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Abstract

The objective of this paper is to present a model for electricity spot prices and the corresponding for-
ward contracts, which relies on the underlying fuels markets, thus avoiding the electricity non-storability
restriction. The structural aspect of our model comes from the fact that the electricity spot prices depend
on the dynamic of the electricity demand at the maturity T , and on the random available capacity of
each production means. Our model allows to explain, in a stylized fact, how the different fuels prices
together with the demand combine to produce electricity prices. This modeling methodology allows to
transfer to electricity prices the risk-neutral probabilities of the fuels market and under the hypothesis of
independence between demand, outages filtrations on one hand, and fuels prices filtration on the other
hand, it provides a regression-type relation between electricity forward prices and fuels forward prices.
Moreover, the model produces, by nature, the well-known peaks observed on electricity market data. In
our model, spikes occur when the producer has to switch from one technology to the lowest cost available
one. Numerical tests performed on a very crude approximation of the French electricity market using
only two fuels (gas and oil) provide an illustration of the potential interest of this model.

Keywords: energy markets; electricity prices; fuels prices; risk-neutral probability; no-arbitrage
pricing; forward contracts.

JEL Classification: D41; G13. AMS Classification (2000): 91B24; 91B26.

1 Introduction

In securities markets, the following relationship between spot and forward prices of a given security holds:

F (t, T ) = Ste
r(T−t), t ≤ T.

As usual, T is the maturity of the forward contract, St is spot price at t and r is the interest rate which is
assumed constant for simplicity. We also assumed no dividends. The no-arbitrage arguments usually used
to prove such an equality lie heavily upon the fact that securities are storable with zero costs. For storable
commodities (oil, soybeans, silver...), the former relation has been extended by including storage costs and
and an unobservable variable, the convenience yield (see Schwartz [23], [22], and Geman [17], sec. 3.7). But,
when one considers electricity markets (see Burger et al. [9] or Geman and Roncoroni [18] for an exhaustive
description), such a property does not hold anymore: Once purchased, the electricity has to be consumed,
so that the above relation does not make sense. This remark has long been recognized in electricity markets
literature (see, e.g., Clewlow & Strickland [12]) but has not prevented the development of many electricity

∗The authors thank the “Chair Finance and Sustainable Development” sponsored by EDF and Calyon for their support.
†EDF R&D and FiME, Laboratoire de Finance des Marchés d’Energies.
‡CEREMADE, University Paris-Dauphine & FiME, Laboratoire de Finance des Marchés d’Energies.

campi@ceremade.dauphine.fr
§EDF R&D and CEREMADE University Paris-Dauphine.
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spot price models in the Black & Scholes framework [5, 7, 4, 6, 10, 11, 15] (see Benth [4] for a survey of the
literature).

Nevertheless, the fact that electricity is not a storable good is not enough to assert that no relation
holds between spot and forward prices and that no arbitrage relations constraint the term structure of the
electricity prices, except the constraints coming from overlaping forward contracts. Indeed, one could argue
that even if electricity can not be stored, the fuels that are used to produce electricity can. To see that
this observation leads to constraints on the term structure of electricity prices, let us consider a fictitious
economy in which power is produced by a single technology - coal thermal units with the same efficiency -
and that the electricity spot market is competitive. Then, the electricity price should satisfy the following
relation :

Fe(t, T ) = qcFc(t, T ), t ≤ T,

where the subscript e stands for electricity, c stands for coal, and qc denotes the heat rate. If there is t < T
such that Fe(t, T ) > qcFc(t, T ), then one can at time t:

• Sell a forward on electricity at Fe(t, T ) and buy qc coal forward at Fc(t, T )

and, at time T :

• Sell qc coal at Sc(T ), buy electricity at Se(T ) = qcSc(T ).

One can check that this strategy provides a positive benefit. Moreover, the opposite relation can be obtained
by a similar arbitrage. Here, in this fictitious economy, the important feature is not that electricity can be
produced by coal, but that the relation between spot prices of coal and electricity is known. Furthermore,
it extends directly to the forward prices.

In real economies, similar no-arbitrage relations between electricity and fuels prices can not be identified
so easily. The reason for this is that electricity can be produced out of many technologies with many different
efficiency levels: Coal plants more or less ancient, fuel plants, nuclear plants, hydro, solar and windfarms,
and so on. Generally, the electricity spot prices is considered to be the day-ahead hourly markets. At that
time horizon, any producer will perform an ordering of its production means on the basis of their production
costs. This operation is refered to a unit commitment problem and one can find a huge literature on this
optimization problem in power systems literature (see Batut and Renaud [3] and Dentcheva et al. [14] for
examples). Depending on the market fuels prices and on the state of power system (demand, outages, inflows,
wind and so forth), this ordering may vary through time. Hence, when the forward contract is being signed,
the ordering at the contract maturity is not known.

The objective of this paper is to build a model for electricity spot prices and the corresponding forward
contracts, which relies on the underlying fuels markets, thus avoiding the non-storability restriction. The
structural aspect of our model comes from the fact that the electricity spot prices depend on the dynamic of
the electricity demand at the maturity T , and on the random available capacity of each production means.
Our model allows to explain, in a stylized fact, how the different fuels prices together with the demand
combine to produce electricity prices. This modeling methodology allows to transfer to electricity prices the
risk-neutral probabilities of the fuels market, under a certain independence hypothesis (see Assumption 2.2).
Moreover, the model produces, by nature, the well-known peaks observed on electricity market data. In
our model, spikes occur when the producer has to switch from one technology to the next lowest cost
available one. And, the dynamics of the demand process explains this switching process. Then, one easily
understands that the spikes result from a high level of the demand process which forces the producer to use
a more expensive technology.

Our model is close to Barlow’s model [2], since the electricity spot price is defined as an equilibrium
between demand and production. But, in our model, the stack curve is described by the different available
capacities and not a single parametrized curve. Moreover, this model shares some ideas with Fleten and
Lemming forward curve reconstruction method [16]. But, whereas the authors methodology relies on an
external structural model provided by the SINTEF, our methodology does not require such inputs.

The article is structured in the following way: Section 2 is devoted to the description of the model;
Section 3 describes the relation between the futures prices; Section 4 presents the model on a case with only
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two fuels; Section 5 presents numerical results showing the potential of the model on the two technologies
case of the preceeding section; and, Section 6 provides some future research perspectives.

2 The Model

Let (Ω,F , P) be a probability space sufficiently rich to support all the processes we will introduce through-
out this paper. Let (W 0, W ) be an (n + 1)-dimensional standard Wiener process with W = (W 1, . . . ,Wn),
n ≥ 1. In the sequel, we will distinguish between the filtration F0 = (F0

t ) generated by W 0 and the filtration
FW = (FW

t ) generated by the n-dimensional Wiener process W = (W 1, . . . ,Wn).

Commodities market. We consider a market where agents can trade n ≥ 1 commodities and purchase
electricity. We consider only commodities that can be used to produce electricity. For i = 1, . . . n, Si

t denotes
the price of the quantity of commodity i necessary to produce 1 KWh of electricity and is assumed to follow
the following SDE:

dSi
t = Si

t


µi

tdt +

n∑

j=1

σij
t dW j

t


 , t ≥ 0, (2.1)

where µi and σij are FW -adapted processes suitably integrable (see Assumption 2.1).
We also assume that the market contains a riskless asset with price process

S0
t = e

R

t

0
rudu, t ≥ 0,

where the instantaneous interest rate (rt)t≥0 is an FW -adapted non-negative process such that
∫ t

0
rudu is

finite a.s. for every t ≥ 0. As a consequence, (rt) is independent of the Brownian motion W 0. We will
frequently used the notation X̃t := Xt/S0

t for any process (Xt). We make the following standard assumption
(see, e.g. Karatzas [20], Section 5.6).

Assumption 2.1 The volatility matrix σt = (σij
t )1≤i,j≤n is invertible and both matrices σ and σ−1 are

bounded uniformly on [0, T ∗] × Ω. Finally, let θ denote the market price of risk, i.e.

θt := σ−1
t [µt − rt1n], t ≥ 0,

where 1n is the n-dimensional vector with all unit entries. We assume that such a process θ satisfies the
so-called Novikov condition

E

[
exp

{
1

2

∫ T∗

0

||θt||2dt

}]
< ∞ a.s.

Remark 1 Imposing the Novikov condition on the commodities market price of risk ensures that the mini-
mal martingale measure we will use for pricing in Section 3 is well defined. The reader is referred to Section
5.6 in Karatzas’s book [20].

Market demand for electricity. We model the electricity market demand by a real-valued continuous
process D = (Dt)t≥0 adapted to the filtration F0 = (F0

t ) generated by the Brownian motion W 0. Observe
that, under our assumptions, the processes Si (i = 0, . . . , n) are independent under P of the demand process
D. To be more precise, the process D models the whole electricity demand of a given geographical area
(e.g. U.K., Switzerland, Italy and so on). With that respect, it must be strictly positive. Nevertheless,
in Section (5) where empirical analysis is performed, to reduce the number of possible technologies, it is
more convenient to use a residual demand. A residual demand is the whole demand less the production of
some generation assets (like nuclear power, run of the river hydrolic plants, wind farms). It is clear that the
residual demand can be negative.
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Electricity spot prices. We denote by Pt the electricity spot price at time t. At any time t, the
electricity producer can choose among the n commodities which is the most convenient to produce electricity
at that particular moment and the electricity spot price will be proportional to the spot price of the chosen
commodity. We recall that the proportionality constant is already included in the definition of each Si so
that, if at time t the producer chooses commodity i then Pt = Si

t , 1 ≤ i ≤ n.

How does the electricity producer choose the most convenient commodity to use? For each i = 1, . . . , n,
we denote ∆i

t > 0 the given capacity of the i-th technology for electricity production at time t. (∆i
t) is a

stochastic process defined on (Ω,F , P) and assumed independent of (W 0, W ). We denote F∆ = (F∆
t ) its

filtration. Moreover, we assume that each ∆i
t takes values in [mi, Mi] where 0 ≤ mi < Mi are the minimal

and the maximal capacity of i-th technology, both values being known to the producer. In reality, the
producer fills capacity constraints, so as to deal with demand variability, security conditions and failures
risk. Thus, in order to represent capacity management and partial technology failures, the production
capacity is considered as a stochastic process on its own filtration.

For every given (t, ω), the producer performs an ordering of the commodities from the cheapest to the
most expensive. The ordered commodities prices are denoted by

S
(1)
t (ω) ≤ · · · ≤ S

(n)
t (ω).

This order induces a permutation over the index set {1, . . . , n} denoted by πt = {πt(1), . . . , πt(n)}. Notice
that πt defined an FW -adapted stochastic process, and we follow the usual probabilistic notation omitting
its dependence on ω.

Given a commodities order πt at time t, we set

Iπt

k (t) :=

[
k−1∑

i=1

∆
πt(i)
t ,

k∑

i=1

∆
πt(i)
t

)
, 1 ≤ k ≤ n,

with the convention
∑0

i=1 ≡ 0.

For the the sake of simplicity, we will assume from now on that the electricity market is competitive
and we will not take into account the short term constraints on generation assets as well as start-up costs.
Hence, the electricity spot price is equal the cost of the last production unit used in the stack curve (marginal
unit). Thus, if the market demand at time t for electricity Dt belongs to the interval Iπt

k (t), the last unit
of electricity is produced by means of technology πt(k), when available. Otherwise, it is produced with the
next one with respect to the time-t order πt. This translates into the following formula:

Pt =

n∑

i=1

S
(i)
t 1{Dt∈I

πt
i

(t)}, t ≥ 0. (2.2)

Let T ∗ > 0 be a given finite horizon, in the sequel we will work on the finite time interval [0, T ∗].
Typically, all maturities and delivery dates of forward contracts we will consider in the sequel, will always
belong to the time interval [0, T ∗].

Assumption 2.2 Let Ft = F0
t ∨ FW

t ∨ F∆
t , t ∈ [0, T ∗], be the market filtration. There exists an equivalent

probability measure Q ∼ P defined on FT∗ , such that the discounted commodities prices S̃ = (S̃1, . . . , S̃n)
(i.e. without electricity!) are local Q-martingales with respect to (Ft).

This hypothesis is equivalent to assuming absence of arbitrage in the fuels market [13]. Notice that we
are not making this assumption on the electricity market, as announced in the introduction. Thanks to
relation (2.2), any electricity derivative can be viewed as a basket option on fuels. Hence, Assumption 2.2
allows us to properly apply the usual risk neutral machinery to price electricity derivatives.
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The market of commodities and electricity is clearly incomplete, due to the presence of additional un-
hedgeable randomness source W 0 driving electricity demand’s dynamics D. Thus, in order to price derivatives
on electricity we have to choose an equivalent martingale measure among infinitely many to use as a pric-
ing measure. One possible choice is the following: Let Q = Qmin denote the minimal martingale measure
introduced by Föllmer and Schweizer [19], i.e.

dQ

dP
= exp

{
−

∫ T∗

0

θu · dWu − 1

2

∫ T∗

0

||θu||2du

}
(2.3)

where we recall that θt = σ−1
t (µt−rt1n) is the market price of risk for the commodities market (S1, . . . , Sn).

In the previous formula as well as in the sequel of this paper x · y denotes the scalar product between two
vectors x, y.

Notice that, due to Assumption 2.1, such a measure is well defined, i.e. (2.3) defines a probability measure
on FT∗ , which is equivalent to the objective measure P.

Remark 2 Furthermore, it can be easily checked that under Q the laws of processes W 0 and ∆i (1 ≤ i ≤ n)
are the same as under the objective probability P and the independence between the filtrations F0, F∆ and
FW is preserved under Q.

Under such a probability Q commodities prices Si, 1 ≤ i ≤ n, satisfy the SDEs

dSi
t = Si

t


rtdt +

d∑

j=1

σi,j
t dW̃ j

t


 , Si

0 > 0,

whose solutions are given by

Si
t = Si

0 exp

{∫ t

0

(
ru − 1

2
||σi

u||2
)

du +

∫ t

0

σi
u · dW̃u

}
, t ≥ 0,

where W̃ = (W̃ 1, . . . , W̃ d) is an n-dimensional Brownian motion under Q, and σi = (σi,1, . . . , σi,n).

The measure Q will be used as pricing measure in the rest of the paper. We recall that in the literature,
such a measure Q is related to locally risk minimization procedure, in the sense that, given a contingent claim

H with some maturity T > 0, EQ[exp(−
∫ T

0
rsds)H] is the minimum price allowing an agent to approximately

(and locally in L2) hedge the claim (see Schweizer’s survey [24] for further details).

Remark 3 Notice that including storage costs ci and convenience yields δi changes only the drifts coefficients
in commodities dynamics from rt to rt + ci − δi.

3 Electricity forward prices

We now consider a so-called forward contract on electricity with maturity T1 > 0 and delivery period [T1, T2]
for T1 < T2 ≤ T ∗, i.e. a contract defined by the payoff

(T2 − T1)
−1

∫ T2

T1

PT dT (3.4)

at the maturity T1, whose time-t price Ft(T1, T2) is to be paid at T1.
The following observation is crucial: According to formula 2.2, the payoff (3.4) can be expressed in terms

of the fuels prices, so that in our model the forward contract on electricity can be viewed as a forward
contract on fuels and since the classical no-arbitrage theory makes sense on the fuels market, it can also be
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used to price electricity derivatives such as (3.4). In other terms, our production-based structural model
relating electricity and fuels prices allows us to transfer the whole no-arbitrage classical approach from fuels
to electricity market, so overcomining the non-storability issue.

By Assumption 2.2 and classical result on forward pricing (see [8] Chapter 26), it immediately follows
that:

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

E
Q
t

[
e−

R

T

t
ruduPT

]

E
Q
t

[
e−

R

T

t
rudu

] dT, (3.5)

E
Q
t denoting the conditional Q-expectation given market’s filtration Ft, for t ≥ 0.

Let T ∈ [T1, T2]. It is convenient for the next calculations to introduce the forward measure QT defined
by the density

dQT

dQ
:=

e−
R

T

t
rudu

Bt(T )
on FW

T ,

where
Bt(T ) := E

Q
t

[
e−

R

T

t
rudu

]

is the time-t price of a zero-coupon bond with maturity T . Then:

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

EQT [PT |Ft] dT (3.6)

=

n∑

i=1

1

T2 − T1

∫ T2

T1

EQT

[
S

(i)
T 1{DT ∈I

πT
i

(T )}|Ft

]
dT. (3.7)

We denote by Πn the set of all permutations over the index set {1, . . . , n}. Let π ∈ Πn be a given
non-random permutation. Under the assumption Si

t ∈ L1(Qt) for any t ≥ 0 and 1 ≤ i ≤ n, we can define
the following changes of probability on FW

T :

dQi
T

dQT

=
Si

T

EQT [Si
T ]

, 1 ≤ i ≤ n, T ≤ T ∗.

Proposition 3.1 If our model assumptions hold and if Si
T ∈ L1(QT ) for all T ∈ [T1, T2] and 1 ≤ i ≤ n, we

have

Ft(T1, T2) =
1

T2 − T1

n∑

i=1

∑

π∈Πn

∫ T2

T1

F
π(i)
t (T )Q

π(i)
T [πT = π|FW

t ]QT [DT ∈ Iπ
i (T )|F0,∆

t ]dT, (3.8)

for t ∈ [0, T1], where F i
t (T ) denotes the price at time t of forward contract on the i-th commodity with

maturity T and F0,∆
t is the natural filtration generated by both W 0 and ∆.

Proof. Notice first that

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

Ft(T )dT,

where Ft(T ) = EQT [PT |Ft] can be interpreted as the t-price of a forward contract with maturity T and
instantaneous delivery at maturity. By the definition of electricity forward price Ft(T ), we have

Ft(T ) =

n∑

i=1

EQT

[
S

(i)
T 1{DT ∈I

πT
i

(T )}|Ft

]

=

n∑

i=1

∑

π∈Πn

EQT

[
S

π(i)
T 1{DT ∈Iπ

i
(T )}1{πT =π}|Ft

]
.
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If we use the mutual (conditional) independence between W , W 0 and ∆ as in Remark 2, we get

Ft(T ) =

n∑

i=1

∑

π∈Πn

EQT

[
S

π(i)
T 1{πT =π}|FW

t

]
QT [DT ∈ Iπ

i (T )|F0,∆
t ].

Using the change of probability dQ
π(i)
T /dQT yields

EQT

[
S

π(i)
T 1{πT =π}|FW

t

]
= F

π(i)
t (T )Q

π(i)
T [πT = π|FW

t ],

so giving, after integrating between T1 and T2 and dividing by T2 − T1, the announced formula. �

The main formula (3.8) provides a formal expression to the current intuition of electricity market players
that the forward prices are expected to be equal to a weighted average of forward fuels prices. Such weights
are determined by the crossing of the expected demand with the expected stack curve of technologies. We
will see in Section (5) that this model is able to explain the spikes of electricity. Nonetheless, we can already
observe that the main formula reproduces the stylized fact that the paths of electricity forward prices are
much smoother than those of spot prices. This is due to the averaging effect of the conditional expectation
on the indicator functions appearing in formula (2.2), even in the degenerate case when the delivery period
reduces to a singleton.

In the next section, we will perform some explicit computations of the conditional probabilities involved
in the previous formula for electricity forward prices, under more specific assumptions on prices and demand
dynamics.

4 A model with two technologies and constant coefficients

In order to push further the explicit calculations, we assume now that the combustibles volatilities are
constant, i.e. σi,j

t = σi,j for some constant numbers σi,j > 0, 1 ≤ i, j ≤ n, and that the interest rate is
constant rt = r > 0. Under the latter simplification, the forward-neutral measures QT all coincide with
the minimal martingale measure Q = Qmin. Similar closed-form expressions can be obtained by assuming a
Gaussian Heath-Jarrow-Morton model for the yield curve.

Let us assume from now on that only two technologies are available, i.e. n = 2.

Dynamics of capacity processes ∆i. In order to get explicit formulae for forward prices we have to
specify the dynamics of capacity processes ∆i for the i-th technology. We assume that the probability space
(Ω,F , P) supports four (independent) standard Poisson processes N1,u

t , N1,d
t , N2,u

t and N2,d
t with constant

intensities λu
1 , λd

1, λ
u
2 , λd

2 > 0 and we assume that each ∆i follows

d∆i
t = (mi − Mi)1(∆i

t=Mi)dN i,d
t + (Mi − mi)1(∆i

t=mi)dN i,u
t , ∆i

0 = Mi (4.9)

Remark 4 Basically we are assuming that each capacity i can take only two values Mi > mi and it
switches from mi to Mi (resp. from Mi to mi) when the process N i,u (resp. N i,d) jumps. Each capacity
evolves independently of each other. At t = 0 both technologies have maximal capacity Mi. The fact that
the intensities of upside and downside jumps of ∆i are not necessarily equal introduces a skewness in the
probability of being at capacity Mi or mi.

Let T be any time in the delivery period [T1, T2]. First observe that, since ∆ is independent of W 0 and

its law is invariant under the probability change from P to Q = QT as in Remark 2, we have QT [∆
π(1)
T =

x1|F0,∆
t ] = P[∆

π(1)
T = x1|∆t] as well as

QT [∆
π(1)
T = x1,∆

π(2)
T = x2|F0,∆

t ] = P[∆
π(1)
T = x1,∆

π(2)
T = x2|∆t]
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for x1 ∈ {m1, M1} and x2 ∈ {m2, M2}.
As a consequence of the previous assumption on the dynamics of capacities ∆i, the conditional probabil-

ities QT [DT ∈ Iπ
k (T )|F0,∆

t ] appearing in the main formula (3.8) can be decomposed as follows

QT [DT ∈ Iπ
1 (T )|F0,∆

t ] = QT

[
DT ≤ ∆

π(1)
T |F0,∆

t

]

= P[∆
π(1)
T = m1|F∆

t ]QT

[
DT ≤ m1|F0

t

]

+P[∆
π(1)
T = M1|F∆

t ]QT

[
DT ≤ M1|F0

t

]

A similar decomposition for QT [DT ∈ Iπ
2 (T )|F0,∆

t ] holds too. It is clear now that the building blocks
appearing in such formulae are the probabilities P[∆k

T = x|∆k
t ] and QT

[
DT ≤ y|F0

t

]
.

It remains to compute P[∆k
T = x|F∆

t ] for k = 1, 2 and x = Mk, mk. As an example, we will compute
P[∆k

T = mk|∆0 = Mk]. For the sake of simplicity, we will drop for a while the index k from the notation,
that is we will write ∆T for ∆k

T , M for Mk, and so on.
Let τd be the last jump time of the process Nd

t before T , i.e. τd = sup{t ∈ [0, T ] : ∆Nd
t = 1} with the

convention that sup ∅ = 0. Notice that on the event {τd > 0} we have {∆T = m} = {Nu
τd = Nu

T }. On the
other hand, on the set {τd = 0} the process ∆ has no jump downwards over the time interval [0, T ], so that
P(∆T = m, τd = 0|∆0 = M) = 0. Using the independence between Nd and Nu and the stationarity of Nu,
one has

P[∆T = m|∆0 = M ] = E[P(Nu
τd = Nu

T |τd)1τd>0]

= E[P(Nu
T−τd = 0|T − τd)1T−τd<T ]

= E[e−λu(T−τd)1T−τd<T ].

By the time-reversal property of the standard Poisson process1, the random variable T − τd has the same
law as T d

1 ∧ T , where T d
1 is the first jump time of (Nd

t )t≥0. We recall that T1 has exponential law with
parameter λd. Thus we have

P[∆T = m|∆0 = M ] = E[e−λu(T d
1 ∧T )1T d

1 <T ] = E[e−λuT d
1 1T d

1 <T ]

=
λd

λd + λu
(1 − e−(λd+λu)T )

The general result follows by stationarity :

P[∆k
T = mk|∆k

t = Mk] =
λd

k

λd
k + λu

k

(1 − e−(λd
k+λu

k )(T−t)), k = 1, 2. (4.10)

Using the same arguments, one can obtain similar expressions for the remaining probabilities P[∆k
T =

x|F∆
t ] for k = 1, 2 and x = Mk, mk.

Dynamics of the electricity demand D. We also assume that the residual demand is defined by the
a mean-reverting Ornstein-Uhlenbeck process. It is well-known that this process has a positive probability to
be negative. Nonetheless, in the empirical study, it will applied to a residual demand, which can be negative
(see Section (2)).

dDt = a(b(t) − Dt)dt + δdW 0
t , D0 > 0, (4.11)

for given strictly positive constants a and δ, and a long-term mean b(t) which can vary with time, to
incorporate annual seasonal effects as in [2] :

b(t) = b0 + b1 cos(2πt − b2) −
2π

a
sin(2πt − b2) ,

1The process (Nd

T
− N

d

(T−t)−
)t≥0 as the same law as (Nd

t
)t≥0.
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where b0, b1 and b2 are (positive) constants. Then we set b̃(t) = b0 + b1 cos(2πt− b2). In this case, there are
explicit formulae for Q[DT ≤ x1|F0

t ] and Q[x1 < DT ≤ x1 + x2|F0
t ], for any 0 ≤ t ≤ T and x1, x2 ∈ R, given

by

Q[DT ≤ x1|F0
t ] = Φ


x1 − b̃(T ) − (Dt − b̃(t))e−a(T−t)

δ
√

1
2a

(
1 − e−2a(T−t)

)


 (4.12)

Q[x1 < DT ≤ x1 + x2|F0
t ] = Φ


 (x1 + x2) − b̃(T ) − (Dt − b̃(t))e−a(T−t)

δ
√

1
2a

(
1 − e−2a(T−t)

)


 (4.13)

−Φ


x1 − b̃(T ) − (Dt − b̃(t))e−a(T−t)

δ
√

1
2a

(
1 − e−2a(T−t)

)


 ,

where Φ denotes the cumulative distribution function of an N (0, 1) random variable.

Let T ∈ [T1, T2]. The next step consists in computing the law of the couple (S1
T , S2

T ) under each probability

Q
π(i)
T for any permutation π ∈ Π2 and any i = 1, 2, in order to get an explicit expression for the conditional

probability QT [πT = π|FW
t ] = Q[πT = π|FW

t ] appearing in formula (3.8). It can be easily done in this
setting by using multidimensional Girsanov’s theorem (see, e.g., Karatzas and Shreve’s book [21], Theorem
5.1 in Chapter 3). Indeed, if we denote σi the 2-dimensional vector (σi,1, σi,2) and we set

Zi
t :=

dQi
T

dQ
|FW

t
,

we get that

Zi
t = exp

{
σi · W̃t −

1

2
||σi||2t

}
, t ∈ [0, T ].

A simple application of Girsanov’s theorem provides the following Qi
T -dynamics of each price process Sj

for j = 1, 2 :

Sj
t = Sj

0 exp

{(
r − 1

2
||σj ||2 + σj · σi

)
t + σj · Ŵt

}
, t ∈ [0, T ],

where Ŵ = (Ŵ 1, Ŵ 2) is a 2-dimensional Brownian motion under Qi
T . The following result follows from

direct calculation:

Proposition 4.1 Let T2 > T1 > 0. Under our model assumptions, the price at time t of an electricity
forward contract with maturity T1 and delivery period [T1, T2], denoted by Ft(T1, T2), is given by the following
formula:

Ft(T1, T2) =
∑

π∈Π2

1

T2 − T1

∫ T2

T1

(A1(t, T ) + A2(t, T ))dT, (4.14)

where

A1(t, T ) :=
∑

{x1=mπ(1),Mπ(1)}

F
π(1)
t (T )Q

π(1)
T [πT = π|FW

t ]P[∆
π(1)
T = x1|∆t]Q[DT ≤ x1|F0

t ]

A2(t, T ) :=
∑

{x1=mπ(1),Mπ(1);

x2=mπ(2),Mπ(2)}

F
π(2)
t (T )Q

π(2)
T [πT = π|FW

t ]P[∆
π(1)
T = x1,∆

π(2)
T = x2|∆t]

×Q[x1 < DT ≤ x1 + x2|F0
t ]

9



where, for any π ∈ Π2 and i = 1, 2, the conditional probabilities Q[DT ≤ x1|F0
t ] and Q[x1 < DT ≤ x1+x2|F0

t ]
are given by (4.12) and (4.13), and

Q
π(i)
T [πT = π|FW

t ] = 1 − Φ(m(t)/γ(t)),

where m(t) and γ(t) are defined as follows:

m(t) = ln
S

π(1)
t

S
π(2)
t

−
(

1

2
||σπ(1) − σπ(2)||2 − (σπ(1) − σπ(2)) · σπ(i)

)
(T − t)

γ2(t) = ||σπ(1) − σπ(2)||2(T − t).

Proof. It suffices to combine the different formulae obtained in this section and observe that for any
π ∈ Π2 and i = 1, 2 we have

Q
π(i)
T [πT = π|F0

t ] = Q
π(i)
T [S

π(1)
T ≤ S

π(2)
T |FW

T ] = Q
π(i)
T [X ≤ 0|FW

t ]

where X := ln(S
π(1)
T /S

π(2)
T ). Under Q

π(i)
T ,

X = ln
S

π(1)
t

S
π(2)
t

+
2∑

j=1

(σπ(1),j − σπ(2),j)(Ŵ j
T − Ŵ j

t )

−
2∑

j=1

(
1

2
((σπ(1),j)2 − (σπ(2),j)2) − (σπ(1),j − σπ(2),j)σπ(i),j

)
(T − t).

Thus, conditioned to FW
t , the random variable X is normal with mean m(t) and variance γ2(t), where

m(t) = ln
S

π(1)
t

S
π(2)
t

−
2∑

j=1

(
1

2
((σπ(1),j)2 − (σπ(2),j)2) − (σπ(1),j − σπ(2),j)σπ(i),j

)
(T − t)

and

γ2(t) =

2∑

j=1

(σπ(1),j − σπ(2),j)2(T − t).

Notice that only the mean m(t) depends on π(i). Finally, we have

Q
π(i)
T [πT = π|FW

t ] = Q
π(i)
T [X ≤ 0|FW

t ]

= Q
π(i)
T [(X − m(t))/γ(t) ≤ −m(t)/γ(t)|FW

t ]

= Φ(−m(t)/γ(t)) = 1 − Φ(m(t)/γ(t)),

where Φ is the c.d.f. of a standard gaussian random variable. The proof is complete. �

5 Numerical results

To provide a coherent and tractable framework for numerical examples, we follow the two fuels model of the
previous section and we push further the simplification.

Data choice. We test the model on the French deregulated power market. The data cover the period
going from January, 1st, 2007 to December, 31st, 2008. For the demand process, we used the data provided
by the French TSO, RTE 2, on its web site. The hourly demand can be retrieved. The two technologies we

2RTE: www.rte-france.fr
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have chosen are natural gas plants and fuel combustion turbines. They are known to frequently determine
the spot price during peaking hours, since they are the most expensive ones. Moreover, a decomposition of
the production is provided by RTE for each type of generation asset (nuclear, hydrolic plants, coal and gas,
fuels, peak). Hence, it allowed us to deduce the residual demand addressed to gas and fuels technologies by
substracting the nuclear and hydrolic production to the demand. Since these two technologies are setting the
price during peaking hour, we focused our analysis on one particular hour of the day. We have chosen the
12th hour, which is usualy the first peaking hour of the day (the next one being 19th hour). The electricity
spot and futures prices are provided by Powernext. The CO2 prices are provided by PointCarbon data. For
fuels and gas prices, we used Platt’s data. Gas prices are quoted in GBP and fuels prices en USD. We used
the daily exchange rate to convertr to EUR.

Reconstruction of S1
t and S2

t . In our model, we need to rebuild the spot prices of the two technologies
S1

t and S2
t . To tackle with the problem of aggregating the numerous gas and fuel power plants into only two

technologies, we used the information provided by the French Ministry of Industry on electricity production
costs 3. It gives an average heat rate for each techology. We use also an average emission rate for CO2

emissions of each technology. Furthermore, for fuel power plants production costs, one need to take into
account the transportation cost from ARA zone the location of the plants. We used an average fixed cost.
Thus, we obtain the following expressions for the prices of the two technologies.

{
S1

t = 101.08 · Sg
t + 0.49 · Sco2

t

S2
t = 0.38 · Sf

t + 0.88 · Sco2
t + 13.44

where Sg, Sf and Sco2 denote respectively gas price (AC/therm) and fuel and carbon emission prices (AC/ton).

Remark 5 One can observe on historical data that the ordering between the two technologies never changes.
Fuel combustion turbines are known to be more expensive than gas plants. If the technologies prices follow
the dynamics given by (2.1), the probability to have different orders π(t) ∈ Π can be positive. Nevertheless,
for a reasonable choice of parameters, this probability can be made sufficiently small. Hence, we make the
approximation that ∀t, P(S1

t < S2
t ) = 1.

Estimation of electricity demand. The demand process given by expression (4.11) is estimated via
the Maximum Likelihood Principle. Let’s remind that the demand process is given by :

Dt = b̃(t) + Xt = b0 + b1 cos(2πt − b2) + Xt

where Xt is an Ornstein Uhlenbeck process with a known Likelihood expression (see [1], sec. 5). For a
discrete sample (Dt1 , . . . , Dtn

) observed at fixed times with a constant time step (ti − ti−1) = ∆t, i = 1 . . . n,
an expression of the Likelihood is

L(b0, b1, b2, a, δ,Dt1 , . . . , Dtn
) =

1

(
√

2πv)n
exp

(
− 1

2v

n−1∑

i=1

(
(Dti+1

− b̃(ti+1)) − ea∆t(Dti
− b̃(ti))

)2
)
,

where v = δ2 e2a∆t−1
2a

and b̃(t) is the same as below. We numerically maximize this expression to obtain an
estimation for the set of parameters. We then test the hypothesis that each parameter is null and finally
obtain the set given in Table 1. The parameter b̂2 is not significantly different from 0 with threshold 99 %,
thus it is fixed null.

Estimation of capacity process. For two technologies, the implementation of formula (2.2) is very
simple. We define the following variables:

R1 = min(D+
t ,∆1

t ), R2 = min((Dt − ∆1
t )

+,∆2
t ),

3Ministère de l’Industrie et des Finances, www.energie.minefi.gouv.fr/energie/electric/f1e elec.htm, see “Les coûts de
référence de la production électrique”
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b̂0 b̂1 b̂2 â δ̂
4814 905 0 87.55 17256

Table 1: Parameters estimation for the demand process.

Figure 1: Midday daily demand (day-ahead peakload demand from 01/01/2007 to 31/12/2008, RTE) and simulation
with fitted parameters. In black line, we showed the long trend b̃(t).

where Dt is here the sum of residual demands for the two technologies. The electricity spot price is defined
by the following rule: If R2 is positive, then we take P = S2, and if it is null, P = S1. However, in our
context of a crude approximation of the electricity spot market, the application of this rule to estimate the
capacity process ∆1 and ∆2 would lead to the opinion that only the second technology (the most expensive
one) is being used. Hence, to take into account all the complexity of the short-term bidding process involving
production constraints (start-up cost, ramp constraints, minimal runtime...), we introduce a threshold ∆̄1

such that the price is given by the second technology althought R1 = ∆̄1 < ∆1.
Noting that the inequality on R1 is equivalent to R2 > (∆1−∆̄1), the threshold ∆̄1 is obtained by solving

the following program:

min
(∆1−∆̄1)

n∑

i=1

R
(
Pti

− S1
ti
1{R2

ti
≤(∆1−∆̄1)} − S2

ti
1{R2

ti
>(∆1−∆̄1)}

)
.

The function R is a risk criterion: we tested two cases, the L1 and the L2 norms. The absolute error (L1)
showed a global minimum and the quadratic error (L2) showed a local minimum on a reasonable interval
(very high price peaks disturb the convergence). Thus, we use the L1 criterion to determine that the interme-
diate parameter ∆1 − ∆̄1 equals 610 MW. Eventually, we have new values for (Dt −∆1

t )1{Dt>∆1
t}

and since

we know exactly when Pt = Si
t , for i = 1, 2, the estimation of the model on historical data is straightforward

(see Figure 2).

Finally, we can estimate parameters for the capacity process ∆1
t as Dt = R1

t + R2
t is available. Theo-

retically, capacity thresholds mi and Mi are structural and are known to producers. But, since they vary

12



Figure 2: Midday daily prices and model fitted on historical data (POWERNEXT R© day-ahead peakload prices from
01/01/2007 to 31/12/2008).

over time due to maintenance scheduling and weather conditions, we estimate their constant counterparts.
Moreover, we had to deal with the fact that in our model ∆1 does take two values. Thus, we proceeded in
two steps. First, we filtered the data to define a ∆1

t taking only two values. Second, we estimated on that
filtered time serie the free parameters λu

1 and λd
1.

The capacity process ∆1 is partially hidden, since it is observed only if Dt > ∆1
t . Thus, we suppose that

we observe data at discrete times ti, and we calibrate the capacity levels by minimizing the quadratic error
between the series (∆1

ti
1{Dti

>∆1
ti
})i=1...n and two constant values, taking into account the two following

structural constraints:

M1 ≥ sup
t∈[0,T ],Dt≤∆1

t

Dt ; m1 ≥ inf
t∈[0,T ],Dt>∆1

t

Dt.

Solving this calibration problem, we deduce the transformed serie ∆̃1 which takes two values:

∆̃ti
= m11|∆ti

−m1|<|∆ti
−M1| + M11|∆ti

−m1|≥|∆ti
−M1|, i = 1 . . . n.

On that serie, we estimate λu
1 and λd

1 by observing the series (∆̃1
ti
1{Dti

>∆̃1
ti
})i=1...n. We denote (tk(i))i=1...n

the subgrid of the discrete times where tk(i) is the last time before ti when we observe (∆1
ti

)i=1...n. Then,

by the Bayes rule and the independence between Dt and ∆̃1
t , the probability Q

[
∆̃1

ti
= x|Dti

> ∆̃1
ti

, ∆̃1
tk(i)

]

for i = 1 . . . n is:

Qi [x] := Q

[
∆̃1

ti
= x|Dti

> ∆̃ti
, ∆̃1

tk(i)

]
=

P

[
∆̃1

ti
= x|∆̃1

tk(i)

]
Q [Dti

> x]

Q

[
Dti

> ∆̃1
ti
|∆̃1

tk(i)

] .

If follows that:

Qi [x] ≡
P

[
∆̃1

ti
= x|∆̃1

tk(i)

]
Q [Dti

> x]

P

[
∆̃1

ti
= M1|∆̃1

tk(i)

]
Q [Dti

> M1] + P

[
∆̃1

ti
= m1|∆̃1

tk(i)

]
Q [Dti

> m1]
.
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An expression of the Likelihood for the given sample is:

L(λu
1 , λd

1, ∆̃t1 , . . . , ∆̃tn
, Dt1 , . . . , Dtn

) =

n∏

i=1

(
Qi [x]

1
{∆̃1

ti
=x}

(1 − Qi [x])
(1−1

{∆̃1
ti

=x}
)
)1

{Dti
>∆̃1

ti
}

.

We maximize this expression to obtain intensity parameters. The parameters values of the capacity
process are summarized in Table 2. We notice that λu

1 > λd
1 means that P[∆̃1

T = M1] > P[∆̃1
T = m1] for a

sufficiently long maturity T .

M1 (MW) m1 (MW) λu
1 (y−1) λd

1 (y−1)
5708 4292 34.78 24.89

Table 2: Parameters for the capacity process.

A comparison with a naive econometric model. To evaluate the benefit of adding the demand and
production capacity to the modeling process, we compare it to a simple econometric approach. We propose
the alternative linear model:

Pt = α0 + α1S
1
t + α2S

2
t + ǫt, (5.15)

where ǫt is a Gaussian white noise. And, we compare the linear model (5.15) with our structural model
where we added free linear parameters and also a Gaussian noise to facilitate the comparison:

Pt = β0 +
∑

i=1,2

βiS
i
t1{Dt∈I

πt
i

(t)} + ǫt.

In both cases, we estimated the parameters using a quadratic loss minimization. The Table 3 as well
as Figure 3 shows that there is a positive gain to add demand and production capacity dynamics to the
electricity spot price modeling.

Price Corr MaxE MAE MSE MPE
Linear model 0.756 406.96 18.35 919.53 23.734%
Structural Model 0.702 385.23 17.54 786.20 23.956%

Table 3: Model comparison. Corr := correlation with historical price; MaxE := maximum error; MAE := mean
absolute error; MSE := mean square error; MPE=Mean percentage error. Errors are calculated w.r.t. historical data
(POWERNEXT R© day-ahead prices from 01/01/2007 to 31/12/2008).

Forward prices computation. Following the approximation given in Remark 5, in our two technologies
case, the expression (3.8) writes:

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

∑

x1=m1,M1

P[∆1
T = x1|∆t]

(
F 2

t (T ) + (F 1
t (T ) − F 2

t (T ))(Q[DT ≤ x1|F0
t ])

)
dT. (5.16)

We do not have forward prices F i
t (T ) at our disposal but only swap prices, i.e., values of 1

T2−T1

∫ T2

T1
F i

t (T )dT

for delivery periods [T1, T2]. Nevertheless, we make the approximation that:

F i
t (T ) ≈ 1

T2 − T1

∫ T2

T1

F i
t (T )dT, T ∈ [T1, T2] .
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This approximation can be considered rough for forward gas prices, since the spot market has daily
granularity; but, for fuel prices, it is quite reasonable since spot prices are limited to a value per month.

We calibrate the spot price model on the former period, till June 2008, and then backtest it on future
prices from July 2008 to February 2009. On that sufficiently wide intervall, we can focus on two assets: the
two quarters ahead and three quarter ahead futures, covering Spring 2009 (April, May, June) and Summer
2009 (July, August and September). The results are illustrated on Figure 4 and Figure 5. We see that, as
expected, the predicted price overestimates the real price. Indeed, we estimated the model on high peak
hours of each day, which is over the mean price most of the time. However we observe strong correlation
between predicted and historical price as shown in Table 4.

Asset Corr E [∆Ft(T1, T2)] V [∆Ft(T1, T2)] MaxE MAE MSE MPE
Spring 2009 0.958 -0.582 (-0.403) 2.409 (1.840) 49.624 24.815 851.981 28.297%
Summer 2009 0.939 -0.505 (-0.402) 2.174 (2.014) 30.928 11.995 213.484 12.695%

Table 4: Model anticipations results. Corr = correlation with historical price; E = yield mean (in parenthesis the real
asset value); V = yield variance; ME = maximum price error; MAE = mean absolute error; MSE = mean squared
error; MPE = mean percentage error. Errors are calculated w.r.t. historical data.)

Calibration on forward prices. The model gives two relations between power price and commodities
prices. As we estimated the parameters on spot prices, we can now do the same on forward prices. Using
formula (5.16), and under the previous assumptions on the prices F i

t (T ), i = 1, 2, the model can be
calibrated directly on forward prices. However, given the great number of parameters, we must assess that a
part of them is already known to solve the identification problem: The capacity levels M1 and m1, and the
parameters of the demand process Dt are now fixed. Thus, the probability P

[
∆1

T = x|∆t

]
for x = m1, M1,

which is integrated on the period [T1, T2], is the only free variable. The goal is to calibrate numerically this
variable on the following expression :

Ft(T1, T2) = f1(λ, ∆t, Dt)F
1
t (T1, T2) + (1 − f1(λ, ∆t, Dt))F

2
t (T1, T2)

Figure 3: Prices and econometric estimation of our model and a linear model (POWERNEXT R© day-ahead prices
from 01/01/2007 to 31/12/2008).
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Figure 4: Forward prices : model anticipations and market data (POWERNEXT R© Future prices on peak load
from 01/07/2008 to 27/02/2009, 169 obs.). Left = Spring 2009; right = Summer 2009.

where

f1(λ, ∆t, Dt) =
∑

x=m1,M1

1

T2 − T1

∫ T2

T1

P
[
∆1

T = x|∆1
t

]
Q [DT = x|Dt] dT.

These expressions depend on ∆t and Dt via the formulae (4.12) and (4.10). Thus, f1(λ, ∆t, Dt) actually
depends on t in an explicit manner. We can make a few approximations for an easier computation. Indeed,

calibration is made difficult due to the fact that e−(λd
1+λu

1 )(T−t) is very small when T ≫ t. Hence, if T ≫ t
or the parameter λ (relation (4.10)) and the parameter a (relation (4.12)) are large enough, we can make the
following approximations: P [∆T = x|∆t] ∼= limT↑∞ P [∆T = x] and Q [DT > x|Dt] ∼= limT↑∞Q [DT > x].
Then, the calibration is equivalent to a linear model estimation under constraints, whose coefficients are
f1(λ) and 1 − f1(λ).

Under that approximation, we obtain P [∆T = M1] and P [∆T = m], which give the expected failure
probabilities for the cheapest technology on the delivery period [T1, T2]. The computation gives a sound
result for calibration on Summer 2009 Future price (P [∆T = M1] = 0.865), but not for Spring 2009 Future,
which is clearly overestimated. We explain this drawback by the fact that we used the two most expensive
technologies to price electricity.

Spot price simulations. This structural model can be easily improved to provide simulation trajectories
with high spikes. If the residual demand Dt is negative, it corresponds to the case when nuclear power is
being the marginal unit of the system. Its cost is well-known to be constant over time (∼= 15AC/MWh). On
the hother hand, if the residual demand Dt exceeds the total capacity ∆1

t + ∆2
t of our two technologies, it

corresponds to situations when electricity has to be imported. In the French market, which is a structural
exporter, it corresponds to tension on the system and electricity is bought at high cost. This high cost is
arbritrarily fixed to a constant value (500AC/MWh). In order to simulate the commodities prices, we quickly
estimate on our first sample of data (January 2007 to December 2008) the multivariate diffusion process
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Figure 5: Forward yields : model anticipations and market data (POWERNEXT R© Future yields on peak load
from 01/07/2008 to 27/02/2009, 169 obs.). Up = Spring 2009; down = Summer 2009.

given by the relation (2.1). The Figure 6 shows that this simple device makes visible price spikes.

6 Conclusion and perspectives

Going back to the supposed storable fuels, the model presented in this paper provides a possible solution
to the question of the suitable risk-neutral probability for electricity prices dynamics. This first model
should be considered more like a methodology than a definitive model for electricity spot and forward prices.
Indeed, it offers many perspectives for further developments. We see three different areas to explore. First,
the supposed competitive equilibrium on the spot market could be changed to take into account possible
strategic bidding. This feature could provide a measure to the possible deviation of forward electricity
prices from their equilibrium due to frictions on the spot. Second, the spot market could be extended to a
multizonal framework to take into account the fact that electricity is exchanged between different countries
and that a spot price is formed in each country. Finally, the relation linking forward electricity prices to
forward fuels prices could be extended to a wider class of contingent claims. We hope to develop these points
in future papers.
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