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Transductive versions of the LASSO

and the Dantzig Selector

Pierre Alquier and Mohamed Hebiri

Abstract

We consider the linear regression problem, where the number p of co-
variates is possibly larger than the number n of observations (xi, yi)i≤i≤n,
under sparsity assumptions. On the one hand, several methods have been
successfully proposed to perform this task, for example the LASSO in
[Tib96] or the Dantzig Selector in [CT07]. On the other hand, consider
new values (xi)n+1≤i≤m. If one wants to estimate the corresponding yi’s,
one should think of a specific estimator devoted to this task, referred in
[Vap98] as a ”transductive” estimator. This estimator may differ from an
estimator designed to the more general task ”estimate on the whole do-
main”. In this work, we propose a generalized version both of the LASSO
and the Dantzig Selector, based on the geometrical remarks about the
LASSO in [Alq08, AH08]. The ”usual” LASSO and Dantzig Selector, as
well as new estimators interpreted as transductive versions of the LASSO,
appear as special cases. These estimators are interesting at least from a
theoretical point of view: we can give theoretical guarantees for these
estimators under hypotheses that are relaxed versions of the hypotheses
required in the papers about the ”usual” LASSO. These estimators can
also be efficiently computed, with results comparable to the ones of the
LASSO.
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1 Introduction

In many modern applications, a statistician often have to deal with very large
datasets. Regression problems may involve a large number of covariates p, pos-
sibly larger than the sample size n. In this situation, a major issue is dimension
reduction, which can be performed through the selection of a small amount of
relevant covariates. For this purpose, numerous regression methods have been
proposed in the literature, ranging from the classical information criteria such
as AIC [Aka73] and BIC [Sch78] to the more recent sparse methods, known as
the LASSO [Tib96], and the Dantzig Selector [CT07]. Regularized regression
methods have recently witnessed several developments due to the attractive fea-
ture of computational feasibility, even for high dimensional data (i.e., when the
number of covariates p is large). We focus on the usual linear regression model:

yi = xiβ
∗ + εi, i = 1, . . . , n, (1)

where the design xi = (xi,1, . . . , xi,p) ∈ Rp is deterministic, β∗ = (β∗
1 , . . . , β∗

p)′ ∈
Rp is the unknown parameter and ε1, . . . , εn are i.i.d. centered Gaussian random
variables with known variance σ2. Let X denote the matrix with i-th line equal
to xi, and let Xj denote its j-th column, with i ∈ {1, . . . , n} and j ∈ {1, . . . , p}.
So:

X = (x′
1, . . . , x

′
n)′ = (X1, . . . , Xp).

For the sake of simplicity, we will assume that the observations are normalized
in such a way that X ′

jXj/n = 1. We denote by Y the vector Y = (y1, . . . , yn)′.

For all α ≤ 1 and any vector v ∈ R
d, we set ‖ · ‖α, the norm: ‖v‖α = (|v1|α +

. . .+ |vd|α)1/α. In particular ‖·‖2 is the euclidean norm. Moreover for all d ∈ N,

we use the notation ‖v‖0 =
∑d

i=1 1(vi 6= 0).
The problem of estimating the regression parameter in the high dimensional

setting have been extensively studied in the statistical literature. Among others,
the LASSO [Tib96] (denoted by β̂L), the Dantzig Selector [CT07] (denoted by

β̂DS) and the non-negative garrote (in Yuan and Lin [YL07], denoted by β̂NNG)
have been proposed to deal with this problem for a large p, even for p > n. These
estimators give very good practical results. For instance in [Tib96], simulations
and tests on real data have been provided for the LASSO. We also refer to
[Kol07, Kol09, MVdGB08, vdG08, DT07, CH08] for related work with different
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estimators: non-quadratic loss, penalties slightly different from ℓ1 and random
design.
From a theoretical point of view, Sparsity Inequalities (SI) have been proved for
these estimators under different assumptions. That is upper bounds of order of
O
(

σ2‖β∗‖0 log(p)/n
)

for the errors (1/n)‖Xβ̂−Xβ∗‖2
2 and ‖β̂−β∗‖2

2 have been

derived, where β̂ is one of the estimators mentioned above. In particular these
bounds involve the number of non-zero coordinates in β∗ (multiplied by log(p)),

instead of dimension p. Such bounds garanty that under some assumptions, Xβ̂
and β̂ are good estimators of Xβ∗ and β∗ respectively. According to the LASSO
β̂L, these SI are given for example in [BTW07, BRT07], whereas [CT07, BRT07]

provided SI for the Dantzig Selector β̂DS . On the other hand, Bunea [Bun08]

establishes conditions which ensure β̂L and β∗ have the same null coordinates.
Analog results for β̂DS can be found in [Lou08].

Now, let us assume that we are given additional observations xi ∈ Rp for n+
1 ≤ i ≤ m (with m > n), and introduce the matrix Z = (x′

1, . . . , x
′
m)′. Assume

that the objective of the statistician is precisely to estimate Zβ∗: namely, he
cares about predicting what would be the labels attached to the additional xi’s.
It is argued in [Vap98] that in such a case, a specific estimator devoted to this
task should be considered: the transductive estimator. This estimator differs
from an estimator tailored for the estimation of β∗ or Xβ∗ like the LASSO.
Indeed one usually builds an estimator β̂(X, Y ) and then computes Zβ̂(X, Y )

to estimate Zβ∗. The approach taken here is to consider estimators β̂(X, Y, Z)

exploiting the knowledge of Z, and then to compute Zβ̂(X, Y, Z).
Some methods in supervised classification or regression were successfully

extended to the transductive setting, such as the well-known Support Vector
Machines (SVM) in [Vap98], the Gibbs estimators in [Cat07]. It is argued in
the semi-supervised learning literature (see for example [CSZ06] for a recent
survey) that taking into account the information on the design given by the
new additional xi’s has a stabilizing effect on the estimator.

In this paper, we study a family of estimators which generalizes the LASSO
and the Dantzig Selector. The considered family depends on a q × p matrix A,
with q ∈ N, whose choice allows to adapt the estimator to the objective of the
statistician. The choice of the matrix A allows to cover transductive setting.

The rest of paper is organized as follows. In the next section, we motivate
the use of the studied family of estimators through geometrical considerations
stated in [AH08]. In Sections 3 and 4, we establish Sparsity Inequalities for
these estimators. A discussion on the assumptions needed to prove the SI is
also provided. In particular, it is shown that the estimators devoted to the
transductive setting satisfy these SI with weaker assumptions that those needed
by the LASSO or the Dantzig Selector, when m > p > n. That is, when the
number of news points is large enough. The implementation of our estimators
and some numerical experiments are the purpose of Section 5. The results
clearly show that the use of a transductive version of the LASSO may improve
the performance of the estimation. All proofs of the theoretical results are
postponed to Section 7.
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2 Preliminaries

In this section we state geometrical considerations (projections on a confidence
region) for the LASSO and the Dantzig Selector. These motivate the introduc-
tion of our estimators. Finally we discuss the different objectives considered in
this paper.

Let us remind that a definition of the LASSO estimate is given by

arg min
β∈Rp

{

‖Y − Xβ‖2
2 + 2λ‖β‖1

}

. (2)

A dual form (in [OPT00]) of this program is also of interest:







argminβ∈Rp ‖Xβ‖2
2

s.t. ‖X ′(Y − Xβ)‖∞ ≤ λ;
(3)

actually it is proved in [Alq08] that any solution of Program 3 is a solution of
Program 2 and that the set {Xβ} is the same where β is taken among all the
solutions of Program 2 or among all the solutions of 3. So both programs are
equivalent in terms of estimating Xβ∗.

Now, let us remind the definition of the Dantzig Selector:






argminβ∈Rp ‖β‖1

s.t. ‖X ′(Y − Xβ)‖∞ ≤ λ.
(4)

Alquier [Alq08] observed that both Programs 3 and 4 can be seen as a
projection of the null vector 0p onto the region {β : ‖X ′(Y − Xβ)‖∞ ≤ λ} that
can be interpreted as a confidence region, with confidence 1 − η, for a given λ
that depends on η (see Lemma 7.1 here for example). The difference between
the two programs is the distance (or semi-distance) used for the projection.

Based on these geometrical considerations, we proposed in [AH08] to study
the following transductive estimator:







argminβ∈Rp ‖Zβ‖2
2

s.t. ‖X ′(Y − Xβ)‖∞ ≤ λ;
(5)

that is a projection on the same confidence region, but using a distance adapted
to the transductive estimation problem. We proved a Sparsity Inequality for
this estimator exploiting a novel sparsity measure.

In this paper, we propose a generalized version of the LASSO and of the
Dantzig Selector, based on the same geometrical remark. More precisely for q ∈
N

∗, let A be a q×p matrix. We propose two general estimators, β̂A,λ (extension

of the LASSO, based on a generalization of Program 2) and β̃A,λ (transductive
Dantzig Selector, generalization of Program 4). These novel estimators depend
on two tuning parameters: λ > 0 is a regularization parameter, it plays the
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same role as the tuning parameter involved in the LASSO, and the matrix A
that will allow to adapt the estimator to the objective of the statistician. More
particularly, depending on the choice of the matrix A, this estimator can be
adapted to one of the following objectives:

• denoising objective: the estimation of Xβ∗, that is a denoised version
of Y . For this purpose, we consider the estimator β̂A,λ, with A = X . In

this case, the estimator will actually be equal to the LASSO β̂L and β̃A,λ,
with the same choice A = X will be equal to the Dantzig Selector;

• transductive objective: the estimation of Zβ∗, by β̂A,λ or β̃A,λ, with

A =
√

n/mZ. We will refer the corresponding estimators as the ”Trans-
ductive LASSO” and ”Transductive Dantzig Selector”;

• estimation objective: the estimation of β∗ itself, by β̂A,λ, with A =√
nI. In this case, it appears that both estimators are well defined only

in the case p < n and are equal to a soft-thresholded version of the usual
least-square estimator.

For both estimators and all the above objectives, we prove SI (Sparsity
Inequalities). Moreover, we show that these estimators can easily be computed.

3 The ”easy case”: Ker(X) = Ker(Z)

In this section, we deal with the ”easy case”, where Ker(A) = Ker(X) (think of
A = X , A =

√
nI or A =

√

n/mZ). This setting is natural at least in the case
p < n where both kernels are equal to {0} in general. We provide SI (Sparsity
Inequality, Theorem 3.3) for the studied estimators, based on the techniques
developed in [BRT07].

3.1 Definition of the estimators

Definition 3.1. For a given parameter λ ≥ 0 and any matrix A such that
Ker(A) = Ker(X), we consider the estimator given by

β̂A,λ ∈ arg min
β∈Rp

{

−2Y ′X(X̃ ′X)−1(A′A)β + β′(A′A)β + 2λ‖ΞAβ‖1

}

,

where (X̃ ′X)−1 is exactly (X ′X)−1 if (X ′X) is invertible, and any pseudo-
inverse of this matrix otherwise, and where ΞA is a diagonal matrix whose

(j, j)-th coefficient is ξ
1

2

j (A) with ξj(A) = 1
n [(A′A)(X̃ ′X)−1(A′A)]j,j .

Remark 3.1. Equivalently we have

β̂A,λ ∈ arg min
β∈Rp

{∥

∥

∥ỸA − Aβ
∥

∥

∥

2

2
+ 2λ‖ΞAβ‖1

}

,

where ỸA = A(X̃ ′X)−1X ′Y .

5



Actually, we are going to consider three particular cases of this estimator in
this work, depending on the objective of the statistician:

• denoising objective: the LASSO, denoted here by β̂X,λ, given by

β̂X,λ ∈ arg min
β∈Rp

{

‖Y − Xβ‖2
2 + 2λ‖β‖1

}

= arg min
β∈Rp

{−2Y ′Xβ + β′X ′Xβ + 2λ‖β‖1}

(note that in this case, ΞX = I since X is normalized);

• transductive objective: the Transductive LASSO, denoted here by
β̂√

n/mZ,λ
, given by

β̂√ n
m

Z,λ
∈ arg min

β∈Rp

{ n

m

∥

∥

∥ỸZ − Zβ
∥

∥

∥

2

2
+ 2λ‖Ξ n

m
Z′Zβ‖1

}

;

• estimation objective: β̂√
nI,λ, defined by

β̂√
nI,λ ∈ arg min

β∈Rp

{

n
∥

∥

∥ỸI − β
∥

∥

∥

2

2
+ 2λ‖Ξ√

nIβ‖1

}

.

Let us give the analogous definition for an extension of the Dantzig Selector.

Definition 3.2. For a given parameter λ > 0 and any matrix A such that
Ker(A) = Ker(X), we consider the estimator given by

β̃A,λ =











arg minβ∈Rp ‖β‖1

s.t.
∥

∥

∥Ξ−1
A A′A((X̃ ′X)−1X ′Y − β)

∥

∥

∥

∞
≤ λ.

(6)

Here again, we are going to consider three cases, for A = X , A =
√

n/mZ
and A =

√
nI, and it is easy to check that for A = X we have exactly the usual

definition of the Dantzig Selector (Program 4). Moreover, here again, note that
we can rewrite this estimator:

β̃A,λ =











arg minβ∈Rp ‖β‖1

s.t.
∥

∥

∥
Ξ−1

A A′(ỸA − Aβ)
∥

∥

∥

∞
≤ λ.

The following proposition provides an interpretation of our estimators when
A =

√
nI.

Proposition 3.1. Let us assume that (X ′X) is invertible. Then β̂√
nI,λ =

β̃√
nI,λ and this is a soft-thresholded least-square estimator: let us put β̂LSE =

(X ′X)−1X ′Y then β̂√
nI,λ is the vector obtained by replacing the j-th coordinate

bj = β̂LSE
j of β̂LSE by sgn(bj) (|bj | − λξj(nI)/n)+, where we use the standard

notation sgn(x) = +1 if x ≥ 0, sgn(x) = −1 if x < 0 and (x)+ = max(x, 0).
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Proposition 3.2 deals with a dual definition of the estimator β̂A,λ.

Proposition 3.2. When Ker(A) = Ker(X), the solutions β of the following
program:











arg minβ∈Rp ‖Aβ‖2
2

s.t.
∥

∥

∥Ξ−1
A A′((ỸA − Aβ)

∥

∥

∥

∞
≤ λ

all satisfy Xβ = Xβ̂A,λ and Aβ = Aβ̂A,λ.

Proofs can be found in Section 7, page 16.

3.2 Theoretical results

Let us first introduce our main assumption. This assumption is stated with a
given p × p matrix M and a given real number x > 0.

Assumption H(M, x): there is a constant c(M) > 0 such that, for any α ∈ R
p

such that
∑

j:β∗

j
=0 ξj(M) |αj | ≤ x

∑

j:β∗

j
6=0 ξj(M) |αj | we have

α′Mα ≥ c(M)n
∑

j:β∗

j
6=0

α2
j . (7)

First, let us explain briefly the meaning of this hypothesis. In the case,
where M is invertible, the condition

α′Mα ≥ c(M)n
∑

j:β∗

j
6=0

α2
j

is always satisfied for any α ∈ R
p with c(M) larger than the smallest eigenvalue

of M/n. However, for the LASSO, we have M = (X ′X) and M cannot be
invertible if p > n. Even in this case, Assumption H(M, x) may still be satis-
fied. Indeed, the assumption requires that Inequality (7) holds only for a small
for a small subset of R

p determined by the condition
∑

j:β∗

j
=0 ξj(M) |αj | ≤

x
∑

j:β∗

j
6=0 ξj(M) |αj | . For M = (X ′X), this assumption becomes exactly the

one taken in [BTW07]. In that paper, the necessity of such an hypothesis is
also discussed.

Theorem 3.3. Let us assume that Assumption H(A′A, 3) is satisfied and that
Ker(A) = Ker(X). Let us choose 0 < η < 1 and λ = 2σ

√

2n log (p/η). With
probability at least 1 − η on the draw of Y , we have simultaneously

∥

∥

∥
A
(

β̂A,λ − β∗
)∥

∥

∥

2

2
≤ 72σ2

c(A′A)
log

(

p

η

)

∑

j:β∗

j
6=0

ξj(A),

and
∥

∥

∥ΞA

(

β̂A,λ − β∗
)∥

∥

∥

1
≤ 24

√
2σ

c(A′A)

(

log (p/η)

n

)
1

2 ∑

j:β∗

j
6=0

ξj(A).
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In particular, the first inequality gives

• if Assumption H(X ′X, 3) is satisfied, with probability at least 1 − η,

1

n

∥

∥

∥X
(

β̂X,λ − β∗
)∥

∥

∥

2

2
≤ 72σ2

nc(X ′X)
‖β∗‖0 log

(

p

η

)

;

• if Assumption H( n
mZ ′Z, 3) is satisfied, and if Ker(Z) = Ker(X), with

probability at least 1 − η,

1

m

∥

∥

∥Z
(

β̂Z,λ − β∗
)∥

∥

∥

2

2
≤ 72σ2

nc( n
mZ ′Z)

∑

j:β∗

j
6=0

ξj

(

√

n/mZ
)

log

(

p

η

)

;

• and if (X ′X) is invertible, with probability at least 1 − η,

∥

∥

∥β̂√
nI,λ − β∗

∥

∥

∥

2

2
≤ 72σ2

nc(nI)

∑

j:β∗

j
6=0

ξj(nI) log

(

p

η

)

.

This result shows that each of these three estimators satisfy at least a SI for
the task it is designed for. For example, the LASSO is proved to have ”good”
performance for the estimation of Xβ∗ and the Transductive LASSO is proved
to have good performance for the estimation of Zβ∗. However we cannot assert
that, for example, the LASSO performs better than the Transductive LASSO
for the estimation of Zβ∗.

Remark 3.2. For A = X, the particular case of our result applied to the LASSO
is quite similar to the result given in [BTW07] on the LASSO. Actually, Theorem
3.3 can be seen as a generalization of the result in [BTW07] and it should be
noted that the proof used to prove Theorem 3.3 uses arguments introduced in
[BTW07].

Remark 3.3. As soon as A′A is better determined than X ′X, Assumption
H(A, x) is less restrictive than H(X ′X, x). In particular, in the case where
m > n, Assumption H((n/m)Z ′Z, x) is expected to be less restrictive than As-
sumption H(X ′X, x).

Now we give the analogous result for the estimator β̃A,λ.

Theorem 3.4. Let us assume that Assumption H(A′A, 1) is satisfied and that
Ker(A) = Ker(X). Let us choose 0 < η < 1 and λ = 2σ

√

2n log (p/η). With
probability at least 1 − η on the draw of Y , we have simultaneously

∥

∥

∥A
(

β̃A,λ − β∗
)∥

∥

∥

2

2
≤ 72σ2

c(A′A)
log

(

p

η

)

∑

j:β∗

j
6=0

ξj(A),

and
∥

∥

∥ΞA

(

β̃A,λ − β∗
)∥

∥

∥

1
≤ 12

√
2σ

c(A′A)

(

log (p/η)

n

)
1

2 ∑

j:β∗

j
6=0

ξj(A).
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4 An extension to the general case

In this section, we only deal with the transductive setting, A =
√

n/mZ. Let
us remind that in such a framework, we observe X which consists of some
observations xi associated to labels Yi in Y , for i ∈ {1, . . . , n}. Moreover we
have additional observations xi for i ∈ {n + 1, . . . , m} with m > n. We also
recall that Z contains all the xi for i ∈ {1, . . . , m} and that the objective is to
estimate the corresponding labels Yi, let us put Ỹ = (Y1, . . . , Ym)′.

4.1 General remarks

Let us have look at the definition of β̂√
n/mZ,λ

, for example as given in Re-

mark 3.1:

β̂√ n
m

Z,λ ∈ arg min
β∈Rp

{ n

m

∥

∥

∥ỸZ − Zβ
∥

∥

∥

2

2
+ 2λ‖Ξ n

m
Z′Zβ‖1

}

,

where actually ỸZ = Z
(

X̃ ′X
)−1

XY can be interpreted as a preliminary esti-

mator of Ỹ . Hence, in any case, we propose the following procedure.
Let us assume that, depending on the context, the user has a natural (and not
necessary efficient) estimator of Ỹ = (Y1, . . . , Yn+m)′. Note this estimator Y̌ .

Definition 4.1. The Transductive LASSO is given by:

β̂
Y̌ ,
√

n
m

Z,λ
∈ arg min

β∈Rp

{ n

m

∥

∥Y̌ − Zβ
∥

∥

2

2
+ 2λ‖Ξ n

m
Z′Zβ‖1

}

,

and the Transductive Dantzig Selector is defined as:

β̃
Y̌ ,
√

n
m

Z,λ =















arg minβ∈Rp ‖β‖1

s.t.

∥

∥

∥

∥

n
mΞ−1√

n/mZ
Z ′(Y̌ − Zβ)

∥

∥

∥

∥

∞
≤ λ.

In the next subsection, we propose a context where we have a natural esti-
mator Y̌ and give a SI on this estimator.

4.2 An example: small labeled dataset, large unlabeled

dataset

The idea of this example is to consider the case where the examples xi for
1 ≤ i ≤ n are ”representative” of the large populations xi for 1 ≤ i ≤ m.

Consider, Z = (x′
1, . . . , x

′
m)′ where the x′

is are the points of interest: we
want to estimate Ỹ = Zβ∗. However, we just have a very expensive and noisy
procedure, that, given a point xi, returns Yi = xiβ

∗ + εi, where the εi’s are
N (0, σ2) independent random variables. In such a case, the procedure cannot
be applied for the whole dataset Z = (x′

1, . . . , x
′
m)′. We can only make a deal

with a ”representative” sample of size n. A typical case could be n < p < m.

9



First, let us introduce a slight modification of our main hypothesis. It is also
stated with a given p × p matrix M and a given real number x > 0.

Assumption H ′(M, x): there is a c(M) > 0 such that, for any α ∈ R
p such

that
∑

j:β∗

j
=0 |αj | ≤ x

∑

j:β∗

j
6=0 |αj | we have

α′Mα ≥ c(M)n
∑

j:β∗

j
6=0

α2
j .

We can now state our main result.

Theorem 4.1. Let us assume that Assumption H ′((n/m)Z ′Z, 1) is satisfied.
Let us choose 0 < η < 1 and λ1 = λ2 = 10−1σ

√

2n log (p/η). Moreover, let us
assume that

∀u ∈ R
p with ‖u‖1 ≤ ‖β∗‖1,

∥

∥

∥

(

(X ′X) − n

m
(Z ′Z)

)

u
∥

∥

∥

∞
<

σ

10

√

2n log

(

p

η

)

.

(8)
Let Y̌λ1

= Zβ̃X,λ1
be a preliminary estimator of Ỹ , based on ths Dantzig Selector

given by (6) (with A = X). Then define the Transductive LASSO by

β̂∗
n
m

Z,20λ2
=







arg minβ∈Rp
n
m ‖Zβ‖2

2

s.t.
∥

∥

n
mZ ′(Y̌λ1

− Zβ)
∥

∥

∞ ≤ 20λ2,

and the Transductive Dantzig Selector

β̃∗
n
m

Z,λ2
=







argminβ∈Rp ‖β‖1

s.t.
∥

∥

n
mZ ′(Y̌λ1

− Zβ)
∥

∥

∞ ≤ λ2.

With probability at least 1 − η on the draw of Y , we have simultaneously

1

m

∥

∥

∥Z(β̃∗
n
m

Z,λ2
− β∗)

∥

∥

∥

2

2
≤ 16σ2

nc((n/m)Z ′Z)
log

(

p

η

)

‖β∗‖0,

∥

∥

∥β̃∗
n
m

Z,λ2
− β∗

∥

∥

∥

1
≤ 8σ

c((n/m)Z ′Z)

(

log (p/η)

n

)
1

2

‖β∗‖0,

and moreover, if H ′((n/m)Z ′Z, 5) is also satisfied,

1

m

∥

∥

∥Z(β̂∗
n
m

Z,20λ2
− β∗)

∥

∥

∥

2

2
≤ 88σ2

nc((n/m)Z ′Z)
log

(

p

η

)

‖β∗‖0,

∥

∥

∥
β̂∗

n
m

Z,20λ2
− β∗

∥

∥

∥

1
≤ 54σ

c((n/m)Z ′Z)

(

log (p/η)

n

)
1

2

‖β∗‖0.
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First, let us remark that the preliminary estimator Y̌λ1
is defined using the

Dantzig Selector β̃X,λ1
. We could give exactly the same kind of results using a

the LASSO β̂X,λ1
as a preliminary estimator.

Now, let us give a look at the new hypothesis, Inequality (8). We can
interpret this condition as the fact that the xi’s for 1 ≤ i ≤ n are effectively
representative of the wide population: so X ′X/n is ”not too far” from Z ′Z/m.
We will end this section by a result that proves that this is effectively the case
in a typical situation.

Proposition 4.2. Assume that m = kn for an integer value k ∈ N\{0, 1}. Let
us assume that X and Z are build in the following way: we have a population
χ1 = (χ1,1, . . . , χ1,p) ∈ R

p,. . . , χm ∈ R
p (the points of interest). Then, we draw

uniformly without replacement, n of the χi’s to be put in X: more formally, but
equivalently, we draw uniformly a permutation σ of {1, . . . , m} and we put X =
(x′

1, . . . , x
′
n)′ = (χ′

σ(1), . . . , χ
′
σ(n))

′ and Z = (x′
1, . . . , x

′
m)′ = (χ′

σ(1), . . . , χ
′
σ(m))

′.

Let us assume that for any (i, j) ∈ {1, . . . , m} × {1, . . . , p}, χ2
i,j < κ for some

κ > 0, and that p ≥ 2. Then, with probability at least 1 − η, for any u ∈ R
p,

∥

∥

∥

(

X ′X − n

m
Z ′Z

)

u
∥

∥

∥

∞
≤ ‖u‖1

2κk

k − 1

√

2 log
p

η
.

In particular, if we have

‖u‖1 ≤ ‖β∗‖1 and κ ≤ k − 1

10 k

σ

‖β∗‖1

then we have
∥

∥

∥

(

X ′X − n

m
Z ′Z

)

u
∥

∥

∥

∞
≤ σ

√

2n log

(

p

η

)

.

Let us just mention that the assumption m = kn is not restrictive. It has
been introduced for the sake of simplicity.

5 Experimental results

Implementation. Since the paper of Tibshirani [Tib96], several effective al-
gorithms to compute the LASSO have been proposed and studied (for instance
Interior Points methods [KKL+07], LARS [EHJT04], Pathwise Coordinate Op-
timization [FHHT07], Relaxed Greedy Algorithms [HCB08]). For the Dantzig
Selector, a linear method was proposed in the first paper [CT07]. The LARS
algorithm was also successfully extended in [JRL09] to compute the Dantzig
Selector.
Then there are many algorithms to compute β̂A,λ and β̃A,λ, when A = X .
Thanks to Proposition 3.1, it is also clear that we can easily find an efficient
algorithm for the case A =

√
nI.

The general form of the estimators β̂A,λ and β̃A,λ given by Definitions 3.1

11



and 3.2, allows to use one of the algorithms mentioned previously to compute
our estimator in two cases. For example, from Remark 3.1, we have:

β̂A,λ ∈ arg min
β∈Rp

{∥

∥

∥ỸA − Aβ
∥

∥

∥

2

2
+ 2λ‖ΞAβ‖1

}

,

then we just have to compute ỸA, to put B = AΞ−1
A , to use any program that

computes the LASSO to determine

γ̂ ∈ arg min
γ∈Rp

{∥

∥

∥ỸA − Bγ
∥

∥

∥

2

2
+ 2λ‖γ‖1

}

and then to put β̂A,λ = Ξ−1
A γ.

In the rest of this section, we compare the LASSO and the transductive
LASSO on the classical toy example introduced by Tibshirani [Tib96] and used
as a benchmark.

Data description. In the model proposed by Tibshirani, we have

Yi = xiβ
∗ + εi

for i ∈ {1, . . . , n}, β∗ ∈ R
p and the εi are i.i.d. N (0, σ2). Finally, the

(xi)i∈{1,...,m} are generated from a probability distribution: they are indepen-
dent and identically distributed

xi ∼ N





















0
...
0






,















1 ρ . . . . . . ρp−1

ρ 1 ρ . . . ρp−2

...
. . .

. . .
. . .

...
ρp−2 . . . ρ 1 ρ
ρp−1 . . . . . . ρ 1





























,

for a given ρ ∈] − 1, 1[.
As in [Tib96], we set p = 8. In a first experiment, we take (n, m) = (7, 10),

ρ = 0.5, σ = 1 and β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0) (”sparse”). Then, in order to
check the robustness of the results, we consider successively ρ = 0.5 by ρ = 0.9
(correlated variables), σ = 1 by σ = 3 (noisy case), β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0)
by β∗ = (5, 0, 0, 0, 0, 0, 0, 0) (”very sparse” case), (n, m) = (7, 10) by (n, m) =
(7, 20) (larger unlabeled set), (n, m) = (20, 30) (p < n, easy case) and finally
(n, m) = (20, 120).

We use the version of the Transductive LASSO proposed in Section 4: for
a given λ1, we first compute the LASSO estimator β̂X,λ1

. In the sequel, the
Transductive LASSO is given by

β̂TL(λ1, λ2) =











arg minβ∈Rp
n
m ‖Zβ‖2

2

s.t.
∥

∥

∥

n
mZ ′(Zβ̂X,λ1

− Zβ)
∥

∥

∥

∞
≤ λ2,

12



for a given λ2. We compare this two step procedure with the procedure ob-
tained using the usual LASSO only: β̂L(λ) = β̂X,λ for a given λ that may differ
from λ1. In both cases, the solutions are computed using PCO algorithm. We
compute β̂L(λ) and β̂TL(λ1, λ2) for (λ, λ1, λ2) ∈ Λ3 where Λ3 = {1.2k, k =
−50,−49, . . . , 30}. In the next subsection, we examine the performance of each
estimator according to the value of the regularization parameters.

Results. We illustrate here some of the results obtained in the considered cases.

Case (n, m) = (7, 10), ρ = 0.5, σ = 1 and β∗ ”sparse”:
We simulated 100 experiments and studied the distribution of

PERF (X) =
min(λ1,λ2)∈Λ2 ‖X(β̂TL(λ1, λ2) − β∗)‖2

2

minλ∈Λ ‖X(β̂L(λ) − β∗)‖2
2

,

PERF (Z) =
min(λ1,λ2)∈Λ2 ‖Z(β̂TL(λ1, λ2) − β∗)‖2

2

minλ∈Λ ‖Z(β̂L(λ) − β∗)‖2
2

,

and

PERF (I) =
min(λ1,λ2)∈Λ2 ‖β̂TL(λ1, λ2) − β∗‖2

2

minλ∈Λ ‖β̂L(λ) − β∗‖2
2

,

over all the experiments.
For example, we plot (Figure 1) the histogram of PERF (X) (actually, the

three distributions where quite similar). We observe that in 50% of the simu-

lations, min(λ1,λ2)∈Λ2 ‖X(β̂TL(λ1, λ2) − β∗)‖2
2 = min(λ1,0)∈Λ2 ‖X(β̂TL(λ1, 0) −

β∗)‖2
2 = minλ∈Λ ‖X(β̂L(λ) − β∗)‖2

2. In these cases, the Transductive LASSO
does not improve at all the LASSO. But in the others 50%, the Transductive
LASSO actually improve the LASSO, and the improvement is sometimes really
important. We give an overview of the results in Table 1.

The other cases :
The following conclusions emerge of the experiments: first, β∗ = (5, 0, . . . , 0)
leads to a more significative improvement of the Transductive LASSO compared
to the LASSO (Table 1). This good performance of the Transductive LASSO
can also be observed when (n, m) = (7, 10) and (n, m) = (7, 20). However in
the case n > p (easy case), i.e., (n, m) = (20, 30) and (n, m) = (20, 120), the
improvement of the Transductive LASSO with respect to the LASSO becomes
less significant (Table 1).
Finally, ρ and σ have of course a significant influence on the performance of the
LASSO. However these parameters do not seem to have any influence on the
relative performance of the Transductive LASSO with respect to the LASSO
(see for instant the three last rows in Table 1, where we kept (n, m) = (20, 30)).
Quite surprisingly, the relative performance of both estimators does not strongly
depend on the estimation objective β∗, Xβ∗ or Zβ∗, but on the particular exper-
iment we deal with. According to the realized study and for all the objectives,

13



Figure 1: Histogram of PERF (X) with (n, m) = (7, 10), ρ = 0.5, σ = 1 and
β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0).

the Transductive LASSO performs better than the LASSO in about 50% of the
experiments. Otherwise, λ1 = 0 is the optimal tuning parameter and then, the
LASSO and the Transductive LASSO are equivalent.

Also surprising is that as often as not, the minimum in

min
(λ1,λ2)∈Λ2

‖X(β̂TL(λ1, λ2) − β∗)‖2
2 < min

(λ1,0)∈Λ2

‖X(β̂TL(λ1, 0) − β∗)‖2
2,

does not significantly depend on λ1 for a very large range of values λ1. This is
quite interesting for a practitioner as it means that when we use the Transduc-
tive LASSO, we deal with only a singular unknown tuning parameter (that is
λ2) and not two.

Discussion on the regularization parameter. Finally, we would like to
point out the importance of the tuning parameter λ (in a general term). Figure 2
illustrates a graph of a typical experiment. There are two curves on this graph,
that represent the quantities (1/n)‖X(β̂L(λ)−β∗)‖2

2 and (1/m)‖Z(β̂L(λ)−β∗)‖2
2

with respect to λ. We observe that both functions do not reach their minimum
value for the same value of λ (the minimum is highlighted on the graph by a
dot), even if these minimum are quite close.

Since we consider variable selection methods, the identification of the true
support {j : β∗

j 6= 0} of the vector β∗ is also in concern. One expects that

the estimator β̂ and the true vector β∗ share the same support at least when
n is large enough. This is known as the variable selection consistency prob-
lem and it has been considered for the LASSO estimator in several works (see

14



Table 1: Evaluation of the mean ME and the quantile Q3 of order 0.3 of
PERF (I), PERF (X) and PERF (Z). In these experiments, σ always equals
1. The case sparse corresponds to β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0) while the case very
sparse corresponds to β∗ = (5, 0, 0, 0, 0, 0, 0, 0).

PERF (I) PERF (X) PERF (Z)
β∗ (n, m) ρ σ ME Q3 ME Q3 ME Q3

very sparse (7, 10) 0.5 1 0.74 0.71 0.76 0.71 0.75 0.70
sparse (7, 10) 0.5 1 0.83 0.76 0.86 0.80 0.88 0.88
sparse (7, 20) 0.5 1 0.84 0.79 0.84 0.81 0.88 0.89
sparse (20, 30) 0.5 1 0.91 0.90 0.93 0.93 0.93 0.95
sparse (20, 30) 0.9 1 0.91 0.93 0.94 0.95 0.93 0.96
sparse (20, 30) 0.5 3 0.90 0.89 0.92 0.92 0.92 0.93

[Bun08, MB06, MY09, Wai06, ZY06]). Recently, [Lou08] provided the variable
selection consistency of the Dantzig Selector. Other popular selection proce-
dures, based on the LASSO estimator, such as the Adaptive LASSO [Zou06],
the SCAD [FL01], the S-LASSO [Heb08] and the Group-LASSO [Bac08], have
also been studied under a variable selection point of view. Following our pre-
vious work [AH08], it is possible to provide such results for the Transductive
LASSO.

The variable selection task has also been illustrated in Figure 2. We reported
the minimal value of λ for which the LASSO estimator identifies correctly the
non zero components of β∗. This value of λ is quite different from the values
that minimizes the prediction losses. This observation is recurrent in almost
all the experiments: the estimation Xβ∗, Zβ∗ and the support of β∗ are three
different objectives and have to be treated separately. We cannot expect in
general to find a choice for λ which makes the LASSO, for instance, has good
performance for all the mentioned objective simultaneously.

6 Conclusion

In this paper, we propose an extension of the LASSO and the Dantzig Se-
lector for which we provide theoretical results with less restrictive hypothesis
than in previous works. These estimators have a nice interpretation in terms
of transductive prediction. Moreover, we study the practical performance of
the proposed transductive estimators on simulated data. It turns out that the
benefit using such methods is emphasized when the model is sparse and partic-
ularly when the samples sizes (n labeled points and m unlabeled points) and
dimension p are such that n < p < m.
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Figure 2: Performance vs. λ.

7 Proofs

In this section, we state the proofs of our main results.

7.1 Proof of Propositions 3.1 and 3.2

Proof of Proposition 3.1. Let us assume that (X ′X) is invertible. Then just

remark that the criterion minimized by β̂√
nI,λ is just

n
∥

∥

∥β̂LSE − β
∥

∥

∥

2

2
+ 2λ‖ΞnIβ‖1 =

p
∑

j=1

{

[

β̂LSE
j − βj

]2

+
2λξj(

√
nI)

n
|βj |
}

.

So we can optimize with respect to each coordinate βj individually. It is quite
easy to check that the solution is, for βj ,

sgn
(

β̂LSE
j

)

(

∣

∣

∣β̂LSE
j

∣

∣

∣− λξj(
√

nI)

n

)

+

.

The proof for β̂√
nI,λ is also easy as it solves











argminβ∈Rp ‖β‖1

s.t.
∥

∥

∥nΞ−1
nI (β̂LSE − β)

∥

∥

∥

∞
≤ λ.
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Proof of Proposition 3.2. Let us write the Lagrangian of the program











arg minβ∈Rp ‖Aβ‖2
2

s.t.
∥

∥

∥Ξ−1
A (A′A)((X̃ ′X)−1X ′Y − β)

∥

∥

∥

∞
≤ λ,

L(β, γ, µ) = β(Z ′Z)β + γ′
[

Ξ−1
A (A′A)((X̃ ′X)−1X ′Y − β) − λE

]

+ µ′
[

Ξ−1
A (A′A)(β − (X̃ ′X)−1X ′Y ) − λE

]

with E = (1, . . . , 1)′, and for any j, γj ≥ 0, µj ≥ 0 and γjµj = 0. Any solution
β = β(γ, µ) must satisfy

0 =
∂L
∂β

(β, λ, µ) = 2β(A′A) + (γ − µ)Ξ−1
A (A′A)

so

(A′A)β = (A′A)Ξ−1
A

µ − γ

2
.

Note that the conditions γj ≥ 0, µj ≥ 0 and γjµj = 0 means that there is

a ζj ∈ R such that ζj = ξ
1

2

j (A)(µj − γj)/2, |ζj | = ξ
1

2

j (A)(γj + µj)/2, and

so γj = 2(ζj/ξ
1

2

j (A))− and µj = 2(ζj/ξ
1

2

j (A))+, where (a)+ = max(a; 0) and
(a)− = max(−a; 0). Let also ζ denote the vector which j-th component is
exactly ζj , we obtain

(A′A)β = (A′A)ζ,

or, using the condition Ker(A) = Ker(X), Xβ = Xζ and Aβ = Aζ. This leads
to

L(β, γ, µ) = −2Y ′X(X̃ ′X)−1(A′A)ζ + ζ′(A′A)ζ + 2λ‖ΞAζ‖1,

and note that the first order condition also implies that γ and µ (and so ζ)
maximize L. This ends the proof.

7.2 A useful Lemma

The following lemma will be used in the proofs of Theorems 3.3 and 3.4.

Lemma 7.1. Let us put ε = (ε1, . . . , εn)′. If Ker(A) = Ker(X) we have, with
probability at least 1 − η,

∀j ∈ {1, . . . , p},
∣

∣

∣

∣

[

A′A(X̃ ′X)−1X ′ε
]

j

∣

∣

∣

∣

≤ ξj(A)σ

√

2n log
p

η
,

or, in other words,

‖Ξ−1
A (A′A)((X̃ ′X)−1X ′Y − β∗)‖∞ ≤ σ

√

2n log
p

η
.
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Proof of the lemma. By definition, ε ∼ N (0, σ2I) and so

(A′A)(X̃ ′X)−1X ′ε ∼ N (0, σ2(A′A)(X̃ ′X)−1(A′A)).

So, for all j, [(A′A)(X̃ ′X)−1X ′ε]j comes from a N (0, σ2ξ2
j (A)) distribution.

This implies the first point, the second one is trivial using Y = Xβ∗ + ε.

7.3 Proof of Theorems 3.3 and 3.4

Proof of Theorem 3.3. By definition of β̂A,λ we have

− 2Y ′X(X̃ ′X)−1(A′A)β̂A,λ +
(

β̂A,λ

)′
(A′A)β̂A,λ + 2λ‖ΞA′Aβ̂A,λ‖1

≤ 2Y ′X(X̃ ′X)−1(A′A)β∗ + (β∗)′(A′A)β∗ + 2λ‖ΞAβ∗‖1.

Since Y = Xβ∗ + ε, we obtain

2(β∗)′X ′X(X̃ ′X)−1(A′A)
(

β∗ − β̂A,λ

)

+
(

β̂A,λ

)′
(A′A)β̂A,λ − (β∗)′(A′A)β∗

+ 2ε′X(X̃ ′X)−1(A′A)
(

β∗ − β̂A,λ

)

≤ 2λ‖ΞAβ∗‖1 − 2λ‖ΞAβ̂A,λ‖1.

Now, if Ker(X) = Ker(A) then we have X ′X(X̃ ′X)−1(A′A) = (A′A) and then
the previous inequality leads to

(

β∗ − β̂A,λ

)′
(A′A)

(

β∗ − β̂A,λ

)

≤ 2ε′X(X̃ ′X)−1(A′A)
(

β̂A,λ − β∗
)

+ 2λ‖ΞAβ∗‖1 − 2λ‖ΞAβ̂A,λ‖1. (9)

Now we have to work on the term 2ε′X(X̃ ′X)−1(A′A)
(

β̂A,λ − β∗
)

. Note that

2ε′X(X̃ ′X)−1(A′A)
(

β̂A,λ − β∗
)

= 2

p
∑

j=1

(

β̂A,λ − β∗
)

j

[

(A′A)(X̃ ′X)−1X ′ε
]

j

≤ 2

p
∑

j=1

∣

∣

∣

∣

(

β̂A,λ − β∗
)

j

∣

∣

∣

∣

∣

∣

∣

∣

[

(A′A)(X̃ ′X)−1X ′ε
]

j

∣

∣

∣

∣

≤ 2σ

√

2n log

(

p

η

) p
∑

j=1

ξ
1

2

j (A)

∣

∣

∣

∣

(

β̂A,λ

)

j
− β∗

j

∣

∣

∣

∣

with probability at least 1− η, by Lemma 7.1. We plug this result into Inequal-
ity (9) (and replace λ by its value 2σ

√

2n log(p/η)) to obtain

(

β∗ − β̂A,λ

)′
(A′A)

(

β∗ − β̂A,λ

)
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≤ 2σ

√

2n log

(

p

η

) p
∑

j=1

ξ
1

2

j (A)

{

∣

∣

∣

∣

(

β̂A,λ

)

j
− β∗

j

∣

∣

∣

∣

+ 2

(

∣

∣β∗
j

∣

∣−
∣

∣

∣

∣

(

β̂A,λ

)

j

∣

∣

∣

∣

)

}

and then

(

β∗ − β̂A,λ

)′
(A′A)

(

β∗ − β̂A,λ

)

+2σ

√

2n log

(

p

η

) p
∑

j=1
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∣

}
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(

β̂A,λ
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}
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p
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j (A)

∣

∣

∣

∣

(

β̂A,λ

)

j
− β∗

j

∣

∣

∣

∣

. (10)

This implies, in particular, that β∗ − β̂A,λ is an admissible vector α in Assump-
tion H(A′A, 3) because

p
∑

j=1

ξ
1

2

j (A)

∣

∣

∣

∣

(

β̂A,λ

)

j
− β∗

j

∣

∣

∣

∣

≤ 4
∑

j:β∗

j
6=0

ξ
1

2

j (A)

∣

∣

∣

∣

(

β̂A,λ

)

j
− β∗

j

∣

∣

∣

∣

.

On the other hand, thanks to Inequality (10), we have

(

β∗ − β̂A,λ

)′
(A′A)

(

β∗ − β̂A,λ

)

≤ 6σ

√

2n log

(

p

η

)

∑

j:β∗

j
6=0

ξ
1

2

j (A)

∣

∣

∣

∣

(

β̂A,λ

)

j
− β∗

j

∣

∣

∣

∣

≤ 6σ

√

√

√

√2n
∑

j:β∗

j
6=0

[

(

β̂A,λ

)

j
− β∗

j

]2
∑

j:β∗

j
6=0

ξj(A) log

(

p

η

)

≤ 6σ

√

√

√

√

2

c(A′A)

(

β∗ − β̂A,λ

)′
(A′A)

(

β∗ − β̂A,λ

)

∑
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j
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ξj(M) log

(

p

η

)

, (11)

where we used Assumption H(A′A, 3) for the last inequality. Then

(

β∗ − β̂A,λ

)′
(A′A)

(

β∗ − β̂A,λ

)

≤ 72
σ2

c(A′A)
log

(

p

η

)

∑

j:β∗

j
6=0

ξj(A). (12)
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A similar reasoning as in (11) leads to

2σ

√

2n log

(

p

η

) p
∑

j=1

ξ
1

2

j (A)

∣

∣

∣

∣

(

β̂A,λ

)

j
− β∗

j

∣

∣

∣

∣

≤ 8σ

√

√

√

√

2

c(A′A)

(

β∗ − β̂A,λ
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(A′A)

(

β∗ − β̂A,λ

)

∑

j:β∗

j
6=0

ξj(M) log

(

p

η

)

.

Finally, combine this last inequality with (12) to obtain the desired bound for
∥

∥

∥ΞA

(

β∗ − β̂A,λ

)∥

∥

∥

1
. This ends the proof.

Proof of Theorem 3.4. We have

(β̃A,λ − β∗)′(A′A)(β̃A,λ − β∗) = [ΞA(β̃A,λ − β∗)]′Ξ−1
A (A′A)(β̃A,λ − β∗)

≤ ‖ΞA(β̃A,λ − β∗)‖1‖Ξ−1
A (A′A)(β̃A,λ − β∗)‖∞

≤ ‖ΞA(β̃A,λ − β∗)‖1

{

‖Ξ−1
A (A′A)((X̃ ′X)−1X ′Y − β∗)‖∞

+ ‖Ξ−1
A (A′A)((X̃ ′X)−1X ′Y − β̃A,λ)‖∞

}

, (13)

by the constraint in the definition on β̃A,λ we have

‖Ξ−1
A (A′A)((X̃ ′X)−1X ′Y − β̃A,λ)‖∞ ≤ λ,

while Lemma 7.1 implies that for λ = 2σ
√

2n log(p/η) we have

‖Ξ−1
A (A′A)((X̃ ′X)−1X ′Y − β∗)‖∞ ≤ λ

2
,

with probability at least 1 − η; and so:

(β̃A,λ − β∗)′(A′A)(β̃A,λ − β∗) ≤ 3λ

2
‖ΞA(β̃A,λ − β∗)‖1.

Moreover note that, by definition,

0 ≤ ‖ΞAβ∗‖1 − ‖ΞAβ̃A,λ‖1

=
∑
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j
6=0

ξ
1

2

j (A)
∣

∣β∗
j

∣

∣−
∑
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j
6=0

ξ
1

2

j (A)
∣

∣

∣(β̃A,λ)j

∣

∣

∣−
∑
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j
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ξ
1

2

j (A)
∣

∣

∣(β̃A,λ)j

∣

∣

∣

≤
∑

β∗

j
6=0

ξ
1

2

j (A)
∣

∣

∣β∗
j − (β̃A,λ)j

∣

∣

∣−
∑

β∗

j
=0

ξ
1

2

j (A)
∣

∣

∣β∗
j − (β̃A,λ)j

∣

∣

∣ ,
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this implies that β∗ − (β̃A,λ) is an admissible vector in the relation that defines
Assumption H(A′A, 1). Let us combine this result with Inequality (13), we
obtain

(β̃A,λ − β∗)′(A′A)(β̃A,λ − β∗) ≤ 3λ

2
‖ΞA(β∗ − β̃A,λ)‖1

≤ 3λ
∑

β∗

j
6=0

ξ
1

2

j (A)
∣

∣

∣β∗
j − (β̃A,λ)j

∣

∣

∣

≤ 3λ

√

√

√

√

√





∑

β∗

j
6=0

ξj(A)









∑

β∗

j
6=0

∣

∣

∣β∗
j − (β̃A,λ)j

∣

∣

∣

2





≤ 3λ





∑

β∗

j
6=0

ξj(A)





1

2
√

1

nc(A′A)
(β̃A,λ − β∗)′(A′A)(β̃A,λ − β∗). (14)

So we have,

(β̃A,λ − β∗)′(A′A)(β̃A,λ − β∗) ≤ 9λ2 1

nc(A′A)

∑

β∗

j
6=0

ξj(A),

and as a consequence, Inequality (14) gives the upper bound on ‖ΞA(β̃A,λ −
β∗)‖1, and this ends the proof.

7.4 Proof of Theorem 4.1

Proof of Theorem 4.1. The proof is almost the same as in the previous case.
For the sake of simplicity, let us write β̃∗ instead of β̃∗√

n/mZ,λ2

and the same

for β̂∗. We first give a look at the Dantzig Selector:

n

m

(

β̃∗ − β∗
)′

Z ′Z
(

β̃∗ − β∗
)

≤
∥

∥

∥β̃∗ − β∗
∥

∥

∥

1

∥

∥

∥

n

m
Z ′Z

(

β̃∗ − β∗
)∥

∥

∥

∞

≤
∥

∥

∥β̃∗ − β∗
∥

∥

∥

1

{

∥

∥

∥

n

m
Z ′
(

Zβ̃∗ − Y̌λ1

)∥

∥

∥

∞
+
∥

∥

∥

n

m
Z ′ (Zβ∗ − Y̌λ1

)

∥

∥

∥

∞

}

≤
∥

∥

∥
β̃∗ − β∗

∥

∥

∥

1

{

∥

∥

∥

n

m
Z ′
(

Zβ̃∗ − Y̌λ1

)∥

∥

∥

∞
+ ‖X ′ (Xβ∗ − Y )‖∞

+
∥

∥

∥X ′
(

Xβ̃X,λ1
− Y

)∥

∥

∥

∞
+
∥

∥

∥

( n

m
Z ′Z − X ′X

)(

β∗ − β̃X,λ1

)∥

∥

∥

∞

}

. (15)

By Lemma 7.1, for λ1 = 10−1σ
√

2n log(p/η) we have

‖X ′Y − X ′Xβ∗‖∞ ≤ 10λ1,
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with probability at least 1 − η. On the other hand, we have

‖β∗ − β̃X,λ1
‖1 ≤ ‖β∗‖1 + ‖β̃X,λ1

‖1 ≤ 2‖β∗‖1,

by definition of the Dantzig Selector. Then, let u = (β∗ − β̃X,λ1
)/2 and use

Inequality (8) for this specific u. This ensures that

∥

∥

∥

( n

m
Z ′Z − X ′X

)(

β∗ − β̃X,λ1

)∥

∥

∥

∞
≤ 2λ1. (16)

The definition of the Dantzig Selector also implies that
∥

∥

∥
X ′
(

Xβ̃X,λ1
− Y

)∥

∥

∥

∞
≤ λ1,

and finally the definition of the estimator leads to
∥

∥

∥

n

m
Z ′
(

Zβ̃∗ − Y̌λ1

)∥

∥

∥

∞
≤ λ2 = λ1,

and as a consequence, Inequality (15) becomes

n

m

(

β̃∗ − β∗
)′

Z ′Z
(

β̃∗ − β∗
)

≤ 14λ1

∥

∥

∥β̃∗ − β∗
∥

∥

∥

1
.

Using the fact that ‖β̃∗‖1 ≤ ‖β∗‖1 gives

n

m

(

β̃∗ − β∗
)′

Z ′Z
(

β̃∗ − β∗
)

≤ 14λ1

∥

∥

∥β̃∗ − β∗
∥

∥

∥

1
≤ 28λ1

∑

β∗

j
6=0

∣

∣

∣β∗
j − (β̃∗)j

∣

∣

∣

≤ 28λ1

√
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√

√

√

∣

∣

{

j : β∗
j 6= 0
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∣




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j
6=0

∣

∣

∣β∗
j − (β̃∗)j

∣

∣

∣

2





≤ 28λ1

∣

∣

{

j : β∗
j 6= 0

}∣

∣

1

2

√

1

nc(n/m(Z ′Z))

n

m

(

β̃∗ − β∗
)′

Z ′Z
(

β̃∗ − β∗
)

. (17)

To establish the last inequality, we used Assumption H ′((n/m)Z ′Z, 1). Then
we have,

n

m

(

β̃∗ − β∗
)′

Z ′Z
(

β̃∗ − β∗
)

≤ 282λ2
1

∣

∣

{

j : β∗
j 6= 0

}∣

∣

1

nc(n/m(Z ′Z))
,

This inequality, combined with (17), end the proof for the Dantzig Selector.
Now, let us deal with the LASSO case. The dual form of the definition of

the estimator leads to

− 2
n

m
Y̌λ1

Zβ̂∗ +
n

m
(β̂∗)′Z ′Zβ̂∗ + 40λ2‖β̂∗‖1

≤ −2
n

m
Y̌λ1

Zβ∗ +
n

m
(β∗)′Z ′Zβ∗ + 40λ2‖β∗‖1
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and so

− 2
n

m
β̃X,λ1

Z ′Zβ̂∗ +
n

m
(β̂∗)′Z ′Zβ̂∗ + 40λ2‖β̂∗‖1

≤ −2
n

m
β̃X,λ1

Z ′Zβ∗ +
n

m
(β∗)′Z ′Zβ∗ + 40λ2‖β∗‖1.

As a consequence,

n

m
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.

Now, we try to upper bound
(

β̂∗ − β∗
)′

Z ′Z
(

β̃X,λ1
− β∗

)

. We remark that
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)∥

∥

∥
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∥

∥

∥
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∥
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∥
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∥

∥

∞
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∥

∥
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∥

∞
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∥

∥
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∥

∥

∥

1
,

where we used (16) and the fact that

∥

∥

∥X ′X
(

β̃X,λ1
− β∗

)∥

∥

∥

∞
≤
∥

∥

∥X ′
(

Xβ̃X,λ1
− Y

)∥

∥

∥

∞
+‖X ′ε‖∞ ≤ λ1+10λ1 = 11λ1.

Then we have

n

m

(
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1
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(
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,

and so

n

m

(

β̂∗ − β∗
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Z ′Z
(

β̂∗ − β∗
)

+ 14λ1

∥

∥

∥β̂∗ − β∗
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∥

1

≤ 40λ1
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∥

∥β̂∗ − β∗
∥

∥

∥

1
+ ‖β∗‖1 − ‖β̂∗‖1

)

.

Up to a multiplying constant, the rest of the proof of Theorem 4.1 is the same
as the last lines in the proof of Theorem 3.3. Then we omit it here.

7.5 Proof of Proposition 4.2

Proof of Proposition 4.2. First, let us remark that
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∥

∥

∥
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)

u
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∥

∥
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= n sup
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∣

∣

∣

∣

X ′
iXj

n
− Z ′

iZj

m

∣

∣

∣

∣

.

Now, using the ”exchangeable-distribution inequality” in [Cat07] we obtain, for
a given pair (i, j), for any τ > 0, with probability at least 1 − η,

X ′
iXj

n
− Z ′

iZj

m
≤ τk2

2n(k + 1)2

(

1

m

m
∑

k=1

X2
i,kX2

j,k

)

+
log 1

η

τ

≤ τk2κ2

2n(k + 1)2
+

log 1
η

τ
=

κk

k − 1

√

2 log 1
η

n
,

for τ = (log(1/η)(k − 1)2n/kκ2)1/2 and so, by a union bound argument, with
probability at least 1 − η, for any pair (i, j),

∣

∣

∣

∣

X ′
iXj

n
− Z ′

iZj

m

∣

∣

∣

∣

≤ κk

k − 1

√

2 log 2p2

η

n
≤ 2κk

k − 1

√

2 log p
η

n
,

(where we used p ≥ 2).
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additive modeling. To appear in the Annals of Statistics, 2008.

[MY09] N. Meinshausen and B. Yu. Lasso-type recovery of sparse repre-
sentations for high-dimensional data. Ann. Statist., 37(1):246–270,
2009.

[OPT00] M. Osborne, B. Presnell, and B. Turlach. On the LASSO and its
dual. J. Comput. Graph. Statist., 9(2):319–337, 2000.

[Sch78] G. Schwarz. Estimating the dimension of a model. The Annals of
Statistics, 6:461–464, 1978.

[Tib96] R. Tibshirani. Regression shrinkage and selection via the lasso. J.
Roy. Statist. Soc. Ser. B, 58(1):267–288, 1996.

[Vap98] V. Vapnik. The Nature of Statistical Learning Theory. Springer-
Verlag, 1998.

[vdG08] S. van de Geer. High-dimensional generalized linear models and
the lasso. Ann. Statist., 36(2):614–645, 2008.

[Wai06] M. Wainwright. Sharp thresholds for noisy and high-dimensional
recovery of sparsity using l1-constrained quadratic programming.
Technical report n. 709, Department of Statistics, UC Berkeley,
2006.

[YL07] M. Yuan and Y. Lin. On the non-negative garrotte estimator. J.
R. S. S. (B), 69(2):143–161, 2007.

[Zou06] H. Zou. The adaptive lasso and its oracle properties. J. Amer.
Statist. Assoc., 101(476):1418–1429, 2006.

[ZY06] P. Zhao and B. Yu. On model selection consistency of Lasso. J.
Mach. Learn. Res., 7:2541–2563, 2006.

26


