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Best attainable rates of convergence for the

estimation of the memory parameter

Philippe Soulier

Université Paris Ouest-Nanterre, 200 avenue de la République, 92000 Nanterre
cedex, France philippe.soulier@u-paris10.fr

Summary. The purpose of this note is to prove a lower bound for the estimation of
the memory parameter of a stationary long memory process. The memory parameter
is defined here as the index of regular variation of the spectral density at 0. The
rates of convergence obtained in the literature assume second order regular variation
of the spectral density at zero. In this note, we do not make this assumption, and
show that the rates of convergence in this case can be extremely slow. We prove
that the log-periodogram regression (GPH) estimator achieves the optimal rate of
convergence for Gaussian long memory processes

1 Introduction

Let {Xn} be a weakly stationary process with autocovariance function γ. Its spectral
density f , when it exists, is an even nonnegative measurable function such that

γ(k) =

Z π

−π

f(x)eikx dx .

Long memory of the weakly stationary process {Xt} means at least that the auto-
covariance function is not absolutely summable. This definition is too weak to be
useful. It can be strengthen in several ways. We will assume here that the spectral
density is regularly varying at zero with index −α ∈ (−1, 1), i.e. it can be expressed
for x ≥ 0 as

f(x) = x−αL(x) ,

where the function L is slowly varying at zero, which means that for all t > 0,

lim
x→0

L(tx)

L(x)
= 1 .

Then the autocovariance function is regularly varying at infinity with index α − 1
and non absolutely summable for α > 0. The main statistical problem for long
memory processes is the estimation of the memory parameter α. This problem has
been exhaustively studied for the most familiar long memory models: the fractional
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Gaussian noise and the ARFIMA(p, d, q) process. The most popular estimators are
the GPH estimator and the GSE estimator, first introduced respectively by Geweke
and Porter-Hudak (1983) and Kuensch (1987). Rigorous theoretical results for these
estimators were obtained by Robinson (1995a,b), under an assumption of second
order regular variation at 0, which roughly means that there exists C, ρ > 0 such
that

f(x) = Cx−α{1 + O(xρ)} .

Under this assumption, Giraitis et al. (1997) proved that the optimal rate of con-
vergence of an estimator based on a sample of size n is of order n2ρ/(2ρ+1).

The methodology to prove these results is inspired from similar results in tail
index estimation. If F is a probability distribution function on (−∞,∞) which is
second order regularly varying at infinity, i.e. such that

F̄ (x) = Cx−α{1 + O(x−αρ)}

as x → ∞, then Hall and Welsh (1984) proved that the best attainable rate of
convergence of an estimator of the tail index α based on n i.i.d. observations drawn
from the distribution F is of order n2ρ/(2ρ+1). In this context, Drees (1998) first
considered the case where the survival function F̄ is regularly varying at infinity,
but not necessarily second order regularly varying. He introduced very general classes
of slowly varying functions for which optimal rates of convergence of estimators of
the tail index can be computed. The main finding was that the rate of convergence
can be extremely slow in such a case.

In the literature on estimating the memory parameter, the possibility that the
spectral density is not second order regularly varying has not yet been considered.
Since this has severe consequences on the estimations procedures, it seems that this
problem should be investigated. In this note, we parallel the methodology developped
by Drees (1998) to deal with such regularly varying functions. Not surprisingly, we
find the same result, which show that the absence of second order regular variation
of the spectral density has the same drastic consequences.

The rest of the paper is organised as follows. In Section 2, we define the classes
of slowly varying functions that will be considered and prove a lower bound for the
rate of convergence of the memory parameter. This rate is proved to be optimal
in Section 3. An illustration of the practical difficulty to choose the bandwidth
parameter is given in Section 4. Technical lemmas are deferred to Section 5.

2 Lower bound

In order to derive precise rates of convergence, it is necessary to restrict attention to
the class of slowly varying functions referred to by Drees (1998) as normalised. This
class is also referred to as the Zygmund class. Cf. (Bingham et al., 1989, Section 1.5.3)

Definition 1. Let η∗ be a non decreasing function on [0, π], regularly varying at
zero with index ρ ≥ 0 and such that limx→0 η∗(x) = 0. Let SV (η∗) be the class of
even measurable functions L defined on [−π, π] which can be for expressed x ≥ 0 as

L(x) = L(π) exp



−
Z π

x

η(s)

s
ds

ff

,
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for some measurable function η such that |η| ≤ η∗.

This representation implies that L has locally bounded variations and η(s) =
sL′(s)/L(s). Usual slowly varying functions, such as power of logarithms, iterated
logarithms are included in this class, and it easy to find the corresponding η function.
Examples are given below. We can now state our main result.

Theorem 1. Let η∗ be a non decreasing function on [0, π], regularly varying at 0
with index ρ ≥ 0 and such that limx→0 η∗(x) = 0. Let tn be a sequence satisfying

lim
n→∞

η∗(tn)(ntn)1/2 = 1 . (1)

Then, if ρ > 0,

lim inf
n→∞

inf
α̂n

sup
L∈SV (η∗)

sup
α∈(−1,1)

Eα,L[η∗(tn)−1|α̂n − α|] > 0 , (2)

and if ρ = 0

lim inf
n→∞

inf
α̂n

sup
L∈SV (η∗)

sup
α∈(−1,1)

Eα,L[η∗(tn)−1|α̂n − α|] ≥ 1 , (3)

where Pα,L denotes the distribution of any second order stationary process with spec-
tral density x−αL(x) and the infimum infα̂n is taken on all estimators of α based
on n observations of the process.

Example 1. Define η∗(s) = Csβ for some β > 0 and C > 0. Then any function
L ∈ SV (η∗) satisfies L(x) = L(0) + O(xβ), and we recover the case considered
by Giraitis et al. (1997). The lower bound for the rate of convergence is nβ/(2β+1).

Example 2. For ρ > 0, define η∗(s) = ρ/ log(1/s), then

exp

(

Z 1/e

x

η∗(s)

s
ds

)

= exp {ρ log log(1/x)} = logρ(1/x).

A suitable sequence tn must satisfy ρ2/ log2(tn) ≈ ntn. One can for instance
choose tn = log2(n)/(nρ2), which yields η∗(tn) = ρ/ log(n){1 + o(1)}. Note that
η(s) = ρ/ log(s) belongs to SV (η∗), and the corresponding slowly varying function
is log−ρ(1/x). Hence, the rate of convergence is not affected by the fact that the
slowly varying function vanishes or is infinite at 0.

Example 3. The function L(x) = log log(1/x) is in the class SV (η∗) with η∗(x) =
{log(1/x) log log(1/x)}−1. In that case, the optimal rate of convergence is log(n) log log(n).
Even though the slowly varying function affecting the spectral density at zero di-
verges very weakly, the rate of convergence of any estimator of the memory param-
eter is dramatically slow.

Proof of Theorem 1 Let ℓ > 0, tn be a sequence that satisfies the assumption of
Theorem 1, and define αn = η∗(ℓtn) and

ηn(s) =



0 if 0 ≤ s ≤ ℓtn,
αn if ℓtn < s ≤ π,

Ln(x) = παn exp



−
Z π

x

ηn(s) ds

ff

.



4 Philippe Soulier

Since η∗ is assumed non decreasing, it is clear that Ln ∈ SV (η∗). Define now f−
n (x) =

x−αnLn(x) and f+
n = (f−

n )−1. f−
n can be written as

f−
n (x) =



(ℓtn/x)αn if 0 < x ≤ ℓtn,
1 if ℓtn < x ≤ π.

Straighforward computations yield

Z π

0

{f−
n (x) − f+

n (x)}2 dx = 8ℓtnα2
n(1 + O(α2

n)) = 8ℓn−1(1 + o(1)). (4)

The last equality holds by definition of the sequence tn. Let P
−
n and P

+
n denote the

distribution of a n-sample of a stationary Gaussian processes with spectral densities
f−

n et f+
n respectively, E

−
n and E

+
n the expectation with respect to these probabilities,

dP
+
n

dP
−

n

the likelihood ratio and An = { dP
+
n

dP
−

n

≥ τ} for some real τ ∈ (0, 1). Then, for any

estimator α̂n, based on the observation (X1, . . . , Xn),

sup
α,L

Eα,L[|α̂n − α|] ≥ 1

2

`

E
+
n [|α̂n − αn|] + E

−
n [|α̂n + αn|]

´

≥ 1

2
E

−
n

»1An |α̂n + αn| + dP
+
n

dP
−
n

1An |α̂n − αn|
–

≥ 1

2
E

−
n [{|α̂n + αn| + τ |α̂n − αn|}1An ] ≥ ταnP

−
n (An).

Denote ǫ = log(1/τ ) and Λn = log(dP
+
n /dP

−
n ). Then P

−
n (An) = 1 − P

−
n (Λn ≤

−ǫ). Applying (4) and (Giraitis et al., 1997, Lemma 2), we obtain that there exist
constants C1 and C2 such that

E
−
n [Λn] ≤ C1ℓ , E

−
n [(Λn − mn)2] ≤ C2ℓ .

This yields, for any η > 0 and small enough ℓ,

P
−
n (An) ≥ 1 − ǫ−2

E[Λ2
n] ≥ 1 − Clǫ−2 ≥ 1 − η .

Thus, for any η, τ ∈ (0, 1), and sufficiently small ℓ, we have

lim inf
n→∞

inf
L∈SV (η∗)

inf
α∈(−1,1)

Eα,L[η∗(tn)−1|α̂n − α|]

≥ τ (1− η) lim
n→∞

η∗(ℓtn)

η∗(tn)
= τ (1 − η)ℓρ .

This proves (2) and (3). ⊓⊔

3 Upper bound

In the case η∗(x) = Cxρ with ρ > 0, Giraitis et al. (1997) have shown that the
lower bound (2) is attainable. The extension of their result to the case where η∗ is
regularly varying with index ρ > 0 (for example to functions of the type xβ log(x))
is straightforward. We will restrict our study to the case ρ = 0, and will show that
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the lower bound (3) is asymptotically sharp, i.e. there exist estimators that are rate
optimal up to the exact constant.

Define the discrete Fourier transform and the periodogram ordinates of a process
X based on a sample X1, . . . , Xn, evaluated at the Fourier frequencies xj = 2jπ/n,
j = 1, . . . , n, respectively by

dX,j = (2πn)−1/2
n

X

t=1

Xte
−itxj , and IX,j = |dX,j |2.

The frequency domain estimates of the memory parameter α are based on the fol-
lowing heuristic approximation: the renormalised periodogram ordinate IX,j/f(xj),
1 ≤ j ≤ n/2 are approximately i.i.d. standard exponential random variables. Al-
though this is not true, the methods and conclusion drawn from these heuristics
can be rigourously justified. In particular, the Geweke and Porter-Hudak (GPH)
and Gaussian semiparametric estimator have been respectively proposed by Geweke
and Porter-Hudak (1983) and Kuensch (1987), and a theory for them was obtained
by Robinson (1995b,a) in the case where the spectral density is second order regu-
larly varying at 0.

The GPH estimator is based on an ordinary least square regression of log(IX,k)
on log(k) for k = 1, . . . , m, where m is a bandwith parameter:

(α̂(m), Ĉ) = arg min
α,C

m
X

k=1

{log(IX,k) − C + α log(k)}2 .

The GPH estimator has an explicit expression as a weighted sum of log-periodogram
ordinates:

α̂(m) = −s−2
m

m
X

k=1

νm,k log(IX,k),

with νm,k = log(k) − m−1 Pm
j=1 log(j) and s2

m =
Pm

k=1 ν2
m,k = m{1 + o(1)}.

Theorem 2. Let η∗ be a non decreasing slowly varying function such that limx→0 η∗(x) =
0. Let Eα,L denote the expectation with respect to the distribution of a Gaussian pro-
cess with spectral density x−αL(x). Let tn be a sequence that satisfies (1) and let m
be a non decreasing sequence of integers such that

lim
n→∞

m1/2η∗(tn) = ∞ and lim
n→∞

η∗(tn)

η∗(m/n)
= 1 . (5)

Assume also that the sequence m can be chosen in such a way that

lim
n→∞

log(m)
R π

m/n
s−1η∗(s) ds

mη∗(m/n)
= 0 . (6)

Then, for any δ ∈ (0, 1),

lim sup
n→∞

sup
|α|≤δ

sup
L∈SV (η∗)

η∗(tn)−2
Eα,L[(α̂(m) − α)2] ≤ 1. (7)

Remark 1. Since η∗ is slowly varying, it is always possible to choose the sequence m
in such a way that (5) holds. Condition (6) ensures that the bias of the estimator is
of the right order. It is very easily checked and holds for all the examples of usual
slowly varying function η∗, but we have not been able to prove that it always holds.



6 Philippe Soulier

Since the quadratic risk is greater than the L1 risk, we obtain the following
corollary.

Corollary 1. Let δ ∈ (0, 1) and η∗ be a non decreasing slowly varying function
such that limx→0 η∗(x) = 0 and such that it is possible to choose a sequence m that
satisfies (6). Then, for tn as in (1),

lim inf
n→∞

inf
α̂n

sup
L∈SV (η∗)

sup
α∈(−δ,δ)

Eα,L[η∗(tn)−1|α̂n − α|] = 1 . (8)

Remark 2. This corollary means that the GPH estimator achieves the optimal rate
of convergence, up to the exact constant over the class SV (η∗) when η∗ is slowly
varying. This implies in particular that, contrarily to the second order regularly
varying case, there is no loss of efficiency of the GPH estimator with respect to the
GSE. This happens because in the slowly varying case, the bias term dominates
the stochastic term if the bandwidth parameter m satisfies (5). This result is not
completely devoid of practical importance, since when the rate of convergence of an
estimator is logarithmic in the number of observations, constants do matter.

Example 4 (Example 2 continued). If L(x) = logρ(1/x)L̃(x), where L̃ ∈ SV (Cxβ) for
some ρ >, β > 0 and C > 0, then

Pm
k=1 νm,k log(L(xk)) ∼ ρm log−1(xm). Choosing

m = log1+δ(n) yields (5), (6) and log(n)(α̂(m) − α) converges in probability to ρ.

Proof of Theorem 2. Define Ek = log{xα
k Ik/L(xk)}. The deviation of the GPH

estimator can be split into a stochastic term and a bias term:

α̂(m) − α = −s−2
m

m
X

k=1

νm,kEk − s−2
m

m
X

k=1

νm,k log(L(xk)). (9)

Applying Lemma 2, we obtain the following bound:

E

hn

m
X

k=1

νm,k log(Ek)
o2i

≤ C(δ, η∗) m. (10)

The bias term is dealt with by applying Lemma 1 wich yields

˛

˛

˛

m
X

k=1

νm,k log(L(xk))
˛

˛

˛
≤ mη∗(xm){1 + o(1)}, (11)

uniformly with respect to |η| ≤ η∗. Choosing m as in (5) yields (7). ⊓⊔

4 Bandwidth selection

In any semiparametric procedure, the main issue is the bandwidth selection, here the
number m of Fourier frequencies used in the regression. Many methods for choosing
m have been suggested, all assuming some kind of second order regular variation
of the spectral density at 0. In Figures 1- 3 below, the difficulty of choosing m
is illustrated, at least visually. In each case, the values of the GPH estimator are
plotted against the bandwidth m, for values of m between 10 and 500 and sample
size 1000.
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In Figure 1 the data is a simulated Gaussian ARFIMA(0,d,0). The spectral
density f of an ARFIMA(0,d,0) process is defined by f(x) = σ2|1 − eix|−2d/(2π),
where σ2 is the innovation variance. Thus it is second order regularly varying at
zero and satisfies f(x) = x−α(C + O(x2)) with α = 2d. The optimal choice of the
bandwidth is of order n4/5 and the semiparametric optimal rate of convergence is
n2/5. Of course, it is a regular parametric model, so a

√
n consistent estimator is

possible if the model is known, but this is not the present framework. The data in
Figure 2 comes from an ARFIMA(0,d,0) observed in additive Gaussian white noise
with variance τ 2. The spectral density of the observation is then

σ2

2π
|1 − eix|−2d +

τ 2

2π
=

σ2

2π
|1 − eix|−2d



1 +
τ 2

σ2
|1 − eix|2d

ff

.

It is thus second order regularly varying at 0 and the optimal rate of convergence
is n2d/(4d+1), with optimal bandwidth choice of order n4d/(4d+1). In Figures 1 and 2
the outer lines are the 95% confidence interval based on the central limit theorem
for the GPH estimator of d = α/2. See Robinson (1995b).

A visual inspection of Figure 1 leaves little doubt that the true value of d is close
to .4. In Figure 2, it is harder to see that the correct range for the bandwidth is
somewhere betwen 50 and 100. As it appears here, the estimator is always negatively
biased for large m, and this may lead to underestimating the value of d. Methods
to correct this bias (when the correct model is known) have been proposed and
investigated by Hurvich and Ray (2003) and Hurvich et al. (2005), but again this is
not the framework considered here.

Finally, in Figure 3, the GPH estimator is computed for a Gaussian process with
autocovariance function γ(k) = 1/(k+1) and spectral density log |1−eix|2. The true
value of α is zero, but the spectral density is infinite at zero and slowly varying. The
plot d̂(m) is completely misleading. This picture is similar to what is called the Hill
“horror plot” in tail index estimation. The confidence bounds are not drawn here
because there are meaningless. See Example 4.

There has recently been a very important literature on methods to improve the
rate of convergence and/or the bias of estimators of the long memory parameter,
always under the assumption of second order regular variation. If this assumption
fails, all these methods will be incorrect. It is not clear if it is possible to find
a realistic method to choose the bandwidth m that would still be valid without
second order regular variation. It might be of interest to investigate a test of second
order regular variation of the spectral density.

5 Technical results

Lemma 1. Let η∗ be a non decreasing slowly varying function on (0, π] such that
lims→0 η∗(s) = 0. Let η be a measurable function on (0, π] such that |η| ≤ η∗, and

define h(x) = −
R π

x

η(s)
s

ds and h∗(x) =
R π

x

η∗(s)
s

ds. Then, for any non decreasing
sequence m ≤ n,

˛

˛

˛

˛

˛

m
X

k=1

νm(k)h(xk)

˛

˛

˛

˛

˛

≤ mη∗(xm) + O(log2(m)η∗(xm) + log(m)h∗(xm)), (12)

uniformly with respect to |η| ≤ η∗.
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Fig. 1. GPH estimator for ARFIMA(0,.4,0)
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Fig. 2. GPH estimator for ARFIMA(0,.4,0)+ noise

Proof. Since η is slowly varying, the function h is also slowly varying and satisfies
limx→0 η(x)/h(x) = 0. Then,

m
X

k=1

h(xk) =
n

2π

Z xm

0

h(s) ds +
n

2π

m
X

k=1

Z xk

xk−1

{h(xk) − h(s)} ds

=
n

2π

Z xm

0

h(s) ds +
n

2π

m
X

k=1

Z xk

xk−1

Z xk

s

η(t)

t
dt ds .

Thus, for |η| ≤ η∗ and η∗ increasing,
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Fig. 3. GPH “horror” plot

˛

˛

˛

˛

˛

m
X

k=1

h(xk) − n

2π

Z xm

0

h(s) ds

˛

˛

˛

˛

˛

≤ η∗(xm)
n

2π

m
X

k=1

Z xk

xk−1

Z xk

s

dt

t
ds

= η∗(xm)

(

m
X

k=1

log(xk) − n

2π

Z xm

0

log(s) ds

)

= η∗(xm)

(

m
X

k=1

log(k) − m log(m) + m

)

= O(η∗(xm) log(m)) .

By definition, it holds that xh′(x) = η(x). Integration by parts yield

n

2π

Z xm

0

h(s) ds = mh(xm) − n

2π

Z xm

0

η(s) ds . (13)

Thus,

m
X

k=1

h(xk) = mh(xm) − n

2π

Z xm

0

η(s) ds + O(log(m)η∗(xm)) . (14)

Similarly, we have:

m
X

k=1

h(xk) log(x) = mh(xm) log(xm) − n

2π

Z xm

0

{η(s) log(s) + h(s)}dx

+ O(log(m){log(xm)η∗(xm) + h∗(xm)}) . (15)

By definition of νm(k), we have:

νm(k) = log(k) − 1

m

m
X

j=1

log(j) = log(xk) − log(xm) + 1 + O

„

log(m)

m

«

.
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Hence, applying (13), (14) and (15), we obtain

m
X

k=1

νm(k)h(xk)

=
m

X

k=1

log(xk)h(xk) − {log(xm) − 1 + O(log(m)/m)}
m

X

k=1

h(xk)

=
n

2π

Z xm

0

η(s){log(xm) − log(s)}ds

+ O(log(m){η∗(xm) log(xm) + h∗(xm)}) .

Finally, since |η| ≤ η∗ and η∗ is non decreasing, we obtain

n

2π

˛

˛

˛

˛

Z xm

0

η(s){log(xm) − log(s)} ds

˛

˛

˛

˛

≤ n

2π
η∗(xm)

Z xm

0

Z xm

s

1

t
dt ds = mη∗(xm).

This yields (12). ⊓⊔

Lemma 2. Let η∗ be a non decreasing slowly varying function such that limx→0 η∗(x) =
0. Let X be a Gaussian process with spectral density f(x) = x−αL(x), where
α ∈ [−δ, δ] and L ∈ SV (η∗). Let γ = 0, 577216... denote Euler’s constant. Then, for
all n and all k, j such that 0 < xk, xj ≤ π/2,

|E[log(Ek)] − γ| +
˛

˛

˛

˛

E[log2(Ek)] − π2

6

˛

˛

˛

˛

≤ C(δ, η∗) log(1 + k)k−1,

|E[log(Ek) − γ)(log(Ej) − γ)]| ≤ C(δ, η∗) log2(j)k−2.

Proof of Lemma 2

It is well known (see for instance Hurvich et al. (1998), Moulines and Soulier (1999),
Soulier (2001)) that the bounds of Lemma 2 are consequences of the covariance
inequality for functions of Gaussian vectors of (Arcones, 1994, Lemma 1) and of the
following bounds. For all n and all k, j such that 0 < |xk| ≤ |xj | ≤ π/2,

|cov(dX,k, dX,j)| + |cov(dX,k, d̄X,j) − f(xk)δk,j |
≤ C(δ, η∗)

p

f(xk)f(xj) log(j) k−1 .

Such bounds have been obained when the spectral density is second order regularly
varying. We prove these bounds under our assumptions that do not imply second
order regular varition. Denote Dn(x) = (2πn)−1/2 Pn

t=1 e−itx. Then

cov(dX,k, dX,j) =

Z π

−π

f(x)Dn(xk − x)Dn(xj + x)dx.

Recall that by definition of the class SV (η∗), there exists a function η such that
|η| ≤ η∗ and L(x) = L(π) exp{−

R π

x
s−1η(s)ds}. Since only ratio L(x)/L(π) are

involved in the bounds, without loss of generality, we can assume that L(π) = 1. We
first prove that for all k such that xk ≤ π/2,
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˛

˛

˛

˛

Z π

−π

„

f(x)

f(xk)
− 1

«

|Dn(xk − x)|2 dx

˛

˛

˛

˛

≤ C(δ, η∗) log(k)k−1 . (16)

Since L ∈ SV (η∗), the functions xǫL(x) and xǫL−1(x) are bounded for any ǫ > 0
and

sup
x∈[0,π]

xδ(L(x) + L−1(x)) ≤ C(η∗, δ) , (17)

sup
α∈[−1+δ,1−δ]

Z π

−π

f(x) dx ≤ C(η∗, δ) . (18)

Since η∗ is increasing, for all 0 < x < y ≤ π/2, it holds that

|f(x) − f(y)| = |x−αL(x) − y−αL(y)|

≤
Z y

x

|α − η(s)|s−α−1L(s) ds

≤
Z y

x

(1 + η∗(π))s−α−1L(s) ds .

Since α ∈ [−1 + δ, 1 − δ], x−α−1L(x) is decreasing. Hence

|f(x) − f(y)| ≤ C(η∗, δ)x−1f(x)(y − x) . (19)

Define Fn(x) = |Dn(x)|2 (the Fejer kernel). We have

sup
π/2≤|x|≤π

|Fn(xk − x)| = O(n−1) ,

Z π

−π

Fn(x) dx = 1 , (20)

Z π

−π

Dn(y + x)Dn(z − x) dx = (2πn)−1/2Dn(y + z) . (21)

From now on, C will denote a generic constant which depends only on η∗, δ and
numerical constants, and whose value may change upon each appearance. Applying
(17), (18) and (20), we obtain

Z

π/2≤|x|≤π

˛

˛f−1(xk)f(x) − 1
˛

˛ Fn(x − xk) dx ≤ Cn−1(f−1(xk) + 1) ≤ Ck−1 .

The integral over [−π/2, π/2] is split into integrals over [−π/2,−xk/2] ∪ [2xk, π/2],
[−xk/2, xk/2] and [xk/2, 2xk]. If x ∈ [−π/2,−xk/2] ∪ [2xk, π/2], then Fn(x− xk) ≤
Cn−1x−2. Hence, applying Karamata’s Theorem (cf. (Bingham et al., 1989, Theo-
rem 1.5.8)), we obtain:

Z −xk/2

−π/2

+

Z −xk/2

−π/2

f(x)Fn(x) dx

≤ Cn−1

Z π/2

xk/2

x−α−2L(x) dx ≤ Cn−1x−α−1
k L(xk) ≤ Ck−1f(xk) ,

Z −xk/2

−π/2

+

Z −xk/2

−π/2

Fn(x) dx ≤ Cn−1

Z ∞

xk/2

x−2 dx ≤ Cn−1x−1
k ≤ Ck−1 .

For x ∈ [−xk/2, xk/2], Fn(xk − x) ≤ n−1x−2
k . Thus, applying again Karamata’s

Theorem, we obtain:
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Z xk/2

−xk/2

f(x)Fn(x − xk) dx ≤ Cn−1x−2
k

Z xk/2

−xk/2

x−αL(x) dx

≤ Cn−1x−2
k x−α+1

k L(xk) ≤ Ck−1f(xk) ,
Z xk/2

−xk/2

Fn(x − xk)dx ≤ Cn−1x−1
k ≤ Ck−1 .

Applying (19) and the bound
R xk

−xk/2
|x|Fn(x)|dx ≤ Cn−1 log(k), we obtain:

Z 2xk

xk/2

|f(x) − f(xk)|Fn(x − xk) dx

≤ Cx−α−1
k L(xk/2)

Z 2xk

xk/2

|x − xk|Fn(x − xk)|dx ≤ Cf(xk)k−1 log(k) .

This proves (16). We now prove that all k, j such that 0 < xk 6= |xj | ≤ π/2,

˛

˛

˛

˛

Z π

−π

„

f(x)

f(xk)
− 1

«

Dn(xk − x)Dn(xj − x) dx

˛

˛

˛

˛

+

˛

˛

˛

˛

Z π

−π

„

f(x)

f(xk)
− 1

«

Dn(xk − x)Dn(xj − x) dx

˛

˛

˛

˛

≤ C(δ, η∗) log(k ∨ |j|)(k ∧ |j|)−1. (22)

Define En,k,j(x) := Dn(xk − x)Dn(xj − x). Since 0 ≤ xk, xj ≤ π/2, for π/2 ≤ |x| ≤
π, we have |En,k,j(x)| ≤ Cn−1. Hence, as above,

Z

π/2≤|x|≤π

|f−1(xk)f(x) − 1| dx ≤ Cn−1(xα
k L−1(xk) + 1) ≤ Ck−1.

We first consider the case k < j and we split the integral over [−π/2, π/2] into
integrals over [−π/2,−xk/2] ∪ [2xj , π/2], [−xk/2, xk/2], [xk/2, (xk + xj)/2], [(xk +
xj)/2, 2xj ], denoted respectively I1, I2, I3 and I4.
• The bound for the integral over [−π/2,−xk/2] ∪ [2xj , π/2] is obtained as above
(in the case k = j) since |En,k,j | ≤ Cn−1x−2. Hence |I1| ≤ Ck−1.
• For x ∈ [−xk/2, xk/2], |En,k,j(x)| ≤ Cn−1x−2

k , hence we get the same bound:
|I2| ≤ Ck−1.
• To bound I3, we note that on the interval [xk/2, (xk + xj)/2],

|En,k,j(x)| ≤ Cn1/2(j − k)|Dn(x − xk)|,

and n1/2|x− xk||Dn(x− xk| is uniformly bounded. Hence, applying (19), we obtain

|I3| ≤ C(j − k)−1x−1
k xj ≤ Ck−1.

• The bound for I4 is obtained similarly: |I4| ≤ Ck−1 log(j).
• To obtain the bound in the case xj < xk, the interval [−π, π] is split into
[−π,−π/2]∪[π/2π] [−π/2,−xk/2]∪[2xk , π/2], [−xk/2, xj/2], [xj/2, (xk+xj)/2] and
[(xk +xj)/2, 2xk]. The arguments are the same except on the interval [−xk/2, xj/2]
where a slight modification of the argument is necessary. On this interval, it still
holds that |En,k,j(x)| ≤ n−1x−2

k . Moreover, xδL(x) can be assumed increasing on
[0, xk/2], and we obtain:
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Z xj/2

−xk/2

x−αL(x) dx ≤ xδ
kL(xk)

Z xj/2

−xk/2

x−α−δ dx ≤ Cx−α+1
k L(xk) .

The rest of the argument remains unchanged.
• To obtain the bound in the case xj < 0 < xk, the interval [−π, π] is split
into [−π,−π/2] ∪ [π/2, π] [−π/2, 2xj ] ∪ [2xk, π/2], [2xj ,−xk/2], [−xk/2, xk/2] and
[xk/2, 2xk] and the same arguments are applied. ⊓⊔
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