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Abstract

A new fictitious domain method, the algebraic immersed interface
and boundary (AIIB) method, is presented for elliptic equations with
immersed interface conditions. This method allows jump conditions
on immersed interfaces to be discretized accurately. The main idea
is to create auxiliary unknowns at existing grid locations which in-
creases the degrees of freedom of the initial problem. These auxiliary
unknowns allow to impose various constraints to the system on in-
terfaces of complex shapes. For instance, the method is able to deal
with immersed interfaces for elliptic equations with jump conditions
on the solution or discontinuous coefficients with a second order of
spatial accuracy. As the AIIB method acts on an algebraic level and
only changes the problem matrix, no particular attention to the initial
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discretization is required. The method can be easily implemented in
any structured grid code and can deal with immersed boundary prob-
lems too. Several validation problems are presented to demonstrate
the interest and accuracy of the method.

1 Introduction and general motivations

Simulating flows and heat transfer interacting with complex objects on Carte-
sian structured grids requires an efficient coupling between such grids and
the corresponding numerical methods and complex shape interfaces. Such a
coupling is often performed thanks to fictitious domain methods, where the
computational domain does not match the physical domain. The advantages
of this approach are numerous. Standard discrete operators are simple, es-
pecially in finite volume methods, grid generation is trivial, and furthermore
there is no need to remesh the discretization grid in the case of moving or de-
formable boundaries. Concerning this last point, fictitious domain methods
can be useful even on unstructured grids: Eulerian fixed unstructured grids
can fit immobile obstacles, (e.g. a stator of an aircraft motor) while mobile
objects (a rotor) are treated with fictitious domain methods. Two particular
classes of problems can be drawn : the immersed boundary problems and
the immersed interface problems. The firsts deal with complex boundaries,
such as flow past objects, where no attention has to be paid to the solution
inside the obstacles. The immersed interface problems consider subdomains
delimited by interfaces, and the solution is required in both sides of the in-
terface. As particular conditions, such as jump conditions, can be required
on the interface, this second class of problems is often more difficult to treat.
Let us consider the following model scalar immersed boundary problem with
a Dirichlet boundary condition (BC) on the interface Σ (see Fig. 1):

Pb

{ −∇ · (a∇u) = f in Ω0

u|Σ = uD on Σ

A boundary condition is also required on the other part of the boundary ∂Ω0

so that the whole problem is well-posed.
A first approach dealing with immersed boundaries is the distributed

Lagrange Multiplier method proposed by Glowinski et al. [10]. Lagrange
multipliers are introduced into the weak formulation of the initial elliptic
equation to ensure the immersed boundary condition.
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Cartesian grid [14, 21] and Cut-cell CITE methods use a structured grid in
the whole domain except near obstacles where unstructured cells are created
from structured cells. These methods are hard to implement due to the
numerous different space configurations of the intersections between cells and
objects. Furthermore, the existence of small cells can induce solver troubles.
The immersed boundary method (IBM) was initially presented by Peskin
[24, 25]. Fictitious boundaries are taken into account through a singular
source term defined only near the boundaries. As the source term is weighted
with a discrete Dirac function smoothed on a non-zero support, the interface
influence is spread over some grid cells. This method is first-order in space
and explicit. Another class of IBM, the direct-forcing (DF) method, was
initially proposed by Mohd-Yusof [22]. The idea here is to impose a no-slip
condition directly on the boundary using a mirrored flow over the boundary.
In [4, 35], the correct boundary velocity is obtained by interpolating the
solution on the boundary and far from the boundary on grid points in the
near vicinity of the interface. In [34], Tseng et al. use the same principle but
extrapolate the solution in ghost cells outside the domain. This approach
can be seen as a generalization of the mirror boundary conditions used in
Cartesian staggered grids to impose a velocity Dirichlet condition on pressure
nodes. As discussed in [30], this kind of approach seems more accurate than
[4, 35].
The penalty methods for fictitious domains consist in adding specific terms
in the conservation equations to play with the order of magnitude of existing
physical contributions so as to obtain at the same time and with the same set
of equations two different physical properties. The volume penalty method
(VPM), [2, 1] requires the addition of a penalty term χ

ε
(u − uD) in the

conservation equations, such that:
{ −∇ · (a∇u) + χ

ε
(u− uD) = f in Ω

with χ|Ω0 = 0, χ|Ω1 = 1, for 0 < ε ¿ 1
(1)

where ε denotes the penalty parameter which tends to 0. Hence, in Ω1 the
original equation becomes negligible and u = uD is imposed. In ([15, 16])
authors add a Darcy term µ

K
u to the NS equations where µ is the dynamic

viscosity and K the permeability. In the fluid medium, K →∞ so the Darcy
term is then negligible and the original set of NS equations is retrieved. In
the solid medium, K → 0 and consequently the NS equations tend to u = 0.
Classical discretizations of the penalty terms are of first order only since they
consider the projected shape of the interface on the Eulerian grid to define
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the penalty parameters [26]. In [30, 29], Sarthou et al. have discretized
the volume penalty term with a second order using implicit interpolations
as in [34]. This new method is called the sub-mesh penalty (SMP) method,
and has been applied to Navier-Stokes equations with augmented Lagrangian
velocity/pressure coupling [7, 36].
Applied to problem Pb, the ghost cell immersed boundary method [34] and
SMP method [29] used the first cells in Ω1 to enhance the accuracy of the
solution in Ω0. An other approach which considers the extension of the
solution is considered in [9, 8] by Gibou and Fedkiw. Ghost nodes and simple
interpolations are considered, but contrary to the SMP and the IBM-DF
methods, only 1D interpolations are used and the operators are rediscretized
”by-hand”.

Let us now consider a model immersed interface problem with jump in-
terface conditions:

(Pi)




−∇ · (a∇u) = f in Ω
JuKΣ = ϕ on Σ
J(a · ∇u) · nKΣ = ψ on Σ

A first class of method is the immersed interface methods (IIM) initially
introduced by LeVeque and Li [18]. This groupe of methods use Taylor
series expansion of the solution at discretization points in the vicinity of
Σ to modify the discrete operators at these points. Much work has been
devoted to the immersed interface method and its numerous applications,
such as moving interfaces [12] or Navier-Stokes equations [17]. In [19], Li
uses an augmented approach. Additional variables and interface equations
are added to the initial linear system. The new variables are the values of
jumps at some interface points.

The Ghost Fluid Method, originally developed by Fedkiw et al. [5, 20],
introduces ghost nodes where the solution is extended from one side of the
interface to the other side. As for IIM, the operator discretization must be
modified ”by-hand”. Zhou et al. overcome this drawback with the matched
interface and boundary (MIB) method [39, 38, 37] by using interface condi-
tions to express the solution at ghost nodes with respect to the solution on
physical nodes. Hence, the discretization is automatically performed what-
ever the discretization scheme. Contrary to [19], the additional equations for
these two last methods are not written at ”random” points of the interface
but at the intersections between the Eulerian grid and the immersed inter-
face. Furthermore, simple Lagrange polynomials are used whereas a more
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complicated weighted least squares approach is used in [19] to discretize ad-
ditional equations.

The present method solves elliptic problems using an augmented method
coupled with an auxiliary unknown approach. Contrary to ghost nodes, aux-
iliary unknowns are present in the linear system. Compact interpolations are
used to discretize the additional interface constraints. The method is simple
to implement even for interfaces of complex shapes, i.e. not described by
analytical equations. Except for the discretization of interface conditions,
all operations are automatically performed with algebraic modification or
directly by the ”black-box” matrix solver. This new method is called the
algebraic immersed interface and boundary (AIIB) method. In section 2, the
method is presented for immersed boundary problems. Then, the method is
extended to immersed interface problems with known solution on the inter-
face. Finally, the method is applied to immersed interfaces with transmission
and jump conditions. A special attention is paid to the management of the
discretized interface, especially the way to project it onto the Eulerian grid
using a fast ray-casting method. In section 3, validation tests and conver-
gence studies are presented. Conclusions and perspectives are finally drawn
in section 4.
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2 The algebraic immersed interface and bound-

ary method

The AIIB method is now presented. The method is first formulated for im-
mersed boundary problems when a Dirichlet or a Neumann boundary condi-
tion is required. The method is then extended to simple immersed interface
problems where the solution is a priori known on the interface. Finally, an
extension to jump and transmission conditions is described.

2.1 Definitions and notations

Let us consider the original domain of interest denoted by Ω0, typically the
fluid domain, which is embedded inside a simple computational domain Ω ⊂
Rd, d being the spatial dimension of the problem. The auxiliary domain Ω1,
typically a solid particle or an obstacle, is such that : Ω = Ω0∪Σ∪Ω1 where
Σ is an immersed interface (see Fig. 1). Let n be the unit outward normal
vector to Ω0 on Σ. Our objective is to numerically impose the adequate
boundary conditions on the interface Σ. These conditions will be discretized
in space on an Eulerian structured mesh covering Ω. As the discretization
of the interface or boundary conditions requires interpolations, we use the
following interpolations in 2D: P2

1(x, y) = p1 + p2x + p3y and Q2
1(x, y) =

p1 + p2x + p3y + p4xy. In 3D, we use P3
1(x, y, z) = p1 + p2x + p3y + p4z

and Q,z3
1(x, y) = p1 + p2x + p3y + p4z + p5xy + p6yz + p7zx + p8xyz. An

additional interpolation, L1
1(x) = p1 + p2x, is use for 2D and 3D problems.

The superscript is the dimension of the interpolation while the subscript is
the order of spatial accuracy.

Figure 1: Definition of the subdomains and the interface
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Figure 2: Definition of the discretization kernels for the AIIB method

The computational domain Ω is approximated with a curvilinear mesh Th

composed of N×M (×L in 3D) cell-centered finite volumes (VI) for I ∈ E , E
being the set of index of the Eulerian orthogonal curvilinear structured mesh.
Let xI be the vector coordinates of the center of each volume VI . In 2D, the
horizontal and vertical mesh steps are respectively hx and hy This grid is
used to discretized the conservation equations. A dual grid is introduced for
the management of the AIIB method. The grid lines of this dual cell-vertex
mesh are defined by the network of the cell centers xI . The volumes of the
dual mesh are denoted by (V ′I). The Eulerian unknowns are noted uI which
are the approximated values of u(xI), i.e. the solution at the cell centers xI .
The discrete interface Σh, hereafter called the Lagrangian mesh, is given by a
discretization of the original interface Σ. It is described by a piecewise linear
approximation of Σ : Σh = {σl ⊂ Rd−1, l ∈ Lf}, Lf being the set of index
of the Lagrangian mesh and K being the cardinal of Lf . Typically, σl are
segments in 2D and triangles in 3D. The vertices of each face σl are denoted
by xl,i for i = 1, d and the set of all vertices is {xl, l ∈ Lv}. The intersection
points between the grid lines of the Eulerian dual mesh and the faces σl of
the Lagrangian mesh are denoted by {xi, i ∈ I} (see Fig. 2). Our objective is
to discretize Dirichlet, Neumann, transmission and jump conditions at these
interface points to build a general fictitious domain approach. This method
is expected to reach a global second-order spatial accuracy.
We shall use the following Eulerian volume fonctions :

• The Heaviside function χ, defined as :

χ(x) =

{
1 if x ∈ Ω1

0 otherwise
(2)

This function is built with a point in solid method presented below.
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The function χ will be used to perform fictitious domain algorithms
and to build a level-set function.

• The level-set function φ, with :

φ(x) =

{ −distΣ(x) if x ∈ Ω1

distΣ(x) otherwise
(3)

and distΣ(p) = infx∈Σ ‖x − p‖. The unsigned distance is computed
geometrically. The sign is directly obtained with the discrete Heaviside
function χ.

• The colour phase functions C, which is the ratio of a given phase in a
control volume. We denote C(xI) the phase ratio in the control volume
centered in xI . This function is approximated from the φ function by
using the formula proposed by Sussman and Fatemi [33] :

C(x) ≈




1 if φ(x) > h
0 if φ(x) < −h
1
2
(1 + φ

h
+ 1

π
sin(πφ/h)) otherwise

(4)

New sets of Eulerian points xI are defined near the interface so that each
one has a neighbor xJ verifying χJ 6= χI (with χI = χ(xI) and χJ = χ(xJ)),
i. e. the segment [xI ; xJ ] is cut by Σh. These Eulerian ”interface” points are
also sorted according to their location inside Ω0 or Ω1. Two sets {xI , I ∈ N0}
and {xI , I ∈ N1} are thus obtained, where N0 = {I, xI ∈ Ω0, χI 6= χJ , xJ ∈
Ω1} and N1 = {I, xI ∈ Ω1, χI 6= χJ , xJ ∈ Ω0}.
For each xI , I ∈ N 0 or I ∈ N 1, we associate two unknowns : the physical
one denoted as uI and the auxiliary one u∗I .

2.2 Projection of the Lagrangian shape on the Eule-
rian grid

The generation of the Lagrangian mesh of the interface is achieved using
a computer graphics software. Specific algorithms have been developed to
project this Lagrangian grid on the Eulerian physical grid.
In order to obtain the discrete Heaviside function χ, one have to determine
which Eulerian points are inside the domain Ω1 defined by a Lagrangian
surface. Such a surface must be closed and not self-intersecting. In [30,
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16], the authors used a global methodology partly based on [32] where χ is
obtained thanks to a PDE. This method suffers from a lack of accuracy and
robustness and a Ray-casting method based on the Jordan curve theorem is
used in the present work. The principle is to cast a ray from each Eulerian
point to infinity and to test the number of intersections between the ray and
the Lagrangian mesh. If the number of intersections is odd, the Eulerian
point is inside the object, and outside otherwise. The Ray-casting method
can be enhanced by classifying elements of the Lagrangian mesh with an
octree sub-structure which recursively subdivides the space in boxes. If a ray
does not intersect a box, it does not intersect the triangles inside the box. A
fast and simple optimization is to test if a given point is in the box bounding
the Lagrangian mesh. Some details of the implementation and a short review
of point in solid strategies can be found in [23].

Algorithm 1 describes a pseudo-code performing a basic computation of
χI = χ(xI) for all xI . To avoid numerical errors due to the presence of
great numbers to simulate +∞, the ray is only cast to a point x∞I which
is far enough to be outside the object and the grid. To optimize the inter-
section calculation, x∞I is different for all xI and parallel to a gridline (for
computational efficiency).

Algorithm 1 Simple computation of the discrete Heaviside function

for I = 1, m do
nsect := 0
for k = 1, K do

if Segment [xI ; x∞I ] intersects σk then
nsect := nsect + 1

end if
end for
if nsect is even then

χ(xI) := 0
else

χ(xI) := 1
end if

end for

Concerning the ray-triangle intersection, [23] announces that the Feito-
Torres [6] algorithm seems to be one of the fastest. An optimization for the
Jordan-based method on orthogonal structured grids that greatly improves
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the performances of the algorithm is now proposed. In the Jordan-based
method, ray direction is indifferent. If all rays are launched in the same
direction, Ox for instance, many intersection tests are done more than once
for a set of points in a same Eulerian mesh row in the Ox direction. Hence,
only one ray can be cast per row. If rays are cast in a given direction (the
best choice is the one with the most cells), computational cost is divided by
the number of cells in this direction.

Algorithm 2 now describes an enhanced version of algorithm 1. Rays are
cast from points xI included in a boundary slice Sxy of the Eulerian mesh. For
each starting point xI , the intersections are stored and sorted according to
their z component in a two-entry structure S(I, nsectI). For each xI ∈ Sxy,
the number nsectI of intersections by rows, is not known a priori. If S is an
array, a first pass has to be performed to determine the size of S. A better
choice is to use chained lists. For the sake of clarity, the algorithm is not the
fully optimized one (no bounding box test, no octree structure).

In 3D, the shape is discretized with triangles which have common points
and vertices. If a ray pass through one of these entities, more than one
intersection are detected. It generally occurs when the computational domain
has rounded or symmetrical dimensions, and when the object is centered on
it (see Fig. 3). The intersection algorithm can be modified to avoid this but
a simple solution is to shift the Lagrangian object by a distance ε which is
small enough to do not provide additional error.

The Lagrangian points xl of Σh, l ∈ I are required to couple the La-
grangian surface and the Eulerian grid used to solve the conservation equa-
tions. These points can be obtained with two methods.

A geometrical computation of the intersections gives the most accurate
result. If not optimized the computational cost of this method is not always
negligible for some cases.

Using the Level-set function is a faster but less accurate way to obtain
the intersection points. Let us consider two Eulerian points xI ∈ Ω0 and
xJ ∈ Ω1. We denote by dI = d(xI , Σh) and dJ = d(xJ , Σh) the unsigned
distances between Eulerian points and the interface Σh. Then, xl = (xIdJ +
xJdI)/(dI + dJ).

Algorithmic problems can be encountered if the Lagrangian mesh is too
complex compared to the Eulerian mesh. For example, two intersecting
points xl can be found between xI and xJ with the geometric method. In
this case, only one intersecting point is considered. Concerning the use of
the Level-set, this function is a projection of the shape on a discrete grid.
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Algorithm 2 Optimized computation of the discrete Heaviside function in
3D

for I = 1, m with xI ∈ Sxy do
nsect := 0
for k = 1, K do

if Segment [xI ; x∞I ] intersects σk then
Store the intersection in S(I, nsect)
nsect := nsect + 1

end if
end for
if nsect is even then

χ(xI) := 0
else

χ(xI) := 1
end if
In state := boolean(χ(xI))
nsecttmp := 0
for J = 1,mz do

while nsecttmp < nsect and xj(3) > S(I, nsecttmp) do
Switch In state
nsecttmp := nsecttmp + 1

end while
χ(xJ) := In state

end for
end for

The local curvature of the projected shape is thus limited by the accuracy of
the Eulerian grid. Consequently, no more than one intersecting point can be
found between xI and xJ .

2.3 The algebraic immersed interface and boundary
method

2.3.1 General principle

Once the shape informations are available on the Eulerian grid, the problem
discretization has to be modified to take into account the fictitious domain
(an immersed boundary or an immersed interface). The sub-mesh penalty
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Figure 3: Illustration of a typical error during the ray-casting process. The
ray intersect the interface at the common vertex of many triangles

(SMP) method [30, 29] was originally designed to treat immersed boundary
problems. It could be extended to treat immersed interface problems by
symmetrization of the algorithm with introduction of auxiliary unknowns
as in the AIIB method. This new method is an enhancement of the SMP
method which is also able to solve immersed interface problems. The main
idea of the AIIB method is to embed an interface into a given domain by
modifying the final matrix only. As no modification of the discretization
of the operators is required (contrary to [9, 8] and the immersed interface
methods [18]), the AIIB method is thus simple to implement.

Let P be a model problem discretized in the whole domain Ω as Au = b
where A is a square matrix of order m, u the solution vector and b a source
term. The basic idea of the AIIB method is to add new unknowns and
equations to the initial linear system so as to take into account additional
interface constraints. The new unknowns, so-called the auxiliary or fictitious
unknowns and labeled with ∗, are defined as being the extrapolation of the
solution from one side of the interface to the other, and are used to dis-
cretize the interface conditions. Hence, the orignal problem Au = b becomes
A′u′ = b′, with A′ a square matrix of order m + n, with n the number of
auxiliary constraints related to the interface conditions. The solution u′ is
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decomposed such as u′ = (u, u∗)T and the source term as b′ = (b, b∗)T . The
interface constraints are discretized with a (n,m + n) block matrix C and
the source term b∗.

According to the interface conditions, the regularity of the solution on the
interface is often lower than in the rest of the domain. Hence, the discretiza-
tion of operators with a stencil cutting the interface can induce a great loss of
accuracy. The first idea is to consider unknowns u∗I , I ∈ N1 (resp. u∗I , I ∈ N0)
as the extension of the solution in Ω0 (resp. Ω1). The initial algebraic link
between unknowns from both sides of the interface is cut, and the new link
over the interface is obtained thanks to auxiliary unknowns. Practically, ma-
trix coefficients must be modified to take into account the new connectivities.
Let αI,J be a coefficient of A at row I, column J and α′I,J the new coefficient
in A′. If I ∈ N0 and J ∈ N1 , α′I,J = 0 and α′I,J∗ = αI,J , where J∗ is the
index corresponding to u∗J .

This is exactly the way how we proceed for the practical algorithm. How-
ever, this modification can be expressed algebraically with permutation and
mask matrices as follows.

We define the two following mask matrices I1 of dimensions (m,m + n)
and I2 of size (n,m + n) :

I1 =




1 0 · · · 0 · · · · · · 0

0
. . .

...
. . .

...
...

. . . 0
. . .

...
0 . . . 0 1 0 · · · 0


 , I2 =




0 · · · 0 1 0 · · · 0

0
. . . 0

. . .
...

...
. . .

...
. . . 0

0 . . . 0 0 · · · 0 1




(5)
The matrices A0 and A1 are defined such as A0 +A1 = A, A0(I, J) = A(I, J)
if I ∈ N0, else A0(I, J) = 0. Similarly A1(I, J) = A(I, J) if I ∈ N1 else
A1(I, J) = 0. Finally, the connectivities are changed using the permutation
matrices P0 and P1: P0 is defined to switch row I with row J if I ∈ N0,
J ∈ N1 and P1 to switch row I with row J if I ∈ N1, J ∈ N0. Hence, the
new problem matrix is now defined by:

A′ = IT
1 (P0(A0I1) + P1(A1I1)) + IT

2 C (6)

The new problem is A′u′ = b′ with A′ written with 4 blocks of various sizes:
Ã(m,m), B(m, n), C1(n,m), C2(n, n). The matrix Ã is thus the modification
of the initial matrix A by setting to zero the coefficient αI,J if χ(xI) 6= χ(xJ),
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and C1 and C2 are the two sub-matrices of the matrix C. The problem can
be written as: (

Ã B
C1 C2

)(
u
u∗

)
=

(
b
b∗

)
(7)

The entire problem can be then solved to obtain u′ = (u, u∗)T . However,
u∗ being the auxiliary solution is not required to be computed explicitly .
Hence, the Schur complement method can be used to calculate the solution
for the physical unknowns only. The final problem is now:

(Ã−BC−1
2 C1)u = b−BC−1

2 b∗ (8)

The opportunity of such a reduction will be discussed later.

2.3.2 AIIB algorithm for a scalar equation with Dirichlet boun-
dary conditions

For sake of clarity, let us first describe in 2D the AIIB method for the model
scalar problem Pb with a Dirichlet boundary condition on the interface Σ. For
this version of the AIIB algorithm, Ω0 is the domain of interest and auxiliary
unknowns are created in Ω1 only. Let us consider a point xI , I ∈ N1. At
location xI , two unknowns coexist: a physical one uI and an auxiliary one
u∗I . We first describe the case when xI has only one neighbor xJ in Ω0. The
Lagrangian point xl is the intersection between [xI ; xJ ] and Σh (Fig. 1 right).
Then, the solution ul = uD(xl) at the interface is approximated by the P1

1

interpolation between the Eulerian unknowns u∗I and uJ :

ul = αIu
∗
I + αJuJ with 0 < αI , αJ < 1 and αI + αJ = 1 (9)

As noticed in [34, 8], a linear interpolation only is required to reach a second
order of accuracy. If now xI has a second neighbor xK in Ω0, the intersection
xm between [xI ; xK ] and Σh is considered with um = uD(xm). We choose
xp, a new point of Σh between xl and xm (see Fig. 4 left). The solution
up = uD(xp) is then imposed using a P2

1-interpolation of the values u∗I , uJ

and uK :

up = αIu
∗
I + αJuJ + αKuK , 0 < αI , αJ , αK < 1 , αI + αJ + αK = 1 (10)

A Q2
1 interpolation of uI , uJ , uK and uL can be also used by extending the

interpolation stencil with the point xL which is the fourth point of the cell of
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the dual mesh defined by xI , xJ and xK (see Fig. 4 left). As a third choice,
two independent linear 1D interpolations can be used (one for each direction)
for an almost equivalent result. It produces :

{
ul = αIu

∗
I + αJuJ with 0 < αI , αJ < 1 and αI + αJ = 1

um = α′Iu
∗′
I + αKuK with 0 < α′I , αK < 1 and α′I + αJ = 1

(11)

In this case, two auxiliary unknowns are created.
A simple choice for xp is the barycenter between xl and xm where up =

(ul + um)/2. This particular case enables an easy implementation since we
have :

αIu
∗
I + αJuJ = ul (12)

α′Iu
∗
I + αKuK = um (13)

A summation of these two constraints gives :

αIu
∗
I + αJuJ + α′Iu

∗
I + αKuK = ul + um (14)

what is equivalent to build a constraint imposing up at xp with a P2
1 interpo-

lation :

(αI + α′I)u
∗
I + αJuJ + αKuK

2
= up ,

with 0 <
αI + α′I

2
,
αJ

2
,
αK

2
< 1 ,

αI + α′I
2

+
αJ

2
+

αK

2
= 1 (15)

Hence, an easy general implementation consists in summing the constraints
corresponding to each direction, no matter the number of neighbors of xI . If
the elements σl of Σh used to define xl and xm are not the same, the barycen-
ter xp of these two points is not necessarily on Σh, especially for interfaces
of strong curvature. However, the distance d(xp, Σh) between xp and Σh

varies like O(h2) and so this additional error does not spoil the second-order
precision of our discretization. The convergence of this additional error is
numerically tested in section (3.3.1). If the curvature of Σh is small enough
relatively to the Eulerian mesh, i.e. if the Eulerian mesh is sufficiently fine,
xI almost never has a third or a fourth neighbor in Ω0. However, if this case
appears, a simple constraint u∗I = uB is used with uB being an average of uD

at the neighbor intersection points. In any case, by decreasing the Eulerian
mesh step h, the number of points xI having more than two neighbors in Ω0
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also decreases.
Hence, the present method is suitable to impose a Dirichlet boundary con-
dition on Σ for Ω0, when the solution in Ω1 has no interest. The solution u∗I
for I ∈ N1 is an extrapolation of the solution in Ω0 in order to satisfy the
boundary condition on Σ and thus is non-physical. Hence, the solution at the
nodes of Ω1 far from the interface does not impact on the solution in Ω0. Nev-
ertheless, the fictitious domain approach computes a non-physical solution
in Ω1. It is naturally obtained with the initial set of equations together with
a volume penalty method such as VPM [15]. The imposed solution can be
analytical when possible, or an arbitrary constant value. The computational
cost of this approach can be reduced by switching the solving of uI , xI ∈ Ω1

off, or by totally removing these nodes in the solving matrix.

2.3.3 Symmetric version for Dirichlet interface conditions

The next step is to allow for multiple Dirichlet boundary conditions on both
sides of the immersed interface. Thin objects could be treated with this
approach. The problem is now :




−∇ · (a∇u) = f in Ω

u−|Σ = uD on Σ

u+
|Σ = uG on Σ

(16)

The problem (16) requires for each point xI a physical unknown uI as well
as an auxiliary unknown u∗I on both sides of the interface.

Practically, the AIIB algorithm for a Dirichlet BC is applied a first time
with Ω0 as domain of interest, and auxiliary unknowns are created near Σh

in Ω1. As a second step, the Heaviside function is modified as χ := 1−χ and
the algorithm is applied a second time. Now, Ω1 is the domain of interest
and auxiliary unknowns are created near Σ in Ω0.

2.3.4 AIIB algorithm for a scalar equation with Neumann bound-
ary conditions

Let us now consider the following model scalar problem with a Neumann BC
on the interface Σ :

{ −∇ · (a∇u) = f in Ω0

(a · ∇u) · n = gN on Σ
(17)
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The principle is about the same as for Dirichlet BC, and the same inter-
polations, once derived, can be used to approximate the quantity (a ·∇u) ·n.
Hence, at any point xl, l ∈ I on Σh we use

(a · ∇ul) · n ≈ (a · ∇p(xl) · n). (18)

For p ∈ Q2
1, we get ∇p(x, y) · n = (p3y + p2)nx + (p3x + p1)ny whereas for

p ∈ P2
1, ∇p(x, y) · n = p2nx + p1ny is obtained which means that the normal

gradient is approximated by a constant over the whole support. For example,
in the configuration of Fig. 4.left, with p ∈ P2

1, we have :

∇p(x, y) ·n =
u∗I − uJ

hx

nx +
uK − u∗I

hy

ny = u∗I(
nx

hx

− ny

hy

)+uJ
nx

hx

+uK
ny

hy

(19)

The diagonal coefficient of the raw related to u∗I in C2 is (nx

hx
− ny

hy
). The

case when nx

hx
≈ ny

hy
leads to numerical instabilities. If we consider the config-

uration of Fig. 4.left, using the normal vector of the segment [xl, xm] implies
that the signs of nx and ny are always different so the diagonal coefficient is
always dominant. The same property occurs for the other cases. When xI

has only one neighbor xJ in Ω0, the Q2
1 and P2

1 interpolations degenerate to
L1

1 interpolations which suit for Dirichlet BC. For Neumann BC, this loss of
dimension no longer allows the interface orientation to be accurately taken
into account, as one of the components of the normal unit vector disappears
from the interfacial constraint. Hence, a third point xK in Ω0 is caught to
build P2

1 interpolations (see Fig. 4 right). This point is a neighbor of xJ

and is taken as [xI , xJ ]⊥[xJ , xK ]. As in 2D two choices generally appear, the
point being so that the angle (n, xK − xJ) is in [−π/2; π/2] is taken.

2.3.5 Algebraic elimination using the Schur complement

The Schur complement method allows an algebraic reduction to be per-
formed. For a Dirichlet or Neumann BC, each constraint is written such
as only one auxiliary unknown is needed:

u∗I =
∑
J∈N

αJuJ + uS (20)

where uS is the source term. In this case, the matrix C2 in (7) is diagonal and
thus the Schur complement (Ã − BC−1

2 C1) is easy to calculate. Practically,
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Figure 4: Example of selection of points for Dirichlet (left) and Neumann
(right) constraints

when the algebraic reduction is made, Ã is built directly by the suitable
modification of A without considering the extended matrix A′. The part
−BC−1

2 C1 is then added to Ã whereas −BC−1
2 b∗ is added to b. As will be

subsequently demonstrated, the algebraic reduction decreases the computa-
tional cost of the solver by 10− 20%.

If only L1
1 interpolations are used with the algebraic elimination, the

matrix obtained with this method is similar to the one obtained in [9] for
a Dirichlet problem. However in this last paper the auxiliary unknowns are
taken into account before the discretization of the operator which requires
additional calculations for each discretization scheme.

If P2
1 interpolations are used, the computed solution in Ω0 is the same

as for the SMP [29] method (when the penalty parameter tends to zero)
and the DF-IB method [34]. These methods change the discretization of the
initial equation for the nodes xI , I ∈ N1. The SMP method uses a penalty
term and the DF-IB method uses terms of opposite signs to erase some
part of the initial equation. The discretization matrix obtained with both
methods is not equivalent to the one obtained with the AIIB method, with
or without algebraic reduction. With algebraic reduction, the discretization
for the nodes xI , I ∈ N0 is modified, and without algebraic reduction, both
auxiliary and physical unknowns coexist at xI , I ∈ N1. The accuracy of these
methods will be discussed in the next section.

The present algorithm seems simpler, as the standard discretization of
the operators is automatically modified in an algebraic manner. So, various
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discretization schemes of the spatial operators can be used. However, the
discretization of an operator at xI ∈ Ω0 can only use in Ω1 the fictitious
unknowns and not the physical ones. Hence, the only limitation concerns
the stencil of these operators which have to be limited, if centered, to three
points by direction.

2.3.6 Application to the Navier-Stokes equations

The SMP method has been applied to the Navier-Stokes equations in [29].
For immersed boundary problems, the SMP and the AIIB methods give
equivalent results and the AIIB method can be used to immerse obstacles in
fluid flows. Both methods can be used for the scalar and the Navier-Stokes
equations. In the latter, the procedure is done componentwise for the velocity
vector. However, the AIIB method, with L1

1 interpolations only, cannot be
applied to the Navier-Stokes equations on staggered grid (no tests have been
performed for a collocated approach). An illustration is given Fig. 5. With
such interpolations, two auxiliary unknowns u∗I and u∗

′
I , I ∈ N1 can coexist

at the same location xI . Hence, u∗I is the natural neighbor of uJ and u∗
′

I is
the natural neighbor of uK . So a problem occurs for the discretization of
the inertial term since a node of a given velocity component has to use an
auxiliary unknown of an other velocity component. In this case, neither u∗I
nor u∗

′
I are natural neighbors for vl, a velocity unknown in the y direction. No

matter which unknown is used, or an average of the two collocated unknowns,
the simulation is instable outside ’the Stokes regime.

Figure 5: Illustration of the application to the Navier-Stokes equations on
staggered grid
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A particular attention has also to be given to the velocity pressure cou-
pling. If a fractional step method is used, the prediction step is modified by
any fictitious domain method to impose an immersed boundary condition for
the velocity. Thus, the projection step has to be modified according to the
prediction step to remain consistent with the overall problem.

However, some authors do not consider at all this modification of the
correction step [34] or have only made minor modifications. In fact, the
projection step has to be rewritten considering the forcing term, as can be
seen in [13, 3]. In [29], the authors use an iterative augmented Lagrangian
method [36] which adds a penalty term in the momentum equation to enforce
the divergence free constraint.

2.4 AIIB for immersed interface problems with jump
conditions

With the symmetric method described in (2.3.3), the problem can be solved
on both sides of the interface when explicit Dirichlet BC are imposed. For
many problems, the solution is not a priori known on the interface and some
jump transmission conditions on the interface Σ are required. Let us now
consider the problem :

(Pi)

{ −∇ · (a∇u) = f in Ω
+ Interface conditions on Σ

where the interface conditions are :

JuKΣ = ϕ on Σ (21)

J(a · ∇u) · nKΣ = ψ on Σ (22)

The notation J KΣ denotes the jump of a quantity over the interface Σ. In the
symmetric version of the AIIB method, a given intersection point xl, l ∈ I,
is associated with two auxiliary unknowns on both sides of the interface.
Hence, the interface constraints (21) and (22) of (Pi) can be imposed at each
intersection point xl by using the two auxiliary unknowns. For example,
the Inth row of the matrix A′ with u∗I , I ∈ N0 can be used to impose the
constraint (21) and the Jnth line of the matrix with u∗J , J ∈ N1 is then used
to impose the constraint (22).
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2.4.1 The solution constraint

The symmetrized AIIB methods for Dirichlet BC reads :

{
u+

Σ = α1uI + α2u
∗
J

u−Σ = α1u
∗
I + α2uJ

(23)

when L1
1 interpolations are used. With JuKΣ = u+

Σ − u−Σ = ϕ, we obtain :

α1uI + α2u
∗
J − α1u

∗
I − α2uJ = ϕ (24)

which is the first constraint to be imposed.

2.4.2 The flux constraint

Following the same idea and using P2
1 interpolations,

{
(a · ∇u+

Σ) · n = a+(
uI−u∗J

hx
nx +

u∗K−uI

hy
ny)

(a · ∇u−Σ) · n = a−(
u∗I−uJ

hx
nx +

uK−u∗I
hy

ny)
(25)

for the case presented in Fig. 4.left. Using (22), we get:

a+

(
uI − u∗J

hx

nx +
u∗K − uI

hy

ny

)
− a−

(
u∗I − uJ

hx

nx − uK − u∗I
hy

ny

)
= ψ

(26)
which is the second constraint to be imposed. With such an interpolation, the
solution gradient is constant over the whole stencil. As demonstrated later,
the second-order accuracy can be reached on Cartesian grids when ψ = 0.

Three auxiliary unknowns are thus involved in the discretizations (24)
and (26). The auxiliary unknown u∗K is also involved in the discretization of
(21) and (22) at another intersection point on Σh. Hence, the whole system
A′u′ = b′ is closed.

2.4.3 Algebraic reduction

Since we need more than one auxiliary unknown to discretize each constraint,
the matrix C2 is not diagonal and a solver has to be used to compute C−1

2 .
For the matched interface and boundary (MIB) method, Zhou et al. [39]

use a different discretization of the interface conditions which allows an easy
algebraic reduction which is directly performed raw by raw.
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The algebraic reduction for the immersed interface problems has not been
yet implemented. However, the standard discretization of the AIIB method
requires a more compact stencil than for the MIB method, and the additional
computational time generated by the auxiliary nodes is small. Hence, the
lack of algebraic reduction does not seem to be problematic.
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3 Numerical results for scalar problems

Elliptic equations are discretized using the standard second-order centered
Laplacian. For all problems, similar results have been obtained with a PAR-
DISO direct solver [31], and an iterative BiCGSTAB solver [11], precondi-
tioned under a ILUK method [28]. Unless otherwise mentioned, a numerical
domain [−1; 1]× [−1; 1] is used for every simulation. Two discrete errors are
used.
The discrete relative L2 error in a domain Ω is defined as:

‖u‖L2
rel(Ω) =

‖u− ũ‖L2(Ω)

‖ũ‖L2(Ω)

=
( ∑

xI∈Ω

meas(VI)|uI−ũ(xI)|2
) 1

2
/
( ∑

xI∈Ω

meas(VI)|ũ(xI)|2
) 1

2

(27)
whith ũ is the analytical solution.
The discrete L∞ error is defined as:

‖u‖L∞(Ω) = maxxI∈Ω|uI − ũ(xI)| (28)

One can notice that only Ω0 is taken into account for the immersed boundary
problems.

3.1 Immersed boundary problems

3.1.1 Problem 1

The homogenous 2D Laplace equation is solved. The interface Σ is a centered
circle of radius R1 = 0.5 with a Dirichlet condition of U1 = 10. An analytical
solution which accounts for the presence of a second circle with a radius
R2 = 2 and U2 = 0 is imposed on the boundary conditions. The analytical
solution is:

u(r) =
U2 − U1

ln(R2)− ln(R1)
ln(r) + U1 − (U2 − U1)

ln(R1)

ln(R2)− ln(R1)
(29)

Accuracy tests are performed with L1
1, P2

1 and Q2
1 interpolations. Fig. 6

shows the solution and the error map for a 32 × 32 mesh with P2
1 interpo-

lations. The same results are always obtained with and without algebraic
reduction. Fig. 7 shows the convergence of the error for the L2 and L∞

norms. For all interpolations, the convergence slopes are approximatively 2
for the relative L2 error. For the L∞ error, the slopes are about 1.8. The P2

1
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Figure 6: Solution and error map for problem 1

interpolation is the more accurate, followed by the L1
1 interpolation although

it uses more auxiliary points (but a smaller stencil). However, the differences
of accuracy between the different interpolations remain small. The same
cases with algebraic reduction give the same accuracy. The performances of
the ILUK-BiCG-Stab solver are now benchmarked for the three interpola-
tions with and without algebraic reduction and for the SMP method. Tab.
1 shows the computational times of the matrix inversions (average time in
seconds for 25 matrix inversions) and Tab. 2 shows the time ratio between
the standard and the reduced matrix. Except for the Q1

1 interpolation on the
1024×1024 mesh, the differences between the two methods seem to decrease
with the size of the matrix. In fact, as interfaces are d − 1 manifolds, the
number of intersection points does not increase as fast as the Eulerian points.
Hence, the ratio between the size of a reduced and a complete matrix tends
to 1. The computational time for the SMP method is quite similar to the
one obtained AIIB method with algebraic reduction. Figures 8, 9, 10, 11
shows the convergence of the ILUK-BiCG-Stab solver for the seven config-
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urations. The type of interpolation does not significantly impact on solver
performances.

Figure 7: Curves of errors for section 3.1.1

Mesh L1
1 std L1

1 red P2
1 std P2

1 red Q2
1 std Q2

1 red P2
1 SMP

128 0.215 0.189 0.216 0.182 0.208 0.181 0.181
256 2.18 1.89 2.14 1.83 2.14 1.88 1.88
512 19.7 17.6 19.5 17.1 20.3 18.4 16.9
1024 168 159 171 156 173 141 168

Table 1: Computational times in seconds for problem 1. Tests are performed
with three different interpolations with (red) and without (std) algebraic
reduction, and compared to the SMP method
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Mesh L1
1 P2

1 Q2
1 std

128 88.3% 84.5% 87.3%
256 86.9% 85.5% 88.2%
512 89.4% 87.5% 90.9%
1024 94.6% 91.2% 81.5%

Table 2: Ratio of computational times for reduced and standard matrices for
section 3.1.1

Figure 8: Residual against iterations of ILUK solver for problem 1 with a
128× 128 mesh
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Figure 9: Residual against iterations of ILUK solver for problem 1 with a
256× 256 mesh

Figure 10: Residual against iterations of ILUK solver for problem 1 with a
512× 512 mesh
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Figure 11: Residual against iterations of ILUK solver for problem 1 with a
1024× 1024 mesh
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3.1.2 Problem 2

The 3D equation ∆T = 6 is solved. The solution is T (r) = r2. The solution
is imposed on an immersed centered sphere of radius 0.2. As expected, the
second-order code gives the exact solution to almost computer-error accuracy
without this inner boundary. Results of the numerical accuracy test with the
spherical inner boundary are presented in Fig. 12. The average slope for the

Figure 12: Curves of errors for problem 2

L2 norm is 2.33 and increases for the denser meshes. Even if the method is
of second order in space, computer error accuracy can not be expected as the
immersed boundary Σh is an approximation of the initial sphere Σ.

3.1.3 Problem 3

The 3D equation ∆T = 12r2 is solved. The solution is T (r) = x4 + y4 + z4.
The results are presented in Fig. 13. For the L∞ norm, the second order is
regularly obtained. For the L2 norm, the second order is not obtained for
the coarsest meshes as the code has not reached its asymptotical convergence
domain. As can be noticed by comparing results with and without the AIIB
method, this last one does not spoil the convergence order of the code, and
the presence of the immersed interface with an analytical solution imposed
in Σh improves the accuracy. For both cases the numerical solution tends to
a second order in space.
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Figure 13: Curves of errors for problem 3

3.1.4 Problem 4

The 2D equation ∆T = 4 is solved. The analytical solution is imposed on
the boundaries of the domain and a Neuman BC is imposed on a centered
circle of radius R = 0.5. As can be seen in Fig. 14, the global convergence
has an average slope of 1.10. However, the convergence for the three biggest
meshes reaches a slope of 2.

3.2 Immersed interface problems

3.2.1 Problem 5

The 2D problem Pii with f = −4 and a = 1 is solved. As the equation
remains the same in both domains, this problem can be solved without im-
mersed interface method. The analytical solution is u = r2. As can be ex-
pected with our second order code, computer error is reached for all meshes
with or without AIIB method. The difference with problem 2, where the so-
lution is a second-order polynomial too, is that the solution is not explicitly
imposed at a given location. In the present case, the interface condition is
still correct anywhere in the domain so the approximation of the interface
position does not generate errors.

Fig. 15 shows that the same result is obtained with an interface jump
such as u = r2 for r > 0.5 and u = r2 + 1 otherwise.
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Figure 14: Curves of errors for problem 4

An equivalent quality of result is obtained with Σ such as:

{
x(α) = (.5 + .2 sin(5α)) cos(α)
y(α) = (.5 + .2 sin(5α)) sin(α)

(30)

with α ∈ [0, 2π]. The small stencil of the method allows interfaces with
relatively strong curvatures to be used.

3.2.2 Problem 6

The same problem as in 3.2.1 is now considered with a discontinuous co-
efficient a such as a = 10 in Ω0 and a = 1 in Ω1, involving the following
analytical solution:

u(r) =

{
r2 in Ω0
r2

10
+ 0.9

4
in Ω1

(31)

Accuracy tests are first performed with the interface almost passing by some
grid points (called odd mesh). The interface does not strictly lies on these
points, as the shape is shifted by an ε. This configuration is difficult as
the interpolations degenerates. Accuracy tests are then performed with a
box of length 1.0001 (called even mesh). In this configuration, the interface
never passes by a grid point. The results of the numerical accuracy test are
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Figure 15: The solution and the error for problem 5 with a 32× 32 mesh

presented in Fig. 17. For the odd series of test, the slope is 1.86 for the
L2 and L∞ errors. For the even series, where no geometrical singularity is
present, the slope for both errors is 2.04.

Figures 18 shows the solution and the L2 relative error for a 32×32 mesh.
As the analytical solution is imposed on the numerical boundary, the error
is principally located in the interior subdomain.

3.2.3 Problem 7

The homogenous 2D Laplace equation is considered with the following ana-
lytical solution:

u(x, y) =

{
0 in Ω0

ex cos(y) in Ω1
(32)
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Figure 16: The solution and the error for problem 5 with a 64× 64 mesh

where Ω0 and Ω1 are delimited by Σ a centered circle of radius 0.5. Fig. 19
shows that the convergence for both L2 and L∞ error are of first order only.
The Fig. 20 shows the numerical solution (which is not so different from
the analytical solution) and the error map for a 32 × 32 mesh. In section
(3.1.4), a first global order is observed too, even if a second order is reached
for the three last meshes. Hence, the convergence is not as good as expected
when a condition on the normal flux with a source term (ψ 6= 0) is imposed.
Numerous trials implying interpolations of higher orders have lead to similar
results, so, for now, we cannot explain the first order of convergence.

In [34], the authors seems to have encountered the same difficulties as they
explain how to impose Neumann BC with a quite similar method without
performing showing a convergence test.
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Figure 17: Curves of errors for odd and even meshes the problem 6

Figure 18: The solution and the error for problem 6 with a 33× 33 mesh

3.3 Shape management

3.3.1 Convergence

We measure the sensibility of the method with the accuracy of the discretiza-
tion of the immersed interface. Problem 1 is solved on 32× 32 and 128× 128
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Figure 19: Convergence of the L2 relative error and the L∞ error for problem
7

meshes. Fig. 21 shows the accuracy of the solution with respect to the num-
ber of points used to discretized the interface which is here a circle. The
reference solutions (Fig. 7) have been computed with an analytical circle.
As can be seen, a second order in space is globally obtained. The numerical
solutions of reference for the 32× 32 and 128× 128 meshes are different but
the sensitivity of the error to the number of points in the lagrangian mesh is
almost the same.

3.3.2 The Stanford bunny

This last case demonstrates how a second-order method enhances the repre-
sentation of the boundary condition compared to a first-order method. The
homogenous Laplace problem with a Dirichlet BC TΣ = 10 is solved on a
60 × 60 × 50 mesh bounding an obstacle of complex shape (the Stanford
bunny). The extension of the solution in Ω1 is used for the post treatment.
Thus, all uJ , J ∈ N1 are replaced by u∗J . Then, the iso-surface T = TΣ gives
an idea of the approximation of the boundary condition. Fig. 22 shows the
iso-surface for a first order method. As can be seen, the shape of the obstacle
endures a rasterization effect as the solution is imposed in the entire control
volumes. Fig. 23 shows the iso-surface for the second order AIIB method.
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Figure 20: The solution and the L2 relative error for problem 7 with a 32×32
mesh

Fig. 24 shows a slice of the solution passing through the bunny. As can be
seen, overshoots are present inside the shape which corresponds to the aux-
iliary values allowing the correct solution at the Lagrangian interface points
to be obtained.

3.4 Some remarks about the solvers

The kind of interpolation function used and the position of the interface have
an impact on the final discretization matrix C ′, especially on its condition-
ning. Let us consider an intersection xl of Σh between two points xJ , J ∈ N0

and xI , I ∈ N1. A Dirichlet BC ul is imposed on it. The constraint con-
structed with a L1

1 interpolation is (1− α)uJ + αu∗I , with α = xl−xJ

xI−xJ
. Hence,

α
1−α

tends to 0 when xl tends to xJ . As the matrix loses its diagonal dom-
inance, solver problems can be encountered. Tseng et al. [34] proposed
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Figure 21: Convergence of the error with respect to the accuracy of the
lagrangian shape problem 1

Figure 22: Iso-surface T = 10 for the Stanford bunny with a first order
method

changing the interpolation by using a new node which is the image of xI

through the interface. In [9, 8], authors pointed out this problem and sug-
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Figure 23: Iso-surface T = 10 for the Stanford bunny with a second order
method

Figure 24: Iso-surface T = 10 and a slice of the solution

gest to slightly move the interface to a neighboring point (in our case xJ) if
xI is too close to Σh.

In this case, for the Dirichlet BC, an unknown u∗J is created, and the
equation in xJ is simply uJ = ul. For the Neumann BC, the standard
interpolation is written in xJ with u∗J and its neighbor unknowns in Ω0.
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For the transmission conditions (21)-(22), if φ = 0 and ψ = 0, no auxiliary
unknown is created and the standard finite-volume centered discretization is
used. However, for this case, or for φ 6= 0 and ψ 6= 0, our implementation
using ILUK preconditionner or a PARDISO direct solver does not necessarily
require such methods, even if α

1−α
≈ 10−10.
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4 Discussion and conclusion

A new immersed interface method, the algebraic immersed interface and
boundary (AIIB) method, using algebraic manipulations has been presented.
This method is able to treat elliptic equations with discontinuous coefficients
and solution jumps over complex interfaces. A second order in space is
reached for several configurations with minor modifications of the original
code. The interface conditions are discretized with a compact stencil, so
the AIIB approach is directly able to treat interfaces with strong curvatures
even if a particular treatment of geometric singularities can be required. In
general, the modified matrix looses its diagonal dominance, efficient solvers
are required.

For the immersed boundary problems with a Dirichlet BC, the method has
shown a second order of convergence in space for various kinds of interpola-
tions. An algebraic reduction has been applied to accelerate the convergence
of the solver. For the Neumann BC, a second order seems to be reachable
for the densest meshes.

For the immersed interfaces, a second order of convergence in space is
obtained when the jump of the normal flux is zero, even if the equation has
discontinuous coefficients. Compared to the MIB method [39] or to the IIM
[18], this new method is easier to implement and uses a smaller stencil.

Future work will be devoted increasing the accuracy of the method when
the jump of the normal flux is not zero, and to extend the method to the
Navier-Stokes equations with immersed interfaces. Our general aim is to
treat complex moving fluid/solid and fluid/fluid interfaces using both AIIB
method and ITP method [27] to obtain an accurate two-way coupling.

Appendix : Definition of the interpolation

We explain the calculation of the interpolation coefficients for 2D problems.
Let us consider xI , xJ , xK and xL which define a dual control cell V ′I . A
p ∈ Q2

1 interpolation over V ′I is such that p(xi) = ui for i = I, J,K, L, and
p(x, y) = a0 + a1x + a2y + a3xy. The following coordinates matrix can be
defined :

Q =




1 xI yI xIyI

1 xJ yJ xJyJ

1 xK yK xKyK

1 xL yL xLyL


 (33)
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If a is the vector of the interpolation coefficient, p(x, y) = aQ and a = Q−1p.
As each term ai of a is a linear combination of ui, one can write p(x, y) =∑

i=I,J,K,L

αiui with (x, y) the coordinates of the Lagrangian intersection point

xl, l ∈ I. Practically, the four Eulerian points are the four corners of an unit
square and xl is easily projected in this new frame by insuring

ξ =
xl − xI

xJ − xI

and η =
yl − xI

xK − xI

. (34)

Fig. 25 illustrates the projection. Then, a unique trivial Q−1 matrix has
to be found for each kind of interpolation. The coefficients for the p ∈ Q2

1

interpolation are the following :

αI = (1− ξ)(1− η) (35)

αJ = (1− ξ)η (36)

αK = ξη (37)

αL = (1− ξ)η. (38)

In [34], the authors uses three Eulerian points and an interface point to

Figure 25: The projection of the initial square defined by the Eulerian mesh
to an unit square

construct the interpolation providing a more complex linear system which
has to be solved for each intersection point.
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