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Abstract The detectorsin mass spectrometers are precise enouglrid@o events,
but in practice large quantization errors affect the obeions. To study the statistics
of low intensity chemical noise, we model the detector digX = |TN| and esti-
mate bothr andN in a semi-parametric approach where the integer valuecorand
variableN represents the number of ions andepresents the gain parameter of the
detector. Wherr < 1, we explain why the gain parameter cannot be recovered with
out a priori information orN. Whent > 1 howeverN can be deduced frond and

a sufficiently precise estimate of To perform parametric estimation of we first
study simple estimators which provide useful upper boukidsthen introduce the
concept otompatible latticeand we derive an optimal estimator that is independent
of the law ofN.

Keywords parametric estimation quantization effects life sciences signal
processing
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1 Introduction
1.1 lon Detectors

Mass spectrometers are instruments that ionize the condgamim sample, separate
the ions, then quantify the ions at each mass to charge Mdteoresulting signal is a
histogram that represents ion intensity as a function ofithss to charge ratio of the
ions. With sufficient precision in the separation and thestagharge measurement,
the components of the sample can be identified and quantifiagls spectrometers
are widely used for analysing very diverse mixtures, e.gea&g explosives for
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airport security or analysing oil products. S& IH1[|8 9] darintroduction to mass
spectrometry in the life sciences.

We consider detectors similar to microchannel plate dete¢hat are used in most
mass spectrometell]. When an ion hits the detector, ilgteduces an analog
signal that is amplified, quantized, then reported to themutter. The level of quanti-
zation is quite high as there may be only} 2 2048 IeveIE in some instruments, and
small signals as well as chemical noise are strongly affdayequantization effects.

Specific difficulties have appeared with high-throughpatgses of biological ma-
terial. In particular, biological samples may contain &a@mounts of molecules of
interest. These are difficult to distinguish from chemicaise which produces pat-
terns similar to real signal§|[B], [7,]10]. In 200, [2] suggesPoisson-like behaviour
for the ion intensity based on a linear relationship betwéermean and variance of
the noise. This linear relationship suggests that the dicatiion factor of the detector
may be unaccounted for in the data set.

To study chemical noise in the experimental data, we inggthe amplification fac-
tor as an overdispersion parameter in a semi-parametrioapip. To study chemical
noise in the experimental data, we estimate the amplificdéiotor and an unknown
distribution for the chemical noise in a semi-parametriprapch. LetN denote the
number of chemical noise ions that reach the detector, wsidenthe following
observation model:

X=[1N+¢]
where the noisy signalN + ¢ is truncated before observationrepresents the am-
plification factor of the detector andrepresents electronic noise. In this paper, we
make the assumption that= 0 or equivalently that there are only quantization er-
rors in the measurements. The observation model is asedoidth the statistical
structure(N, B,Pg), with 6 = (1,N) whererT is a positive real number arld is a
probability distribution orN.

We believe a priori thall is Poisson distributed as it models rare events (ion counts)
Consequentlyr can be interpreted as an overdispersion parameter affdetisson
distributed observations. This has been tackled in thedveonk of double exponen-
tial families, as presented by Efron iﬂ [5]. IH [4], Antoniaet al use double expo-
nential families in a regression model to analyse diffi@tpectra. This corresponds
to estimating the regression functipnin the modelX/ = TN, whereN; is Poisson
distributed with varying parameter. However, this framework does not explicitly
take into account quantization errors and thus provides pammeter estimates as
we will show in Secti02. Moreover, we wish to confirm thasBon hypothesis
using non parametric estimation.

Our approach is to first estimategiven a set of observations ¥f then deduce the
distribution ofN from the estimate. We show that the estimate is precise éntmug
allow complete disambiguation of the observations.

1 Single precision floating point numbers ha#é 2 16.10° levels of precision plus sign and exponent.



1.2 Estimation of the lon Statistics

With negligible quantization error, the observation mdutomes = TN. Estima-
tion of T is trivial; all that is required is to observe the evéht= 1} i.e. {X =1 x 1},
or the two event§x; = ti} and{x, = 7(i + 1)} and compute the differenocg — x;.
To recoverN, it then suffices to considet/7. The quantization error may be ne-
glected wherr >> 1 in the observation mod& = | TN| and the previous estimates
providet with a precision on the order of the quantization error.

In the general case, we can recover the samplés fobm the samples ok when
the mapping — | 7X] is injective. The inverse mappingys— [y/7]. We call this
situation thedistinguishiblecase. It occurs if and only if > 1 (see proof in the
Appendix, Propﬂ6). In this situation, the semi-parametppraach can be separated
into parametric estimation of the gain parameténen non parametric estimation of
the distribution ofN from iid samples.

Example 1
> data = floor(1.32 * n)
% Distinguishible case
>n
[1] 1+ 2 3 4 5 6 7 8 910
> data
[1] 1+ 2 3 5 6 7 9 10 11 13

Whenrt is smaller than 1, the truncation error merges adjacentegatdiN. In the
following example, the eventdN = 3} and{N = 4} cannot be distinguished in the
data set. This is because the corresponding observatjof4s2} in both cases.

Example 2
> data = floor(0.68 * n)
% Non distinguishible case
>n
[1] 1+ 2 3 4 5 6 7 8 910
> data
[1] 0 1 2 2 3 4 4 5 6 6

In the distinguishible case, it is natural to sort and index dbserved values in
order to determine the mappixg— |Tx|. This is not sufficient in practice because
of missing values or outliers which can modify the indexes.

1.3 Observation Set

The gain parameter and the lawhave separate effects &n In the distinguishi-
ble case, the distribution function ¥fis a transformation of the distribution function
of N by the mapping« — | Tx]. The gain parameter and the truncation error only
distort the position of each peak, whereas the relativeulgagies are unchanged.



Consequently, the suppo#t’ of the empirical distribution is sufficient information
for estimatingr whereas the empirical frequencies are sufficient inforomafior the
distribution ofN.

In the non distinguishible case, the set of observed integealwaysN for large
samples (see Sectith 3). As a consequencannot be estimated based on that set
alone. A semi-parametric approach is not feasible either.ifstance, we cannot
estimate the meaB[N] but only E[X] = TE[N]. To separata andN, we have to
provide prior assumptions on the distributionMfike a Poisson parametric family.

In the following, we study properties of the sgt of observed integers. This set can
be constructed from the datasetdt{nlog(n)) time using sorting for example. The
algorithmic complexity of the following algorithms is gaved by the size of”, and
in particular, the maximum integer i&r'.

We focus on the distinguishible case, and perform paracestimation of the gain
parameter from a random set of integers. As the support adrii@rical distribution
is a sufficient statistic for, we use the statistical structur@ = 28, T, P, T € |1, +oo[ )
whereQ is the power set o and¥ is the exhaustive-algebra om2.

(Pr, T €]1,400[) is a parametric family of distributions a@ that is implicitly gener-
ated in the following way. For a fixed integeand fixed but unknown integer-valued
random variabléN, IP; is the distribution of the random variabl which is the set
of observed integers in an independent identically disted sampléX,...,X,) of

X =[1N].

1.4 Organization of the paper

To estimater in the distinguishible case, we first provide simple estorafor
in SectionDZ. These are later used as a starting point foravegr estimators and to
restrict the search space for

In Sectiorﬂs, we define the notion cdmpatible valueand provide a few properties
of the set of compatible values. In particular, the true peat@rt is a compatible
value and is close to the highest compatible value. Thisslémdn optimal estimator
that is described ifi 3.3.

We show the results of some simulations in secffon 4 and canpith the Max-
imum Likelihood Estimator obtained from the Double Poissamily, an estimator
based on linear regression and another one based on Foansform.

2 Estimators and Upper Bounds fort

The results in this section are based on the following idea foints in.” are
separated by at least |. Consequently, whem is large, then¥ is a sparse set,
whereas? is dense whem is near 1. For instance, there are consecutive poing in
ifand only if T < 2 (see Propositioﬂ 7 in the Appendix).



A better estimate can be obtained by combining more than 2emutive points.
Let [x,y] denote the set of integers betweeandy. If [x,y] is a subset of”, then

T<1+4 y—x Consequentlyr can be estimated by-t y—lx with a precision on

the order of the inverse of the length of the interya:clkx. However, this estimator is
strongly affected by missing values.it.

Instead of considering all the segmentssif) we propose to use the overall density
of the set, which is easier to compute algorithmically.xet |t i| denote the largest
: . X+1 .. . .
integer in.”. Thent < —f . Whenn'is unknown (because of potential missing

f
values), letn denote the number of non zero observed integers i.e. the euaib
elementsins. Then

X+1
T< Jf <
f

X+1
-

X+1. . . - .
Consequently% is an estimate of with precision on the order of/h (without

missing values). As it uses the whole data, it is usually npoeeise than the previous
bound. We will use this in the rest of the paper to restricts@rch space far.

Let us compare the previous bounds on an example. Suppadse hd.32 and
< ={1,2,3,5,6,7,9,10,11,13}.
As there are consecutive integersifiwe obtaint < 2.
Using the interval5, 7], we obtaint < 1+ 1/2.
Using the interva[9,11], we obtaint < 1+ 1/2 as well.
The density upper bound 1s< 14/10.

RemarkWe only provided upper bounds in this section because lowands can
only be deduced from the integers that cannot be generatbé imodel. These are
difficult to distinguish from missing values, which are igégs that can be generated
in the model, but do not appear in the sétof observed integers.

3 Compatible Values

The upper bounds that we proposed in the previous sectiogeaseto compute but
rather poor because they only take into account the prapoeti observed integers.
In this section, we describe an algorithm with higher corapabal load but which
can leverage the information in the location of each obskinvieger in the data set.

3.1 Lattices of Integers

In the observation mod& = | TN | whereN is integer valued, only specific integers
can be generated. Given a strictly positive real nunibéet us define the set of



possible values fok as thelattice associated to,ti.e. the infinite set of integers
4 = {x=|tk],k € N}. The set of observed integefs is also called thempirical
lattice.

With infinitely many observations, the parametes completely characterized by
the empirical lattice as the following proposition showhkisljustifies that is suf-
ficient information for estimating.

Proposition 1 (Equivalence between lattices and numberdh the distinguishible
case, letf and b denote two real numbers such thatt1and b > 1. Thens;, = .4,
if and only if § =t,.

Proof Obviously, ift; =t then.#4, = A,. Let us prove the converse, i.&;, = .7,
impliest; = t; or equivalently ift; # t, then.#, # #4,. Suppose the < to. There
existsn € N such thattyn| < |ton]. Either |ton] ¢ 4, , in which case#, # #4,, or
[tzn] = [tin1] with n; > n. In the latter case, distinguishibility implies that there
strictly more elements itv4, N A than in.#, N A whereA denotes the set of integers

[0, [t2n]].

3.2 The Set of Compatible Values

Propositiorﬂl is not sufficient for estimatirrgoecause in practice we only observe
a finite set ¢ ;. Consequently we define the notion of compatible lattices an
equivalently compatible values. For any positive rgale say that is compatible
with the data if. C .. Likewise, for any two seté andB, A is compatible with
B if B C A. Being compatible with the data set is a necessary conditioa valid
estimator oft.

The set of values that are compatible with the infinite latti¢; is adequate for
estimatingr because of the following proposition.

Proposition 2 7 is the largest real number i#{.77).

Proof tis a compatible value, we only have to show that it is the Isitge

Let u denote a real number greater thgrand leta denote a positive real number
such that < 7+ a < u. We will prove thatu is not compatible wittt by constructing
an element in¥; that cannot be in#,.

Let a denote a positive integer such tleat % andn= |Ta|.

Suppose that; C .#, thenn belongs to.#,, and there exists a positive integar
such thah = |ud |.

a > abecause in the distinguishible casaeanda’ correspond to their indices in the
sets.; and.#, and.; C A,

Moreover, ag < uwe have|ta| < |ual < |ud . For all three terms to be equal to
nin the distinguishible case requires tlaat a'.

Consequently, both andu lie in the intervall2, ™[, As a result|7 —u| < £ which
contradictsa > 1.



The sets(.7) has an intricate structure. It contains the positive reailners smaller
than 1 and the harmonic{s&,ke N*}, but these are not the only values. For exam-
ple, 4/3 is compatible with 2 because every even integer can beswrdts| k x 4/3],

k € N. Indeed, letk be an even integer. Eithéris a multiple of 4, in which case
k=4i= Lg‘ x3i|,ork=4i+2= Lg‘ X (3i+2)].

3.3 Estimation with a Finite Lattice

In practice, the empirical lattice is finite and can contaissimg values and outliers.
We say that an integer imissingfrom . when it is in the theoretical lattice’s,
smaller tharx= max.¥, but notin.#. The set of compatible values wit#f is a finite
union of intervals and compatible values are never isolaiedhe data contains less
information, the true parameteis not the supremum &f(.”), but it is still maximal
in the following sense.

Proposition 3 The set of compatible valugg.s’) contains exactly0, 1] and inter-
vals of length at least/%? wheref = max.#. In particular, if there are no outliers
or missing values i thent belongs to the intervdh, b[ such that b= supé(.v).

The proof is based on the following two lemmas.

Lemma 1 The set of compatible values contains exal@lyt] and a finite number of
intervals of the forma, b[ of length at least./%* wheref = max.#.

Proof Lett > 1 denote a compatible value. For each observed value”, there
exists an integem such tharx = [tn]. Consequently verifiest € [, X5 [. The inter-

section of the constraints [, X[ forall x e .7 is anintervat € [%, % [. All values

te [%, ’;—é[ verify all of the constraints and are thus compatible. Tingtk of this in-

terval is’;—i - % which is at least 1(niny). In the distinguishible case; < max.¥
andn, < max.#, which implies that the length is at least(inax.#)?.

Lemma 2 Let t be a positive real number that is compatible with the ieicgd lat-

. X+1
tice. Thent< %

Proof This follows directly from the upper bounds in Sectﬂ)n 2. Beepositior{p in
the Appendix.

To complete the proof, it suffices to show thrabelongs to the largest interval.

Proof There are only finitely many intervals of length at leagg?Lin [0, rfr;lx] S0
there exists such an interval b.

Let .+ denote the sety” = {n||nT] € .}, i.e. the set of values fdd that generate
. 1 belongs to a certain interv@’, b'[ which is the intersection of the constraints
Te[r, &nl[, forall x= |nT7| in .. We show thab’ = b, i.e. no positive real is both
greater tha’ and compatible. Letsuch that’ <t. Forallne ./, |[nt] < [nt]. As

t ¢ [a,b'], t breaks at least one of the constraints, that is to say, teexm integex

in . such thak = |nt] < |nt]. xis skipped in# and thug is not compatible.




The previous proposition suggests that it suffices to findatgest compatible in-
terval to estimater, and this is our proposed estimatbr More precisely, the set
¢.) = Ul_;[aj,bj[ is a union ofJ intervals, with(a;j) and (b;j) increasing se-
qguences, then
aj+b;

T=—

We use the following algorithm to compufe This also computes the mapping
x=|1n| — nand the precision.

— compute the set of observed values by sorting the data seearaVing multiple
occurences .
X+1

— compute the upper bourd< B = e wheren = card¥
— find an approximation of the largest compatible valbg testing the compatibil-

ity of the real numberg =B — )A(—kz

— deduce the indexes fromthat is to say for alk € .7, findi such thai = |ti |
— compute the intervah, b| as the intersection of the constraihts [>I—(, ?1 { for

allxin .7
a—+ .
- returnT as an estimator for

3.4 Properties of the Estimator

According to the previous results, the estimator perforref when there are no
missing values or outliers. Its precision(ls— a) /2 and can be computed inside the
algorithm. The precision is at leastf, but depending on the value ofit can reach
a precision on the order of/fi . In all cases, the precision is better than the density
bound, and there is a lower bound.

If there are missing values or outliers, the algorithm mag fim interval of com-
patible values that does not containFor example, if the dataset {9,2,4,6,8}, a
reasonable estimator would answer 2 andmet4/3 with missing values 1 and 5.
In practice, such cases are rare, and are related to arithpneperties of the se¥’.
However, the largest compatible value is never an erronaasiser to the problem. It
is a parcimonious answer in the sense that it is the smadittistd which may explain
the dataset.

The estimator is optimal in the sense that the algorithm famdmiterval of positive
real numbers that are all plausible. Given a dat&sgt= [Ti1],...,Xn = |Tin]) Of
sizen, there is an interval of compatible values that can gendpate. .,x,) from
the same realizatiofiy, ..., in) of N. Let [ay, b;[ with by = supé(.”), the following
proposition holds.



Proposition 4 Given a realizatior(is, .. .,in) of N, all values inay, b;[ generate the
same data s€ixy, . .., Xn), i.€.

vt € [ag,by], Vj € [1,n], xj = [Tij] = [tij]

Proof As in the proof of Propositioﬂ 3ay, by is the intersection of the constraints

xj = [tij].

The data set does not contain enough information to disishghe values iy, by|.
In particular, even if the realizatia, ... ,in) is given, then the values are not distin-
guishible. Note that ik is known not to be in#z, then for all integersg, 7 > XO” or
T< XO . These inequalities are not informative because they asady contamed in
L i],vxe.7.

The program is quite fast. First because is relies only ors#hie” which is much
smaller than the dataset wheis near 1 andN is independent identically distributed,
because repeats df are discarded. As the following proposition shows, with few
missing values, the density bound is precise and the afgoiis quicker. All com-
patible values can be retrieved by testB®f numbers.

Proposition 5 If there are no missing values, the largest compatible vaudeund

after at mostF ~ TX steps. With a small number of missing values R, the number

of steps is on the order af% <k+ %) where k= fi— card¥ is the number of missing

values.

Proof The procedure begins Bt= 1, ends befor% becausg > a> % X , and pro-
ceeds in steps of length/ 2. Consequently, there are at m@st xz(xﬁ1 r]) steps.

Let k = A— card” denote the number of missing values. We make the following
three approximation& < fi, 1 < Xandt ~ )ﬁ ThenC = R2(%+1) (ncard/ + (x+1))

which can be approximated I/~ t2%(k + %).

Testing for the compatibility of a redlis linear in the size of, so the whole
procedure is at most quadratic. The full set of compatibleascan be obtained in
cubic time.

4 Results and Discussion
4.1 Compatible Values Estimator

FigureD illustrates the compatible values estimator onnaukited dataset. The
dataset6,6,11,5,3,5,2,6,5,13 2,7,7,7,6} is obtained from the observation model
X =1.32xN| whereN is distributed according to a Poisson random variable with
mean 55. It is first reduced to the lattice” = {2,3,5,6,7,11,13} and is shown at
the bottom.
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Fig. 2 Comparison of the dataset and a few lattices that are not atiloign

The vertical axis represents valuestofThe set of compatible values is composed
of several intervals and represented on the left. For edehvial, we select one com-
patible valug and represent the latticg;. All reals in the same interval generate the
same lattice, up to m&x¥”).

For comparison, Figu@ 2 display4 for several values that are not compatible with
the data. For example, 5 and 11 are in the dataset but ot jn

Two sources of variation affect the estimdteFirst, the estimator is not perfect
because the dataset is finite. Second, the data/sistrandom. Figurg]3 shows the
performance of the estimator with a fixed datadét([1,10]) for several values of
1. The intervals shown correspond to the interval&{n”) that contain the largest
compatible value.

We can see that the precision of the estimator varies witnly the rangg1, 2]
is shown because the precision only depends on therrestr | modulo 1. Conse-
guently, the absolute precision is roughly constant, wéetbe relative precision is

@] (?) . With small quantization errorr(C> 1) the estimation problem is easier.
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Fig. 3 Length of the maximal interval for several valuestofith N € [1,10].
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Fig. 4 Kernel density estimate of the distribution of the comgatimlues estimator on a random dataset.

Figurel]l shows the distribution @fwhen the datase¥ is the result of 15 samples
of X = |TN| wheret = 1.32 andN is distributed according to a Poisson random
variable with mean %. The distribution of the estimator value is obtained frdra t
200 repeats shown in the bottom of the plot thanks to a kestghate, even if the
distribution is a sum of Dirac point masses. The intervalghthe interval obtained
with the (complete) datas¢t1.32xn|,ne [1,13]}.

4.2 The Double Poisson Family

In this section, we briefly recall the results froﬂ\ [5], andidee an estimator for
our model. Letyy, (y) = e #uY/y! denote the distribution function of a Poisson ran-
dom variable with meap. The double Poisson distribution with paramet@rg is
defined as:

fo.u(y) = (6, 1)8%2 {gu(y) }° {ay(y) }*°
_ Oy
=0 (0% ) (57 ) (T)
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Fig. 5 Kernel density estimate of the distribution of the doubléspon estimate of with flooring noise
(solid line) and without (dotted line).

wherec is a normalization constant.

Maximum Likelihood Estimation leads to the following esétors. Let(Y,...,Yn)
be independent identically distributed random variablis distributionfg ,,, then

Sl
]

Yi

>
Il

. n

[« ]

wherel (Hg, tz) = p1(log(pa) —log(p2)) — (1 — Ha).

LetYp , be a random variable with distribution functidg ,, then according td]5]
Yo, has approximately the same distributionXg$ whereX is Poisson distributed
with meanu 8. With Poisson distribution for the ion counts, our obseéoramodel
become¥ = | TN| whereN is Poisson distributed with mean Consequently, esti-
mates forr andA can be deduced froifi and [ with the following relations:

~
Il

[«n}}

>
I
= ok

The double Poisson distribution is a correct approximatibthe distribution of
X/6 for large 1, and in that casef andA are unbiased estimates nfandA. The

standard deviation of is T—ﬁ Figure|} shows the distribution df with flooring

noise, i.e. in the modé&f = | TN| (solid line) and without flooring noise in the model
Y = 1N (dotted line). The plot was generated with 2000 repeats déita sets of
size 500. We observe a large standard deviation comparbdheicompatible values
estimator, even on a much larger data set. With large valtigs ¢runcation has
limited effect on the estimate.
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Fig. 6 Kernel density estimate of the distribution of the doubléspon estimate of with flooring noise
(solid line) and without (dotted line).

For modeling rare ion count events, we need to study the aginsiwith small val-
ues ofA andrt. In that casef is strongly biased for both models as shown on Fiﬁpre 6.
This implies that the approximation is not suited to thisgaof parameters, and that
the flooring noise makes a significant difference there. rléi@.was generated using
2000 repeats with data sets of size 500. For comparison, eve thie optimal interval
obtained by the compatible values estimator on the datf| 432« n|,ne [1,13]}.

4.3 Fourier Estimator

From the setN we can construct the signfit t — ¥,y 0(x— Tk) whered denotes
the Dirac function, that is to say a periodic series of pul3ée periodr may thus
be estimated using Fourier transform. Likewise, we defieeetitimator 11 as the
maximum of the Fourier transform of the quasi-periodic aigh: t — ¥,y 0(X—

[Tk]).

As T can be seen as a quasi-period, our estimation problem islgltisked to the
“harmonic retrieval problem”. Many approaches have beepgsed in that domain
and the main focus is on the estimation of the Power Spectakily ES]. However,
the signal is usually perturbed by additive noise wheredignpaper we consider a
distortion of the time axis.

We use the following algorithm:

sample the signal at the pointsi = i for the integers in [0,max(.*”)]
compute the Discrete Fourier Transform

compute an upper bound using Proposiﬂ)nr9< B= %L

find the frequency with highest absolute Fourier coefficient
return the corresponding period (inverse of the frequency)
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1=1.32,T=1.272727 12132, 21272727
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Fig. 7 Fourier transform of the quasi-periodic signal, in Fouspace (left) and period space (right). The
vertical line shows the upper bound from Propositipn 9.

This estimator has a precision that corresponds to the gagnte in time space
around the true value. In the Fourier space, the sampliegsamiform with steps of
length I/ max.”’) which is equivalent to A(T x X). In the time space, @8 = 1/f,
thenAP = —Af/f2 and the sampling rate is non uniform. Foe= 1/1 we obtain the
precision of the Fourier estimator agk. This suggests that the precision decreases
with 7. However, the signal frequency i is nearx? max.#’) which is one of the
sampling points. As a result, in practice, the absoluteipi@tis on the order of X
and independent af.

Figureﬁ7 shows in the frequency and period space the Fotaigsform of the quasi-
periodic signal obtained from the datadét [1,10]. The vertical line corresponds
to the upper bound from Propositiﬁh 9.

Remark When oversampling by a factds, i.e. sampling at the pointg = lk

for the integers in [0,max.¥) x K], the harmonics of 1 Hz increase in magnitude.
Therefore it is necessary to weed out the frequencies abldvarithe distinguishible
case. Moreover, oversampling increases the maximum freyuéat can be repre-
sented in the Fourier space and does not improve the preasibe estimator.

On a random dataset, the Fourier estimator suffers greaity fnissing values.
Figure|]3 shows the distribution af with 200 simulations and a dataset of size 15
whereN is distributed according to a Poisson random variable wigam55. The
precision of the estimator is much worse than the compatibliges estimator (see
the plotted interval). The Fourier estimate is compatible with the dataset in only
about 1% of the simulations.
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Fig. 8 Kernel density estimate of the distribution of the Fourigtiraator.
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Fig. 9 The linear regression estimator on a dataset without ngjssitues.

4.4 Linear Regression Estimator

The observation mod&{ = |TN| may be writtenX = TN + € wheree is an error
term. Even ife is not Gaussian, linear regression can yield a reasonatitests of
the regression coefficiemtas Figure[|9 shows.

We use the following algorithm:

— compute the empirical lattic§x } by sorting and removing duplicates in the
dataset

— compute the indexef; } according to the sorting index

— fit aregression line of the form = an; + 0.5

— returna

Figure[d shows the linear regression estimator on the datése |7[1,10]| (no
missing values). For each element in the dataset, if theess@gn line intersects the
length 1 interval then the estimate is compatible with thta gaint.
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Fig. 10 The linear regression estimator in the case of missing salliee compatible values estimator is
shown in dotted line.

Note that the truncation error is not centered. Conseqyewl compute the regres-
sion coefficientin the the modxl+ 0.5= TN+ €. For the same reason, the regressors
are below the regression line.

The main difficulty in the linear regression is that the valaéthe regressor variable
N are unknown. In the distinguishible case, it is possiblestmnstruct them when
there are no missing values, i.#; N [0,n] = . wheren = max.. Otherwise, the
regressors will be shifted and that affects strongly thienegée. Figurﬂo shows such
a case. The regressors inferred in the linear regressionast and the regression
line are shown in solid line. For comparison, the true regwesare displayed in dot-
ted line. The compatible values estimator finds the trueassyprs and its regression
line is shown in dotted line.

5 Conclusion

In the observation mod& = | TN, the parameter can be reliably estimated inde-
pendently fromN. This allows the full recovery of the statistics Mfprior to model-
ing. The structure ol may then be studied at length afterwards.

The estimator based on compatible values is optimal andneady quick. It is
resistant to missing values in practice, and in the worse casirns an acceptable
(parcimonious) answer without hypotheses on the lai.of

Unfortunately, this estimator only takes into account ¢ation noise, and yields
poor results on real data. We are currently pursuing an siderof the model that
mixes electronic noise and truncation effects.



17

Compared to the other three estimators, the compatibleegadatimator performs
much better but also more slowly. The Double Poisson Fam#ymply not a suitable
model in our range of parameters, but there is room for imgmuent for the other
estimators. For example, the main difficulty in the lineagression is computing
the indexes. With some knowledge about the laviNpfjuantile regression could be
applied.

The Fourier estimator suggests a strong relationship vhighhtarmonic retrieval
problem, although the signal is not periodic. Although tiuatation error considered
in this paper is very different from Gaussian errors usuatlgsidered in harmonic
retrieval, some algorithms from that field may make a bettengromise between
speed and precision for the current problem.
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Appendix
Proposition 6 The mapping %~ | TX| is injective if and only ift > 1.

Proof If T =1, the mapping is the identity function. Suppase 1 and letn; andn;
denote two (positive) integers such that n,. Thentn, —tng > 7> 1 and|tny| >
[Tn1|. Whent < 1, the mapping is not injective becausex 1| = [T x 0] =0.

Upper Bounds o

Proposition 7 (Any two observations)Let x and y be two distinct elements of the
set.” of observed values. Than< 1+ |x—y]|.

Proof Let i and j be the values o corresponding tox andy i.e. x = |ti| and
y = |Tj]. Then we have the inequalities:< 7i < x+ 1,y < 7j <y+1, and thus

P ; ; —x+1
7(j—1i) <y—x+1. Assuming < y, we obtaint < yjfi <y—x+1.

Proposition 8 (Observed intervals)Let [x,y] denote the set of integers between x

andy. If[x,y] is a subset of”, thent < 1+ =

Proof Using the same notations as in the proof of Proposﬂimi,y’jﬁl < E‘ +

j—fi <1+ J—EI because in the distinguishible case the number of elemefitsyi] is

y—x+1=j—i+1.

Proposition 9A(Density Upper Bound)Let X = | fi| denote the largest integer in

X+1 . . .
. Thent < ; . When is unknown (because of potential missing values), let n

. X+1 Xx+1
denote the number of hon zero observed integers. Then—r:— < %



