
HAL Id: hal-00390623
https://hal.science/hal-00390623v1

Submitted on 2 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing branchwidth via efficient triangulations and
blocks

Fedor V. Fomin, Frédéric Mazoit, Ioan Todinca

To cite this version:
Fedor V. Fomin, Frédéric Mazoit, Ioan Todinca. Computing branchwidth via efficient triangulations
and blocks. Discrete Applied Mathematics, 2009, 157, pp.2726-2736. �10.1016/j.dam.2008.08.009�.
�hal-00390623�

https://hal.science/hal-00390623v1
https://hal.archives-ouvertes.fr

Computing branchwidth via efficient

triangulations and blocks

Fedor V. Fomin 1

Department of Informatics, University of Bergen PO Box 7800,
5020 Bergen, Norway
fomin@ii.uib.no

Frédéric Mazoit 2

LaBRI Université Bordeaux F-33405 Talence cedex, France
Frederic.Mazoit@labri.fr

Ioan Todinca

LIFO Université d’Orléans 45067 Orléans cedex 2, France
Ioan.Todinca@univ-orleans.fr

Abstract

Minimal triangulations and potential maximal cliques are the main ingredients for
a number of polynomial time algorithms on different graph classes computing the
treewidth of a graph. Potential maximal cliques are also the main engine of the
fastest so far exact (exponential) treewidth algorithm. Based on the recent results
of Mazoit, we define the structures that can be regarded as minimal triangulations
and potential maximal cliques for branchwidth: efficient triangulations and blocks.
We show how blocks can be used to construct an algorithm computing the branch-
width of a graph on n vertices in time (2

√
3)n · nO(1).

1 Introduction

Treewidth is one of the most basic parameters in graph algorithms and it plays
an important role in structural graph theory. Treewidth serves as the main
tools in Robertson and Seymour’s Graph Minors project [27]. It is well known

1 Additional support by the Research Council of Norway.
2 Additional support by the Université de Provence.

Preprint submitted to Elsevier Science 2 June 2009

that many intractable problems can be solved in polynomial (and very often
in linear time) when the input is restricted to graphs of bounded treewidth.
See [3] for a comprehensive survey.

The branchwidth is strongly related to treewidth. It is known that for any
graph G, bw(G) ≤ tw(G)+1 ≤ 1.5 ·bw(G). Both bounds are tight and achiev-
able on trees and complete graphs. Branchwidth was introduced by Robert-
son & Seymour and it appeared to be an even more appropriate tool than
treewidth for Graph Minor Theory. Branchwidth was also used in algorithms
solving TSP [7], SAT [1], and parameterized algorithms [11,10,14,15].

Since both parameters are so close, one can expect that the algorithmic be-
havior of the problems is also quite similar. However, this is not true. For
example, on planar graphs branchwidth is solvable in polynomial time [30]
while computing the treewidth of a planar graph in polynomial time is a long
standing open problem. Even more striking example was observed by Kloks et
al. in [21]. It appeared that computing branchwidth is NP hard even on split
graphs while the treewidth of a split graph can be found in linear time.

The algorithmic behavior of branchwidth on different graph classes is much less
investigated than treewidth. The main reason to this is that the powerful ma-
chinery developed for study treewidth and including minimal triangulations,
minimal separators, potential maximal cliques, cannot be applied to branch-
width. As we already mentioned, the branchwidth of a planar graph can be
found in polynomial time [30] (see also [18]) but is NP complete on general
graphs. Later Kloks et al. [21] showed that branchwidth is NP complete when
restricted to split and bipartite graphs but is computable in polynomial time
on interval graphs. (See also the recent work of Paul and Telle [26].) Recently
Mazoit [23] proved that the branchwidth of a circular arc graph can be solved
in polynomial time.

In his PhD thesis [22], Mazoit investigated how the machinery that worked fine
for treewidth (minimal triangulations and potential maximal cliques) can be
modified to be used for branchwidth. Based on the approach from [22], we de-
velop a number of structural results to design an exact (exponential) algorithm
for branchwidth. Let us remark, that independently, Paul and Telle [26] have
initiated a research targeting similar goals and obtained a number of struc-
tural results that are similar to ours. In particular, the notion of k-troika [26]
is similar to the result on block-branchwidth obtained in Lemma 20. Paul and
Telle use k-troika to obtain faster (and simpler) algorithm for interval graphs
and show how to generalize such an algorithm to chordal graphs with clique
trees having a polynomial number of sub-trees.

The last decade has led to much research in fast exponential-time algorithms.
Examples of recently developed exponential algorithms are algorithms for

2

Maximum Independent Set [20,28,12], (Maximum) Satisfiability [9,19,25,29,32],
Coloring [2,6], and many others (see the recent survey written by Woeg-
inger [33] for an overview). There are several relatively simple algorithms
based on dynamic programming computing the treewidth of a graph on n
vertices in time 2n · nO(1) which with more careful analysis can be sped-up to
O(1.89n) [13,31]. No such algorithm is known for branchwidth.

Thus treewidth seems to be more simple problem for design of exponential
time algorithms than branchwidth. The explanation to that is again that all
known exact algorithms for treewidth exploit the relations between treewidth,
minimal triangulations, minimal separators and potential maximal cliques.
Branchwidth also can be seen as a triangulation problem, however, while for
treewidth one can work only with minimal triangulations the situation with
branchwidth is more complicated. Luckily enough we still can use some specific
triangulations, which we call efficient triangulations. The efficient triangula-
tions were first used, under a different name, in [4]. In this paper we define
the analogue of potential maximal cliques for branchwidth, we call these struc-
tures blocks. We believe that blocks can be useful to work with branchwidth in
the same way as potential maximal cliques for treewidth [5,13]. To exemplify
that, we show how blocks can be used to compute branchwidth of a graph
on n vertices in time (2

√
3)n · nO(1). Note that this is the fastest known exact

algorithm for this problem.

The paper is organized as follows. After giving the basic definitions, we intro-
duce in Section 3 the notions of efficient triangulations and block-branchwidth.
They allow us to characterize the branchwidth by a formula very similar to
one of the classical definitions for treewidth. Using this result, in Section 4
we adapt an algorithm initially designed for treewidth, for the computing of
branchwidth. Section 5 is devoted to the computation of block-branchwidth.
Eventually, we discuss some open questions.

2 Basic definitions

We denote by G = (V, E) a finite undirected and simple graph with |V | = n
vertices and |E| = m edges. Throughout this paper we use a modified big-Oh
notation that suppresses all polynomially bounded factors. For functions f
and g we write f(n) = O∗

(

g(n)
)

if f(n) = g(n) · nO(1).

For any non-empty subset W ⊆ V , the subgraph of G induced by W is denoted
by G[W]. If S is a set of vertices, we denote by G − S the graph G[V \ S].

The neighborhood of a vertex v is N(v) =
{

u ∈ V : {u, v} ∈ E
}

and for a

vertex set S ⊆ V we put N(S) =
⋃

v∈S N(v) \ S. A clique C of a graph G is

3

a subset of V such that all the vertices of C are pairwise adjacent. Let ω(G)
denote the maximum clique size of G.

A graph G is chordal if every cycle of G with at least four vertices has a chord,
that is an edge between two non-consecutive vertices of the cycle. Consider
an arbitrary graph G = (V, E), and a supergraph H = (V, F) of G (i.e.
E ⊆ F). We say that H is a triangulation of G if H is chordal. Moreover, if
no strict sub-graph of H is a triangulation of G, then H is called a minimal
triangulation.

The notion of branchwidth is due to Robertson and Seymour [27]. A branch
decomposition of a graph G = (V, E) is a pair (T, τ) in which T = (VT , ET)
is a ternary tree (i.e. each node is of degree one or three) and τ is a function
mapping each edge of G on a leaf of T . The vertices of T will be called nodes
and its edges will be called branches. Let T1(e) and T2(e) be the sub-trees of T
obtained from T by removing e ∈ ET . We define the middle set of e, mid(e), as
the set of vertices of G both incident to edges mapped on leaves of T1(e) and

T2(e). The maximum of
{

|mid(e)|, e ∈ ET

}

, is called the width of the branch

decomposition and is denoted by width(T, τ). The branchwidth of a graph G
(

bw(G)
)

is the minimum width over all branch decompositions of G. Note
that the definitions of branch decomposition and branch-width also apply
to hypergraphs. As pointed by Robertson and Seymour [27], the definition
of branch decomposition can be relaxed. A relaxed branch decomposition of
G = (V, E) is a pair (T, τ) where T is an arbitrary tree of maximum vertex
degree at most three and τ maps each edge of G to at least one leaf of T . The
middle sets of the branches and the width of the decomposition are defined as
before. From any relaxed branch decomposition one can construct a branch
decomposition of the same graph without increasing the width.

The branchwidth is strongly related to a well-known graph parameter intro-
duced by Robertson and Seymour, namely the treewidth. One of the equivalent
definitions for the treewidth of a graph G, tw(G), is

tw(G) = min
{

ω(H) − 1 | H is a triangulation of G
}

.

Robertson and Seymour show that the two parameters differ by at most a
factor of 1.5. More precisely, for any graph G we have bw(G) ≤ tw(G) + 1 ≤
1.5 bw(G). In particular, if G is a complete graph, its treewidth is n−1, while
its branchwidth is ⌈2n/3⌉ (see [27]). Clearly, when computing the treewidth
of a graph we can restrict to minimal triangulations. This observation and
the study of minimal triangulations of graphs led to several results about
treewidth computation, including an exact algorithm in O∗(1.89n) time.

The branch decompositions of a graph can also be associated to triangulations.
Indeed, given a branch decomposition (T, τ) of G = (V, E), we associate to

4

each x ∈ V the sub-tree Tx of T covering all the leaves of T containing edges
incident to x. It is well-known that the intersection graph of the sub-trees
of a tree is chordal [16]. Thus the intersection graph of the trees Tx is a
triangulation of G. We denote such a triangulation by H(T, τ). Note that for
each branch e ∈ ET , mid(e) is the set of vertices x such that e belongs to
Tx. In particular, mid(e) induces a clique in H(T, τ), not necessarily maximal.
(We shall point out later that, for each maximal clique Ω of H(T, τ), there
exists a node u of T such that u ∈ Tx for all x ∈ Ω.)

Lemma 1 Let (T, τ) be a branch decomposition of G. There is a branch de-
composition (T ′, τ ′) of H(T, τ) such that:

(1) T is a sub-tree of T ′.
(2) For each branch of T , its middle sets in (T, τ) and (T ′, τ ′) are equal.
(3) width(T ′, τ ′) = width(T, τ).

In particular, if (T, τ) is an optimal branch-decomposition of G, we have

bw
(

H(T, τ)
)

= bw(G).

PROOF. If the width of (T, τ) is at most one, then every edge of G has
at least one endpoint of degree one. In this case, it is easy to show that
G = H(T, τ), and thus we put (T ′, τ ′) = (T, τ).

Suppose that the width of (T, τ) is at least two. For each edge {x, y} of
E(H(T, τ)) \ E(G), the sub-trees Tx and Ty have a branch e in common.
We divide the branch e by a node v (i.e. we put on e a vertex v of degree two),
add a leaf w adjacent to v and map the edge {x, y} on w. Since the width of
(T, τ) is at least two, this does not increase the width.

If (T, τ) is optimal, then bw(H(T, τ)) ≤ bw(G). Conversely, since G is a sub-
graph of H(T, τ), bw(G) ≤ bw(H(T, τ)) and Lemma follows. ✷

For treewidth, triangulations appeared to be a very convenient and powerful
tool. One of the main properties of triangulations for treewidth which was
heavily exploited in numerous algorithms is the following fact: For any graph
G there is a minimal triangulation H of G such that tw(G) = tw(H). By
Lemma 1, there is a similar relation for branch decomposition. However, and
here is the first big difference to treewidth, optimal branch decompositions
may never lead to minimal triangulations.

Proposition 2 Let K−
9 be the graph obtained from the complete graph on 9

vertices by removing a unique edge {a, b}. For every optimal branch-decompo-
sition (T, τ) of K−

9 , H(T, τ) is not a minimal triangulation of K−
9 .

5

PROOF. We show that for every optimal branch-decomposition (T, τ) of
K−

9 , the vertices a and b are adjacent in H(T, τ). Since K−
9 is chordal, this

would imply that H(T, τ) is not a minimal triangulation of K−
9 .

Since the branchwidth of a graph on n vertices is at most ⌈2n/3⌉ (see [27]),
we have that bw(K−

9) ≤ 6. Let (T, τ) be an optimal decomposition of K−
9 .

Assume that the vertices a and b are not adjacent in H(T, τ). Then there is a
branch e of T separating, in T , the sub-trees Ta and Tb. By Lemma 1, every
path joining a and b in H(T, τ) intersects the vertex subset mid(e). Therefore
mid(e) separates a and b in the graph G. There are at least 7 vertex disjoint
paths connecting a and b in K−

9 . By Menger’s theorem, mid(e) has at least 7
vertices, contradicting the fact that the width of (T, τ) is at most 6. ✷

Since optimal branch decompositions do not necessarily lead to minimal trian-
gulations, many existing tools that make use of minimal triangulations can not
be applied on branchwidth. The second important difference with treewidth
is that the branchwidth problem remains NP-hard even for a restricted class
of chordal graphs, the split graphs [21] — for which the treewidth problem is
trivial. Nevertheless, our technique for computing the branchwidth relies on
a structural result stating that, for any graph G, there is an optimal branch
decomposition (T, τ) such that H(T, τ) is an efficient triangulation of G. The
efficient triangulations, defined in the next section, behave somehow similar
to minimal triangulations.

3 Branchwidth and efficient triangulations

Let a and b be two non adjacent vertices of a graph G = (V, E). A set of
vertices S ⊆ V is an a, b-separator if, in the graph G − S, a and b in are
in different connected components. S is a minimal a, b-separator if no proper
subset of S is an a, b-separator. We say that S is a minimal separator of
G if there are two vertices a and b such that S is a minimal a, b-separator.
A connected component C of G − S is a set of vertices such that G[C] is a
maximal connected subgraph of G−S. We denote by C(S) the set of connected
components of G − S and by ∆G the set of all minimal separators of G.

Definition 3 A triangulation H of G is efficient if

(1) each minimal separator of H is also a minimal separator of G;
(2) for each minimal separator S of H, the connected components of H − S

are exactly the connected components of G − S.

6

The efficient triangulations were introduced in [4] (actually the authors used
to call them “minimal triangulations”). In particular, all the minimal trian-
gulations of G are efficient [24].

Definition 4 A (possibly relaxed) branch decomposition (T, τ) of G = (V, E)
respects a set of vertices S ⊆ V if there is a branch e of T such that S ⊆
mid(e).

One of the main ingredients of our result is the following result of Mazoit.

Proposition 5 ([22,23]) There is an optimal branch decomposition (T, τ)
of G such that the chordal graph H(T, τ) is an efficient triangulation of G.
Moreover, (T, τ) respects each minimal separator of H.

Before giving the next definition, let us provide some intuition. We want to
define a structure in a graph G that corresponds to a maximal clique in some
efficient triangulation of G. The following properties of maximal cliques in
chordal graph are important for our purposes.

Proposition 6 ([5]) Let H be a chordal graph and Ω be a maximal clique of
H. Then for each connected component Ci of H − Ω,

• the neighborhood Si = N(Ci) is a minimal separator;
• Ω \ Si is non empty and is contained in a connected component of H − Si.

Definition 7 A set of vertices B ⊆ V of G is called a block if, for each
connected component Ci of G − B,

• its neighborhood Si = N(Ci) is a minimal separator;
• B \ Si is non empty and is contained in a connected component of G − Si.

We say that the minimal separators Si border the block B and we denote by
S(B) the set of minimal separators that border B.

Let BG denote the set of blocks of G. Note that V is a block with S(V) = ∅.

By Proposition 6, every maximal clique of a chordal graph is a block of H. We
prove that if H is an efficient triangulation of G, then every maximal clique
Ω of H is a block of G.

Lemma 8 Let H be an efficient triangulation of G. Then every maximal
clique Ω of H is a block of G. Conversely, for each block B of G, there is
an efficient triangulation H(B) of G such that B is a maximal clique in H.

7

PROOF. Let H be an efficient triangulation of G. By Proposition 6 every
maximal clique Ω of H is a block. By definition of efficient triangulations, a
block of H is also a block of G.

Conversely, let B be a block of G and let C1, . . . , Cp be the connected com-
ponents of G − B. Also let Si = N(Ci), for all 1 ≤ i ≤ p. Let H(B) be the
graph obtained from G by turning B and each set Si ∪ Ci into a clique. The
minimal separators of H(B) are exactly S1, . . . , Sp. Moreover, for each Si, the
connected components of H − Si are exactly the components of G − Si. ✷

Note that the treewidth of a graph can be expressed by the following equation:

tw(G) = min
H triangulation of G

max{|Ω| − 1 | Ω maximal clique of H}. (1)

The minimum can be taken over all minimal triangulations H of G. A similar
formula can be obtained for branchwidth (see theorem 13 or [22]).

Definition 9 (block-branchwidth) Let B be a block of G and K(B) be the
complete graph with vertex set B. A relaxed branch decomposition of K(B)
respecting each minimal separator S ∈ S(B) is called a block-branch decom-
position of the block B. The block-branchwidth bbw(B) of B is the minimum
width over all the block-branch decompositions of B.

Equivalently, bbw(B) is the branchwidth of the hypergraph obtained from the
complete graph with vertex set B by adding a hyperedge S for each minimal
separator S bordering B. The block-branchwidth will allow us to express the
branchwidth of G by a formula similar to Equation 1.

Before stating the main theorem of this section, let us make some easy obser-
vations.

Definition 10 Let G = (V, E) be a graph and G1 and G2 be two sub-graphs
of G such that G = G1 ∪G2. Let (T1, τ1) and (T2, τ2) be relaxed branch decom-
positions of G1 and G2. We say that a relaxed branch-decomposition (T, τ) of
G is obtained by gluing a branch e1 of T1 and e2 of T2, if (T, τ) is obtained
from (T1, τ1) and (T2, τ2) by putting a vertex vi of degree two on ei, i = 1, 2,
and by adding a new edge {v1, v2}.

The proof of the next lemma follows from the definition of gluing.

Lemma 11 Let (T, τ) be the relaxed branch-decomposition obtained by gluing
the branches e1 and e2 of decompositions (T1, τ1) and (T2, τ2). Suppose that
one of the following holds:

• mid(T1,τ1)(e1) ⊆ mid(T2,τ2)(e2), or

8

• mid(T1,τ1)(e1) ∩ mid(T2,τ2)(e2) = V1 ∩ V2.

Then width(T, τ) = max
{

width(T1, τ1), width(T2, τ2)
}

. Moreover, for each

branch of T1 (resp. of T2), its middle set in (T, τ) is the same as in (T1, τ1)
(resp. (T2, τ2)).

Lemma 12 Let (T, τ) be a relaxed branch decomposition of a graph G =
(V, E) and let S1, S2, . . . , Sp be a set of cliques of G such that (T, τ) respects
each Si. Let W ⊆ V be a set of vertices containing S1, S2, . . . , Sp. Then there
is a relaxed branch decomposition (T ′, τ ′) of G[W], such that

• (T ′, τ ′) respects each set Si;
• width(T ′, τ ′) ≤ width(T, τ).

PROOF. A relaxed branch decomposition of G[W] can be obtained from
(T, τ) by removing edges that are not in G[W]. However, this decomposition
does not necessary respect all sets Si. So we apply the following trick (see
Fig. 1).

a

bc

de

o

A graph G

bc

ob

ocoa
ac

ae

ce

ad

bd
ab

{abc}

A branch-decomposition (T, τ) of G

bc

ac
ae

ce

ad

bd
ab

A branch-decomposition (T ′, τ ′)
of G − {o}

bc

ab

bcac
ac

ae

ce

ad

bd
ab

{abc}

A branch-decomposition (T ′′, τ ′′)
of G − {o}

The branch-decomposion (T, τ) respects the clique Ω = {a, b, c}. The trimed
branch-decomposition (T ′, τ ′) of G − {o} does not respect it but the relaxed
decomposition (T ′′, τ ′′) obtained by adding a new branch does.

Fig. 1. Branch decomposition of G[W] respecting the set Si

9

For each Si, let (Ti, τi) be an arbitrary branch decomposition of the clique
K(Si) with vertex set Si. We glue this decomposition to T on the branch ei of
T which respects Si. That is, we add a node on ei and a node on some branch of
Ti and make them adjacent. We denote this new edge by e′i. The middle set of
e′i is exactly Si. In this way we obtain a relaxed branch decomposition (T ′′, τ ′′)
of G of the same width as (T, τ). By removing from T ′′ all the leaves that do
not correspond to edges in G[W], we obtain a relaxed branch decomposition
(T ′, τ ′) of G[W]. Every edge {x, y} of G[Si] is mapped on some leaf of T and
on some leaf of Ti, thus every vertex of Si is in the middle set of e′i in the
relaxed branch decomposition (T ′, τ ′). Thus (T ′, τ ′) respects all sets Si. By
Lemma 11, width(T ′, τ ′) ≤ width(T, τ). ✷

The following result is taken from Mazoit’s PhD thesis, we provide the proof
here for completeness.

Theorem 13 ([22])

bw(G) = min
H efficient triangulation of G

max{bbw(Ω) | Ω maximal clique of H}. (2)

PROOF. Let (T, τ) be an optimal branch decomposition of G such that
H = H(T, τ) is an efficient triangulation of G. Such a decomposition exists by
Proposition 5. We prove that bbw(Ω) ≤ bw(G) for each maximal clique Ω of
H. Construct, like in Lemma 1 a branch decomposition (T ′, τ ′) of H having the
same width as (T, τ). Let Ω be a maximal clique of G. By Lemma 8, Ω is a block
of G and by Proposition 5 each minimal separator bordering Ω is contained
in the middle set of some branch of T , and thus of T ′. By Lemma 12, there
is a relaxed branch decomposition (T ′′, τ ′′) of G[Ω] respecting each minimal
separator on the border of Ω, which is a block-branch decomposition of Ω.

Conversely, let H be an efficient triangulation of G. We claim that bw(G) ≤
max{bbw(Ω) | Ω maximal clique of H}. For each maximal clique Ω of G, let
(TΩ, τΩ) be an optimal block-branch decomposition of the block Ω. We glue
these decompositions into a relaxed branch decomposition of H. For this pur-
pose we use a clique tree associated to the chordal graph graph H (see e.g. [17]).
A clique tree is defined by a tree T = (VT , ET) and a one-to-one mapping be-
tween the nodes of T and the maximal cliques of H such that, for each Ω, Ω′

maximal cliques of H, their intersection is contained in all the cliques asso-
ciated to nodes on the unique path from uΩ to uΩ′ in T (uΩ and uΩ′ denote
the nodes associated to Ω and Ω′ respectively). Moreover, for each branch
e = {uΩ, uΩ′} of T , S = Ω∩Ω′ is a minimal separator bordering Ω and Ω′ [17].
Let eS (resp. e′S) be a branch of TΩ (resp. TΩ′) whose middle set contains S.
We obtain a relaxed branch decomposition of H by gluing the branches eS

and e′S, for all branches {uΩ, uΩ′} of T . By the properties of the clique tree,

10

the middle set of each newly created edge connecting TΩ and TΩ′ is exactly
S = Ω ∩ Ω′. Consequently, the middle sets of the branches contained in some
TΩ do not change. Hence bw(H) ≤ max{bbw(Ω) | Ω maximal clique of H}.
Since G is a sub-graph of H, we have that bw(G) ≤ bw(H) and Theorem
follows. ✷

4 Computing the branchwidth from the block-branchwidth

A potential maximal clique of a graph G is a set of vertices Ω such that there
is a minimal triangulation H of G in which Ω introduces a maximal clique [5].
Using the Equation 1, Bouchitté and Todinca show that, given a graph and
all its potential maximal cliques, the treewidth of the graph can be computed
in polynomial time. The result is refined in [13], where it is shown that for a
given a graph G and the set ΠG of its potential maximal cliques, there is an
algorithm computing the treewidth of G in O(n3|ΠG|) time.

According to Lemma 8, a vertex subset Ω of G can be a maximal clique of an
efficient triangulation H of G if and only if Ω is a block of G. Hence, in our
case the blocks play the same role as the potential maximal cliques in [13].

Using Equation 2 instead of Equation 1 and blocks instead of potential max-
imal cliques, we transform the algorithm from [13] into an algorithm taking
G, the set BG of all its blocks and the block-branchwidth of each block B, and
computing the branchwidth of G in O(n3|BG|) time.

Given a minimal separator S of G and a connected component C of G − S,
let R(S,C) denote the graph obtained from G[S ∪ C] by completing S into a
clique.

Definition 14 We denote by bw+(S, G) the minimum width over all relaxed
branch decompositions of G respecting S.

Our algorithm computes bw+
(

S,R(S,C)
)

, for each pair (S,C) where S is a
minimal separator of G and C is a connected component of G − S.

The result claimed in the following lemma is similar to Corollary 4.5 in [5].

Lemma 15 For any graph G,

bw(G) = min
{

⌈2n/3⌉, min
S∈∆G

max
C∈C(S)

bw+
(

S,R(S,C)
)

}

.

11

PROOF. Clearly bw(G) ≤ ⌈2n/3⌉. To prove

bw(G) ≤ min
S∈∆G

max
C∈C(S)

bw+
(

S,R(S,C)
)

,

let S be a minimal separator of G. For each connected component Ci of
G − S let (TCi

, τCi
) a relaxed branch decomposition of R(S,Ci), such that

S is contained in the middle set of some branch eCi
. Note that G is the union

of the subgraphs R(S,C1), . . . , R(S,Cp). By iteratively gluing the branch-
decompositions (TCi

, τCi
) along the branches eCi

, we obtain a relaxed branch-
decomposition (T, τ) of G. Morevover, since for every i and j, mid(eCi

) ∩
mid(eCj

) = S = V
(

R(S,Ci)
)

∩ V
(

R(S,Cj)
)

. By Lemma 11, the width of

(T, τ) is at most the maximum width of (TCi
, τCi

), over all components Ci of
G − S, hence bw(G) is at most this maximum.

Conversely, let (T, τ) be an optimal branch decomposition of G inducing an
efficient triangulation H(T, τ). If H(T, τ) is the complete graph then bw(G) =
bw(H(T, τ)) = ⌈2n/3⌉. Otherwise let S be a minimal separator of H. By the
definition of an efficient triangulation, S is also a minimal separator of G and
every connected component C of H−S is also a component of G−S. We show
that bw+

(

S,R(S,C)
)

≤ bw(G). By Proposition 5, S is in the middle set of

some branch of T . Recall that S is a clique in H(T, τ). Let H ′ be the subgraph
of H(T, τ) induced by S∪C. By Lemma 12, H ′ has a relaxed branch decompo-
sition (T ′, τ ′) of width at most bw(G), such that S is contained in the middle
set of some branch of T ′. Since R(S,C) is a subgraph of H ′, we have that by
Lemma 12, there is a relaxed branch decomposition of R(S,C) respecting S, of

width at most width(T ′, τ ′). Thus bw+
(

S,R(S,C)
)

≤ width(T ′, τ ′) ≤ bw(G).

We conclude that bw(G) ≥ maxC∈C(S) bw+
(

S,R(S,C)
)

. ✷

The next result is the analogue of Corollary 4.5 in [5].

Lemma 16 Let S be a minimal separator of G and C be a component of
G − S. Suppose that S ′ = N(C) is strictly contained in S. Then

bw+
(

S,R(S,C)
)

= max
{

|S|, bw+
(

S ′, R(S ′, C)
)

}

.

PROOF. Note that since R(S ′, C) is a subgraph of R(S, C), by lemma 12,

bw+
(

S ′, R(S ′, C)
)

≤ bw+
(

S,R(S,C)
)

. By definition, bw+
(

S,R(S,C)
)

≥ |S|,
hence

bw+
(

S,R(S,C)
)

≥ max
{

|S|, bw+
(

S ′, R(S ′, C)
)

}

.

Let (T ′, τ ′) be a relaxed branch decomposition of R(S ′, C) with S ′ being con-
tained in the middle set of a branch e′S. Take an optimal relaxed branch

12

decomposition (TS, τS) of the clique K(S). Let es be an branch of (TS, τS). By
gluing (T ′, τ ′) and (T, τ) on the branches eS and e′S, we obtain the relaxed
branch decomposition of R(S ′, C) respecting S. By Lemma 11, the width of

this decomposition does not exceed max{|S|, bw+
(

S ′, R(S ′, C)
)

}. ✷

The following lemma from [5] uses minimal triangulations and potential max-
imal cliques but despite of that its proof also holds for efficient triangulations
and blocks.

Lemma 17 (Lemma 4.6 in [5]) Let S be a minimal separator of a graph
G and let C be a connected component of G − S such that N(C) = S. For
every efficient triangulation H(S,C) of R(S,C), there is a maximal clique Ω
of H(S,C) such that S ⊂ Ω and Ω is a block of G.

The following lemma is similar to Corollary 4.8 in [5].

Lemma 18 Let S be a minimal separator of G and C be a component of
G − S such that S = N(C). Then

bw+
(

S,R(S,C)
)

= min
blocks Ω s.t. S⊂Ω⊆S∪C

max
{

bbw(Ω), bw+
(

Si, R(Si, Ci)
)

}

where Ci are the components of G − Ω contained in C and Si = N(Ci).

PROOF. Let Ω be a block of G such that S ⊂ Ω ⊆ S∪C. Consider an optimal
block-branch decomposition (TΩ, τΩ) of Ω and for each minimal separator Si,
let fi be branch of TΩ whose middle set contains Si. Let (Ti, τi) an optimal
relaxed branch decomposition of R(Si, Ci) respecting Si. Denote by ei the
branch of Ti whose middle set contains Si. We glue (TΩ, τΩ) to each (Ti, τi) on
the branches fi and ei. Hence we obtain a relaxed branch decomposition of
R(S,C) respecting S, of width at most max(bbw(Ω), bw(R(Si, Ci))), over all
components Ci.

Conversely, we prove first that there is an optimal relaxed branch decomposi-
tion (T, τ) of R(S,C), respecting S, such that H(T, τ) is an efficient triangu-

lation of R(S,C). Let k = bw+
(

S,R(S,C)
)

(in particular k ≥ |S|). Consider

a complete graph Kd = (Vd, Ed) with ⌊3k/2⌋ vertices such that S ⊆ Vd and
Vd∩C = ∅. Let G′ be the union of Kd and R(S,C). We have that bw(G′) = k.
Clearly bw(G′) ≥ bw(Kd) ≥ k. To prove that bw(G′) = k, it is sufficient
to find a relaxed branch decomposition of Kd respecting S because then this
decomposition can be glued with an optimal relaxed branch decomposition of
R(S,C) respecting S. So let A, B, C be three subsets of Vd of size at most k,
such that S ⊆ A and every vertex of Vd is in exactly two of the subsets (hence
each edge of Kd has both endpoints in one of the sets). These sets exist by the

13

fact that |Vd| = ⌊3k/2⌋. Consider three branch decompositions correspond-
ing to the complete graphs Kd[A], Kd[B] and Kd[C]. Add a new node u and,
for each of the three decompositions, make u adjacent to the middle of some
branch. Note that every middle set of the new decomposition is contained in
A, B or C. Also the branch linking u to the decomposition of G′[A] has middle
set A ∩ (B ∪ C) = A, so this relaxed branch decomposition respects S and
bw(G′) = k as claimed.

Let now (T ′, τ ′) be an optimal branch decomposition of G′ such that H(T ′, τ ′)
is an efficient triangulation of G′ (see Proposition 5). We claim that S is a
minimal separator of H(T ′, τ ′) and therefore of G′. Note that Vd is a maximal
clique in H(T ′, τ ′). (Otherwise H(T ′, τ ′) has a clique of size strictly larger
than ⌊3k/2⌋, contradicting the fact that its branchwidth is k.) Let C ′ be the
component of H(T ′, τ ′) − Vd containing C and let S ′ be the neighborhood of
C ′ in H(T ′, τ ′). Since S ′ is a minimal separator of the efficient triangulation
H(T ′, τ ′), S ′ is also a minimal separator of G′. By construction, the only
minimal separator of G′ contained in Vd is exactly S. Then the subgraph HR

induced by S∪C in H(T ′, τ ′) is an efficient triangulation of R(S,C). Moreover,
by Proposition 5, (T ′, τ ′) respects S. By Lemma 12, we can construct from
(T ′, τ ′) a relaxed branch decomposition (T, τ) respecting S and such that
H(T, τ) = HR. Hence H(T, τ) is an efficient triangulation of R(S,C).

By Lemma 17, there is a maximal clique Ω of H(T, τ) such that S ⊂ Ω ⊆ S∪C.
By Lemma 8, Ω is a block of G. By restricting, like in Lemma 12, the relaxed
branch decomposition (T, τ) to each of the graphs R(Si, Ci) we deduce that

bw+
(

S,R(S,C)
)

≤ width(T, τ). Similarly we restrict (T, τ) to a block-branch

decomposition of Ω and conclude that bbw(Ω) ≤ width(T, τ). ✷

The algorithm for computing the branchwidth of G is shown in Figure 2. It can
be seen as the translation of the algorithm from [13] to efficient triangulations
and blocks by making use of Lemmata 15, 16, 17 and 18.

Theorem 19 Given a graph G and the list BG of all its blocks together with
their block-branchwidth, the branchwidth of G can be computed in O(nm|BG|)
time.

PROOF. The first for loop of the algorithm simply applies Lemmata 16
and 18 in order to compute bw+

(

S,R(S,C)
)

for each minimal separator S
of G and each component C of G − S. We only need to notice that, in each
of these lemmata, in order to compute bw+

(

S,R(S,C)
)

we need to know the

similar quantity for couples (S ′, C ′) of strictly smaller size.

Let us discuss an implementation of the algorithm running in O∗(|BG|) time.

14

Algorithm computing the branchwidth of a graph

Input: G, all its blocks and all its minimal separators
Output: bw(G)
begin

compute all the couples (S,C) where S is a minimal separator and
C a component of G − S;

sort them by the size of S ∪ C
for each (S,C) taken in increasing order

if S ′ = N(C) is strictly contained in S

bw+
(

S,R(S,C)
)

= max
{

|S|, bw+
(

S ′, R(S ′, C ′)
)}

else

bw+
(

S,R(S,C)
)

:= bbw(S ∪ C)

for each block Ω with S ⊂ Ω ⊆ S ∪ C
compute the components Ci of G − Ω contained in C and

the sets Si = N(Ci)

bw+
(

S,R(S,C)
)

:= min
{

bw+
(

S,R(S,C)
)

,

max
i

{

bbw(Ω), bw+
(

Si, R(Si, Ci)
)}

}

end for
end if

end for
let ∆G be the set of minimal separators of G

bw(G) := min{⌈2n/3⌉, min
S∈∆G

max
C∈C(S)

bw+
(

S,R(S,C)
)

}
end

Fig. 2. Algorithm computing the branchwidth of a graph

To store and manipulate the minimal separators, blocks and couples (S,C),
we use data structures that allow to search and to insert an element in O(n)
time.

During a preprocessing step, we realize the following operations.

• Compute the list of all couples (S,C) such that S is a minimal separator
and C is a component of G−S. For each minimal separator S, we compute
the components of G − S and store a pointer towards each couple of type
(S, C). Given a minimal separator S, there are at most n couples associated
to it, so at most n pointers to be stored. Then, for each couple (S,C) such
that S ′ = N(C) is strictly contained into S, we store a pointer from (S,C)
to (S ′, C ′). The last operation requires O(n) time, that is the time to search
for (S ′, C) into the list of couples. Hence the whole step costs O(m|∆G|)
time.

• For each block Ω, compute the components Ci of G − Ω and then store a
pointer from Ω to the couple (N(Ci), Ci). There are at most n such blocks.

15

This computation can be done in O(n2) time for each block, so globally in
O(n2|BG|) time.

• Compute all the good triples (S,C, Ω), where (S,C) is a couple with S =
N(C) and Ω is a block such that S ⊂ Ω ⊆ S ∪ C. Moreover, for each good
triple we store a pointer from (S,C) to Ω. Note that S ∈ S(Ω) and, by
definition of a block, there are at most n minimal separators S ⊂ Ω in its
border. For each such S there is exactly one component G−S intersecting Ω
(in particular there are at most n|BG| good triples). For each component C ′

of G−Ω we take S = N(C ′), find the component C of G−S intersecting Ω
and store the pointer from (S,C) to Ω. Thus this computation takes O(nm)
time for each block, so O(nm|BG|) globally.

Hence this preprocessing step costs O(m|∆G| + nm|BG|). Sorting the couples
(S,C) by their size can be done in O(n|∆G|) time using a bucket sort.

Observe that the cost of one iteration of the inner for loop is O(m), for
the components Ci and the sets Ni can be computed by a graph search and
by the fact that there are at most n couples (Si, Ci) associated to a block.
With the data structures obtained during the preprocessing step, each couple
(S,C) keeps a pointer towards each block Ω such that (S,C, Ω) form a good
triple. Thus the number of iterations of the two nested loops is exactly the
number of good triples, that is at most n|BG|. It follows that the two loops
cost O(nm|BG|) time.

Each minimal separator S keeps the list of couples of type (S,C), obtained
during the preprocessing step. Computing the maximum required by the two
last instructions costs O(n) time for a given S. This last step costs O(n|∆G|)
time.

Altogether, the algorithm runs in time O(m|∆G| + nm|BG|). Each minimal
separator is contained in at least one block. According to their definition,
each block contains at most n minimal separators. Each minimal separator is
contained in at least one block, therefore |BG| ≥ |∆G|/n. We conclude that
the algorithm runs in O(nm|BG|) time.

The algorithm can be transformed in order to output not only the branchwidth
of the graph, but also an optimal branch decomposition. ✷

5 Computing the block-branchwidth

The main result of this section is that the block-branchwidth of a block B of
G can be computed in O∗(

√
3

n
) time. Computing the block-branchwidth is

NP-hard, as it can be deduced from [21].

16

Let n(B) denote the number of vertices of the block B of G and let s(B) be
the number of minimal separators bordering B. Note that s(B) is at most the
number of components of G − B, in particular n(B) + s(B) ≤ n.

Let us mention that a result very similar to our Lemma 20 has been indepen-
dently given in [26]. The authors call their decomposition a troika.

Lemma 20 For any block B of a graph G, bbw(B) ≤ p if and only if there
is a partition of B into four parts A1, A2, A3, D such that

(1) for each i ∈ {1, 2, 3}, |B \ Ai| ≤ p;
(2) Every minimal separator S ∈ S(B) is contained in B \ Ai for some

i ∈ {1, 2, 3}.

PROOF. Suppose that bbw(B) ≤ p and let (T, τ) be an optimal block-
branch decomposition of B. Recall that this relaxed branch decomposition
corresponds to the complete graph K(B) with vertex set B. For each x ∈ B
let Tx be the minimal sub-tree of T spanning all the leaves of T labelled with
an edge incident to x. For every x, y ∈ B, the sub-trees Tx and Ty share a
vertex. By the Helly property, there is a node u of T contained in all the sub-
trees of the form Tx. Clearly u is a ternary node, except for the trivial case
when n(B) ≤ 2. Let e1, e2, e3 be the branches of T incident to u. Let T (i) be
the sub-tree of T rooted in u, containing the branch ei, for i ∈ {1, 2, 3}. We
set

Bi = {z ∈ B | z is incident to some edge of K(B) mapped on a leaf of T (i)}

and for each triple (i, j, k) with i, j, k ∈ {1, 2, 3} and i 6= j 6= k, we put

D = B1 ∩ B2 ∩ B3, and Ai = Bj ∩ Bk \ D.

Observe that D, A1, A2, A3 form a partition of B. In fact, the three sets are
pairwise disjoint by construction. Since for all x ∈ B, u ∈ Tx, we have that
x ∈ Bi∩Bj for distinct i, j ∈ {1, 2, 3}, so x is in one of the four sets A1, A2, A3

or D.

It remains to show that the partition satisfies the conditions of the theorem.
We claim that for every i ∈ {1, 2, 3},

mid(ei) = Bi = B \ Ai (3)

In fact,

mid(ei) = (Bi ∩ Bj) ∪ (Bi ∩ Bk) = Aj ∪ Ak ∪ D = B \ Ai.

17

By (3), |B \ Ai| = mid(ei) ≤ p, and the first condition of the lemma holds.
To prove the second condition, let us consider a separator S ∈ S(B). By
the definition of block-branch decomposition, S is contained in Bi for some
i ∈ {1, 2, 3}. By (3), S ⊆ B \ Ai.

To prove the “only if” part, let us assume that there is a partition satisfying
the two conditions of the lemma. We construct a block-branch decomposition
of the block B, of width at most p. Let Bi = B \Ai, for each i ∈ {1, 2, 3}. For
each i, construct an arbitrary branch decomposition (Ti, τi) of the complete
graph with vertex set Bi. Let T be the tree obtained as follows: For each Ti,
add a new node vi of degree two on some branch of Ti, then glue the three
trees by adding a new node u adjacent to v1, v2, v3. The tree T is a ternary tree
and each edge of K(B) is mapped on at least one leaf of T , so we obtained a
relaxed tree decomposition (T, τ) of K(B). Let ei be the branch {u, vi}. Note
that mid(ei) = Bi ∩ (Bj ∪ Bk), where {i, j, k} = {1, 2, 3}. Since

Bi = B \ Ai ⊆ (B \ Aj) ∪ (B \ Ak) = Bj ∪ Bk,

we have that mid(ei) = Bi. Consequently, the relaxed branch decomposition
respects the minimal separators on the border of B. Clearly for each branch e
of T , mid(e) is contained in some Bi, so |mid(e)| ≤ p and Lemma follows. ✷

Lemma 21 The block-branchwidth of a block B can be computed in O∗(3s(B))
time.

PROOF. Let B be a block of G. Suppose that bbw(B) ≤ p. By Lemma 20,
there exists a partition A1, A2, A3 and D of B such that |B \ Ai| ≤ p and
every S ∈ S(B) is a subset of B \ Ai. Denote by a1, a2, a3 and d the sizes of
A1, A2, A3 and D. We can partition S(B) in three subsets Si such that every
S ∈ Si is included in B \Ai. Let Si be the union of all the minimal separators
of Si. The numbers a1, a2, a3 and d satisfy the following inequalities:

(1) ai ≥ 0, d ≥ 0, a1 + a2 + a3 + d = n(B);
(2) |S1 ∩ S2 ∩ S3| ≤ d, |(S1 ∩ S2) \ S3| ≤ a3,

|(S2 ∩ S3) \ S1| ≤ a1, |(S3 ∩ S1) \ S2| ≤ a2;
(3) a1 + a2 + d ≤ p, a2 + a3 + d ≤ p, a3 + a1 + d ≤ p.

The first inequalies express the fact that A1, A2, A3 and D is a partition of
B, the second express the fact that Si is a subset of B \ Ai and the last ones
express the fact that bbw(B) ≤ p.

Conversely, suppose there is a partition of S(B) in S1, S2 and S3 and four
integers a1, a2, a3, d satisfying the system above. Then there exist a partition
of B into four sets A1, A2, A3, D, of cardinalities a1, a2, a3, d and such that D

18

intersects S1∪S2∪S3 exactly in S1∩S2∩S3, and each Ai intersects S1∪S2∪S3

exactly in (Sj ∩ Sk) \ Si, where {i, j, k} = {1, 2, 3}. Moreover |B \ Ai| ≤ p by
the third series of inequalities, so by Lemma 20 we have bbw(B) ≤ p.

Hence, there is a block-branch decomposition of B of branchwidth at most p
if and only if there is a partition S1,S2,S3 of S(B) and four numbers a1, a2, a3

and d satisfying the system. To decide whether bbw(B) ≤ p or not, we only
have to try all the partitions of S(B) in S1, S2 and S3 and check all the n4

possible values for the ai’s and d. This can be done in O∗(3|S(B)|) = O∗(3s(B))
time as claimed. ✷

Lemma 22 The block-branchwidth of a block B can be computed in O∗(3n(B))
time.

PROOF. We show that for any number p, the existence of a partition like in
Lemma 20 can be tested in O∗(3n(B)).

For this purpose, instead of partitioning B into four parts, we try all the
partitions of B into three parts A1, X, D, where X corresponds to A2 ∪A3. If
|B \A1| ≤ p, we check in polynomial time if X can be partitioned into A2 and
A3 as required. Since there are at most 3n(B) three-partitions of B, it would
bring us to time O∗(3n(B)) algorithm.

We say that two vertices x, y ∈ X are equivalent if there exist z ∈ A1 and a
minimal separator S bordering B such that x, y, z ∈ S. In particular, x ∼ y
implies that x and y must be both in A2 or both in A3. Let X1, . . . , Xq be the
equivalence classes of X. Then X can be partitioned into A2 and A3 as required
if and only if {|X1|, . . . , |Xq|} can be partitioned into two parts of sum at most
p − |A1| − |D| vertices. Consider now the EXACT SUBSET-SUM problem,
whose instance is a set of positive integers I = {i1, . . . , iq} and a number t, and
the problem consists in finding a subset of I whose sum is exactly t. Though
NP-hard in general, it becomes polynomial when t and the numbers ij are
polynomially bounded in n (see e.g. the chapter on approximation algorithms,
the subset-sum problem in the book of Cormen, Leiserson, Rivest [8]). By
taking I = {|X1|, . . . , |Xq|} and trying all possible values of t between 1 and
n2, we can check in polynomial time if X can be partitioned as required. ✷

Since at least one of s(B) or n(B) is at most half of the vertices of the graph,
Lemmata 22 and 21 imply the following theorem.

Theorem 23 For any block B of a graph G on n vertices, the block-branch-
width of B can be computed in O∗(

√
3

n
) time.

Theorems 19 and 23 imply our main result.

19

Theorem 24 The branchwidth of graph on n vertices can be computed in
O∗((2

√
3)n) time and O∗(2n) space.

PROOF. The algorithm try all vertex subsets B of a graph G and checks
if B is a block of G. Clearly, we can verify if B is a block in polynomial
time. If B is a block, we compute the block branchwidth of B making use of
Theorem 23. The number of blocks is at most 2n and for each block we need
O∗(

√
3

n
) for computing its block branchwidth. Hence the running time of this

phase is O∗((2
√

3)n), and the space is O∗(2n).

We use Theorem 19 for computing the branchwidth of G. The second phase
takes O∗(2n) time and space. ✷

6 Open problems

Our algorithm is based on the enumeration of the blocks of a graph (in O∗(2n)
time) and on the computation of the block-branchwidth of a block (in O∗(

√
3

n
)

time). It is natural to ask whether one of these steps can be improved.

Computing the block-branchwidth is the same problem as computing the
branchwidth of a complete hypergraph with n′ vertices and s′ hyper-edges
of cardinality at least three. Can we obtain an algorithm faster than our
O(min(3n′

, 3s′))-time algorithm?

Note that there exist graphs with n vertices having 2n/nO(1) blocks. Indeed,
consider the disjoint union of a clique K and an independent set I, both
having n/2 vertices, and add a perfect matching between K and I. We obtain
a graph Gn such that for any I ′ ⊆ I, Gn − I ′ is a block. Thus Gn has at
least

(

n
n/2

)

≥ 2n/n blocks. The interesting question here is if we can define a
new class of triangulations, smaller than the efficient triangulations but also
containing H(T, τ) for some optimal branch decompositions of the graph.

References

[1] Michael Alekhnovich and Alexander A. Razborov. Satisfiability, branch-width
and Tseitin tautologies.In Proceedings of the 43rd annual IEEE symposium on
foundations of computer science (FOCS’02), pages 593–603, 2002.

[2] Richard Beigel and David Eppstein. 3-coloring in time O(1.3289n). Journal of
Algorithms, 54(2):168–204, 2005.

20

[3] Hans L. Bodlaender.A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209:1–45, 1998.

[4] Hans L. Bodlaender, Ton Kloks, and Dieter Kratsch.Treewidth and pathwidth
of permutation graphs. SIAM Journal on Discrete Mathematics, 8:606–616,
1995.

[5] Vincent Bouchitté and Ioan Todinca.Treewidth and minimum fill-in: grouping
the minimal separators.SIAM Journal on Computing, 31:212–232, 2001.

[6] Jesper Makholm Byskov. Enumerating maximal independent sets with
applications to graph colouring.Operations Research Letters, 32:547–556, 2004.

[7] William John Cook and Paul D. Seymour. Tour merging wia branch-
decomposition.INFORMS Journal on Computing, 15:233–248, 2003.

[8] Thomas H. Cormen, Charles Eric Leiserson, and Ronald Linn Rivest.
Introduction to algorithms.MIT Press, 1990.

[9] Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon Michael
Kleinberg, Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schning.
A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search.
Theoretical Computer Science, 289(1):69–83, 2002.

[10] Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and
Dimitrios M. Thilikos. Fixed-parameter algorithms for (k, r)-center in planar
graphs and map graphs.ACM Transactions on Algorithms, 1(1):33–47, 2005.

[11] Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin.
Efficient exact algorithms on planar graphs: exploiting sphere cut branch
decompositions. In Proceedings of the 13rd Annual European Symposium on
Algorithms (ESA’05), volume 3669 of Lecture Notes in Computer Science, pages
95–106, 2005.

[12] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch.Measure and conquer:
A simple O(20.288n) independent set algorithm. In Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06), pages 18–
25, 2006.

[13] Fedor V. Fomin, Dieter Kratsch, and Ioan Todinca. Exact (exponential)
algorithms for treewidth and minimum fill-in. In Proceedings of the
31th International Colloquium on Automata, Languages, and Programming
(ICALP’04), volume 3142 of Lecture Notes in Computer Science, pages 568–
580, 2004.

[14] Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs:
branchwidth and exponential speed-up.SIAM J. of Computing, 36(2):281–309,
2006.

[15] Fedor V. Fomin and Dimitrios M. Thilikos. New upper bounds on the
decomposability of planar graphs.Journal of Graph Theory, 51(1):53–81, 2006.

21

[16] Fanica Gavril.The intersection graphs of a path in a tree are exactly the chordal
graphs.Journal of Combinatorial Theory Series B, 16:47–56, 1974.

[17] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs.
Academic Press, 1980.

[18] Qian-Ping Gu and Hisao Tamaki. Optimal branch-decomposition of planar
graphs in O(n3) time. In Proceedings of the 32th International Colloquium on
Automata, Languages and Programming (ICALP’05), volume 3580 of Lecture
Notes in Computer Science, pages 373–384, 2005.

[19] Kazuo Iwama and Suguru Tamaki. Improved upper bounds for 3-SAT. In
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’04), pages 823–832, 2004.

[20] Tang Jian. An O(20.304n) algorithm for solving maximum independent set
problem.IEEE Transactions on Computers, 35(9):847–851, 1986.

[21] Ton Kloks, Jan Kratochv́ıl, and Haiko Müller. Computing the branchwidth of
interval graphs.Discrete Applied Mathematics, 145(2):266–275, 2005.

[22] Frédéric Mazoit. Décomposition algorithmique des graphes. PhD thesis, École
normale supérieure de Lyon, 2004. In French.

[23] Frédéric Mazoit.The branch-width of circular-arc graphs. In Proceedings of the
7th Latin American Theoretical Informatics Symposium (LATIN’06), volume
3887 of Lecture Notes in Computer Science, pages 727–736, 2006.

[24] Andreas Parra and Petra Scheffler. Characterizations and algorithmic
applications of chordal graph embeddings.Discrete Applied Mathematics, 79(1-
3):171–188, 1997.

[25] Ramamohan Paturi, Pavel Pudlk, Michael E. Saks, and Francis Zane. An
improved exponential-time algorithm for k-SAT. In Proceedings of the 39th
annual IEEE symposium on foundations of computer science (FOCS’98), pages
628–637, 1998.

[26] Christophe Paul and Jan Arne Telle. New tools and simpler algorithms for
branchwidth. In Proceedings of the 13rd Annual European Symposium on
Algorithms (ESA’05), volume 3669 of Lecture Notes in Computer Science, pages
379–390, 2005.

[27] Neil Robertson and Paul D. Seymour.Graph Minors. X. Obstructions to Tree-
Decomposition.Journal of Combinatorial Theory Series B, 52(2):153–190, 1991.

[28] Mike Robson.Algorithms for maximum independent sets.Journal of Algorithms,
7(3):425–440, 1986.

[29] Uwe Schoning.A probabilistic algorithm for k-SAT and constraint satisfaction
problems. In Proceedings of the 40th annual IEEE symposium on foundations
of computer science (FOCS’99), pages 410–414, 1999.

22

[30] Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher.
Combinatorica, 14(2):217–241, 1994.

[31] Yngve Villanger. Improved exponential-time algorithms for treewidth and
minimum fill-in. In Proceedings of the 7th Latin American Theoretical
Informatics Symposium (LATIN’06), volume 3887 of Lecture Notes in
Computer Science, pages 800–811, 2006.

[32] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its
implications.Theor. Comput. Sci., 348(2-3):357–365, 2005.

[33] Gerhard J. Woeginger. Exact algorithms for NP-hard problems: A survey. In
Proceedings of the 5th International Workshop on Combinatorial Optimization
– Eureka, You Shrink!, volume 2570 of Lecture Notes in Computer Science,
pages 185–207, 2003.

23

