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ABSTRACT. The Sub-Mesh Penalty (SMP) method, a new fictitious domain method of high order is

presented. The final aim is to develop an efficient coupling between incompressible multiphase

flows and fixed or moving obstacles of complex shape. The flow is solved on a fixed Cartesian

grid and the solid objects are represented by Lagrangian surface elements. Several validation

problems in 2D and 3D are presented to demonstrate the interest and accuracy of the method.

KEYWORDS: High-order penalty methods, fictitious domains, Eulerian/Lagrangian grid coupling

1. Introduction

Many works have been devoted to the interaction between multiphase flows and
solid obstacles such as the Arbitrary Lagrangian Eulerian (ALE) method [Mau 99],
the Immersed Boundary Method (IBM) [PES 00] or the Immersed Interface Method
(IIM) [LE 07], the Distributed Lagrangian Multiplier (DLM) approach [GLO 99] or
the Ghost Fluid method [FED 99]. In order to deal with fluid/solid interactions, our
objective is to propose a new penalty-based numerical method, spatially of second
order, which can be easily implemented in an implicit finite volume CFD code with
minor modifications of the standard discretization schemes. The main interest of this
new method is to account for complex solid shapes or immersed interfaces on non-
conforming structured grids with second-order accuracy, while former penalty meth-
ods are generally of first order only since they consider the projected shape of the
fluid-solid interface on the Eulerian grid to define the penalty parameters [RAM 07].
Among the existing methods, we can cite the Darcy Penalty Method (DPM) for the
Navier-Stokes equations that can be used to treat fixed obstacles by adding a Darcy
term [KHA 00] in the momentum equations. Concerning obstacles moving under flow
action the derivatives of the velocity are penalized through a new formulation of the
viscous stress tensor ([RAN 05] and [VIN 07]) in order to impose no deformation with
a velocity resulting from the effect of the surrounding fluid. This method is called the
Implicit Tensorial Penalty Method (ITPM).



As a first step, we present the method for a fixed Cartesian grid in finite volumes,
even if the method can a priori be applied to finite elements and unstructured grids.
The article recalls the principles of the penalty methods. The new high-order method
which is based on a sub-mesh penalty approach is then detailed. The last section
presents validations dedicated to scalar and vector problems. Perspectives and con-
clusions are finally drawn.

2. Penalty methods for immersed interfaces

2.1. Low order penalty methods

Let us consider the following model scalar problem with a Dirichlet boundary
condition on the interface Σ :

{

−∇ · (a∇u) = f in Ω0

u|Σ = uD on Σ
[1]

Some boundary conditions are also imposed on the other part of the boundary ∂Ω0

such that the whole problem is well-posed. The penalty methods consist adding spe-
cific terms in the conservation equations to play with the order of magnitude of ex-
isting physical contributions so as to obtain at the same time and with the same set
of equations two different physical properties. The Volumic Penalty Method (VPM)
([KHA 00] and the references therein) consists the addition of a penalty term b(u−uD)
in the conservation equations, such that:

{

−∇ · (a∇u) + b(u − uD) = f in Ω
with b|Ω0

= 0, b|Ω1
= 1

ε
, for 0 < ε ≪ 1

[2]

where ε denotes the penalty parameter which tends to 0.

2.2. Sub Mesh Penalty algorithm with Dirichlet boundary conditions

A simple version of the SMP algorithm for problem [2] was first proposed in
[SAR 08]. Let us consider the original domain of interest denoted by Ω0, typically
the fluid domain, which is embedded inside a simple computational domain Ω ⊂ R

d.
The auxiliary domain Ω1, typically a solid particle or an obstacle, is then such that :
Ω = Ω0 ∪ Σ ∪ Ω1 where Σ is an immersed interface (see Fig. 1 left). Let n be the
unit outward normal vector to Ω0 on Σ. Our objective is to numerically impose the
adequate boundary conditions on the interface Σ. These conditions will be discretized
in space with second order schemes on an Eulerian structured mesh covering Ω.

The computational domain Ω is meshed with a set of cell-centered finite volumes
(VI ) for I ∈ E , E being the set of index of the Eulerian structured mesh (typically a
Cartesian mesh uniform or not). Let xI be the vector coordinates of the center of each
volume VI . The local space step of the volume VI defined as the maximum length



Figure 1. Definition of the domains-discretization for the SMP method

of VI in each direction is denoted by hI , whereas h denotes the Eulerian mesh step:
h = supI∈E hI . This grid is used to discretized the conservation equations. A dual
grid is introduced for the management of the penalty method. The grid lines of this
dual cell-vertex mesh are defined by the network of the cell centers xI . The volumes
of the dual mesh are denoted by (V ′

I ) We note the Eulerian unknowns uI which are
the approximated values of u(xI), i.e. the solution at the cell centers xI .
The discrete interface Σh, hereafter called the Lagrangian mesh, is given by a dis-
cretization of the original interface Σ. It is described by a piecewise linear approxi-
mation of Σ : Σh = {σl ∈ P

d−1

1
, l ∈ Lf}, Lf being the set of index of the Lagrangian

mesh, and P
d
n being the space of polynomial of n degrees in d dimensions. Typically,

σl are segments in 2D and triangles in 3D. The vertices of each face σl are denoted
by xl,i for i = 1, d and the set of all vertices is : {xl, l ∈ Lv}. The intersection points
between the grid lines of the Eulerian dual mesh and the faces σl of the Lagrangian
mesh are denoted by {xi, i ∈ N} (see Fig. 1 right). Our objective is to discretize the
boundary conditions at these interface points with a second-order approximation.
The cell centers xI are sorted according to their location inside Ω0 or Ω1 by defining
the color fonction C defined by : CI = C(xI) = 1 if xI ∈ Ω1, and CI = 0 if xI ∈
Ω0. We introduce new sets of Eulerian points xI near the interface such that there it
exists one neighbor xJ verifying CJ 6= CI , i.e. the segment [xI ;xJ ] is cut by Σh.
These Eulerian "interface" points are also sorted according to their location inside Ω0

or Ω1. So we have the two sets {xI , I ∈ N0} and {xI , I ∈ N1}. The previous equa-
tion [2] is then discretized with finite volumes on the Eulerian mesh covering Ω. For
each control volume VI , we get a discrete equation formally written as:

−{∇ · (a∇u)}I + {b(u − uD)}I = {f}I ,∀I ∈ E [3]

where {}I denotes the spatial approximation of a quantity. The SMP algorithm intro-
duces a specific discretization procedure for the points xI which are near the interface
and inside the fictitious domain Ω1, i.e. for I ∈ N1. We first describe the case when
xI has only one neighbor in Ω0.
Let us consider one point xI of this type, xJ its neighbor in Ω0 and xl the intersection
between [xI ; xJ ] and Σh (Fig. 1 right). Then, the interface unknown ul is approxi-
mated by the P

1
1-interpolation between the Eulerian unknowns uI and uJ :

ul = λIuI + λJuJ with 0 < λI , λJ < 1 and λI + λJ = 1 [4]



Hence, for this point, the corresponding penalty term {b(u − uD)}I is approximated
by {b(ul − uD(xl))}I with b = 1/ε and the discrete equation becomes

−{∇ · (a∇u)}I +

{

1

ε
(λIuI + λJuJ − uD(xl))

}

I

= {f}I ,∀I ∈ N1 [5]

So, ul tends to uD when ε tends to 0.
Let us consider an additional point xK such as uJ is between uI and uK . For the
sake of simplicity, h = 1. The discretization of the Laplacian operator at xJ us-
ing a centered scheme is (uI − 2uJ + uK). The discretization of [2] at xI tends
to (λIuI + λJuJ − uD(xl)) = 0. We recall that λI + λJ = 1, and for h = 1,
λI = d(xJ , xl), d being the distance function. Hence, the discretization at xJ of
the Laplacian operator can be rewritten as (−(λJuJ + uD(xl))/λI − 2uJ + uK) =
((uD−uJ)/λI−(uJ−uK)). We can notice that the term (uD−uJ)/λI is the centered
spatial derivative between xD and xJ , and the method is equivalent to rewriting the
discretization of spatial operators using a modified boundary mesh fitting the objects.
If xI has more than one neighbor in different directions, we build a penalty constraint
using higher dimension P1 or Q1 interpolation. If xI has more than one neighbor in
a given direction, the Eulerian mesh is considered as too coarse to accurately describe
the interface and VPM is used. In any case, by decreasing the Eulerian mesh step
h, we also decrease the number of points xI near Σh where VPM is used. Hence,
the present method is suitable to impose a Dirichlet boundary condition on Σ for Ω0,
when the solution in Ω1 has no interest. For nodes in this domain, the penalty term has
crushed the initial conservation equation and the solution uI(xI) for I ∈ N1 is only
useful to build the physical solution in Ω0. The solution in Ω1 far from the interface
is obtained using VPM. The imposed solution can be analytical, when possible, or a
constant value. The uselessness of the calculation of the solution for these nodes can
be treated numerically by switching the solving of u(xI), xI ∈ {Ω1}, I 6∈ N1 off, or
by totally removing these nodes. Future investigations will be devoted to these topics.
The SMP method can be extended to any scalar or vector equations, such as the
Navier-Stokes model.

2.3. Management of the Lagrangian points

The generation of the Lagrangian mesh of the obstacles is achieved using a com-
puter graphics software. Specific algorithms have been developed to interpret this
Lagrangian grid on the Eulerian physical grid. We use a fast ray-casting method
(working row by row) to obtain the binary phase functions Ci of objects (strictly 0
or 1). These phase-functions are used to localize the immersed obstacles. These bi-
nary Ci functions are used to build an Eulerian Level-Set function near the interface
by estimating the distance between the Eulerian points and the neighbor Lagrangian
points. The Lagrangian points used to couple the Lagrangian surface of the complex
object and the Eulerian grid used to solve the conservation equations are the points xl

of Σh. We use two different methods to determine these points.
The first method (SMP-LS) uses the Level-Set function which indicates the signed



distance of an Eulerian point from the interface. Using this Eulerian function, we can
quite accurately determine the intersection between an edge of V ′

i and the interface.
For example, let us consider two Eulerian points xI ∈ Ω0 and xJ ∈ Ω1. We denote by
dI = d(xI ,Σh) and dJ = d(xJ , Σh) the unsigned distances between Eulerian points
and the interface Σh. Then, we obtain xl = (xIdJ + xJdI)/(dI + dJ). The effi-
ciency of this method increases with the regularity of the Lagrangian interface. The
second method (SMP-GI) calculates the geometric intersection between an edge of V ′

i

crossing the interface and the interface. This last method is very accurate but a lot
slower.

2.4. Discretization and solvers

Details on the discretizations and the validations have previously been published
by Vincent et al. [VIN 00]. All simulations are based on implicit finite volumes on
staggered Cartesian grids. For the Navier-Stokes equations, velocity/pressure cou-
pling is obtained using an Augmented Lagrangian (AL) method. In [SAR 08], the
use of 1D linear interpolations only was incompatible with the minimization of the
divergence provided by the AL operator. This problem has been solved using mul-
tidimensional linear interpolations. Concerning the penalty terms, they are added to
the motion equations according to the Eulerian description Ci of the object (low or-
der approach) or to their Lagrangian position xl (high order method). The penaliza-
tion parameter ǫ is chosen according to Ci independently of any other numerical or
physical parameters. Numerically, b = 1/ǫ = 1040Ci. A particular class of IBM
methods, the direct-forcing method [TSE 03] for the Navier-Stokes equations, uses a
technique quite similar to SMP to treat the fluid/solid interface. The main difference
lies in the integration of the interfacial constraint into the conservation equation. Our
technique lies in an implicit penalty method whereas the IBM direct-forcing approach
builds a source term. Direct forcing methods uses fractional step methods to ensure
pressure/velocity coupling. The AL ensure in only one step both divergence free and
penalty constraint, whereas the time splitting approach requires a corrector step to en-
sure the divergence free constraint which must be adapted to each fictitious domain
method. Gibou et al. have proposed a fictitious domain approach for scalar equations
[GIB 05]. The method uses 1D interpolations which are taken into account by directly
modifying the discretization of the operators. [TSE 03] and [GIB 05] explain that
their methods requires special treatment of the interpolation when a Lagrangian point
is very close to an Eulerian point. In fact, implicit constraints modify the matrix which
can loose its diagonal dominance. Numerical problems occurs with SMP method too
if coupled with a basic solver such as a Jacobi method. When coupled with a PAR-
DISO direct solver or an iterative BiCG-Stab method and an ILU preconditioning, our
method correctly impose the interfacial constraint, no matter the matrix coefficients.



3. Validations and applications

3.1. Sub Mesh Penalty method for scalar equation

We solve the homogenous Laplace equation in a numerical square of side 4 with
a Dirichlet condition of u1 = 10 on a first circular interface (R1 = 1) and an analyt-
ical solution on the boundary of the Eulerian grid. Practically, the analytical solution
which accounts for the presence of a second circle with a radius R2 = 4 and u2 = 0 is
imposed on the boundary conditions. Fig. 2 left shows a second order of convergence
in space for the L2 relative error. Fig. 2 center and right represent the isovalue u = 10,
i.e. the Dirichlet value imposed on R1, obtained from the simulations with the VPM
(center) and the SMP method (right). Analytically, the isovalue is a circle. As can be
seen, the SMP method greatly improves the shape of the isovalue.

Figure 2. Relative L2 convergence of the SMP method and comparison between solu-

tions obtained with VPM and SMP method on a 16 × 16 grid

3.2. Sub Mesh Penalty method for the Navier-Stokes equations on a MAC grid

We simulate the cylindrical Couette flow in a numerical square of side 0.30 m. The
inner circle has a rotation speed ω1 = 1 rad/s and a radius R1 = 0.05 m. We impose
the analytical solution on the numerical boundary as the domain is surrounded by a
second circle whose rotation speed is ω2 = 2 rad/s and radius is R2 = 2 m. In Fig. 3
left, the convergence of the L2 relative error is presented. A second order is reached for
velocity whereas a first order is observed for pressure. For all meshes, the maximum
divergence of the flow is about 10−14 with a velocity correction of projection type.
The third curve (Velocity LS) shows the convergence rate of the method using the
Level-Set function to define xl (SMP-LS). This method is less accurante than SMP-
GI which take the true intersection, and an average order of only 1.55 is obtained. As a
second test case, using SMP-GI, we simulate the flow past a circular cylinder of radius
0.05 m immersed in a rectangular domain [−1.6 ; 1.4 ]× [−0.75 ; 0.75 ] at Reynolds
40. Fig. 3 right shows the convergence of the recirculation length against the length
for a 2000 × 1000 mesh for which L/d = 2.37. A second order is obtained. The last
case, using SMP-GI, is the measurement of the recirculation length for a 3D flow past
a sphere for Re = 100. The domain is a box Ω = [−10 ; 10 ] × [−5 ; 5 ] × [−5 ; 5 ]



Figure 3. Relative L2 error of the SMP method for a Couette flow-Error on recircu-

lation length for a flow past a cylinder

discretized with a 120×100×100 Cartesian mesh with irregular space step. A slice of
the mesh is presented in Fig. 4 left. Fig. 4 center shows the axisymmetric streamtraces
for this case. The ratio L/d = 0.75 is in very good agreement with [JOH 99].

Figure 4. Mesh and streamtraces for the flow past a sphere-dam break flow over an

obstacle

4. Discussion and conclusion

On fixed staggered Cartesian grids, a new Sub Mesh Penalty method has been
proposed for the simulation of free surface flows interacting with complex shape ob-
stacles (see an example of dam break flow over an obstacle in Fig. 4 right). These
obstacles are managed using Lagrangian meshes easily generated with 3D computer
graphic softwares. Several penalty methods have been implemented and coupled to
obtain the interaction between fluid and solid media. The SMP method is second
order for both scalar diffusion and the Navier-Stokes equations. The interest of the
interpretation and management of triangularized surface of obstacles can be seen in
[MKF 07]. This Web site contain several three-dimensional realistic multiphase flow
simulations involving the SMP method with Q0 interpolations. Future works will be
devoted to extending the SMP method, coupled to ITPM or VPM, to moving obstacle
of arbitrary motion. The formal proof of the second order of the SMP method is under
consideration as well as its compatibility with various approaches dealing with incom-
pressibility, in order to reach the second order convergence on pressure. In addition,
Adaptive Mesh Refinement (AMR [DEL 06]) techniques will be associated with the
tracking of boundary layers in penalized fluid/solid cells.
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