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ON THE STRUCTURE OF HOMEOMORPHISMS OF THE OPEN ANNULUSLUCIEN GUILLOUDedi
ated to Jose Maria Montesinos on the o

asion of his 65th birthdayAbstra
t: Let h be a without �xed point lift to the plane of a homeomorphism ofthe open annulus isotopi
 to the identity and without wandering point. We show that hadmits a h-invariant dense open set O on whi
h it is 
onjugate to a translation and westudy the a
tion of h on the 
ompa
tly 
onne
ted 
omponents of the 
losed and withoutinterior set R2 nO.0. Introdu
tion.0.1. In the paper [BCL℄ the authors 
onsider homeomorphisms H of the open an-nulus S1 � R isotopi
 to the identity and preserving the Lebesgue measure. Given su
ha homeomorphism and a lift h : R2 ! R2 to the universal 
over they show (in theirproposition 3.1) that if the 
losure of the rotation set of h is 
ontained in ℄0;+1[, then his 
onjugate to a translation. (Here the rotation set refers to a de�nition, adapted to thisnon 
ompa
t situation, proposed by Le Calvez [LC℄ and using only re
urrent points of Hin its 
onstru
tion).They remark that this statement is sharp, and give an example of a measure preservinghomeomorphism H of S1 �R isotopi
 to the identity, su
h that, for some lift h of H, therotation set of h is in
luded in ℄0;+1[, but h is not 
onjugate to a translation (see 0.2below).In the present note we wish to investigate the stru
ture of su
h homeomorphims.More generally, we will 
onsider a homeomorphism H of the annulus S1 �R isotopi
 tothe identity, without wandering point whi
h admits a lift h to R2 without �xed point. Wewill show that some of the features of example 0.2 are indeed preserved in that generalsituation.We will prove:A) There exists an h-invariant dense open set homeomorphi
 to R2, O � R2, su
h that hrestri
ted to O is 
onjugate to a translation. (See paragraph 1).B) Let W = R2 nO whi
h is a 
losed subset with no interior in R2. We have:- B1) No 
losed 
ompa
tly 
onne
ted 
omponent (
f. 2.1 below) of W is invariantunder h. (Cf. Prop. 2.5).2000 Mathemati
s Subje
t Classi�
ation. Primary 37E30, Se
ondary 37E45.Key words and phrases. Brouwer Translation theorem, open annulus, �xed point, 
ompa
tly 
onne
ted
omponent. 1



- B2) We now assume that the 
ompa
tly 
onne
ted 
omponents of W are 
losed (orequivalently that the 
onne
ted 
omponents of W are 
ompa
tly 
onne
ted). Then for everysu
h 
omponent C, if X = lim inf hn(C),either X is empty (that is hn(C) ! 1, meaning that, for every 
ompa
t K � R2there exists an integer n(K) su
h that hn(C)TK = ; for n � n(K))or it is not empty and no point of X is a

essible from R2 nSn2Z hn(C). (Cf. Prop.2.12).0.2. The Le Roux example [BCL, Appendix A℄:We will des
ribe the lift h of this example to R2. Let Ik be the verti
al segmentf( 12k ; y)��y � jkjg and A be Sk2Znf0g Ik and let W = Sn2Z Tn(A) where T (x; y) = (x +1; y). Then R2 nW is homeomorphi
 to R2 and 
an be foliated by lines equivariantelywith respe
t to T . The homeomorphism h is 
hoosen to a
t equivariantely, without �xedpoint, preserving ea
h line of the foliation and satisfying h(Ik) = Ik�1 for k 6= 0; 1. Onea
h leaf of the foliation, h is equivariantly 
onjugate to a translation hen
e h preservesa measure without atoms and 
harging the open sets. On S1 � R seen as S2 minus thetwo poles, H preserves su
h a measure whi
h is �nite. That measure is nothing but theLebesgue measure up to 
onjugation thanks to a 
lassi
al result of Oxtoby and Ulam.To see that h is not 
onjugate to a translation noti
e that the 
ompa
t segment goingfrom x0 = (� 12 ; 1) to its translate T (x0) = ( 12 ; 1) has to meet all its images by all iteratesof h sin
e W is h-invariant.We owe to P. Le Calvez the remark that this example 
an also be des
ribed withoutany referen
e to the Oxtoby-Ulam theorem. Consider the part of the phase spa
e (whi
his homeomorphi
 to S1 �R) of the free undamped pedulum above the upper separatrix:it is homeomorphi
 to S1 � [0;+1[. We now fo
us on the time 1 of the 
orrespondingautonomous hamiltonian and on an orbit of this di�eomorphism on the separatrix. Foldingea
h 
omplementary interval of this orbit on the separatrix and identifying all points ofthe orbit and the equilibrium point of the separatrix to a single point, we get an example
onjugate to the pre
eding one after deleting that single point.A
knowledgement. Some arguments of this paper 
an be tra
ed ba
k to an old arti
leof T. Homma and H. Kinoshita [HK℄, whi
h makes for a hard reading but a rewarding one.Many thanks to Patri
e Le Calvez for a 
areful reading of a �rst version of this paper.1. Brouwer homeomorphisms.Homeomorphisms of the plane preserving orientation and without �xed point are
alled Brouwer homeomorphisms (see [G1℄ for more on these).These homeomorphismshave only wandering points and more generally satisfy the following parti
ular version ofFranks' lemma (in a reformulation due to Le Roux [LR1, Lemma 7℄). Re
all �rst that asubset A of R2 is free if h(A)TA = ;. 2



1.1 Lemma. Let U and V be two free 
onne
ted open sets.Then the subset of integerssu
h that hn(U)TV 6= ; is an interval of Z.Proof: The usual formulation of this lemma 
on
erns the 
ase where U and V areopen dis
s. To prove the present lemma from this 
ase, suppose there exists k < n < msu
h that hk(U)TV 6= ;; hn(U)TV = ; and hm(U)TV 6= ;. Let u1 2 U su
h that v1 =hk(u1) 2 V and u2 2 U su
h that v2 = hm(u2) 2 V and let D and D0 be dis
s in U and Vrespe
tively su
h that u1; u2 2 D and v1; v2 2 D0. Then hk(D)TD0 6= ;; hn(D)TD0 = ;and hm(D)TD0 6= ; in 
ontradi
tion to Franks' lemma.A Brouwer line for a Brouwer homeomorphism h is a properly embedded free line lsu
h that l separates h�1(l) and h(l).We will start with the following result from [G2℄ .1.2 Theorem. Let H : S1 �R ! S1 �R be a homeomorphism isotopi
 to the identitysu
h that :- H admits a �xed point free lift h : R2 ! R2.- H does not have any wandering point.Then there exists a properly embedded line in S1 �R joining one end of the annulusto the other whi
h lifts in R2 to a Brouwer line.Noti
e that su
h a Brouwer line proje
ts properly and onto on f0g �R (and also, aproperly embedded line in R2 whi
h proje
ts properly and onto on f0g �R is a Brouwerline if it is free, that is, the requirement that l separates h�1(l) and h(l) is automati
allysatis�ed).Given any Brouwer line l, if we let U be the open region between l and h(l), then theset O = Sn2Z hn(ClU) is homeomorphi
 to R2 and the restri
tion of h to O is 
onjugateto a translation.Therefore to prove statement A of the introdu
tion, it is enough to provethat if the Brouwer homeomorphism h is a lift of a homeomorphism H of the open annuluswithout wandering point, then R2 n O has no interior for a 
onvenient 
hoi
e of Brouwerline l. To this end, we 
hoose a Brouwer line l as given by Theorem 1.2 that we orientso that l indu
es by proje
tion the usual orientation on f0g � R. The following Lemmais then enough to 
on
lude the proof of statement A (this lemma is an extension of thelemma in Winkelnkemper [W℄).1.3 Lemma. Let Bn (resp. B0n) be the 
omponent of R2 nhn(l) to the right (resp. to theleft) of hn(l). Then the 
losed h-invariant set W = T+1n=�1Bn (resp. W 0 = T+1n=�1B0n)has no interior.Proof: Ex
hanging h and h�1 if ne
essary, we 
an suppose h(l) on the right of l.Suppose U � W is an open subset whi
h we 
an 
hoose small enough to be free andproje
ting homeomorphi
ally on S1�R; sin
e U �W , h�n(U) lies on the right of l for alln � 0. Given the properties of l, there is am > 0 su
h that U lies on the left of Tm(l), thenh�n(U) lies on the left of h�n(Tm(l)) = Tm(h�n(l)) whi
h is on the left of Tm(l) for n > 0.So that all h�n(U), n � 0, lie on the left of Tm(l) and on the right of l. There are only a�nite number of translates of U between l and Tm(l), say U = U1; U2; : : : ; Uk and ea
h oneis wandering. Sin
e H has no wandering point on S1 �R, there exists n1 > 0 su
h that3



h�n1(U1) meets some Ui, say Uj(1). Let V1 = h�n1(U1)TUj(1). There exists also n2 > 0su
h that h�n2(V1) meets one of its translates Vj(2) � Ui2 . Let V2 = h�n2(V1)TVj(2).Continuing in that way we �nd a sequen
e V1; V2; : : : of non empty sets ea
h Vi being
ontained in some Uj(i), 1 � j(i) � k. We must have j(i) = j(i0) for some i and i0,i < i0. Then, sin
e Vi0 � h�p(Vi) for p = ni+1 + : : :+ ni0 , we have Uj(i0)Th�p(Uj(i)) 6= ;
ontradi
ting the freeness of Uj(i).2. Compa
tly 
onne
ted 
omponentsIn this paragraph we 
onsider any Brouwer homeomorphism h and an asso
iatedoriented Brouwer line l su
h that W = T+1n=�1 Bn and W 0 = T+1n=�1 B0n have no interior(where as above Bn (resp. B0n) is the 
omponent of R2 n hn(l) to the right (resp. to theleft) of hn(l)).Noti
e that the setsW andW 0 are disjoints, that the invariant set O = R2n(W SW 0)is homeomorphi
 to R2 and that on this set h is 
onjugate to a translation. Similar
onsiderations 
an be applied to ea
h one of W and W 0 and we will only des
ribe thosepertaining to W .The set W is generally not 
onne
ted. It is also non-
ompa
t (sin
e it is invariantand points are wandering under h) and we will have to 
onsider its 
ompa
tly 
onne
ted
omponents. Let us re
all (see [Moore, page 76℄ and also [LR2, D�e�nition 9.1℄)2.1 De�nition. A spa
e Z is 
ompa
tly 
onne
ted if any two points in Z are 
ontainedin a sub
ontinuum of Z. Distin
t maximal 
ompa
tly 
onne
ted subsets of a spa
e X aredisjoint and are 
alled the 
ompa
tly 
onne
ted 
omponents of X; these 
omponents �llin X. Noti
e that these 
ompa
tly 
onne
ted 
omponents 
an be non 
losed.2.2 Lemma. The 
ompa
tly 
onne
ted 
omponents of W are unbounded.Proof: We work in the Alexandro� 
ompa
ti�
ation of R2, that is R2Sf1g �= S2.First, W Sf1g is 
ompa
t and 
onne
ted as the de
reasing interse
tion of the 
ompa
t
onne
ted BnSf1g. Suppose now that W admits a 
ompa
tly 
onne
ted 
omponent C
ontained in some open ball B(O;R). Then C is 
onne
ted and 
ompa
t so is a 
onne
ted
ompa
t 
omponent of W . As su
h, it is the interse
tion of the open and 
losed subsetsof W whi
h 
ontains C [B, II x4.4℄, and there exists an open and 
losed neighborhood ofC inside W TB(O;R). But this 
ontradi
ts the 
onne
tivity of W Sf1g.Let us 
all C a 
losed 
ompa
tly 
onne
ted 
omponent of W and p an a

essiblepoint of C from R2 n C : p is the extremity of an ar
 
 su
h that 
 n fpg � R2 n C. We
an suppose that 
 is a free simple ar
. Ea
h hn(l) has to meet 
 and h(
) for n largerthan some n0 whi
h we 
an suppose to be �1, repla
ing l by hn0+1(l) if ne
essary. Let pndenote the last point of hn(l) on 
 as we move towards p. Then the ar
 
n = pnp on 
 isdisjoint from all hi(l); i � n ex
ept for pn 2 hn(l).Let q0 = h(p�1) and �0 be the subar
 p0q0 of l. Sin
e R2 n (W SW 0) is simply
onne
ted (even homeomorphi
 to R2), it is divided by the ar

0S�0Sh(
�1) into two domains and we 
all 
 the one whi
h does not 
ontain h�1(l).4



2.3 Proposition. The domain 
 is free.Proof: Suppose there exist x 2 
Th(
) and let � be an ar
 from a to h�1(x) witha 2 intp0p and � n fag � 
. Sin
e h preserves orientation, h(y) =2 
 for y 
lose toa on �. As h(�)Th(p0p) = h(a) and h(�)T�0 = ; (sin
e h(�) is on the right of ofh(l) and so, on the right of l whi
h 
ontains �0), there exist some b 2 � su
h that thesubar
 h(ab) of h(�) joins h(p0p) to p0p inside R2 n (W SW 0S
) and the Jordan 
urve�0S q0h(a)Sh(ab)Sh(b)p0 
ontains the whole Brouwer line l or C (a

ording to p0 or pis 
ontained inside that Jordan 
urve) whi
h is absurd sin
e these sets are unbounded.2.4 Proposition. The 
losed 
ompa
tly 
onne
ted 
omponent C 
annot be h-invariant.Proof: Assume by 
ontradi
tion that h(C) = C and let then eK � C be a 
ontinuum
ontaining p and h(p). Then 
 is bounded and being simply 
onne
ted has a boundary Fr
whi
h is 
onne
ted and separating the plane. We �rst show K = 
T eK is 
ompa
t and
onne
ted. It is enough to show that Fr
TC is 
onne
ted for then, if K = (Fr
TC)T eKis not 
onne
ted then (Fr
TC)S eK � C separates the plane whi
h 
ontradi
ts the fa
tthat C has no interior and does not separate. Let us note Æ = 
0S�0Sh(
�1) so thatFr
TC = Fr
 n (Æ n fp; h(p)g. If this last set is not 
onne
ted, it has either three 
ompo-nents or more, and then Fr
 is not 
onne
ted or two 
omponents, 
ontaining p and h(p)respe
tively, whi
h do not dis
onne
t the plane and then Fr
 does not dis
onne
t.Therefore � = Sn2Z hn(K) � W is a 
losed 
onne
ted set whi
h is invariant underh and therefore non 
ompa
t. As W does not separate R2 and has no interior, the sameis true of � and R2 n � is homeomorphi
 to R2. The proper line l separates R2 n � intotwo regions homeomorphi
 to R2 and we name R the one between l and �. The region Ritself is 
ut by the ar
 p0p into two regions A and B where we 
all A the one 
ontaining
 and B the one 
ontaining h�1(
)TR. By de�nition p0p is on the frontier of A and B.Noti
e that A (and B) are non 
ompa
t sin
e we 
an follow l to in�nity in one dire
tionor the other staying in A (or B). Note that A 
ontains hk(
); k � 0 and B 
ontainsh�k(
)TR; k � 1.2.5 Lemma. FrATFrBT� is non 
ompa
t.Proof: Let �A (resp. �B) be the set of points of � whi
h admit a neighborhood
ontained in AS� (resp. BS�). The sets AS�A and BS�B are disjoint and open,therefore their 
omplement in RS�S n(p0pnfpg) (whi
h is the set of points of � for whi
hevery neighborhood meets A and B, that is FrATFrBT�) separates RS�n(p0pnfpg) andRS�n(p0pnfpg) 
an be written as the disjoint union (AS�A)`(BS�B)`(FrATFrBT�).On the other hand, if FrATFrBT� was 
ompa
t in R2 or equivalently in RS�(whi
h is homeomorphi
 to R2), thinking of l as a straight line and of p0p as a segmentorthogonal to l (as it is legitimate by S
hoen
ies theorem), one 
an �nd a large re
tanglein RS� with a side parallel to l , 
ontaining FrATFrBT� and whose boundary 
uts p0ptransversaly in a single point. The boundary of this re
tangle joins a point of A near p0pto a point of B near p0p in 
ontradi
tion to the above de
omposition of RS�n (p0pnfpg).Given Lemma 2.5, let us 
hoose some point x in FrATFrBT� and outside K. Thenx =2 
 and we 
hoose an open eu
lidean ball 2U � RS� 
entered at x free and disjoint of5




. (U will denote the ball of radius one half the one of 2U). As x belongs to �, U meetssome hm(K) and so some hm(
) and (ex
hanging h and h�1 if ne
essary) we 
an supposem > 0 and therefore that hm(
) � A. Sin
e U meets B, we want to show that 2U meetssome h�n(
), for some n > 0, for then 2U and 
 will give a 
ontradi
tion to Lemma 1.1.To that end, let us 
hoose on FrU two ar
s, one on FrU TA and the other on FrU TB(these exist sin
e U meets A and B whi
h are 
onne
ted non 
ompa
t) and 
hoose an ar
�0 inside R n (�SU) joining these two ar
s and meeting transversally p0p into a singlepoint. Complete �0 by a sub-ar
 �1 of FrU . This gives a Jordan 
urve � inside RS�whi
h 
ontains p in its interior. Sin
e points are wandering there exists N > 0 su
h thath�N (p) 2 � belongs to the exterior of �.Now, if U does not meet any h�k(
); k > 0, the 
onne
ted set K̂ = SNi=1 h�i(K)either joins p inside � to h�N (p) outside � without meeting � (in 
ontradi
tion to theJordan 
urve theorem, or it meets �1 (K̂, 
ontained in �, does not meet �0) and then Umeets some h�i(K) � K̂ and so 2U meets some h�i(
)) and we are done. This 
on
ludesthe proof of Proposition 2.4.2.6 Corollary. hn(C)TC = ; for all n 2 Z n f0g.Proof: If hn(C)TC 6= ; then hn(C) = C in 
ontradi
tion to 2.4 applied to hn whi
hhas the same W as h.Re
all that given given a sequen
e fXng of subspa
es of a topologi
al spa
e Z, a pointx 2 Z belongs to lim infXn if every neighborhood of x meets Xn for an in�nite number ofn and to lim supXn if every neighborhood of x meets Xn for all but a �nite number of n.We will now suppose that X = lim inf hn(C) is not empty. It is then a 
losed and non
ompa
t subset of W (sin
e it is h-invariant). We aim to Proposition 2.12 below. Our �rststep is :2.8. Proposition. The set X is also lim suphn(C). That is, every open set U whi
h meetsan in�nite number of hn(C), meets hn(C) for all n greater than some n0 = n0(U).Remark: This Proposition answers a question of F. Le Roux [LR2, footnote 7℄Proof: We will use repeatedly the following immediate 
onsequen
e of a result of LeRoux [LR2, Lemme 9.3℄, we repeat the proof here for 
ompleteness.2.9. Proposition. XThn(C) = ; for all n 2 Z.Proof: Sin
e X is h-invariant, it is enough to show that XTC = ;. Let us supposeXTC 6= ;, and let U be a free neighborhood of x 2 XTC su
h that U Th(C) = ;.As x 2 X, there exists n > 1 so that U Thn(C) 6= ;. Let y 2 C su
h that hn(y) 2 U .There exists a 
ontinuum K � C whi
h 
ontains x and y. Sin
e h(C) (as C) is free, we
an �nd a free 
onne
ted neighborhood V of h(K) � h(C) su
h that U TV = ;. Butx 2 U Th�1(V ) and hn(y) 2 U Thn�1(V ) so that U and V 
ontradi
t Lemma 1.1.Let V be a free open dis
 and D a 
omponent of V nSn2Z hn(C).6



2.10. Lemma. If FrD meets hn(C) and hm(C), then jn �mj � 1 and FrD 
annot meetX if it meets some hn(C).Proof: To prove the �rst assertion, note that sin
e XThn(C) = ; for all n, givenx 2 hn(C) there exists a dis
 neighborhood U of x whi
h does not meet any other hp(C)and a ray from x to some point in DTU leads to an a

essible point of hn(C) from D.So let us suppose jn � mj > 1 and let � be an ar
 from a 2 hn(C) to b 2 hm(C) su
hthat � n fa; bg � D and let K be a 
ontinuum in hn(C) 
ontaining a and hn�m(b). Weassert that KS� is free. Indeed, K is free as a subset of hn(C), � is free as V is free andh(K)T� = ; = h�1(K)T� sin
e n � 1 6= m. But b 2 hm�n(KS�)S(KS�), and asmall enough neighborhood of KS� will 
ontradi
t Lemma 1.1 if jn�mj > 1.Let us suppose now that X meets FrD and some hn(C) and let again U be a dis
neighborhood of some point x 2 FrDTX small enough so that U Thk(C) = ; if jkj �jnj+1. A ray issued from x will either give an a

essible point of some hm(C); jmj > jnj+1from D, but this is impossible a

ording to the �rst part of the proof, or an a

essible pointof X from D. In that 
ase, let � be an ar
 from some point a 2 hn(C) to b 2 X with� n fa; bg � D and let U 0 be a free neighborhood of b su
h that U 0Thk(C) = ;, forjkj � jnj + 1 and su
h that U 0Th�1(�) = ;. The ar
 � 
an be extended to an ar
~� � �SU whi
h joins a 2 hn(C) to some ~b 2 hm(C), jmj > jnj + 1. If K � hn(C)is a 
ontinuum 
ontaining a and hn�m(~b), then KS ~� is a free 
ontinuum su
h that~b 2 hm�n(KS ~�)TKS ~� and a free neigborhood of this 
ontinuum gives a 
ontradi
tionto Lemma 1.1.We now return to the proof of Proposition 2.8. Let V be a free neighborhood ofx 2 liminf hn(C). There exist m and n > m+1 su
h that V meets hn(C) and hm(C). Let� be an ar
 in V going from am 2 hm(C) to an 2 hn(C) disjoint from hm(C) and hm(C)ex
ept for its extremities. Let D be the the 
omponent of V n Sn2Z hn(C) whi
h meets� and has an on its frontier. By 2.11, FrD meets hn+1(C) or hn�1(C). In the �rst 
ase,let an+1 be the last point of hn+1(C) seen on � when going from an to am. If D0 is the
omponent of V nSn2Z hn(C) whi
h meets the subar
 aman+1 of � and has an+1 on itsfrontier, then FrD0 does not meet hn(C) by 
onstru
tion of � and therefore, a

ording to2.10, meets hn+2(C). Iterating this pro
ess we see that � meets all hk(C); k � n. In theother 
ase, the same reasonning shows that � meets all the hk(C) for m � k � n. As �meets an in�nite number of hk(C) we 
on
lude in either 
ase that V meets all hk(C) fork large enough and therefore x 2 lim suphn(C).2.11. Assumption: We assume for the rest of this paper that the 
ompa
tly
onne
ted 
omponents of W (in fa
t, we will only 
onsider those of X) are
losed.2.12. Proposition. No point of X is a

essible from R2 nSn2Z hn(C).Proof: We begin with a lemma :2.13. Lemma. There is no free ar
 � joining C to X 
ontained in R2 nSn2Z hn(C) ex
eptfor its extremities.Proof of 2.13: Let � join p 2 C to q 2 X and 
onsider a neighborhood D of q su
h that�SD is still free and DTh(C) = ; = DTh�1(C) (re
all that X is disjoint from h(C)7



and h�1(C) by proposition 2.9). Then �SD 
ontains a point hn(p0) for some n > 1 andsome p0 2 C. Let K � C be a 
ontinuum 
ontaining p and p0 and 
onsider the 
ontinuumL = KS�SD. It is free but hn(p0) 2 hn(L)TL and a small enough neighborhood of Lgives a 
ontradi
tion to Lemma 1.1.At this point we will �nish the proof of 2.12 following the lines of the proof of a similarresult (with C repla
ed by a dis
) in [LR2, Proposition 5.5℄.Let us suppose there exist a point q of X a

essible from R2 nSn2Z hn(C) by somear
 � and let Z be the 
onne
ted 
omponent of X whi
h 
ontains q. A point x of R2 nSn2Z hn(C) will be 
alled a neighborhood point of Z if there exists a free 
losed eu
lideandis
 D with 
enter x su
h that intDTZ 6= ;. The set of all su
h points is an open set VA point of x 2 V will be said of type C if there is some eu
lidean dis
 D of 
enter xas in the previous de�nition and an ar
 in D from x to Z whi
h meets some hn(C) and oftype Z if there exists su
h a dis
 D and an ar
 in D from x to Z whi
h does not meet anyhn(C). It follows from Lemma 2.13 that this type is well de�ned.We show that all points of V are of type C. Indeed, it is easily veri�ed that thetype is lo
ally 
onstant on V and so is 
onstant on every 
onne
ted 
omponent of V . ButV SZ and R2 nZ are 
onne
ted and therefore their interse
tion V also as follows from theMayer-Vietoris sequen
e of the pair (R2 nZ; V SZ). Furthermore, sin
e Z � X, 
ertainlyV meets some hn(C) and all points of V are of type C.Now, if the point x on the ar
 � is 
lose enough to q, the subar
 xq of � is 
on-tained in a free eu
lidean dis
 whi
h meets Z, and, x being of type C, meets some hn(C).Contradi
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