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SPARSE TENSOR PRODUCT WAVELET APPROXIMATION OF
SINGULAR FUNCTIONS

MONIQUE DAUGE AND ROB STEVENSON

Abstract. On product domains, sparse-grid approximation yields optimal, di-
mension independent convergence rates when the function that is approximated has
L2-bounded mixed derivatives of a sufficiently high order. We show that the solu-
tion of Poisson’s equation on the n-dimensional hypercube with Dirichlet boundary
conditions and smooth right-hand side generally does not satisfy this condition.
As suggested by P.-A. Nitsche in [Constr. Approx., 21(1) (2005), pp. 63–81], the
regularity conditions can be relaxed to corresponding ones in weighted L2 spaces
when the sparse-grid approach is combined with local refinement of the set of one-
dimensional wavelets indices towards the end points. In this paper, we prove that
for general smooth right-hand sides, the solution of Poisson’s problem satisfies these
relaxed regularity conditions in any space dimension. Furthermore, since we remove
log-factors from the energy-error estimates from Nitsche’s work, we show that in
any space dimension, locally refined sparse-grid approximation yields the optimal,
dimension independent convergence rate.

1. Introduction

For standard, isotropic piecewise polynomial approximation of order d on an n-
dimensional domain Ω ⊂ Rn, it is well-known that the error, measured in Hm(Ω),
in the best approximation of a sufficiently smooth function u is generally of order

N−
d−m
n , where N denotes the dimension of the approximation space. The fact that

the rate d−m
n

is inversely proportional to n is known as the curse of dimensionality.
When working on a product domain, this curse can be overcome by considering sparse-
grid approximation ([Zen91, BG04]), also known as hyperbolic wavelet approximation
([DKT98]). With this type of approximation andm ≥ 0, the error is of orderN−(d−m),
up to some log-factors, that for m > 0 can even be removed by considering optimized
sparse grids ([GK00]).

At this point we note that, in this paper, with an error of order N−s, we mean that
the error can be bounded by a multiple of N−s, where this multiple is independent of
N , but may depend on the space dimension n. Because of the latter, having shown
that a convergence rate s is independent of n does not mean that the problem is
tractable, that is, that the work for obtaining an error less than some tolerance ε
may not grow exponentially in n. We refer to [NW08, Wer96] and the references
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cited there for results dealing with (in)tractability of approximations in high space
dimensions.

A sparse grid is based on a tensorized one-dimensional multiscale decomposition.
In the literature, often hierarchical bases are used, also known as Faber bases. In
this paper, we restrict ourselves to “true” one-dimensional wavelet decompositions, in
the sense that, properly scaled, they will generate Riesz bases for a range of Sobolev
spaces including L2.

For having the aforementioned error bounds, it is needed that certain mixed partial
derivatives of u are bounded. For the model problem of u being the solution of
Poisson’s problem on � = (0, 1)n with homogeneous Dirichlet boundary conditions,
we will show that generally these regularity conditions are not fulfilled, regardless of
the smoothness of the right-hand side f . Instead, we show that for sufficiently smooth
f , generally the error in H1(�) is only of order N−( 1

2
+ 1
n

) (and also that the error is
of order N−(d−1) when additionally f vanishes at the order d− 1 at the boundary).

Interior regularity theory shows that on any Ω̂ ⊂⊂ � (as well as on the smooth
parts of the boundary), any partial derivative of u is bounded assuming a sufficient
smoothness of f . So lacking smoothness of u is caused by boundary singularities,
more accurately, by edge and corner singularities. This fact motivates Nitsche in the
pioneering work [Nit05] to combine sparse-grid approximation with local refinement
of the underlying one-dimensional wavelet collection towards {0, 1}. He showed that
with this type of approximation, a function u can be approximated in H1(�)-norm
with an error of order (logN)tN−(d−1), for some t > 0 depending on n and d, assuming
u has mixed derivatives of sufficiently high order that are bounded in a weighted
L2(�)-norm, with the weight being a product of one-dimensional smooth weights
that vanish at {0,1}. Moreover, for the space dimension n = 2, he showed that
this regularity assumption is fulfilled for the solution of Poisson’s problem on � with
homogeneous Dirichlet boundary conditions when the right-hand side is sufficiently
smooth (but does not necessarily vanish at the boundary).

In the present paper, we provide a new regularity result of the solution of Poisson’s
problem on � with homogeneous Dirichlet boundary conditions in certain anisotropic
weighted Sobolev spaces. This result shows that the regularity assumptions made by
Nitsche are fulfilled in any space dimension. At this point, we stress that evaluating
regularity in anisotropic weighted spaces is mandatory as soon as the space dimen-
sion is larger or equal to 3: The presence of edges generally prevents the sufficient
regularity to hold in isotropic weighted spaces.

Secondly, we remove the log-factors from the error estimate in H1(�), which factors
arose from two different estimates in [Nit05]. That is, we demonstrate the best
possible, dimension independent convergence rate d−1 in H1(�). The corresponding
error estimate in L2(�) will still contain some log-factors.

Thirdly, in [Nit05], the approximation results were derived with wavelets that do
not satisfy boundary conditions. Thinking of u being the solution of an (elliptic)
boundary value problem with homogeneous Dirichlet boundary conditions, there is
no obvious way how such wavelets can actually be used for solving such a boundary
value problem. For approximating a function in H1

0 (�), we will use wavelets that are
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in that space. This will require some technicalities dealing with tensor products of
weighted Sobolev spaces that incorporate essential boundary conditions.

Finally, we reduce the amount of local refinement needed to approximate the same
type of boundary singularities, which may result in a quantitative improvement.

Note that the rates we demonstrate from the spans of wavelet sets constructed
using a priori local refinements towards the boundaries are obviously also realized
by best N-term approximations from the wavelet basis. The rate of best N -term
approximation in turn can be realized, in linear complexity, by adaptive wavelet
methods, cf. [DSS08].

This paper is organized as follows: Sect. 2 deals with wavelet approximation with
local refinement of functions on the interval that are contained in certain weighted
Sobolev spaces with a weight that vanishes at the end points.

In Sect. 3, we discuss tensor products of Hilbert spaces. In particular, we show that
(weighted) Sobolev spaces on product domains that incorporate essential boundary
conditions can be written as intersections of tensor products of such spaces in the
coordinate directions.

In Sect. 4, we demonstrate optimal convergence rates with tensor product locally
refined wavelet approximation of functions on � that are contained in (intersections
of) tensor products of weighted Sobolev spaces.

Assuming a sufficiently smooth right-hand side, in Sect. 5 it is shown that the
solution of Poisson’s problem on � with homogeneous Dirichlet boundary conditions
has arbitrarily high regularity in a suitable scale of anisotropic weighted Sobolev
spaces.

Finally, in Sect. 6, we show that the solution of this Poisson problem generally
has limited smoothness in the scale of (unweighted) Sobolev spaces of dominating
mixed derivatives that governs the rate of approximation of (optimized) sparse grids
without local refinements.

In this paper, by C . D we will mean that C can be bounded by a constant
multiple of D, which constant, unless stated otherwise, is independent of parameters
which C and D may depend on, possibly with the exception of the space dimension
n. Obviously, C & D is defined as D . C, and C h D as C . D and C & D.

2. Wavelet approximation of singular functions in one dimension
using local refinement

For k ∈ N0, θ ≥ 0, and with

I := (0, 1),

let the weighted Sobolev space Hk
θ (I) be defined as the space of all measurable functions

u for which the norm

‖u‖Hk
θ (I) :=

[
k∑
j=0

∫
I

|xθu(j)(x)|2dx

] 1
2

is finite. The semi-norm
[∫

I
|xθu(k)(x)|2dx

] 1
2 will be denoted as |u|Hk

θ (0,1).
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Lemma 2.1 ([Nit05, Lemma 2]). For q ∈ [1,∞] and θ − (k − 1
2
) < 1

q
, we have the

following continuous embedding

Hk
θ (I) ↪→ Lq(I).

Remark 2.2. Since Hk
θ1

(I) ↪→ Hk
θ2

(I) when θ1 ≤ θ2, clearly the additional condition

θ > k − 1
2

imposed in [Nit05] can be omitted.

Remark 2.3. Lemma 2.1 is sharp in the sense that if θ − (k − 1
2
) > 1

q
, then Hk

θ (I) 6↪→
Lq(I). Indeed, for α ∈ (k − 1

2
− θ,−1

q
), x 7→ xα ∈ Hk

θ (I), whereas this function is not

in Lq(I).

Remark 2.4. In the situation of Lemma 2.1 and for j ∈ N0, obviously also Hk+j
θ (I) ↪→

W j,q(I).

For k ∈ N, q ∈ [1,∞], Ω being a domain in Rn, and Γ ⊂ ∂Ω, W k,q
0,Γ(Ω) will denote

the closure in W k,q(Ω) of the space of smooth functions on Ω whose supports have
empty intersection with the Dirichlet boundary Γ. As usual, W k,2(Ω) is denoted as

Hk(Ω) and W k,2
0,Γ (Ω) as Hk

0,Γ(Ω).

For some m ∈ N and z ⊆ ∂I = {0, 1}, we assume a wavelet collection{
ψλ : λ ∈ ∇

}
⊂ Hm

0,z(I)

such that

(1) {ψλ : λ ∈ ∇} is a Riesz basis for L2(I),
(2) {2−|λ|mψλ : λ ∈ ∇} is a Riesz basis for Hm

0,z(I),

where |λ| ∈ N0 denotes the level of ψλ or that of λ. Denoting the dual basis of

{ψλ : λ ∈ ∇} for L2(I) as {ψ̃λ : λ ∈ ∇}, furthermore we assume that for some

N 3 d > m,

for all |λ| > 0, for some ω̃λ ⊆ I with supp ψ̃λ ⊆ ω̃λ,

(3) |〈ψ̃λ, u〉L2(I)| . 2−|λ|d|u|Hd(ω̃λ) (u ∈ Hd(ω̃λ) ∩Hm
0,∂ω̃λ∩z(ω̃λ)),

(4) diam ω̃λ h 2−|λ|,
(5) sup`,j∈N0

#{|λ| = ` : [j2−`, (j + 1)2−`] ∩ ω̃λ 6= ∅} <∞.
The fourth and fifth condition mean that the dual wavelets are locally supported and
locally finite. From (3), (5) and (1) or (2), one infers that

‖u−
∑

{λ∈∇:|λ|≤`}

〈ψ̃λ, u〉L2(I)ψλ‖L2(I) . 2−d`|u|Hd(I) (u ∈ Hd(I) ∩Hm
0,z(I)),(2.1)

‖u−
∑

{λ∈∇:|λ|≤`}

〈ψ̃λ, u〉L2(I)ψλ‖Hm(I) . 2−(d−m)`|u|Hd(I) (u ∈ Hd(I) ∩Hm
0,z(I)),(2.2)

respectively, meaning that the primal wavelets satisfy a Jackson estimate of order d.
For any m, d ∈ N, d > m, orthogonal or biorthogonal wavelets that satisfy the

above conditions have been constructed in many papers. See, e.g., [CDV93] or
[DKU99].



SPARSE TENSOR PRODUCT WAVELET APPROXIMATION OF SINGULAR FUNCTIONS 5

For β ∈ [0, 1) and ` ∈ N, following [Nit05], we define

∇β
` := {λ ∈ ∇ : |λ| ≤ `

1−β , ω̃λ ∩
(
0, 2

`−|λ|
β
)
6= ∅},

see Figure 1. Note that all λ’s with levels up to ` are in this set, and that, for β > 0,

` = 2

4

1
0

1

3

|λ| ↑

5

0

`
1−β = 6

Figure 1. ∇β
` for ∇ = ∪j∈N02−(j+1)(2Z + 1) ∩ (0, 1) where |λ| = j,

` = 2, β = 2
3
, ω̃λ = [λ− 3 · 2−|λ|, λ+ 3 · 2−|λ|]∩ [0, 1] (corresponds to e.g.

biorthogonal spline wavelets of order 2 and with 2 vanishing moments,
and z = {0, 1})

it contains also λ’s with higher levels, up to `
1−β , when the corresponding ω̃λ are

sufficiently close to zero. For |λ| ranging from ` to `
1−β (if the latter is an integer),

2
`−|λ|
β over the ‘mesh-size’ 2−|λ| ranges from 2` to 1.
On L2(I), we define the projector

P β
` : u 7→

∑
λ∈∇β`

〈ψ̃λ, u〉L2(I)ψλ.

Proposition 2.5. For any β ∈ [0, 1), #∇β
` h 2`.

Proof. From the definition of ∇β
` and (4) and (5), we have

#∇β
` h

∑̀
j=0

2j +

b `
1−β c∑
j=`+1

2
`−j
β 2j h 2`. �

Estimates for the approximation error for functions from weighted Sobolev spaces
are derived in the next theorem and corollary. These estimates were inspired by
[Nit05, Lemma 3]. Compared to that result, suboptimal log-factors are removed, and
some of the arguments are corrected.

Theorem 2.6. (a). Let θ ∈ [0, d), β ∈ ( θ
d
, 1) and β ≥ 1− 1

2d
. Then

‖u− P β
` u‖L2(I) . 2−d`‖u‖Hd

θ (I) (u ∈ Hd
θ (I) ∩Hm

0,z∩{1}(I)).

(b). Let θ ∈ [m, d), β ∈ ( θ−m
d−m , 1) and β ≥ 1− 1

2(d−m)
. Then

‖u− P β
` u‖Hm(I) . 2−(d−m)`‖u‖Hd

θ−m(I) (u ∈ Hd
θ−m(I) ∩Hm

0,z(I)).
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Proof. (a). We write ∇\∇β
` as the disjoint union of sets Σβ,1

` and Σβ,2
` , where Σβ,1

`

is the set of those λ ∈ ∇\∇β
` with |λ| > `

1−β and ω̃λ ∩
(
0, 2−

`
1−β
)
6= ∅. Consider

u ∈ Hd
θ (I) ∩Hm

0,z∩{1}(I). By (1), we have

(2.3) ‖u− P β
` u‖

2
L2(I) h

∑
λ∈Σβ,1`

|〈ψ̃λ, u〉L2(I)|2 +
∑
λ∈Σβ,2`

|〈ψ̃λ, u〉L2(I)|2.

By (4), the 〈ψ̃λ, u〉L2(I) in the first sum depend only on u restricted to
(
0, C2−

`
1−β
)
,

where C > 0 is some absolute constant. By (1), this sum can therefore be bounded
on some absolute multiple of ‖u‖2

L2
(

0,C2
− `

1−β
). Because of the conditions on the

parameters d, θ and β, there exists a q ∈ (2,∞] with θ− (d− 1
2
) < 1

q
≤ 1

2
+ d(β − 1).

We infer that

‖u‖2

L2
(

0,C2
− `

1−β
) ≤ (C2−

`
1−β )1−2/q‖u‖2

Lq(I) . 4−`d‖u‖2
Lq(I) . 4−`d‖u‖2

Hd
θ (I),

where for the first, second and third inequality, we used 1
q
∈ [0, 1

2
] in combination

with Hölder’s inequality, 1
q
≤ 1

2
+ d(β − 1), and θ − (d− 1

2
) < 1

q
, respectively.

By definition of Σβ,2
` , and by using (3) and (5), the second sum at the right-hand

side of (2.3) can be bounded on some absolute multiple of

b `
1−β c∑
j=`+1

4−jd|u|2
Hd
(

2
`−j
β ,1
) +

∑
j> `

1−β

4−jd|u|2
Hd
(

2
− `

1−β ,1
)

≤
∞∑
i=1

(
∞∑
j=i

4−(`+j)d

)
|u|2

Hd
(

2
− i
β ,2
− i−1

β

)
h 4−`d

∞∑
i=1

4−id|u|2
Hd
(

2
− i
β ,2
− i−1

β

) h 4−`d|u|2Hd
βd(I) . 4−`d|u|2Hd

θ (I),

where we used that 4−id h x2βd on (2−
i
β , 2−

i−1
β ), and finally that θ ≤ βd. The

estimates for both sums at the right-hand side of (2.3) give the proof of (a).
(b). Consider u ∈ Hd

θ−m(I) ∩Hm
0,z(I). Similar to (2.3), by (2) we have

(2.4) ‖u− P β
` u‖

2
Hm(I) h

∑
λ∈Σβ,1`

4|λ|m|〈ψ̃λ, u〉L2(I)|2 +
∑
λ∈Σβ,2`

4|λ|m|〈ψ̃λ, u〉L2(I)|2.

Because of (2), the first sum can be bounded on some absolute multiple of ‖u‖2
Hm(I).

By (4), we also know that this sum depends only on u restricted to (0, C2−
`

1−β ) for
some absolute constant C > 0, i.e., that for bounding this sum we may choose u
outside this interval at our convenience, as long as it is in Hm

0,z(I).
There exists a bounded extension operator E : Hm(I)→ Hm

0,{2}(0, 2). By a homo-

geneity argument, we infer that there exists an extension operator Eh : Hm(0, h) →
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Hm
0,{2h}(0, 2h) ⊂ Hm

0,{1}(I) with ‖Ehv‖2
Hm(I) .

∑m
k=0 h

2(k−m)|v|2
Hk(0,h)

(v ∈ Hm(0, h)).

With h = C2−
`

1−β , we apply this extension operator to u.
If 0 ∈ z, then |u|2

Hk(0,h)
. h2(m−k)|u|2Hm(0,h), and so for the extended u we find

‖u‖2
Hm(I) . |u|2

Hm
(

0,C2
− `

1−β
).

If 0 6∈ z, then by (3) the first sum on the right-hand side does not change if we
subtract an arbitrary p ∈ Pm−1 from u. By choosing p suitably, for the resulting
ũ = u − p, again we have |ũ|2

Hk(0,h)
. h2(m−k)|ũ|2Hm(0,h). We conclude that also in

this case the first sum on the right-hand side of (2.4) is bounded by some absolute
multiple of |ũ|2

Hm
(

0,C2
− `

1−β
) = |u|2

Hm
(

0,C2
− `

1−β
).

The remainder of the proof is similar to that of (a). Because of the conditions on
the parameters d, θ, β and m, there exists a q ∈ (2,∞] with θ −m− (d−m− 1

2
) <

1
q
≤ 1

2
+ (d−m)(β − 1). By applying Hölder’s inequality and Lemma 2.1 we obtain

|u|2
Hm
(

0,C2
− `

1−β
) ≤ (C2−

`
1−β )1−2/q‖u(m)‖2

Lq(I) . 4−`(d−m)‖u(m)‖2
Hd−m
θ−m (I)

.

Finally, by (3) and (5), the second sum at the right-hand side of (2.4) can be
bounded on some absolute multiple of

b `
1−β c∑
j=`+1

4−j(d−m)|u|2
Hd
(

2
− `−j

β ,1
) +

∑
j> `

1−β

4−j(d−m)|u|2
Hd
(

2
− `

1−β ,1
) . 4−`(d−m)|u|2Hd

θ−m(I)

because of θ −m ≤ β(d−m). �

Remark 2.7. So far we considered weighted Sobolev spaces with a vanishing weight
at x = 0 appropriate for functions that have a singularity at x = 0. For functions
that may have singularities at both x = 0 or x = 1, an suitable adaptation of the
Hk
θ (I)-norm reads as

‖u‖Hk
θ (I) :=

[
k∑
i=0

∫
I

|xθ(1− x)θu(i)(x)|2dx

] 1
2

.

By redefining ∇β
` as

∇β
` := {λ ∈ ∇ : |λ| ≤ `

1−β , ω̃λ ∩
(
(0, 2

`−|λ|
β
)
∪
(
1− 2

`−|λ|
β , 1)

)
6= ∅},

it is easily seen that Proposition 2.5 and Theorem 2.6 remain valid, where Theo-
rem 2.6(a) now even reads as

‖u− P β
` u‖L2(I) . 2−d`‖u‖Hd

θ (I) (u ∈ Hd
θ (I)),

assuming that θ ∈ [0, d), β ∈ ( θ
d
, 1) and β ≥ 1− 1

2d
.

As follows from (2.1), (2.2) and the uniform L2(I)-boundedness of the P β
` , if in

Theorem 2.6(a) θ = 0, or in (b) θ = m, then the corresponding statements are
valid for β = 0, i.e., without local refinement, at least when in part (a) additionally
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u ∈ Hm
0,z(I) is assumed. In view of this, the additional condition β ≥ 1 − 1

2d
or

β ≥ 1 − 1
2(d−m)

, besides β > θ
d
, seems unnatural. Below, for completeness, we will

show that indeed they can be omitted, for part (a) at the expense of adding some
boundary conditions when β ∈ ( θ

d
, 1 − 1

2d
). We only consider part (a), since the

arguments for part (b) are similar.
Let θ

d
< 1 − 1

2d
, i.e., θ < d− 1

2
, and let β ∈ ( θ

d
, 1 − 1

2d
). The condition β ≥ 1 − 1

2d

was only used for bounding the first sum at the right-hand side of (2.3). For doing
so, only the localness of the dual wavelets was used as well as the fact that the primal
wavelets form a Riesz basis for L2(I). Alternatively, here we will use the approxima-
tion properties of the wavelets given by property (3). In case homogeneous Dirichlet
boundary conditions are incorporated in the wavelet construction, it will then be
needed that the function u to be approximated also satisfies certain homogeneous
Dirichlet boundary conditions.

From (3), (4) and ‖ψ̃λ‖L2(I) . 1, we are going to infer that for j ∈ {1, . . . , d},

(2.5) |〈ψ̃λ, u〉L2(I)| . 2−|λ|(j−
1
2

)|u|W j,1(ω̃λ),

for any sufficiently smooth u that vanishes at order min(m, j) at ω̃λ∩z. Indeed, by (4)

and a homogeneity argument, it is sufficient to show that |〈ψ̃λ, u〉L2(I)| . ‖u(j)‖L1(I).

When ω̃λ ∩ z = ∅, this follows from ‖ψ̃λ‖L2(I) . 1, W j,1 ↪→ L2, (3), which implies

ψ̃λ ⊥L2(I) Pj−1, and the Bramble-Hilbert lemma. When say ω̃λ ∩ z = {0}, the

combination of ‖ψ̃λ‖L2(I) . 1, the embedding Wmin(j,m),1 ↪→ L2 and the Poincaré-

Friedrichs’ inequality show that |〈ψ̃λ, u〉L2(I)| . ‖u(min(j,m))‖L1(I). Now for j > m, let

p ∈ Pj−1 be such that p(m) is the Taylor polynomial of u(m) of degree j − 1 −m at

0 with p(0) = · · · = p(m−1)(0) = 0. Then, by (3), |〈ψ̃λ, u〉L2(I)| = |〈ψ̃λ, u − p〉L2(I)| .
‖u(m) − p(m)‖L1(I) . ‖u(j)‖L1(I) as required.

With γv := u 7→ u(v) denoting the trace operator, from W 1,1(I) ↪→ L∞(I) we infer
that the closure of the set of smooth functions that vanish at order min(m, j) at ω̃λ∩z
in W j,1(ω̃λ) is

{u ∈ W j,1(ω̃λ) : γvD
ru = 0, 0 ≤ r ≤ min(m, j)− 1, v ∈ ω̃λ ∩ z},

and thus that (2.5) also holds for all u in this space.
Now we take j := dd − θ − 1

2
e ∈ {1, . . . , d}. Then, recalling that β ∈ ( θ

d
, 1 − 1

2d
),

there exists a q ∈ (1,∞) with θ − (d − j − 1
2
) < 1

q
≤ j + 1

2
− (1 − β)d, where the

first inequality implies that Hd
θ (I) ↪→ W j,q(I) (see Remark 2.4) (↪→ W j,1(I)), and the

second one that
j+ 1

2
− 1
q

1−β ≥ d. For u in

(2.6) H̃d,m
θ (I) :=

{
u ∈ Hd

θ (I) : γvD
ru = 0, 0 ≤ r ≤ min(m, dd− θ − 1

2
e)− 1, v ∈ z},

from (2.5) and Hölder’s inequality we obtain that∑
λ∈Σβ,1`

|〈ψ̃λ, u〉L2(I)|2 . 4−
`

1−β (j− 1
2

)|u|2
W j,1(0,C2

− `
1−β )

≤ 4−
`

1−β (j+ 1
2
− 1
q

)|u|2W j,q(I) . 4−`d‖u‖2
Hd
θ (I),
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being the upper bound that was required.
Noting that for θ ≥ d − 1

2
, the set of additional conditions incorporated in the

definition of H̃d,m
θ (I) is empty, and thus that H̃d,m

θ (I) = Hd
θ (I), we have shown the

first statement of the following Corollary. As noted before, the proof of the second
part is similar.

Corollary 2.8. (a). Let θ ∈ [0, d) and β ∈ ( θ
d
, 1). Then

‖u− P β
` u‖L2(I) . 2−d`‖u‖Hd

θ (I) (u ∈ H̃d,m
θ (I)).

(b). Let θ ∈ [m, d) and β ∈ ( θ−m
d−m , 1). Then

‖u− P β
` u‖Hm(I) . 2−(d−m)`‖u‖Hd

θ−m(I) (u ∈ Hd
θ−m(I) ∩Hm

0,z(I)).

To indicate the dependence on the prescribed Dirichlet boundary z ⊆ ∂I of the
wavelets ψλ, the dual wavelets ψ̃λ, the sets ω̃λ ⊇ supp ψ̃λ, the index sets ∇ and ∇β

` ,

the projector P β
` , and the space H̃d,m

θ (I), from now on we will denote them as

ψ
(z)
λ , ψ̃

(z)
λ , ω̃

(z)
λ , ∇(z), ∇β,z

` , P β,z
` , H̃d,m

θ,z (I)

respectively.

3. Tensor products of Hilbert spaces

We recall some facts and give some new results about tensor products of Hilbert
spaces, in particular (weighted) Sobolev spaces. Although for notational convenience,
we start with formulating some results for tensor products of two spaces, these results
obviously generalize to multiple products.

Proposition 3.1. For i ∈ {1, 2}, let Ωi be domains in Rni that satisfy the uniform
cone property (cf. [Ada75, Th. 4.32]). Then for k ∈ N0,

Hk(Ω1 × Ω2) = Hk(Ω1)⊗ L2(Ω2) ∩ L2(Ω1)⊗Hk(Ω2).

Proof. For i ∈ {1, 2}, let Σi be a Riesz basis for L2(Ωi), formally viewed as a column

vector, such that for some invertible diagonal matrix Di and 0 ≤ j ≤ k, D
−j/k
i Σi is

a Riesz basis for Hj(Ωi), meaning that
∑
|α|≤j〈∂αΣi, ∂

αΣi〉L2(Ωi) h D
2j/k
i . Later we

will show that such bases exist.
Using that L2(Ω1 × Ω2) = L2(Ω1)⊗ L2(Ω2), and that the tensor product of Riesz

bases is a Riesz basis for the tensor product, each u ∈ L2(Ω1 × Ω2) has a unique
expansion u = c>Σ1 ⊗ Σ2 where c = (cσ1σ2)σ1∈Σ1,σ2∈Σ2 ∈ `2(Σ1 × Σ2). We have that∑

|α1|+|α2|≤k

‖∂α1
1 ∂α2

2 u‖2
L2(Ω1×Ω2)

=
∑

|α1|+|α2|≤k

c>〈∂α1Σ1, ∂
α1Σ1〉L2(Ω1) ⊗ 〈∂α2Σ2, ∂

α2Σ2〉L2(Ω2)c

h c>(D2
1 ⊗ Id + Id⊗D2

2)c h ‖u‖2
Hk(Ω1)⊗L2(Ω2) + ‖u‖2

L2(Ω1)⊗Hk(Ω2),
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where for the one but last “h” we used that for 0 < j < k, D
2j/k
1 ⊗ D

2(k−j)/k
2 ≤

D2
1 ⊗ Id + Id⊗D2

2.
The existence of the aforementioned bases Σi has still to be shown. Let V0 ⊂ V1 ⊂

· · · ⊂ L2(Ωi) be such that for some d, γ > 0, infv`∈V` ‖u − v`‖L2(Ωi) . 2−`d‖u‖Hd(Ωi)

(u ∈ Hd(Ωi)) (Jackson estimate) and for all s < γ, ‖ · ‖Hs(Ωi) . 2`s‖ · ‖L2(Ωi) on V`
(Bernstein estimate). With V−1 := {0}, let Ψ` be an L2(Ωi)-orthonormal basis for

V` ∩ V
⊥L2(Ωi)

`−1 . Then for |s| < min(γ, d), ∪`∈N02−s`Ψ` is a Riesz basis for Hs(Ωi) (cf.
e.g. [Dah96]), and so when min(γ, d) > k, Σi := ∪`∈N0Ψ` satisfies the assumptions.

When Ωi = Rni , for any d ∈ N and with γ := d− 1
2

such a ladder of spaces, denoted
as (V Rni

` )`, can be constructed as a sequence of spline spaces with respect to nested
dyadic partitions. Then, since the restriction of a function on Rni to Ωi is a bounded
operator from Hs(Rni)→ Hs(Ωi), the sequence (V`)` defined by V` := V Rni

` |Ωi satisfies
the corresponding Bernstein inequality on Ωi. Thanks to the uniform cone condition,
there exists a bounded extension operator E : Hd(Ωi) → Hd(Rni) ([CZ52]). For
u ∈ Hd(Ωi), we have

inf
vj∈V Rni

`

‖u− vj|Ωi‖L2(Ωi) ≤ inf
vj∈V Rni

`

‖Eu− vj‖L2(Rni ) . 2−`d‖Eu‖Hd(Rni ) . ‖u‖Hd(Ωi),

i.e., the corresponding Jackson estimate is valid on Ωi, with which the existence of
Σi is demonstrated. �

Theorem 3.2. Let H,K,Z be separable Hilbert spaces, and let G : H → Z be a
linear map that is bounded and onto. Then

{u ∈ H ⊗K : (G⊗ Id)u = 0} = {v ∈ H : Gv = 0} ⊗K.

Proof. Since G is bounded, H̃ := {v ∈ H : Gv = 0} is closed, and so H is the direct
sum of the Hilbert spaces H̃ and H̃⊥.

Let Ξ, Σ and Υ be orthonormal bases for H̃, H̃⊥ and K, respectively. Then Ξ⊗Υ,
Σ ⊗ Υ and (Ξ ∪ Σ) ⊗ Υ are orthonormal bases for H̃ ⊗ K, H̃⊥ ⊗ K and H ⊗ K,
respectively. Any u ∈ H ⊗ K has a unique expansion u = c>Ξ ⊗ Υ + d>Σ ⊗ Υ,
where c ∈ `2(Ξ × Υ), d ∈ `2(Σ × Υ). The condition (G ⊗ Id)u = 0 means that
d>G(Σ)⊗Υ = 0.

The linear mapping G|H̃⊥ : H̃⊥ → Z is onto, bounded and injective. Since H̃⊥

and Z are Hilbert spaces, the open mapping theorem shows that G|H̃⊥ is boundedly
invertible. We conclude that G(Σ) is a Riesz basis for Z and thus that G(Σ)⊗ Υ is
a Riesz basis for Z ⊗K. So d>G(Σ)⊗Υ = 0 implies d = 0, which shows that Ξ⊗Υ
is an (orthonormal) basis for {u ∈ H ⊗K : (G⊗ Id)u = 0}, and thus completes the
proof. �

Corollary 3.3. Let k ∈ N, and for i ∈ {1, 2}, let Ωi be a domain in Rni with a
Ck−1,1 boundary. Then

Hk
0 (Ω1 × Ω2) = Hk

0 (Ω1)⊗ L2(Ω2) ∩ L2(Ω1)⊗Hk
0 (Ω2).

Proof. With γi denoting the trace operator on ∂Ωi, the mapping Gi : Hk(Ωi) →∏k−1
j=0 H

k−j− 1
2 (∂Ωi) : u 7→ (γiu, γi

∂u
∂n
, . . . , γi

∂k−1u
∂nk−1 ) is bounded and onto, the latter
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because of ∂Ωi ∈ Ck−1,1 (see, e.g., [Gri85, Th. 1.5.1.1]). Using

Hk
0 (Ω1 × Ω2) = {u ∈ Hk(Ω1 × Ω2) : (G1 ⊗ Id)u = 0, (Id⊗G2)u = 0} =

{u ∈ Hk(Ω1)⊗L2(Ω2) : (G1⊗Id)u = 0} ∩ {u ∈ L2(Ω1)⊗Hk(Ω2) : (Id⊗G2)u = 0}

by Proposition 3.1, and Hk
0 (Ωi) = {u ∈ Hk(Ωi) : Giu = 0}, an application of

Theorem 3.2 completes the proof. �

Results related to Corollary 3.3 can be found in [Dau88, (AC.7)], [GO95], [Hoc01].
The technique employed here allows us also to deal with weighted Sobolev spaces
that incorporate boundary conditions.

Applications of Theorem 3.2 specific for this work involve multiple tensor products
of (weighted) Sobolev spaces on I. With, for n ∈ N,

� := (0, 1)n,

let Γ be a union of (n − 1)-dimensional faces of �, i.e., Γ = ∪ni=1Ii−1 × zi × In−i for
some zi ⊆ ∂I, see Figure 2 for an illustration.

Figure 2. Γ for n = 3 and zi = {0} for 1 ≤ i ≤ n.

As a special case of Proposition 3.1 (for multiple tensor products), we have

(3.1) Hm(�) = Hm(I)⊗ L2(I)⊗ · · · ⊗ L2(I) ∩ · · · ∩ L2(I)⊗ · · · ⊗ L2(I)⊗Hm(I),

Furthermore, we have

(3.2) Hm
0,Γ(�) = Hm

0,z1
(I)⊗L2(I)⊗ · · · ⊗L2(I)∩ · · · ∩L2(I)⊗ · · · ⊗L2(I)⊗Hm

0,zn(I).

To see the latter, for k ∈ N, and 1 ≤ i ≤ n, let us put

Gi,k := u 7→
∏
v∈zi

k−1∏
r=0

γvD
ru.

Then, since Gi,m : Hm(I)→ Rm·#zi is bounded and onto, and

Hm
0,Γ(�) = {u ∈ Hm(�) : (Id⊗ · · · ⊗Gi,m ⊗ · · · ⊗ Id)u = 0, 1 ≤ i ≤ n}

= ∩ni=1{u ∈ L2(I)⊗ · · · ⊗ Hm(I)︸ ︷︷ ︸
ith position

⊗ · · · ⊗ L2(I) : (Id⊗ · · · ⊗Gi,m ⊗ · · · ⊗ Id)u = 0},

the result follows from an application of Theorem 3.2.
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Similarly, we have that

⊗ni=1H̃
d,m
θ,zi

(I) =(3.3)

{u ∈ ⊗ni=1H
d
θ (I) : ∂rnu = 0 on Γ, 0 ≤ r ≤ min(m, dd− θ − 1

2
e)− 1}.

Indeed, for θ < d − 1
2

putting k := min(m, dd − θ − 1
2
e), Gi,k : Hd

θ (I) → Rk·#zi is
bounded (cf. arguments that led to Corollary 2.8) and onto, and the result follows
from Theorem 3.2 using the space at the right hand side of (3.3) being equal to
{u ∈ ⊗ni=1H

d
θ (I) : (Id ⊗ · · · ⊗ Gi,k ⊗ · · · Id)u = 0, 1 ≤ i ≤ n} and the definition of

H̃d,m
θ,zi

(I) in (2.6).
Finally, we note that for θ ∈ [0, d),

∩np=1 ⊗ni=1H
d
θ−δip min(m,θ)(I) ∩Hm

0,Γ(�) = ∩np=1 ⊗ni=1Wip(I),(3.4a)

where

Wpp = Hd
max(0,θ−m)(I) ∩Hm

0,zp(I)(3.4b)

and for i 6= p,

Wip = Hd
θ (I) or Wip = H̃d,m

θ,zi
(I).(3.4c)

Indeed, with the first option Wip = Hd
θ (I) for i 6= p, the result follows from Theo-

rem 3.2 by writing the space at the left hand side of (3.4a) as

∩np=1{u ∈ ⊗ni=1H
d
θ−δip min(m,θ)(I) : (Id⊗ · · · ⊗Gp,m ⊗ · · · ⊗ Id)u = 0}.

Here we used that ∩np=1 ⊗ni=1 H
d
θ−δip min(m,θ)(I) ↪→ Hm(�), which follows from (3.1)

and Hd
θ (I) ↪→ L2(I) and Hd

max(0,θ−m)(I) ↪→ Hm(I) by θ < d (cf. Lemma 2.1 and

Remark 2.4).

With the second option Wip = H̃d,m
θ,zi

(I) for i 6= p, the result follows by “copying”

certain boundary conditions, i.e., with k := min(m, dd− θ− 1
2
e), by writing the space

at the left hand side of (3.4a) as

∩np=1 {u ∈ ⊗ni=1H
d
θ−δip min(m,θ)(I) : (Id⊗ · · · ⊗Gp,m ⊗ · · · ⊗ Id)u = 0,

(Id⊗ · · · ⊗Gi,k ⊗ · · · ⊗ Id)u = 0 (1 ≤ i ≤ n, i 6= p)}.

4. Optimal wavelet approximation of singular functions using sparse
products of locally refined index sets

As shown in [GO95], from L2(�) = ⊗ni=1L
2(I), (3.2) and (1), (2), we have that{

ψλ := ψ
(z1)
λ1
⊗ · · · ⊗ ψ(zn)

λ1
: λ ∈∇ :=

n∏
i=1

∇(zi)
}
,
{( n∑

i=1

4|λi|
)−m/2

ψλ : λ ∈∇
}

are Riesz bases for L2(�) and Hm
0,Γ(�), respectively.
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For β ∈ [0, 1), ν ≥ 1 and L ∈ N0, and with ∇β,zi
−1 := ∅, we define

∇β
L,ν :=

{ n∏
i=1

∇β,zi
`i
\∇β,zi

`i−1 : ` ∈ Nn
0 , ν‖`‖1 + (1− ν)‖`‖∞ ≤ L}

=
n⋃
p=1

{ n∏
i=1

∇β,zi
`i
\∇β,zi

`i−1 : ` ∈ Nn
0 , `p + ν(‖`‖1 − `p) ≤ L},

see Figure 3. The index set ∇0
L,1 underlies the well-known sparse grid, also called

`1 + ν(‖`‖1 − `1) = L

L
ν

L `1 →

L
ν

`2 ↑
L

Figure 3. {` ∈ Nn
0 : ν‖`‖1 + (1− ν)‖`‖∞ ≤ L} for n = 2 and ν = 16

11
.

hyperbolic wavelet approximation, see, e.g. [Zen91, BG04, DKT98]. By considering

∇β
L,1 for β > 0, in [Nit05] this type of approximation was combined with (product

type) local refinements towards ∂�.
As shown in [GK00], when measuring approximation errors in Sobolev spaces with

positive smoothness indices, sparse-grid approximation rates can be realized with even
smaller spaces (“optimized” sparse grids), with which truly optimal convergence rates

are realized. With the introduction of the index sets ∇β
L,ν for ν > 1, we combine

this idea with that of local refinement. With that, we will be be able to remove
suboptimal log-factors from the corresponding estimates from [Nit05].

The following elementary lemma will be used a couple of times.

Lemma 4.1. For any ν > 0, α ≥ 0,∑
{`∈Nn0 :`p+ν(‖`‖1−`p)∈[j,j+1]}

2−α(‖`‖1−`p) h
{
jn−1 if α = 0,

1 if α > 0,

where the constant factors absorbed by the “ h” symbol may depend on ν, α and n
(but not on j).

On L2(�), we define the projector

Pβ
L,ν : u =

∑
λ∈∇

uλψλ 7→
∑
λ∈∇β

L,ν

uλψλ.
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Proposition 4.2. Let β ∈ [0, 1). Then for any ν ≥ 1, #∇β
L,ν h

{
Ln−12L if ν = 1,

2L if ν > 1.

Proof. Since by Proposition 2.5, #(∇β,zi
`i
\∇β,zi

`i−1) h 2`i , the proof follows from

L∑
j=0

∑
{`:`p+ν(‖`‖1−`p)∈[j,j+1]}

2‖`‖1 =
L∑
j=0

∑
{`:`p+ν(‖`‖1−`p)∈[j,j+1]}

2`p+ν(‖`‖1−`p)2(1−ν)(‖`‖1−`p)

h
L∑
j=0

2j ×
{
jn−1 if ν = 1

1 if ν > 1

}
=

{
Ln−12L if ν = 1,

2L if ν > 1,

by an application of Lemma 4.1. �

We have the following estimates for the approximation error:

Theorem 4.3. Let θ ∈ [0, d) and β ∈ ( θ
d
, 1). Then

‖u−Pβ
L,1u‖L2(�) . L

n−1
2 2−dL‖u‖⊗ni=1H

d
θ (I)(a)

for all u in{
u ∈ ⊗ni=1H

d
θ (I) : ∂rnu = 0 on Γ, 0 ≤ r ≤ min(m, dd− θ − 1

2
e)− 1

}
;(4.1)

and for ν < d
d−m ,

‖u−Pβ
L,νu‖Hm(�) . 2−(d−m)L

√√√√ n∑
p=1

‖u‖2
⊗ni=1H

d
θ−δpi min(m,θ)

(I)
(b)

for all u ∈ ∩np=1 ⊗ni=1 H
d
θ−δpi min(m,θ)(I) ∩Hm

0,Γ(�).

Proof. (a). Setting P β,zi
−1 := 0, the mapping u 7→

∑
λ∈

Qn
i=1∇

β,zi
`i
\∇β,zi`i−1

uλψλ is equal to

⊗ni=1(P β,zi
`i
− P β,zi

`i−1), so that

(4.2) I−Pβ
L,ν =

∑
{`:ν‖`‖1+(1−ν)‖`‖∞>L}

⊗ni=1(P β,zi
`i
− P β,zi

`i−1).

From
{
ψλ : λ ∈∇

}
being a Riesz basis for L2(�), we even have ‖u−Pβ

L,1u‖2
L2(�) h∑

{`:‖`‖1>L} ‖ ⊗
n
i=1 (P β,zi

`i
− P β,zi

`i−1)u‖2
L2(�). The combination of Corollary 2.8(a) and a

tensor product argument show that

‖ ⊗ni=1 (P β,zi
`i
− P β,zi

`i−1)u‖L2(�) . 2−d‖`‖1‖u‖⊗ni=1H
d
θ (I) (u ∈ ⊗ni=1H̃

d,m
θ,zi

(I)).

From (3.3) we know that ⊗ni=1H̃
d,m
θ,zi

(I) is equal to the space in (4.1). An application

of Lemma 4.1 together with
∑∞

j=L+1 4−djjn−1 h 4−dLLn−1 completes the proof of part

(a).
(b). Using θ < d, in view of (3.4a), (3.2), (4.2), and of the inclusions

{` : ν‖`‖1 + (1− ν)‖`‖∞ > L} ⊂ {` : `p + ν(‖`‖1 − `p) > L} (p = 1, . . . , n),
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w.l.o.g. it suffices to show that∑
{`:`1+ν(‖`‖1−`1)>L}

‖ ⊗ni=1 (P β,zi
`i
− P β,zi

`i−1)u‖Hm(I)⊗L2(I)⊗···⊗L2(I)

. 2−(d−m)L‖u‖Hd
max(0,θ−m)

(I)⊗Hd
θ (I)⊗···⊗Hd

θ (I), (u ∈ ⊗ni=1Wi1),

where W11 = Hd
max(0,θ−m)(I) ∩ Hm

0,zp(I) and, for i > 1, Wi1 = H̃d,m
θ,zi

(I). Corollary 2.8
and a tensor product argument show that

‖ ⊗ni=1 (P β,zi
`i
− P β,zi

`i−1)u‖Hm(I)⊗L2(I)⊗···⊗L2(I)

. 2−((d−m)`1+d(‖`‖1−`1))‖u‖Hd
max(0,θ−m)

(I)⊗Hd
θ (I)⊗···⊗Hd

θ (I), (u ∈ ⊗ni=1Wi1).

Since d− ν(d−m) > 0, an application of Lemma 4.1 shows that∑
{`:`1+ν(‖`‖1−`1)>L}

2−((d−m)`1+d(‖`‖1−`1))

=
∞∑

j=L+1

∑
{`:`1+ν(‖`‖1−`1)∈[j,j+1]}

2−(d−m)(`1+ν(‖`‖1−`1))2−(d−ν(d−m))(‖`‖1−`1)

.
∞∑

j=L+1

2−(d−m)j h 2−(d−m)L,

which completes the proof. �

As in Theorem 4.3, let θ ∈ [0, d) and β ∈ ( θ
d
, 1). Then the combination of this

theorem and Proposition 4.2 leads to the conclusion that

‖u−Pβ
L,1u‖L2(�) . (log #∇β

L,1)(n−1)( 1
2

+d)(#∇β
L,1)−d‖u‖⊗ni=1H

d
θ (I)

for all u from the space in (4.1), and that for ν < d
d−m ,

‖u−Pβ
L,νu‖Hm(�) . (#∇β

L,ν)
−(d−m)

√√√√ n∑
p=1

‖u‖2
⊗ni=1H

d
θ−δpi min(m,θ)

(I)

for all u ∈ ∩np=1 ⊗ni=1 H
d
θ−δpi min(m,θ) ∩ Hm

0,Γ(�). To see the first estimate, note that

with N := Ln−12L, we have N
1
2 . 2L ≤ N , and so L

n−1
2 2−dL = L(n−1)( 1

2
+d)N−d h

(logN)(n−1)( 1
2

+d)N−d.
In the next section, we will demonstrate that for u being the solution of the

Poisson problem on � with homogeneous Dirichlet boundary conditions and a suf-
ficiently smooth right-hand side, the norms of the right-hand side of both estimates
are bounded.
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5. Elliptic regularity of Laplace-Dirichlet problem in anisotropic
weighted Sobolev spaces

In this section, we address the question of the regularity of the solution u of Pois-
son’s problem on � = (0, 1)n with homogeneous Dirichlet boundary conditions and
sufficiently smooth right-hand side f :

(5.1) u ∈ H1
0 (�) and −∆u = f.

Definition 5.1. For i = 1, . . . , n, let ω0
i and ω1

i be real numbers. We denote by ω
the collection (ω0

1, ω
1
1, . . . , ω

1
n). For k ∈ N0, we introduce the Hilbert space

(5.2) Mk
ω(�) = {u ∈ L2

loc(�) :
n∏
i=1

(xi)
ω0
i+αi(1− xi)ω

1
i+αi ∂αxu ∈ L2(�), ∀α, |α| ≤ k}

with its natural norm, denoted by ‖u‖Mk
ω(�). In particular, Mk

0 (�) denotes the space

of Mk
ω(�) for which ω = (0, . . . , 0).

The main result of this section is the following:

Theorem 5.2. Let ω be a collection (ω0
1, ω

1
1, . . . , ω

1
n) satisfying the conditions

(5.3) ω0
i , ω

1
i ∈ (−3

2
, 0), ∀i = 1, . . . , n, and

n∑
i=1

ωδii > −2, ∀δi ∈ {0, 1}.

Let k ≥ 2 be a natural number. If the right-hand side f in (5.1) belongs to the

space M
k+2(n−2)
0 (�), then the solution u of problem (5.1) belongs to Mk

ω(�) with the
estimate

(5.4)
∥∥u∥∥

Mk
ω(�)
.
∥∥f∥∥

M
k+2(n−2)
0 (�)

.

Remark 5.3. We assume that the dimension n is ≥ 2. Let d ≥ 1 be an integer. Let
θ < d be such that

d− θ < 1
n
.

If we choose ω such that

ωδ1 = θ − d− 1 and ωδ2 = . . . = ωδn = θ − d ,
then ω satisfies assumption (5.3), and we have the embedding

(5.5) Mdn
ω (�) ⊂ Hd

θ−1(I)⊗Hd
θ (I)⊗ . . .⊗Hd

θ (I),

which proves that the solution of Poisson’s problem on � with sufficiently smooth
data satisfies the assumption of Theorem 4.3(b), and thus also that of Theorem 4.3(a).

Note that in the space on the left-hand side of (5.5) non-mixed partial derivatives
∂ki up to order dn are measured, whereas in the space at the right-hand side such
partial derivatives are measured only up to order d.

The proof of Theorem 5.2 is organized in three steps:

(1) localization,
(2) basic regularity of the solution,
(3) successive estimates obtained by recurrence, each step of the recurrence using:
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(a) a dyadic partition argument,
(b) tangential regularity.

5.1. Localization. Let σ ∈ [1
2
, 1) be a real number. Let us denote by �σ the cube

(0, σ)n. With obvious notations for functional spaces, by symmetry and covering, the
estimate (5.4) will be proved if we show the following local estimate for a σ′ ∈ (σ, 1):

(5.6)
∥∥u∥∥

Mk
ω(�σ)

.
∥∥f∥∥

M
k+2(n−2)
0 (�σ′ )

+
∥∥u∥∥

H1(�σ′ )
.

Note that on �σ the weight (1− xi) is equivalent to 1, so that

(5.7) Mk
ω(�σ) = {u ∈ L2

loc(�σ) :
n∏
i=1

(xi)
ω0
i+αi ∂αxu ∈ L2(�σ), ∀α, |α| ≤ k}

Thus we can denote ω0
i by ωi.

The second localization is obtained by the introduction of an order between the
coordinates: The cube is covered by n! domains isomorphic to

T = {x ∈ � : x1 ≤ x2 ≤ . . . ≤ xn}.

For ρ ∈ [1, 2), let us denote by Tρ the set

(5.8) Tρ = {x ∈ �ρ/2 : x1 ≤ ρx2 ≤ . . . ≤ ρn−1xn}.

The estimate (5.6) will be proved if we show, for some 1 ≤ ρ < ρ′ < 2 :

(5.9)
∥∥u∥∥

Mk
ω(Tρ)

.
∥∥f∥∥

M
k+2(n−2)
0 (Tρ′ )

+
∥∥u∥∥

H1(Tρ′ )
.

Finally, we note that we can assume the following conditions on the weight ω:

(5.10) ω1 ∈ (−3
2
,−1] and ωi ∈ (−1, 0), i = 2, . . . , n with ω1 + . . .+ ωn > −2.

Indeed, if we prove the estimate (5.9) with condition (5.10), we obviously prove the
same estimate for all weights ω′ such that

(5.11)
n∏
i=1

(xi)
ω′i .

n∏
i=1

(xi)
ωi on Tρ .

We can see that (5.11) holds for any pair of weights ω, ω′ satisfying

(5.12) ω1 ≤ ω′1, ω1 + ω2 ≤ ω′1 + ω′2, . . .

n∑
i=1

ωi ≤
n∑
i=1

ω′i

(estimate the quotient between the two members of (5.11)). Therefore for any weight
ω′ such that ω′i ∈ (−3

2
, 0) with ω′1 + . . .+ ω′n > −2, cf. conditions of Theorem 5.2, it

easy to find ω satisfying (5.10) and (5.12), which proves the relevance of restricting
to conditions (5.10) for the proof of Theorem 5.2.
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5.2. Basic regularity of the solution.

Lemma 5.4. The solution u of problem (5.1) with a right-hand side f ∈ L2(�),
belongs to H2(�) and satisfies the estimate∥∥u∥∥

H2(�)
.
∥∥f∥∥

L2(�)
.

Proof. This regularity result is known to hold for any bounded convex domain [Gri85].
On the hypercube, it can be easily shown by a reflection argument: Odd reflections
across the faces of the cube allow to define an extension ũ of u to a larger cube
�̃ ⊃⊃ �, and such that ∆ũ = f̃ where f̃ is the corresponding extension of f and
belongs to L2(�̃). The ellipticity of ∆ implies the H2 regularity in �. �

Corollary 5.5. Let V ⊂ V ′ ⊂ � be some open sets with � ∩ V ⊂ V ′. Then for any
u ∈ H1

0 (�) with ∆u ∈ L2(�), we have

‖u‖H2(V ) . ‖∆u‖L2(V ′) + ‖u‖H1(V ′).

Proof. Let χ be a smooth function with support in V ′ and equal to 1 on V . Then
considering the formula

∆(χu) = χ∆u+ 2∇χ · ∇u+ u∆χ,

we deduce that

‖∆(χu)‖L2(�) . ‖∆u‖L2(V ′) + ‖u‖H1(V ′).

Since χu obviously belongs to H1
0 (�), from Lemma 5.4 we deduce that χu ∈ H2(�)

with

‖u‖H2(V ) ≤ ‖χu‖H2(�) . ‖∆(χu)‖L2(�) . ‖∆u‖L2(V ′) + ‖u‖H1(V ′). �

We also need some connections of H2 ∩H1
0 (�) with weighted spaces.

Lemma 5.6. Let ω1, . . . , ωn ∈ (−3
2
, 0) such that ω1 + . . . + ωn > −2. Let ρ ∈ (1, 2).

With the set Tρ defined in (5.8), any u ∈ H2 ∩H1
0 (�) satisfies

(5.13)
∥∥( n∏

i=1

xωii
)
u
∥∥
L2(Tρ)

+
∑
|α|=1

∥∥( n∏
i=1

xωii
)
x1 ∂

α
xu
∥∥
L2(Tρ)

.
∥∥u∥∥

H2(�)
.

Proof. Let us set ω̄1 = min{ω1, . . . , ωn} and ω̄2 = ω1 + . . . + ωn − ω̄1. On the set Tρ

there holds
n∏
i=1

xωii . xω̄2
2 xω̄1

1

(depending on ρ). Combining this with the tensor product properties of Sobolev
spaces, it suffices to prove∥∥xω̄2

2 xω̄1
1 u
∥∥
L2(Tρ)

+
∑
|α|=1

∥∥xω̄2
2 xω̄1+1

1 ∂αxu
∥∥
L2(Tρ)

.
∥∥u∥∥

H2(�)

for the dimension n = 2. In other words we reduce to prove (5.13) in dimension n = 2
for all ω1 > −3

2
and all ω2 ≥ ω1 such that ω1 + ω2 > −2.
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For such a pair (ω1, ω2), let ε > 0 be such that

ε− 3
2
≤ ω1 and 2ε− 2 ≤ ω1 + ω2.

Using (5.11)-(5.12) we find xω2
2 xω1

1 . x
ε− 1

2
2 x

ε− 3
2

1 on Tρ. Therefore what we want to
prove is equivalent to showing that for all ε > 0 and any u ∈ H2 ∩H1

0 (I2)

(5.14)
∥∥xε− 1

2
2 x

ε− 3
2

1 u
∥∥
L2(Tρ)

+
∑
|α|=1

∥∥xε− 1
2

2 x
ε− 1

2
1 ∂αxu

∥∥
L2(Tρ)

.
∥∥u∥∥

H2(I2)
.

The first step to prove (5.14) is to show that for any v ∈ H1(I2),

(5.15)
∥∥xε− 1

2
2 x

ε− 1
2

1 v
∥∥
L2(I2)

.
∥∥v∥∥

H1(I2)
.

This latter estimate relies on the combination of the one-dimensional estimate∥∥x−s v∥∥
L2(I)
.
∥∥v∥∥

Hs(I)
for s < 1

2

(depending on s), which is a consequence of [Dau88, Th. AA.7], with the embedding
H1(I2) ⊂ Hs(I)⊗Hs(I) for all s ≤ 1

2
, which is a consequence of [Gri66, Th. 5.1].

Using (5.15) with v = ∂αxu for |α| = 1, we obtain∑
|α|=1

∥∥xε− 1
2

2 x
ε− 1

2
1 ∂αxu

∥∥
L2(I2)

.
∥∥u∥∥

H2(I2)
.

Thanks to the fact that u(0, x2) ≡ 0, the Hardy inequality with respect to the variable
x1 yields ∥∥xε− 1

2
2 x

ε− 3
2

1 u
∥∥
L2(I2)

≤ 1
1−ε

∥∥xε− 1
2

2 x
ε− 1

2
1 ∂x1u

∥∥
L2(I2)

.

Combining the last two estimates, we obtain (5.14) hence finally (5.13). �

5.3. Weighted regularity of the solution. Our aim is to prove (5.9). As already
mentioned, we can assume condition (5.10) on the weight ω. Let us choose ρ ∈ [1, 2)
and δ ∈ (0, 1

8
), and set

V` = {x ∈ Tρ : ρ`x`+1 > δ}, ` = 0, . . . , n− 1, and Vn = Tρ.

For 2 > ρ′ > ρ and 0 < δ′ < δ, we define similarly

V′` = {x ∈ Tρ′ : (ρ′)`x`+1 > δ′}, ` = 0, . . . , n− 1, and Vn = Tρ′ ,

and also V′′` and V′′′` associated with some 2 > ρ′′′ > ρ′′ > ρ′ and 0 < δ′′′ < δ′′ < δ′.
We set ωi := ω0

i .
The weight appearing in (5.7) is equivalent to a simpler weight on V`:

n∏
i=1

(xi)
ωi+αi h 1 on V0 and

n∏
i=1

(xi)
ωi+αi h

∏̀
i=1

(xi)
ωi+αi on V`, ` ≥ 1.

In this section, we are going to prove by recurrence over ` = 0, . . . , n that

(5.16)
∥∥u∥∥

Mk
ω(V`)

.
∥∥f∥∥

M
k+2(`−1)
0 (V′`)

+
∥∥u∥∥

H1(V′`)
,

and finally deduce (5.9).
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• For ` = 0, the estimate (5.16) is simply

(5.17)
∥∥u∥∥

Hk(V0)
.
∥∥f∥∥

Hk−2(V′0)
+
∥∥u∥∥

H1(V′0)
,

and is a consequence of the ellipticity of the operator ∆ and V0 ⊂⊂ �.

• The proof of (5.16) for ` = 1 is done in two steps.

Step 1. With the help of V0 we construct a locally finite dyadic covering of V1: For
a chosen L > 0, µ ∈ N0 and ν ∈ Nn−1

0 we denote by Vµ,ν
1 the set

Vµ,ν
1 = 2−µ

(
V0 + L(0, ν)

)
=
{
x = 2−µ

(
y + L(0, ν)

)
, y ∈ V0

}
.

Likewise, we set

(V′1)µ,ν = 2−µ
(
V′0 + L(0, ν)

)
.

Then there exists L > 0 and for each µ ∈ N0 a subset Nn−1
0,µ of Nn−1

0 such that

V1 ⊂
⋃
µ∈N0

⋃
ν∈Nn−1

0,µ

Vµ,ν
1 ⊂ V′1 ⊂

⋃
µ∈N0

⋃
ν∈Nn−1

0,µ

(V′1)µ,ν ⊂ V′′1 .

Since x1 h 1 on V0, from the estimate (5.17) we deduce that for any v ∈ H1(V′0)
such that ∆v ∈ Hk−2(V′0), there holds∑

|α|≤k

∥∥xω1+|α|
1 ∂αx v

∥∥
V0
.

∑
|α|≤k−2

∥∥x|α|1 ∂αx∆v
∥∥

V′0
+
∑
|α|≤1

∥∥xω1+|α|
1 ∂αx v

∥∥
V′0
.

Here the norm ‖ · ‖V means the L2 norm on V.
By the change of variables: y → x = 2−µ

(
y+L(0, ν)

)
from V0 onto Vµ,ν

1 we deduce
from the previous estimate

(5.18)
∑
|α|≤k

2µω1
∥∥xω1+|α|

1 ∂αxu
∥∥

Vµ,ν1
.

∑
|α|≤k−2

2−2µ
∥∥x|α|1 ∂αx f

∥∥
(V′1)µ,ν

+
∑
|α|≤1

2µω1
∥∥xω1+|α|

1 ∂αxu
∥∥

(V′1)µ,ν
.

Since 2 + ω1 ≥ 0 and µ ≥ 0, this estimate yields:∑
|α|≤k

∥∥xω1+|α|
1 ∂αxu

∥∥
Vµ,ν1
.

∑
|α|≤k−2

∥∥x|α|1 ∂αx f
∥∥

(V′1)µ,ν
+
∑
|α|≤1

∥∥xω1+|α|
1 ∂αxu

∥∥
(V′1)µ,ν

.

Summing up the squares of the above estimates for all µ ∈ N0 and ν ∈ Nn−1
0,µ we

obtain

(5.19)
∑
|α|≤k

∥∥xω1+|α|
1 ∂αxu

∥∥
V1
.

∑
|α|≤k−2

∥∥x|α|1 ∂αx f
∥∥

V′1
+
∑
|α|≤1

∥∥xω1+|α|
1 ∂αxu

∥∥
V′1
.

To bound the the last term at the right hand side of this inequality, let χ be a
smooth function with support in V′′1 and equal to 1 in V′1. There holds∑

|α|≤1

∥∥xω1+|α|
1 ∂αxu

∥∥
V′1
.
∑
|α|≤1

∥∥xω1+|α|
1 ∂αxχu

∥∥
V′′1
.
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Using that V′′1 ⊂ Tρ′′ , from Lemma 5.6 and Corollary 5.5 we deduce that∑
|α|≤1

∥∥xω1+|α|
1 ∂αxχu

∥∥
Tρ′′
.
∥∥χu∥∥

H2(Tρ′′ )
=
∥∥χu∥∥

H2(V ′′1 )

.
∥∥∆(χu)

∥∥
V ′′′1

+
∥∥u∥∥

H1(V ′′′1 )
.
∥∥f∥∥

V ′′′1
+
∥∥u∥∥

H1(V ′′′1 )
.

This estimate combined with estimate (5.19) gives∑
|α|≤k

∥∥xω1+|α|
1 ∂αxu

∥∥
V1
.

∑
|α|≤k−2

∥∥x|α|1 ∂αx f
∥∥

V′′′1
+
∥∥u∥∥

H1(V′′′1 )
.

Since the choice of the parameters ρ′′′ and δ′′′ determining V′′′1 is arbitrary (the other
parameters ρ′′, ρ′′, δ′, δ′′ and L can be tuned accordingly), we may change notations
in the above estimate, simply replacing V′′′1 by V′1:

(5.20)
∑
|α|≤k

∥∥xω1+|α|
1 ∂αxu

∥∥
V1
.

∑
|α|≤k−2

∥∥x|α|1 ∂αx f
∥∥

V′1
+
∥∥u∥∥

H1(V′1)
.

Step 2. The aim of this step is to replace |α| by α1 in the left hand side of (5.20).
This corresponds to improve the tangential regularity estimate.

Let N0 3 q < k. The estimate (5.20) implies in particular∑
0≤α1≤q

∥∥xω1+α1
1 ∂α1

x1
u
∥∥

V1
.

∑
|α|≤max(q−2,0)

∥∥xα1
1 ∂

α
x f
∥∥

V′1
+
∥∥u∥∥

H1(V′1)
.

Let α′2 = (α2, . . . , αn) be a multi-index of length 1. We denote (x2, . . . , xn) by x′2.
Since

∂V′1 ∩ ∂� ⊂ {x : x1 = 0},

we can apply the above estimate to ∂
α′2
x′2

and deduce∑
0≤α1≤q

∥∥xω1+α1
1 ∂

α′2
x′2
∂α1
x1
u
∥∥

V1
.

∑
|α|≤max(q−1,1)

∥∥xα1
1 ∂

α
x f
∥∥

V′1
+
∥∥u∥∥

H2(V′1)
.

We combine with the bound ‖u‖H2(V′1) . ‖f‖V′′1
+ ‖u‖H1(V′′1 ) from Corollary 5.5 and

obtain ∑
0≤α1≤q

∥∥xω1+α1
1 ∂

α′2
x′2
∂α1
x1
u
∥∥

V1
.

∑
|α|≤max(q−1,1)

∥∥xα1
1 ∂

α
x f
∥∥

V′′1
+
∥∥u∥∥

H1(V′′1 )
.

By the same considerations as above, we change V′′1 to V′1, and can proceed in the
same way until |α′2|+ q = k, so that we arrive to∑

0≤α1≤q

∥∥xω1+α1
1 ∂

α′2
x′2
∂α1
x1
u
∥∥

V1
.

∑
|α|≤max(k−2,k−q)

∥∥xα1
1 ∂

α
x f
∥∥

V′′1
+
∥∥u∥∥

H1(V′′1 )
.

Hence

(5.21)
∑
|α|≤k

∥∥xω1+α1
1 ∂αxu

∥∥
V1
.
∑
|α|≤k

∥∥xα1
1 ∂

α
x f
∥∥

V′1
+
∥∥u∥∥

H1(V′1)
.
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Finally, using condition (5.10) which ensures that ω1 + |α| ≤ 0 for all |α| ≤ 1 we
deduce from (5.21) the fully weighted estimate

(5.22)
∑
|α|≤k

∥∥xω1+α1
1 ∂αxu

∥∥
V1
.
∑
|α|≤k

∥∥xα1
1 ∂

α
x f
∥∥

V′1
+
∑
|α|≤1

∥∥xω1+|α|
1 ∂αxu

∥∥
V′1

• For ` = 2 we have the corresponding two steps: We incorporate the powers of x2

in estimate (5.22) (which is allowed since x2 h 1 in V1), still denoting (α2, . . . , αn)
by α′2:∑

|α|≤k

∥∥xω2+|α′2|
2 xω1+α1

1 ∂αxu
∥∥

V1
.
∑
|α|≤k

∥∥x|α′2|2 xα1
1 ∂

α
x f
∥∥

V′1
+
∑
|α|≤1

∥∥xω2
2 x

ω1+|α|
1 ∂αxu

∥∥
V′1
.

We construct a dyadic covering of V2 with domains Vµ,ν
2 similar to V1 (here ν belongs

to Nn−2
0 ). We use the fact that 2 + ω1 + ω2 > 0 and obtain by similar steps as above∑
|α|≤k

∥∥xω2+|α′2|
2 xω1+α1

1 ∂αxu
∥∥

V2
≤ C

{ ∑
|α|≤k

∥∥x|α′2|2 xα1
1 ∂

α
x f
∥∥

V′2
+
∥∥u∥∥

H1(V′2)

}
.

We end the proof of (5.16) for ` = 2 using tangential derivatives ∂
α′3
x′3

, with α′3 =

(α3, . . . , αn) and x′3 = (x3, . . . , xn).

• For ` = n, only the first step is necessary, which, in the end, proves (5.16), hence
(5.9).

5.4. Comments. There are not so many results about regularity in general poly-
hedra in any space dimension. Let us quote [MP77, MR91] for results in isotropic
weighted spaces and [Dau88] for results in standard Sobolev spaces. Besides, for
the space dimension n ≥ 3, regularity in isotropic weighted spaces is by no means
sufficient to ensure the assumptions of Theorem 4.3. The claim in [Nit05] that in
dimension n = 3, a regularity result in isotropic weighted spaces from [MR91] would
guarantee the assumptions of Theorem 4.3 seems to be caused by a mistake in the
reproduction of the definition of [MR91]’s weighted spaces.

The spaces which we consider in our paper are anisotropic, requiring more reg-
ularity in directions tangential to edges of any dimensions. Let us quote the note
[BCD03] where similar spaces are employed on three-dimensional polyhedra. Thus,
to our knowledge, Theorem 5.2 is new.

With suitable definitions for the weighted spaces Mk
ω (compare with [BCD03] in

dimension n = 3) our result on the regularity of solution of Poisson’s problem (5.1)
can be extended to any n-dimensional polyhedron Ω along the following lines:

• If the polyhedron Ω is convex, the H2 regularity (Lemma 5.4) still holds, and
Theorem 5.2 is true with the same conditions on ω.
• If the polyhedron Ω is not convex, the solution u with a right-hand side
f ∈ L2(Ω) does not belong to H2(Ω) in general, but there exists s = sΩ > 1
so that u ∈ Hs(Ω), see [Dau88]. Then it could be proved that the conclusion
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of Theorem 5.2 holds under the stronger condition on ω:

ω0
i , ω

1
i ∈ (−3

2
, 0), ∀i = 1, . . . , n, and

n∑
i=1

ωδii > −s, ∀δi ∈ {0, 1}.

Likewise, Theorem 5.2 could be generalized to the Dirichlet problem in Hm
0 associated

with any coercive sesquilinear form of order m (operator of order 2m) with smooth
coefficients.

In contrast, the solution u of the Neumann problem for the Laplace operator on �
does not belong to Mk

ω(�) under condition (5.3) in general. Nevertheless, if conditions
appearing in (5.2) are restricted to the case when α1, . . . αn ≥ 1, we can still hope
that u fulfills such conditions.

6. The approximation of the solution of Poisson’s problem using
standard sparse grids

Without local refinement, i.e., β = 0, the estimates from Theorem 2.6 read as

‖u− P 0
` u‖L2(I) . 2−d`‖u‖Hd(I) (u ∈ Hd(I) ∩Hm

0,z(I)),

‖u− P 0
` u‖Hm(I) . 2−(d−m)`‖u‖Hd(I) (u ∈ Hd(I) ∩Hm

0,z(I)).

More generally, with the interpolation space Ht
0,z(I) := [L2(I), Hd(I) ∩ Hm

0,z(I)] td ,2, it

holds that

‖u− P 0
` u‖L2(I) . 2−t`‖u‖Ht0,z(I) (t ∈ [0, d], u ∈ Ht

0,z(I)),(6.1)

‖u− P 0
` u‖Hm(I) . 2−(t−m)`‖u‖Ht0,z(I) (t ∈ [m, d], u ∈ Ht

0,z(I)).(6.2)

Similarly to Theorem 4.3(a), we arrive at

‖u−P0
L,1u‖L2(�) . L

n−1
2 2−sL‖u‖⊗ni=1Hs0,zi (I)

(s ∈ [0, d], u ∈ ⊗ni=1Hs
0,zi

(I)).

By applying (6.1) with t = s, and (6.2) with t = s−m+ε, similarly to Theorem 4.3(b),
we infer that for s ∈ [m, d], ε ∈ (0,m] and (s−m)ν < (s−m) + ε,

(6.3) ‖u−P0
L,νu‖Hm(�) . 2−(s−m)L

√√√√ n∑
p=1

‖u‖2

⊗ni=1H
s+(1−δpi)(ε−m)

0,zi
(I)

for all u ∈ ∩np=1⊗ni=1H
s+(1−δpi)(ε−m)
0,zi

(I), where, by taking ν > 1, 2−(s−m)L h (#∇0
L,ν)

−(s−m).
The estimates (6.1), (6.2) and, similarly, (6.3) are sharp in the sense that, generally,

a decay of the error like 2−t`, 2−(t−m)` or 2−(s−m)L is not valid when only u ∈ Ht′
0,zi

(I)

for some t′ < t, or u ∈ ∩np=1 ⊗ni=1 H
s′+(1−δpi)(ε′−m)
0,zi

(I) for some s′ < s or ε′ ≤ 0.
Note that we had to include the word “generally” in the preceding sentence, because
higher order convergence for less smooth u does hold when u happens to be a finite
linear combination of wavelets ψλ, or when it is exceptionally close to such a function.
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In the following, we again consider u to be the solution of Poisson’s problem on
� = (0, 1)n with homogeneous Dirichlet boundary conditions and sufficiently smooth
right-hand side f :

(6.4) u ∈ H1
0 (�) and −∆u = f,

i.e., m = 1 and zi = {0, 1}. We will show that for sufficiently smooth right-hand
sides f and n ≥ 2, for

(6.5) s ∈ [1, 3
2

+ 1
n
) =⇒ u ∈ ∩np=1 ⊗ni=1 H

s−1+δip
0,{0,1} (I),

whilst for s > 3
2

+ 1
n
, generally u is not in that space (it will be when additionally

f vanishes at a sufficiently high order at the boundary). In view of the estimate
(6.3), and the discussion following it, these results mean that the error, measured in
H1(�), in the best approximation from the optimized sparse-grid space of dimension
N of the solution of Poisson’s problem on the n-dimensional hypercube decays like
N−(s−1) for any s < 3

2
+ 1

n
, whilst, generally, this estimate does not hold for s > 3

2
+ 1

n
.

Note that here we could write “best approximation”, since the error u − P0
L,νu,

measured in ‖ · ‖H1(�) is, indeed, up to a constant factor, equal to the error in the
best approximation from span P0

L,ν , because the projector P0
L,ν is uniformly bounded

in H1(�)-norm. The reason is that the wavelet basis {(
∑n

i=1 4|λi|)−1/2ψλ : λ ∈ ∇}
is a Riesz basis for H1

0,Γ(�).
In a way the above result is favourable. Indeed, unlike with standard “full grid”

approximation, the rate 1
2

+ 1
n
, although mildly dependent on n, does not decrease

to 0 when n → ∞. On the other hand, however, the rate 1
2

+ 1
n

does not show
any benefit of taking piecewise polynomial wavelets of orders d larger than 2, and
depending on the value of d, this rate is (much) worse than the optimal rate d − 1
that is realized with the approach of combining optimized sparse grids with local
refinements outlined in the preceding sections.

Before continuing, we note that for s ≥ 1, s 6= 3
2
,

(6.6) ∩np=1 ⊗ni=1 H
s−1+δip
0,{0,1} (I) = ∩np=1 ⊗ni=1 H

s−1+δip(I) ∩H1
0 (�).

Indeed, since

Ht
0,{0,1}(I) =

{
H t(I) t ∈ [0, 1

2
),

{u ∈ H t(I) : γvu = 0, v ∈ {0, 1}} t > 1
2
,

the proof of (6.6) follows that of (3.4a), for t ∈ [0, 1
2
) taking the first first option in

(3.4c), and for t > 1
2

taking the second option. Since we know that the solution of
Poisson’s problem is in H1

0 (�), what is left is to show that for

s ∈ [1, 3
2

+ 1
n
) =⇒ ∂pu ∈ ⊗ni=1H

s−1(I) (1 ≤ p ≤ n),

known as a Sobolev space of dominating mixed smoothness, and that this is generally
not true for s > 3

2
+ 1

n
.

In order to do so, we apply a Fourier analysis. For k ∈ N, let φk(x) :=
√

2 sin(kπx),
ψk(x) =

√
2 cos(kπx), and let ψ0 = 1. It is clear that {φk : k ∈ N} is the normed

eigenvector basis of the self-adjoint operator ϕ 7→ −ϕ′′ with domain H2 ∩ H1
0 (I)
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(Dirichlet). Likewise, {ψk : k ∈ N0} is the normed eigenvector basis of the self-
adjoint operator ϕ 7→ −ϕ′′ with domain {ϕ ∈ H2(I), ϕ′(0) = ϕ′(1) = 0} (Neumann).
Furthermore φ′k = kπψk and ψ′k = −kπφk. As a consequence we obtain immediately.

Lemma 6.1. {φk : k ∈ N} and {ψk : k ∈ N0} are orthonormal bases for L2(I).

Lemma 6.2. {φk
kπ

: k ∈ N} ({ φk√
1+k2π2 : k ∈ N}) is an orthonormal basis of H1

0 (I)

equipped with | · |H1(I) (‖ · ‖H1(I)), and { ψk√
1+k2π2 : k ∈ N0} is an orthonormal basis of

H1(I).

By taking tensor products, we conclude that

{φk := ⊗ni=1φki : k ∈ Nn},
{ φk

π‖k‖2

: k ∈ Nn
}

are orthonormal bases for

L2(�), H1
0 (�),

respectively, the latter space being equipped with | · |H1(�) :=
√∑n

i=1 ‖∂i · ‖2
L2(�).

By using this basis, the stiffness matrix resulting from the variational formulation
of the Poisson problem is the identity, and we conclude that for a right-hand side
f ∈ (H1

0 (�))′, the solution u is given by

(6.7) u =
∑
k∈Nn

f
( φk

π‖k‖2

) φk

π‖k‖2

,

and so

(6.8) ∂pu(x) =
∑
k∈Nn

kp
‖k‖2

f
( φk

π‖k‖2

)
ψkp(xp)

∏
i 6=p

φki(xi), (1 ≤ p ≤ n).

To estimate the decay of the coefficients in this expansion for ‖k‖2 →∞, we note
that for g ∈ W 1,1(I) (↪→ L∞(I)),∫

I

g(x)φk(x)dx = −g(x)
ψk(x)

kπ

∣∣∣1
0

+

∫
I

g′(x)
ψk(x)

kπ
dx,

and so |
∫

I
g(x)φk(x)dx| . 1/k, where a decay of higher order can only be expected

when g vanishes at ∂I (see Remark 6.4). As a consequence, if f ∈ ⊗ni=1W
1,1(I)

(↪→ L∞(I)), then

(6.9)
∣∣∣f( φk

π‖k‖2

)∣∣∣ . (‖k‖2

n∏
i=1

ki
)−1

,

which for f that do not vanish at ∂� is generally sharp. For example, for f = 1,

f
( φk

π‖k‖2

)
=

{
1

π‖k‖2 (2
√

2
π

)n 1Qn
i=1 ki

when k ∈ (2N + 1)n,

0 otherwise.
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Lemma 6.3. For v =
∑

k∈
Qn
i=1 Ki ckυ

(1)
k1
⊗ · · · ⊗ υ(n)

kn
, where Kp = N0 and υ

(p)
kp

= ψkp,

and Ki = N and υ
(i)
ki

= φki for i 6= p, for t ∈ [0, 1]\{1
2
} we have

‖v‖Ht(I)⊗···⊗Ht(I) h ‖k 7→
( n∏
i=1

√
1 + k2

i π
2
)t
ck‖`2(

Qn
i=1 Ki).

Proof. For any k ∈
∏n

i=1 Ki, let wk :=
∏n

i=1

√
1 + k2

i π
2, and

`2
w(

n∏
i=1

Ki) := {c ∈ `2(
n∏
i=1

Ki) : ‖c‖`2w(
Qn
i=1 Ki) :=

√ ∑
k∈

Qn
i=1 Ki

|wkck|2 <∞},

then (ck)k∈Qn
i=1 Ki 7→

∑
k∈

Qn
i=1 Ki ckυ

(1)
k1
⊗ · · · ⊗ υ(n)

kn
is a boundedly invertible mapping

(even an isomorphism) from `2(
∏n

i=1 Ki) → L2(�) as well as from `2
w(
∏n

i=1 Ki) →
H1(�) := H1

0 (I) ⊗ · · · ⊗H1(I) ⊗ · · · ⊗H1
0 (I), with the space H1(I) being on the pth

position. By definition of an interpolation space, for t ∈ [0, 1], the mapping is also
boundedly invertible from `2

wt(
∏n

i=1 Ki)→ [L2(�),H1(�)]t,2 = [L2(I), H1
0 (I)]t,2⊗· · ·⊗

[L2(I), H1(I)]t,2⊗· · ·⊗[L2(I), H1
0 (I)]t,2. Since [L2(I), H1(I)]t,2 = H t(I), [L2(I), H1

0 (I)]t,2 =
H t

0(I) when t > 1
2
, and [L2(I), H1

0 (I)]t,2 = H t(I) when t < 1
2
, in all cases with a norm

that is equivalent to the H t(I)-norm, the proof is completed. �

The estimate (6.9) is equivalent to∣∣∣( n∏
i=1

√
1 + π2k2

i

)s−1 kp
‖k‖2

f
( φk

π‖k‖2

)∣∣∣ . kp
‖k‖2

2

( n∏
i=1

ki
)s−2

.

We claim that the right-hand side is in `2(Nn) iff s− 1 < 1
2

+ 1
n
. Indeed,

(6.10)
kp
‖k‖2

2

( n∏
i=1

ki
)s−2 ≤ 1

‖k‖2

( n∏
i=1

ki
)s−2 ≤

( n∏
i=1

ki
)s−2− 1

n ,

and the right-hand side is in `2(Nn) iff 2(s− 2− 1
n
) < −1 or s− 1 < 1

2
+ 1

n
. Up to a

constant factor, that may depend on n, the estimates from (6.10) are sharp for all k ∈
Nn with, say, maxi ki ≤ 2 mini ki, whereas for those k,

(∏n
i=1 ki

)s−2− 1
n h ‖k‖(s−2)n−1

2 .

Clearly,
∑
{k∈Nn:maxi ki≤2 mini ki} ‖k‖

((s−2)n−1)2
2 < ∞ iff

∑
k∈Nn ‖k‖

((s−2)n−1)2
2 < ∞, the

latter being the case iff 2(s− 2)n− 2 + (n− 1) < −1 or s− 1 < 1
2

+ 1
n
, which proves

our claim.
Since 1

2
+ 1

n
≤ 1 when n ≥ 2, this last result in combination with (6.8), (6.9)

and Lemma 6.3 proves our earlier claim about the regularity in Sobolev spaces of
dominating mixed smoothness of the (first order partial derivatives of the) solution
of Poisson’s problem on the n-dimensional hypercube, and with that our claim about
the rate of convergence of the optimized sparse-grid approximation without local
refinement.

Remark 6.4. If f ∈ ⊗ni=1W
d−1,1
0 (I) ∩W d,1(I) = {g ∈ ⊗ni=1W

d,1(I) : ∂rng = 0 on ∂�,
0 ≤ r ≤ d− 2}, then repeated integration by parts shows that (6.9) can be replaced
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by ∣∣∣f( φk

π‖k‖2

)∣∣∣ . (‖k‖2

n∏
i=1

kdi
)−1

.

Then for s < d + 1
2

+ 1
n

one shows that ∂pu ∈ ⊗ni=1H
s−1(I) (1 ≤ p ≤ n), meaning

that for ν ∈ (1, 1 + 1/2+1/n
d−1

), ‖u−P0
L,νu‖H1(�) . (#∇0

L,ν)
−(d−1). So if the right-hand

f is sufficiently smooth and vanishes at the boundary at a sufficiently high order,
then already the optimized sparse-grid approximation without local refinement of
the solution of Poisson’s problem converges in H1(�)-norm with the best possible,
dimension independent rate.

Remark 6.5. Because of the explicit expression (6.7), one may think of approximating
u by the expansion formed by its N largest Fourier coefficients. Assuming a general
smooth right-hand side f , based on (6.9) one may verify (cf. [Dij09]) that the error
measured in H1(�) of such an approximation with N coefficients is generally not

better than of order N−( 1
2

+ 1
n

), i.e., the approximation rate is equal to that of the
optimized sparse-grid approximation without local refinement. The computational
complexity of computing the N largest Fourier coefficients is much higher though.

Remark 6.6. The bound 3
2

+ 1
n

in (6.5) is due to the presence of a singular part in the
solutions of the Dirichlet problem (6.4). When n = 2, as is well known [Gri85, Dau88],
the first contribution to this singular part attached to the corner (0, 0) is the function

(x1, x2) 7→ f(0, 0)
{

1
π
r2(log r sin 2θ + θ cos 2θ) + 1

2
x2

2

}
,

with the polar coordinate (r, θ). Note the coefficient f(0, 0). Taking similar contri-
butions at four corners into account, we see that if f is not zero at one corner, then
u 6∈ H3(�). In contrast, if f is zero at all corners, u ∈ H5−ε(�) for all ε > 0, because
the next singularity is in r4 log r. More generally, if f and all its derivatives are zero
at all corners, then u ∈ Hd(�) for all d ∈ N. In fact, the necessary and sufficient
condition for the infinite smoothness of u up to corners is even weaker: it requires
that at four corners ci, i = 1, 2, 3, 4, f(ci) = 0, (∂2

1 − ∂2
2)f(ci) = 0, and in general

A2j
i f(ci) = 0, where A2j

i are operators of order 2j, j ∈ N0.
In higher dimensions n, the singular part is still related to the traces of f on the

edges of �. This feature is very particular to the Laplacian and to the domain �:
It is related to the validity of the reflection principle, cf. the proof of Lemma 5.4
— for a smooth right hand side f with compact support in �, this principle yields
immediately the infinite smoothness of the solution u.

When n = 3, the solutions of the Dirichlet problem (6.4) in more general polyhedral
domains than � have singular parts which involve distance functions to the singular
sets of the domain – edges and corners – and not the distance to the faces of the
domain, see [Dau88, Ch. 17]. But, unless all opening angles have the form π

`
with

integers `, the fact that f ≡ 0 on the boundary does not improve the regularity of
the solution in general.
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