LASSO in terms of the transductive error. This can be observed in the last column of Figure 2.

Conclusion of the simulation study: the Transductive LASSO seems to be a good alternative to the LASSO in most of the cases. It responds a good way not only to the Transductive objective (through P ERF (Z)), but also to the denoising and the estimation ones (through P ERF (X) and P ERF (I) respectively). The Transductive LASSO is particularly useful in the difficult situation, that is when the variables are highly correlated. It is also often robust while varying the noise level. Moreover, it appears that in general, a large amount of unlabeled dataset m does not help to make the Transductive LASSO better than the LASSO. The methods works better with small values of m. Hence it turns out that more clever ways to exploit the unlabeled points can be imagined. For instance, one may add weights to the observations. More precisely, one can associate to each labeled point a weight, bigger than the weight set for the unlabeled points. This would be the topic of a future work. Furthermore, the simulation study reveals how beneficial can be the use of the unlabeled points even to increase the performance in the denoising task. Finally a surprising observation in most of our experiments is that as often as not, the minimum in min

(λ 1 ,λ 2 )∈Λ 2 Z( βT L (λ 1 , λ 2 ) -β * ) 2 2 < min (λ 1 ,0)∈Λ 2 Z( βT L (λ 1 , 0) -β * ) 2 2 ,
does not significantly depend on λ 1 for a very large range of values λ 1 . This is quite interesting for a practitioner as it means that in the use of the Transductive LASSO, we can reduce significantly the computation cost and deal (almost) with only a singular unknown tuning parameter (that is λ 2 ) rather than with two.

Discussion on the regularization parameter. We would like to point out the importance of the tuning parameter λ in a general term. Figure 3 illustrates a graph of a typical experiment in the low dimensional setting. There are two curves on this graph, that represent the quantities (1/n) X( βL λβ * ) 2 2 and (1/m) Z( βL λβ * ) 2 2 with respect to λ. We observe that both functions do not reach their minimum value for the same value of λ (the minimum are highlighted on the graph by a circle and a cross), even if these minimum are quite close. Since we consider variable selection methods, the identification of the true support {j : β * j = 0} of the vector β * is also in concern. One expects that the estimator β and the true vector β * share the same support at least when n is large enough. This is known as the variable selection consistency problem and it has been considered for the LASSO estimator in several works [Bun08, MB06, MY09, Wai06, ZY06]. Recently, [START_REF] Lounici | Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators[END_REF] provided the variable selection consistency of the Dantzig Selector. Other popular selection procedures, based on the LASSO estimator, such as the Adaptive LASSO [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF], the SCAD [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], the S-LASSO [START_REF] Hebiri | Regularization with the smooth-lasso procedure[END_REF] and the Group-LASSO [START_REF] Bach | Consistency of the group lasso and multiple kernel learning[END_REF], have also been studied under a variable selection point of view. Following our previous work [START_REF] Alquier | Generalization of l1 constraint for high-dimensional regression problems[END_REF], it is possible to provide such results for the Transductive LASSO. The variable selection task has also been illustrated in Figure 3 by the vertical line. We reported the minimal value of λ for which the LASSO estimator identifies correctly the non zero components of β * . This value of λ is quite different from the values that minimizes the prediction loss. This observation is recurrent in almost all the experiments: the estimation Xβ * , Zβ * and the support of β * are three different objectives and have to be treated separately. We cannot expect in general to find a choice for λ which makes the LASSO, for instance, has good performance for all the mentioned objective simultaneously.

Real data

We apply the Transductive LASSO and the LASSO estimators to a genetic dataset, where the goal is to learn the complex combinatorial code underlying gene expression. These data have already been analyzed in [START_REF] Meier | Smoothing l 1 -penalized estimators for highdimensional time-course data[END_REF] and the original source is [START_REF] Beer | Predicting gene expression from sequence[END_REF]. The problem we consider here is known as motif regression [START_REF] Conlon | Integrating regulatory motif discovery and genome-wide expression analysis[END_REF]. By motif, we think of a sequence of letters consisting of A, C, G and T. The instances in this dataset are genes coming from yeast. More precisely, L = 2587 genes are available. Also we have p = 666 variables. Each of them (with length 2587) consists of scores associated to a given candidate motif and are computed. These scores measure how well the motifs are represented in the upstream regions of the genes. To summary, each row of this L × p design matrix corresponds to a gene and each column to a motif score. In other words, each component (i, j) ∈ {1, . . . , L} × {1, . . . , p} of this matrix measures how well the j-th motif score is represented in the upstream region of the i-th gene. The response vector is a vector of size L. Its i-th component is the expression value of the i-th gene. Actually, 255 response vectors are available. These several measurements have been collected based on a time-course experiment. Then, each response vector corresponds to a measurement of the gene expressions at a time-point. In our study, we use only one response vector by experiment. Then we first pick one of the 255 time-points. According to the construction of the labeled and the unlabeled datasets, we choose to pick each of them randomly among the 2587 available instances.

In the first experiment, we only consider the vector corresponding to the first time-point. Then, we construct X, Y and Z. We first pick n observations with the corresponding labels to construct X and Y respectively. In order to build Z, we add t = mn other observations (for which we do not care about the corresponding labels) to X. The values of n and t are specified in Tables 3 (for transductive the error) and 4 (for the denoising error), where the results for this setting are summarized.

Table 5: Evaluation of the mean (M ean), the median (M ed) and the quantile Q 3 of order 0.3 of the quantities P ERF (Z), P ERF (X), when the methods are used in the high dimensional real dataset. Most of these results confirm what has been observed in the simulation study. Indeed, we remark a difference in the performance of the methods in the high dimensional case and when p < n (we recall that p = 666). The difference between the last line, where n = 1000, and the other lines of both Tables 3 and4 illustrates this point. Indeed, when n is large, the improvement using the Transductive LASSO is not that significant for both the transductive and the denoising errors (about 0.90). We observe a big difference with the high dimensional case (the lines above), where the improvement using the Transductive LASSO is to be noticed most of the time. Conforming to the simulation study, the performance of the Transductive LASSO are particularly marked for the denoising error. Indeed, P ERF (X) is very low, with a median value between 0.001 and 0.50, as displayed in Table 4. Moreover, the performance of the Transductive LASSO compared to the LASSO are getting better and better when n is small. According to the transductive error (Tables 3), we also observe that the Transductive LASSO improves the LASSO estimator. Also conforming to the simulation study, it turns out that the improvement using the Transductive LASSO is not that significant when t (and then m) is large. Actually, the best case in this real dataset corresponds to the situation where n is large (n = 500) and t is small (t = 10), with a median value of P ERF (Z) equal to 0.43. Another observation can be made. According to the results displayed in Tables 3, we remark the diagonal (with n = t) plays an important role. Indeed, the value of P ERF (Z) when n = t is around 0.8. Moreover, when n > t the improvement is always better than 0.8 in these high dimensional experiments. This let us believe that the best situations for the Transductive LASSO here, but also in general, is when n > t.

In all these results, we expect that the sparsity index s played a role. Indeed, we already have seen in the simulation experiments that the cases where n > s and those where n < s are different. Nevertheless, our above study does not able us to make a conclusion on an approached value of s.

Let us now consider the second study. Here the way to construct X, Y and Z is the same as previously, excepted for the the values of n and m. Here both of them are random in 1, . . . , L (recall that L = 2587 is the total number of the available instances) and such that L ≥ m > 2n. Then it is the less advantageous situation for the Transductive LASSO. These results can be then associated to the upper diagonal results of Tables 3 and4. The main aspect of this study is that the time-point differs. Indeed, we choose the first time-point in the first experiment, the second in the second study, whereas we pick randomly one time-point for each replication in the third experiment (cf. Table 5). The results are summarized in Table 5. This study reveals that the behavior of the Transductive LASSO compared to the LASSO remains the same for all the time-points. We observe that even in this real dataset, the Transductive LASSO is useful. Moreover, as expected in this case, the Transductive LASSO outperforms the LASSO estimator particularly in terms of the prediction error.

Theoretical results

In this section, we consider the theoretical properties of the Transductive LASSO and Transductive Dantzig Selector, and more generally of the estimator βA,λ and βA,λ given respectively by (2.1) and (2.2) for any given matrix A (A = n/mZ is then a special case).

Assumptions

Here, we give our two assumptions. The first one is about the matrix A, the second one is about the preliminary estimator Aβ * . Assumption H(A, τ ): there exists a constant c(A, τ ) > 0 such that, for any α ∈ R p such that j:

β * j =0 |α j | ≤ τ j:β * j =0 |α j | , we have α ′ (A ′ A)α ≥ c(A, τ )n j:β * j =0 α 2 j . (4) 
First, let us explain briefly the meaning of this hypothesis. In the case where A has full rank, the condition

α ′ A ′ Aα ≥ c(A, τ )n j:β * j =0 α 2 j ,
is always satisfied for any α ∈ R p with c(A, τ ) larger than the smallest eigenvalue of A ′ A/n. However, for the LASSO, we have (A ′ A) = (X ′ X) and A ′ A cannot be invertible if p > n.

Even in this high dimensional setting, Assumption H(A, τ ) may still be satisfied. Indeed, the assumption requires that Inequality (4) holds only for a small for a small subset of R p determined by the condition

j:β * j =0 |α j | ≤ τ j:β * j =0 |α j | .
For A = X, this assumption becomes exactly the one taken in [START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF]. In that paper, the necessity of such an hypothesis is also discussed.

Assumption conf( Aβ * , κ, η): The estimator Aβ * is such that, with probability at least 1-η,

A ′ ( Aβ * -Aβ) ∞ ≤ κσ 2n log p η .
This assumption will be discussed for different types of preliminary estimators in Section 4.3. However note that it always holds when A = X and Aβ * = Y (that is, in the "usual" LASSO case). The idea of such an assumption results from the geometrical considerations in our previous work on confidence regions [START_REF] Alquier | Lasso, iterative feature selection and the correlation selector: Oracle inequalities and numerical performances[END_REF][START_REF] Alquier | Generalization of l1 constraint for high-dimensional regression problems[END_REF]. It just means that the preliminary estimator Aβ * may be used to build a suitable confidence region for Aβ * .

Main results

First, Theorem 4.1 below states that the estimator βA,λ satisfies a Sparsity Inequality with high probability. A particular consequence of this result is the fact that the Transductive Dantzig Selector β√ n m Z,λ satisfies a similar SI and responds to the transductive objective. for some η ∈]0, 1[. Then, with probability at least 1η, we have simultaneously

A βA,λ -β * 2 2 ≤ 8κ 2 σ 2 β * 0 c(A, 1) log p η and βA,λ -β * 1 ≤ 2 √ 2κσ β * 0 c(A, 1) log (p/η) n .
We remind that all the proofs are postponed to Section 6 page 17. One can use this result to tackle the particular transductive task. This is the aim of Corollary 4.2.

Corollary 4.2. Let λ be defined as in Theorem 4.1. Under Assumption H( n m Z, 1) and Assumption conf( n m Zβ * , κ, η), we have with probability 1η

1 m Z β√ n/mZ,λ -β * 2 2 ≤ 8κ 2 σ 2 β * 0 c( n/mZ, 1) log (p/η) n .
Based on Theorem 4.1, a proper choice of the matrix A can also make us respond to the other objectives (denoising and estimation) we considered in Section 2.2. Indeed, in those cases we obtain:

• Under Assumption H(X, 1) and Assumption conf( Xβ * , κ, η) and with probability at least 1η X βX,λβ * 2 2 ≤ 8κ 2 σ 2 β * 0 c(X, 1) log p η ;

• Under Assumption conf( √ nIβ * , κ, η) and with probability at least 1η

β√ nI λ -β * 2 2 ≤ 8κ 2 σ 2 β * 0 √ n log p η .
Corollary 4.2 and the above statements claim that each estimator perform well for the task it is designed to fulfill. In a similar way, we finally can establish analog results for the Transductive LASSO and more generally for the estimator βA,λ given by Definition 2.1. for some η ∈]0, 1[. Then, with probability at least 1η, we have simultaneously

A( βA,λ -β * ) 2 2 ≤ 72σ 2 κ 2 β * 0 c(A, 3) log p η and β * -βA,λ 1 ≤ 24 √ 2 β * 0 c(A, 3) log (p/η) n .

Examples of preliminary estimators

In this section, we examine some preliminary estimators Aβ * and check if they may satisfy Assumption conf( Aβ * , κ). This is an important issue of the paper since it helps to understand how restrictive are the assumptions in the results of Section 4.2. The first example deals with the (generalized) least square estimator.

Theorem 4.4. Let us choose (X ′ X)
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any pseudo-inverse of (X ′ X) and let us set where

Aβ * = A (X ′ X) -1 X ′ Y,
Ω = ((A ′ A) (X ′ X) -1 (A ′ A))/n.
According to Theorem 4.4, the standard case of interest is when A = X. The preliminary estimator becomes Xβ * = Y and we obtain that conf(Y, 1, η) holds. Plugging this into Theorems 4.1 and 4.3 implies the theorems about the LASSO and the Dantzig Selector provided in [START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF]. Moreover, other choices for A and Xβ * are possible which able us to deal for instance with the transductive setting. Hence, one can interpret Theorem 4.4 together with Theorems 4.1 and 4.3 as a generalization of the result in [START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF].

To introduce the second preliminary estimator, let us consider the case when A = X. Then the assumption Ker(A) = Ker(X) is restrictive when p > n (in the somehow appreciable case p < n, the assumption holds since both X and Z may have full rank). If the relation Ker(A) = Ker(X) is not satisfied, as the construction of Z leads to Ker(Z) ⊂ Ker(X), we may suggest the following alternative. Consider the restriction of the estimation procedure to the span of X. That is, let replace Z by Z X = (X ′ X) -1 (X ′ X)Z. Then the assumption Ker(Z X ) = Ker(X) is satisfied. As a consequence, with probability at least 1-η, the following inequality

Z X β√ n/mZ X ,λ -β * 2 2 ≤ 8κ 2 σ 2 β * 0 c( n/mZ X , 1) log p η ,
is obtained for instance for the Transductive Dantzig Selector (an analog inequality can be written for the Transductive LASSO), under Assumption H( n/mZ X , 1) and with the same choice of the tuning parameter λ as in Theorem 4.1. Finally, let us remark that (Z -Z X ) β√ n/mZ X ,λ = 0 and conclude the following result.

Corollary 4.5. Under Assumption H( n/mZ X , 1) and with the same choice of λ as in Theorem 4.1, we have with probability at least

1 -η, Z β√ n/mZ X ,λ -β * 2 2 ≤ 8κ 2 σ 2 β * 0 c( n/mZ X , 1) log p η + (Z -Z X )β * 2 2 .
The conclusion figured out this result is quite intuitive: when (Z -Z X )β * 2 2 is large, the information in X is not sufficient to estimate Zβ * . But, if (Z -Z X )β * 2 2 is small, the Transductive Dantzig Selector based on Z X has good performances. This assumption has the same status as a regularity assumption in a non-parametric setting. Obviously, we cannot know whether (Z -Z X )β * 2 2 is small or not. However when it is not, it seems impossible to guaranty a good estimation.

The final preliminary estimator we examine here has also been studied in the experiments part (cf. Section 3). Let us consider the Dantzig Selector as preliminary estimator. Here, a quite natural assumption can be made. It somehow says that X ′ X and A ′ A are not too far from each other.

Theorem 4.6. Let us assume that, there is a constant k > 0 such that for any u ∈ R p with

u 1 ≤ 2 β * 1 , (X ′ X) -(A ′ A) u ∞ ≤ kσ 2n log(p).
Let moreover η ∈]0, 1[ and set the preliminary estimator

Aβ * = A βDS 2σ 2n log p η .
Then Assumption conf Aβ * , κ, η is true with κ = 4 + k.

The same result would hold as well for the LASSO as a preliminary estimator. Moreover, in this last result, one can also consider the transductive objective and consider the matrix A = n/mZ X as introduced above. Such a choice helps us to provide good theoretical guaranties with very mild assumptions on the Gram matrix X ′ X.

Conclusion

In this paper, we studied transductive versions of the LASSO and the Dantzig Selector. These new methods appeared to enjoy both theoretical and practical advantages. Indeed, in one hand, we showed that the Transductive LASSO and Dantzig Selector satisfy sparsity inequalities with weaker assumption on the Gram matrix than the original method. On the other hand we displayed some experimental results illustrating the superiority of the Transductive LASSO on the LASSO. On top of that, these transductive methods are easy to compute. The experimental study reveals that the Transductive LASSO is often much better than the original LASSO. Nevertheless, when the number of unlabeled observations is much larger than the sample size, it turns out the the gain using the Transductive LASSO is reduced. We will focus on this point in a future work.

Proofs

In this section, we give the proofs of our main results.

Proofs of Theorems 4.1 and 4.3

Proof of Theorem 4.1. First, we have obviously

A βA,λ -β * 2 2 = βA,λ -β * ′ A ′ A βA,λ -β * ≤ βA,λ -β * 1 A ′ A βA,λ -β * ∞ ≤ βA,λ -β * 1 A ′ A βA,λ -Aβ * ∞ + A ′ Aβ * -Aβ * ∞ . (5) 
Then, just remark that by Assumption conf( Aβ * , κ), we have, with probability at least 1η,

A ′ ( Aβ * -Aβ * ) ∞ ≤ κσ 2n log p η . (6) 
Moreover, by the definition of βA,λ (Definition 2.2 page 4) we have

A ′ A βA,λ -Aβ * ∞ ≤ λ.
Then, combining the fact that βA,λ minimizes • 1 among all the vectors β satisfying

A ′ Aβ -Aβ * ∞ ≤ λ,
and the fact that thanks to (6) and as soon as λ = κσ 2n log p η , the vector β * satisfies the same inequality, we have

0 ≤ β * 1 -βA,λ 1 ≤ β * j =0 |β * j | - β * j =0
|( βA,λ ) j | -

β * j =0 |( βA,λ ) j | ≤ β * j =0
|β * j -( βA,λ ) j | -

β * j =0
|β * j -( βA,λ ) j |.

As a consequence, we have 6.2 Proofs of Theorems 4.4 and 4.6

Proof of Theorem 4.4. The proof is quite simple. As Y ∼ N (Xβ * , σ 2 I n ), we have

(X ′ X) -1 X ′ Y -β * ∼ N 0, σ 2 (X ′ X) -1
, and so

A ′ A (X ′ X) -1 X ′ Y -β * ∼ N 0, σ 2 Ω ,
where Ω denotes the matrix Ω = Ω(A, X) = A ′ A (X ′ X)
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A ′ A. Let us also define

V = A ′ A (X ′ X) -1 X ′ Y -β * .
Then, for any j ∈ {1, . . . , p}, V j ∼ N 0, σ 2 Ω j,j .

Using a standard inequality on the tail of Gaussian variables yields . This is the announced result.

P
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 1 Figure 1: Study of the distribution of P ERF when p = 50, s = 20 and (n, m) = (10, 20). Top:study of P ERF (Z); Bottom: study of P ERF (X). From left to right: ρ = 0.1 and σ 2 = 1; ρ = 0.1 and σ 2 = 100; ρ = 0.9 and σ 2 = 1.

Figure 2 :

 2 Figure 2: Study of the distribution of P ERF when p = 1000 and s = 1. Top: study of P ERF (Z);Bottom: study of P ERF (X). From left to right: (n, m) = (5, 20), ρ = 0.1 and σ 2 = 1; (n, m) = (5, 20), ρ = 0.9 and σ 2 = 1; (n, m) = (5, 20), ρ = 0.9 and σ 2 = 25; (n, m) = (5, 500), ρ = 0.9 and σ 2 = 1.

Figure 3 :

 3 Figure 3: Evolution of the denoising error (the red solide line) and the transduction error (the blue dashed line) of the LASSO w.r.t. λ. The minimum of the denoising and the transduction errors are marked respectively by a red circle and a blue cross. The best tuning parameter for the variable selection purpose is pointed by a vertical line.

Theorem 4. 1 .

 1 Let us assume that Assumption H(A, 1) and Assumption conf( Aβ * , κ, η) are satisfied. Let us choose λ = κσ 2n log p η ,

Theorem 4. 3 .

 3 Let us assume that assumption H(A, 3) and Assumption conf( Aβ * , κ, η) are satisfied. Let us choose λ = 2κσ 2n log p η ,

  as preliminary estimator. Then, under the assumption Ker(A) = Ker(X) and for any η ∈ ]0, 1[, Assumption conf( Aβ * , κ, η) holds with κ =

  βA,λ ) j | ≤ β * j =0|β * j -( βA,λ ) j |, which implies that the vector β * -βA,λ is an admissible α for the relation in Assumption H(A, 1). Hence, using this assumption in the last above inequality, we have the following upper bound βA,λ -β * 1 = β * j =0 |β * j -( βA,λ ) j | + β * j =0 |β * j -( βA,λ ) j | ≤ 2 β * j =0 |β * j -( βA,λ ) j | ≤ card{j : β * j = 0} β * j =0 (β * j -( βA,λ ) j ) 2 ≤ β * 0 nc(A, 1) A( βA,λβ * ) 2 2 . (7)We plug this result into Inequality (5) to obtain, with probability at least 1η,A( βA,λβ * )and this ends the proof.Proof of Theorem 4.3. By the definition of the transductive LASSO (Definition 2.1 page 4) we have-2 Aβ * ′ A βA,λ + β′ A,λ A ′ A βA,λ + 2λ βA,λ 1 ≤ -2 Aβ * ′ Aβ * + (β * ) ′ A ′ Aβ * + 2λ β * 1 .We can rewrite that as-2(β * ) ′ A ′ A βA,λ + 2 Aβ * -Aβ * ′ A βA,λ + β′ A,λ A ′ A βA,λ + 2λ βA,λ 1 ≤ -(β * ) ′ A ′ Aβ * + 2 Aβ * -Aβ * ′ Aβ * + 2λ β * 1 ,or, rearranging the terms,A( βA,λβ * ) 2 2 = ( βA,λβ * )A ′ A( βA,λβ * ) ≤ 2 Aβ * -Aβ * ′ A β * -βA,λ + 2λ β * 1 -βA,λ 1 . (8)Now, let us remark thatAβ * -Aβ * ′ A β * -βA,λ = A ′ Aβ * -Aβ * ′ β * -βA,λ ≤ A ′ Aβ * -Aβ * ∞ β * -βA,λ 1 ≤ λ 2 β * -βA,λ 1 ,with probability 1-η, provided that λ = 2κσ 2n log p η together with Assumption conf( Aβ * , κ). We plug that into Inequality (8) to obtain, with probability 1η,A( βA,λβ * ) 2 2 ≤ λ β * -βA,λ 1 + 2 β * 1 -βA,λ 1 .This leads toA( βA,λβ * ) 2 2 + λ β * -βA,λ 1 ≤ 2λ β * -βA,λ 1 + β * 1 -βA,λ 1 = 2λ p j=1 β * j -( βA,λ ) j + β * j -( βA,λ ) j = 2λ β * j =0 β * j -( βA,λ ) j + β * j -( βA,λ ) j ≤ 4λ β * j =0 β * j -( βA,λ ) j ,(9)and, from this Inequality (9), we deduce that βA,λβ * is an admissible α vector in Assumption H(A, 3). Then we obtain, still from (9) and Assumption H(A, 3),A( βA,λβ * ) , 3) A( βA,λβ * ) 2 2 .This last display implies A( βA,λβ * ) 2 2 ≤ 72σ 2 κ 2 β * 0 log p η c(A, 3) .We plug this last result into Inequality (9) to obtain β * -βA,λ 1

  |V j | > κσ 2n log(p/η) ≤ exp -κ 2 n log(p/η) Ω j,j .Then, using a union bound and the concavity of the function x → exp(-x), we easily obtainP V ∞ > κσ 2n log(p/η)The above quantity P V ∞ > κσ 2n log(p/η) is smaller than η, if the parameter κ is such that

Table 2 :

 2 Evaluation of the mean (M ean), the median (M ed) and the quantile Q 3 of order 0.3 of the quantities P ERF (Z), P ERF (X) and P ERF (I), when the methods are used in the artificial high dimensional case p ≥ n.

	P ERF (Z)	P ERF (X)	P ERF (I)

Table 3 :

 3 Evaluation of the the median and the quantile of order 0.3 (M ed[Q 3 ]) of the quantities P ERF (Z) in the high dimensional real dataset. Here n is the labeled sample size and t = mn is the unlabeled sample size.

	H H H H H H n t	10	20	50	100	500	1000
	10	0.85 [0.67] 0.88 [0.77] 0.90 [0.84] 0.97 [0.94] 0.98 [0.97] 0.99 [0.98]
	20	0.74 [0.52] 0.85 [0.70] 0.86 [0.76] 0.91 [0.86] 0.96 [0.95] 0.98 [0.97]
	50	0.78 [0.49] 0.68 [0.53] 0.81 [0.67] 0.84 [0.72] 0.94 [0.91] 0.97 [0.96]
	100	0.72 [0.47] 0.68 [0.47] 0.75 [0.58] 0.75 [0.63] 0.87 [0, 84] 0.95 [0.93]
	500	0.43 [0.29] 0.51 [0.34] 0.49 [0.30] 0.49 [0.39] 0.81 [0.73] 0.88 [0.83]
	1000	0.96 [0.93] 0.97 [0.92] 0.91 [0.85] 0.89 [0.81] 0.88 [0.83] 0.86 [0.80]

Table 4 :

 4 Evaluation of the the median and the quantile of order 0.3 (M ed [Q 3 ]) of the quantities P ERF (X) in the high dimensional real dataset. Here n is the labeled sample size and t = mn is the unlabeled sample size.

	H H H H H n t	10	20	50	100	500	1000
	10	0.04 [0.01]	0.010 [0.003]	0.04 [0.02]	0.005 [0.001] 0.0011 [0.0003] 0.12 [0.10]
	20	0.030 [0.004] 0.006 [0.002] 0.004 [0.001] 0.005 [0.002]	0.003 [0.001]	0.13 [0.11]
	50	0.07 [0.01]	0.028 [0.008] 0.012 [0.002] 0.011 [0.003]	0.014 [0.005]	0.15 [0.13]
	100	0.32 [0.41]	0.07 [0.01]	0.024 [0.005] 0.029 [0.009]	0.02 [0.01]	0.22 [0.18]
	500	0.40 [0.22]	0.44 [0.25]	0.33 [0.11]	0.24 [0.08]	0.38 [0.30]	0.51 [0.46]
	1000	0.97 [0.93]	0.97 [0.94]	0.92 [0.86]	0.90 [0.80]	0.87 [0.77]	0.78 [0.67]

,1 The algorithm is implemented with R and can be found in the web page: http://cran.rproject.org/web/packages/glmnet/index.html
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Proof of Theorem 4.6. We have, for any µ > 0,

Now, for the Dantzig Selector,

with probability at least 1η, provided that µ = 2σ 2n log(p/η). Moreover,

As a conclusion, with probability 1η,