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Abstract

A new simple fictitious domain method, the algebraic immersed interface and boundary (AIIB)

method, is presented for elliptic equations with immersed interface conditions. This method allows

jump conditions on immersed interfaces to be discretized with a good accuracy on a compact stencil.

Auxiliary unknowns are created at existing grid locations to increase the degrees of freedom of the

initial problem. These auxiliary unknowns allow to impose various constraints to the system on

interfaces of complex shapes. For instance, the method is able to deal with immersed interfaces for

elliptic equations with jump conditions on the solution or discontinuous coefficients with a second

order of spatial accuracy. As the AIIB method acts on an algebraic level and only changes the

problem matrix, no particular attention to the initial discretization is required. The method can be

easily implemented in any structured grid code and can deal with immersed boundary problems too.

Several validation problems are presented to demonstrate the interest and accuracy of the method.
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1 Introduction and general motivations

Simulating flows and heat transfer interacting with complex objects on Cartesian structured grids requires

an efficient coupling between such grids and the corresponding numerical methods and complex shape

interfaces. Such a coupling is often performed thanks to fictitious domain methods, where the computa-

tional domain does not match the physical domain. The advantages of this approach are numerous. A

second-order accurate discretization of the spatial operators is simple to obtain, grid generation is trivial,

and furthermore there is no need to remesh the discretization grid in the case of moving or deformable

boundaries. Concerning this last point, fictitious domain methods can be useful even on unstructured

grids: Eulerian fixed unstructured grids can fit immobile obstacles, (e.g. a stator of an aircraft motor)

while mobile objects (a rotor) are treated with fictitious domain methods. Two particular classes of prob-

lems can be drawn: the immersed boundary problems and the immersed interface problems. The firsts

deal with complex boundaries, such as flow past objects, where no attention has to be paid to the solution

inside the obstacles. The immersed interface problems consider subdomains delimited by interfaces, and

the solution is required in both sides of the interface. As particular conditions, such as jump conditions,

can be required on the interface, this second class of problems is often more difficult to treat.

Let us consider the following model scalar immersed boundary problem with a Dirichlet boundary con-

dition (BC) on the interface Σ (see Fig. 1):

Pb

{
−∇ · (a∇u) = f in Ω0

u|Σ = uD on Σ

A boundary condition is also required on the other part of the boundary ∂Ω0 so that the whole problem

is well-posed.

A first approach dealing with immersed boundaries is the distributed Lagrange Multiplier method

proposed by Glowinski et al. [9]. Lagrange multipliers are introduced into the weak formulation of the

initial elliptic equation to ensure the immersed boundary condition.

Cartesian grid [13, 22] and Cut-cell [39] methods use a structured grid in the whole domain except

near obstacles where unstructured cells are created from structured cells. These methods are hard to

implement due to the numerous different space configurations of the intersections between cells and

objects. Furthermore, the existence of small cells can induce solver troubles.

The immersed boundary method (IBM) was initially presented by Peskin [24, 25]. Fictitious boundaries

are taken into account through a singular source term defined only near the boundaries. As the source

term is weighted with a discrete Dirac function smoothed on a non-zero support, the interface influence

is spread over some grid cells. This method is first-order in space and explicit. Another class of IBM,

the direct-forcing (DF) method, was initially proposed by Mohd-Yusof [23]. The idea here is to impose a

no-slip condition directly on the boundary using a mirrored flow over the boundary. In [5, 38], the correct

boundary velocity is obtained by interpolating the solution on the boundary and far from the boundary on

grid points in the near vicinity of the interface. In [37], Tseng et al. use the same principle but extrapolate

the solution in ghost cells outside the domain. This approach can be seen as a generalization of the mirror

boundary conditions used in Cartesian staggered grids to impose a velocity Dirichlet condition on pressure

nodes. As discussed in [32], this kind of approach seems to be more accurate than [5, 38].

The penalty methods for fictitious domains consist in adding specific terms in the conservation equations

to play with the order of magnitude of existing physical contributions so as to obtain at the same time

and with the same set of equations two different physical properties. The volume penalty method (VPM)

[3, 2] requires the addition of a penalty term χ
ε (u− uD) in the conservation equations, such that:{

−∇ · (a∇u) + χ
ε (u− uD) = f in Ω

with χ|Ω0
= 0, χ|Ω1

= 1, for 0 < ε≪ 1
(1)

where ε denotes the penalty parameter which tends to 0. Hence, in Ω1 the original equation becomes

negligible and u = uD is imposed. In ([14, 15]) authors add a Darcy term µ
Ku to the Naviers-Stokes (NS)
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equations where µ is the dynamic viscosity and K the permeability. In the fluid medium, K → ∞ so

the Darcy term is then negligible and the original set of NS equations is retrieved. In the solid medium,

K → 0 and consequently the NS equations tend to u = 0. Classical discretizations of the penalty terms

are of first order only since they consider the projected shape of the interface on the Eulerian grid to

define the penalty parameters [26]. In [29, 31], Sarthou et al. have discretized the volume penalty term

with a second order using implicit interpolations as in [37]. This method is called the sub-mesh penalty

(SMP) method and has been applied to both elliptic and NS equations.

Applied to problem Pb, the ghost cell immersed boundary method [37] and SMP method [29] used the

first cells in Ω1 to enhance the accuracy of the solution in Ω0.

An other approach which considers the extension of the solution is considered in [8, 7] by Gibou and

Fedkiw. Ghost nodes and simple interpolations are considered, but contrary to the SMP and the IBM-DF

methods, only 1D interpolations are used and the operators are rediscretized ”by-hand”.

Let us now consider a model immersed interface problem with jump interface conditions:

(Pi)


−∇ · (a∇u) = f in ΩJuKΣ = φ on ΣJ(a · ∇u) · nKΣ = ψ on Σ

A first class of method is the immersed interface methods (IIM) initially introduced by LeVeque and Li

[17] and widely described in [19]. This groupe of methods use Taylor series expansion of the solution at

discretization points in the vicinity of Σ to modify the discrete operators at these points. Much work has

been devoted to the immersed interface method and its numerous applications, such as moving interfaces

[11] or Navier-Stokes equations [16]. In [18], Li uses an augmented approach. Additional variables and

interface equations are added to the initial linear system. The new variables are the values of jumps at

some interface points. This method has been extended to the incompressible Stokes [20] and Navier-Stokes

[12].

The Ghost Fluid Method, originally developed by Fedkiw et al. [6, 21], introduces ghost nodes where

the solution is extended from one side of the interface to the other side. As for IIM, the operator

discretization must be modified ”by-hand”. Zhou et al. overcome this drawback with the matched

interface and boundary (MIB) method [42, 41, 40] by using interface conditions to express the solution

at ghost nodes with respect to the solution on physical nodes. Hence, the discretization is automatically

performed whatever the discretization scheme. Contrary to [18], the additional equations for these two

last methods are not written at ”random” points of the interface but at the intersections between the

Eulerian grid and the immersed interface. Furthermore, simple Lagrange polynomials are used whereas

a more complicated weighted least squares approach is used in [18] to discretize additional equations.

In [4], Cisternino and Weynans propose a quite simple method with additional unknowns located at the

interface. Interfaces conditions are discretized at these points and are added to the final linear system.

The method presented in this work solves elliptic problems using an augmented method coupled

with an auxiliary unknown approach. Contrary to ghost nodes, auxiliary unknowns are present in the

linear system. Compact interpolations are used to discretize the additional interface constraints. The

method is simple to implement even for interfaces of complex shapes, i.e. not described by analytical

equations. Except for the discretization of interface conditions, all operations are automatically performed

with algebraic modification or directly by the ”black-box” matrix solver. This new method is called the

algebraic immersed interface and boundary (AIIB) method. In section 2, the method is presented for

immersed boundary problems. Then, the method is extended to immersed interface problems with known

solution on the interface. Finally, the method is applied to immersed interfaces with transmission and

jump conditions. A special attention is paid to the management of the discretized interface, especially

the way to project it onto the Eulerian grid using a fast ray-casting method. In section 3, validation tests

and convergence studies are presented. Conclusions and perspectives are finally drawn in section 4.
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2 The algebraic immersed interface and boundary method

The AIIB method is now presented. The method is first formulated for immersed boundary problems

when a Dirichlet or a Neumann boundary condition is required. The method is then extended to simple

immersed interface problems where the solution is a priori known on the interface. Finally, an extension

to jump and transmission conditions is described.

2.1 Definitions and notations

Let us consider the original domain of interest denoted by Ω0, typically the fluid domain, which is

embedded inside a simple computational domain Ω ⊂ Rd, d being the spatial dimension of the problem.

The auxiliary domain Ω1, typically a solid particle or an obstacle, is such that : Ω = Ω0∪Σ∪Ω1 where Σ

is an immersed interface (see Fig. 1). Let n be the unit outward normal vector to Ω0 on Σ. Our objective

is to numerically impose the adequate boundary conditions on the interface Σ. These conditions will be

discretized in space on an Eulerian structured mesh covering Ω. As the discretization of the interface or

boundary conditions requires interpolations, the following interpolations in 2D: P2
1(x, y) = p1+ p2x+ p3y

and Q2
1(x, y) = p1 + p2x + p3y + p4xy are used. In 3D, we use P3

1(x, y, z) = p1 + p2x + p3y + p4z

and Q3
1(x, y, z) = p1 + p2x + p3y + p4z + p5xy + p6yz + p7zx + p8xyz. An additional interpolation,

L1
1(x) = p1+p2x, is also possible to be chosen for 2D and 3D problems. The superscript is the dimension

of the interpolation while the subscript is the order of spatial accuracy.

Figure 1: Definition of the subdomains and the interface

Figure 2: Definition of the discretization kernels for the AIIB method

The computational domain Ω is approximated with a curvilinear mesh Th composed of N ×M (×L
in 3D) cell-centered finite volumes (VI) for I ∈ E , E being the set of index of the Eulerian orthogonal

curvilinear structured mesh. Let xI be the vector coordinates of the center of each volume VI . In 2D,

the horizontal and vertical mesh steps are respectively hx and hy This grid is used to discretize the

conservation equations. A dual grid is introduced for the management of the AIIB method. The grid

lines of this dual cell-vertex mesh are defined by the network of the cell centers xI . The volumes of the

dual mesh are denoted by (V ′
I). The Eulerian unknowns are noted uI which are the approximated values
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of u(xI), i.e. the solution at the cell centers xI .

The discrete interface Σh, hereafter called the Lagrangian mesh, is given by a discretization of the original

interface Σ. It is described by a piecewise linear approximation of Σ: Σh = {σl ⊂ Rd−1, l ∈ Lf}, Lf being

the set of index of the Lagrangian mesh and K being the cardinal of Lf . Typically, σl are segments in 2D

and triangles in 3D. The vertices of each face σl are denoted by xl,i for i = 1, d and the set of all vertices

is {xl, l ∈ Lv}. The intersection points between the grid lines of the Eulerian dual mesh and the faces σl

of the Lagrangian mesh are denoted by {xi, i ∈ I} (see Fig. 2). Our objective is to discretize Dirichlet,

Neumann, transmission and jump conditions at these interface points to build a general fictitious domain

approach. This method is expected to reach a global second-order spatial accuracy.

We shall use the following Eulerian volume fonctions in order to implicitly locate Σh:

• The Heaviside function χ, defined as:

χ(x) =

{
1 if x ∈ Ω1

0 otherwise
(2)

This function is built with a point in solid method presented below. The function χ will be used to

perform fictitious domain algorithms and to build a level-set function.

• The level-set function ϕ, with:

ϕ(x) =

{
−distΣ(x) if x ∈ Ω1

distΣ(x) otherwise
(3)

and distΣ(p) = infx∈Σ ∥x − p∥. The unsigned distance is computed geometrically. The sign is

directly obtained with the discrete Heaviside function χ.

• The colour phase functions C, which is the ratio of a given phase in a control volume. We denote

C(xI) the phase ratio in the control volume centered in xI . This function is approximated from the

ϕ function by using the formula proposed by Sussman and Fatemi [36] :

C(x) ≈


1 if ϕ(x) > h

0 if ϕ(x) < −h
1
2 (1 +

ϕ
h + 1

π sin(πϕ/h)) otherwise

(4)

New sets of Eulerian points xI are defined near the interface so that each one has a neighbor xJ

verifying χJ ̸= χI (with χI = χ(xI) and χJ = χ(xJ)), i. e. the segment [xI ;xJ ] is cut by Σh.

These Eulerian ”interface” points are also sorted according to their location inside Ω0 or Ω1. Two sets

{xI , I ∈ N0} and {xI , I ∈ N1} are thus obtained, where N0 = {I, xI ∈ Ω0, χI ̸= χJ , xJ ∈ Ω1} and

N1 = {I, xI ∈ Ω1, χI ̸= χJ , xJ ∈ Ω0}.
For each xI , I ∈ N 0 or I ∈ N 1, we associate two unknowns: the physical one denoted as uI and the

auxiliary one u∗I .

2.2 Projection of the Lagrangian shape on the Eulerian grid

The generation of the Lagrangian mesh of the interface is achieved using a computer graphics software.

Specific algorithms have been developed to project this Lagrangian grid onto the Eulerian physical grid.

In order to obtain the discrete Heaviside function χ, one have to determine which Eulerian points are

inside the domain Ω1 defined by a Lagrangian surface. Such a surface must be closed and not self-

intersecting. In [32, 15], the authors used a global methodology partly based on [34] where χ is obtained

thanks to a PDE. This method suffers from a lack of accuracy and robustness. A Ray-casting method

based on the Jordan curve theorem is more adapted and is used in the present work. The principle is to

cast a ray from each Eulerian point to infinity and to test the number of intersections between the ray and
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the Lagrangian mesh. If the number of intersections is odd, the Eulerian point is inside the object, and

outside otherwise. The Ray-casting method can be enhanced by classifying elements of the Lagrangian

mesh with an octree sub-structure which recursively subdivides the space in boxes. If a ray does not

intersect a box, it does not intersect the triangles inside the box. A fast and simple optimization is to

test if a given point is in the box bounding the Lagrangian mesh. An improvement of the Ray-casting

algorithm, the Thread Ray-casting can be found in [30] and is described by Algorithm 1. Rays are cast

from points xI included in a boundary slice Sxy of the Eulerian mesh. For each starting point xI , the

intersections are stored and sorted according to their z component in a two-entry structure S(I, nsectI).

For each xI ∈ Sxy, the number nsectI of intersections by rows, is not known a priori. If S is an array,

a first pass has to be performed to determine the size of S. A better choice is to use chained lists. For

Algorithm 1 Optimized computation of the discrete Heaviside function in 3D

for I = 1,m with xI ∈ Sxy do

nsect := 0

for k = 1,K do

if Segment [xI ;x∞I ] intersects σk then

Store the intersection in S(I, nsect)

nsect := nsect+ 1

end if

end for

if nsect is even then

χ(xI) := 0

else

χ(xI) := 1

end if

In state := boolean(χ(xI))

nsecttmp := 0

for J = 1,mz do

while nsecttmp < nsect and xj(3) > S(I, nsecttmp) do

Switch In state

nsecttmp := nsecttmp + 1

end while

χ(xJ) := In state

end for

end for

the sake of clarity, the algorithm is not the fully optimized one (no bounding box test, no octree structure).

The Lagrangian points xl of Σh, l ∈ I are required to couple the Lagrangian surface and the Eulerian

grid used to solve the conservation equations. These points can be obtained with two methods. A geomet-

rical computation of the intersections gives the most accurate result. If not optimized the computational

cost of this method is not always negligible for some cases.

Using the Level-set function is a faster but less accurate way to obtain the intersection points. Let us

consider two Eulerian points xI ∈ Ω0 and xJ ∈ Ω1. We denote by dI = d(xI ,Σh) and dJ = d(xJ ,Σh) the

unsigned distances between Eulerian points and the interface Σh. Then, xl = (xIdJ + xJdI)/(dI + dJ).

Algorithmic problems can be encountered if the Lagrangian mesh is too complex compared to the

Eulerian mesh. For example, two intersecting points xl can be found between xI and xJ with the

geometric method. In this case, only one intersecting point is considered.

Concerning the use of the Level-set, this function is a projection of the shape on a discrete grid. The
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local curvature of the projected shape is thus limited by the accuracy of the Eulerian grid. Consequently,

no more than one intersecting point can be found between xI and xJ with the Level-set.

2.3 The AIIB for Dirichlet and Neumann conditions

2.3.1 General principle

Once the shape informations are available on the Eulerian grid, the problem discretization has to be

modified to take into account the fictitious domain delimited by an immersed boundary or an immersed

interface. The sub-mesh penalty (SMP) method [32, 29] was originally designed to treat immersed

boundary problems. It could be extended to treat immersed interface problems by symmetrization of

the algorithm with introduction of auxiliary unknowns as in the AIIB method. This new method is an

enhancement of the SMP method which is also able to solve immersed interface problems. The main idea

of the AIIB method is to embed an interface into a given domain by modifying the final matrix only.

As no modification of the discretization of the operators is required (contrary to [8, 7] and the immersed

interface methods [17]), the AIIB method is thus simple to implement.

Let P be a model problem discretized in the whole domain Ω as Au = b where A is a square matrix

of order m, u the solution vector and b a source term. The basic idea of the AIIB method is to add

new unknowns and equations to the initial linear system so as to take into account additional interface

constraints. The new unknowns, so-called the auxiliary or fictitious unknowns and labeled with ∗, are
defined as being the extrapolation of the solution from one side of the interface to the other, and are

used to discretize the interface conditions. Hence, the orignal problem Au = b becomes A′u′ = b′, with

A′ a square matrix of order m + n, with n the number of auxiliary constraints related to the interface

conditions. The solution u′ is decomposed such as u′ = (u, u∗)T and the source term as b′ = (b, b∗)T .

The interface constraints are discretized with a (n,m+ n) block matrix C and the source term b∗.

According to the interface conditions, the regularity of the solution on the interface is often lower

than in the rest of the domain. Hence, the discretization of operators with a stencil cutting the interface

can induce a great loss of accuracy. The first idea is to consider unknowns u∗I , I ∈ N1 (resp. u∗I , I ∈ N0)

as the extension of the solution in Ω0 (resp. Ω1). The initial algebraic link between unknowns from both

sides of the interface is cut, and the new link over the interface is obtained thanks to auxiliary unknowns.

Practically, matrix coefficients must be modified to take into account the new connectivities. Let αI,J be

a coefficient of A at row I, column J and α′
I,J the new coefficient in A′. If I ∈ N0 and J ∈ N1 , α′

I,J = 0

and α′
I,J∗ = αI,J , where J

∗ is the index corresponding to u∗J .

This is exactly the way how we proceed for the practical algorithm. However, this modification can

be expressed algebraically with permutation and mask matrices as follows.

We define the two following mask matrices I1 of dimensions (m,m+ n) and I2 of size (n,m+ n) :

I1 =


1 0 · · · 0 · · · · · · 0

0
. . .

...
. . .

...
...

. . . 0
. . .

...

0 . . . 0 1 0 · · · 0

 (5)

I2 =


0 · · · 0 1 0 · · · 0

0
. . . 0

. . .
...

...
. . .

...
. . . 0

0 . . . 0 0 · · · 0 1

 (6)

The matrices A0 and A1 are defined such as A0 + A1 = A, A0(I, J) = A(I, J) if I ∈ N0, else

A0(I, J) = 0. Similarly A1(I, J) = A(I, J) if I ∈ N1 else A1(I, J) = 0. Finally, the connectivities are

7



changed using the permutation matrices P0 and P1: P0 is defined to switch row I with row J if I ∈ N0,

J ∈ N1 and P1 to switch row I with row J if I ∈ N1, J ∈ N0. Hence, the new problem matrix is now

defined by:

A′ = IT1 (P0(A0I1) + P1(A1I1)) + IT2 C (7)

The new problem is A′u′ = b′ with A′ written with 4 blocks of various sizes: Ã(m,m), B(m,n), C1(n,m),

C2(n, n). The matrix Ã is thus the modification of the initial matrix A by setting to zero the coefficient

αI,J if χ(xI) ̸= χ(xJ), and C1 and C2 are the two sub-matrices of the matrix C. The problem can be

written as: (
Ã B

C1 C2

)(
u

u∗

)
=

(
b

b∗

)
(8)

The entire problem can then be solved to obtain u′ = (u, u∗)T . However, u∗ being the auxiliary solution

is not required to be computed explicitly . Hence, the Schur complement method can be used to calculate

the solution for the physical unknowns only. The final problem is now:

(Ã−BC−1
2 C1)u = b−BC−1

2 b∗ (9)

The opportunity of such a reduction will be discussed later.

2.3.2 AIIB algorithm for a scalar equation with Dirichlet boundary conditions

For sake of clarity, let us first describe in 2D the AIIB method for the model scalar problem Pb with a

Dirichlet boundary condition on the interface Σ. For this version of the AIIB algorithm, Ω0 is the domain

of interest and auxiliary unknowns are created in Ω1 only. Let us consider a point xI , I ∈ N1. At location

xI , two unknowns coexist: a physical one uI and an auxiliary one u∗I . We first describe the case when

xI has only one neighbor xJ in Ω0. The Lagrangian point xl is the intersection between [xI ;xJ ] and Σh

(Fig. 1 right). Then, the solution ul = uD(xl) at the interface is approximated by the P1
1 interpolation

between the Eulerian unknowns u∗I and uJ :

ul = αIu
∗
I + αJuJ with 0 < αI , αJ < 1 and αI + αJ = 1 (10)

As noticed in [37, 7], only a linear interpolation is required to reach a second order of accuracy. If now

xI has a second neighbor xK in Ω0, the intersection xm between [xI ;xK ] and Σh is considered with

um = uD(xm). We choose xp, a new point of Σh between xl and xm (see Fig. 3 left). The solution

up = uD(xp) is then imposed using a P2
1-interpolation of the values u∗I , uJ and uK :

up = αIu
∗
I + αJuJ + αKuK , 0 < αI , αJ , αK < 1 , αI + αJ + αK = 1 (11)

A Q2
1 interpolation of uI , uJ , uK and uL can be also used by extending the interpolation stencil with the

point xL which is the fourth point of the cell of the dual mesh defined by xI , xJ and xK (see Fig. 3 left).

As a third choice, two independent linear 1D interpolations can be used (one for each direction) for an

almost equivalent result. It produces :{
ul = αIu

∗
I + αJuJ with 0 < αI , αJ < 1 and αI + αJ = 1

um = α′
Iu

∗′

I + αKuK with 0 < α′
I , αK < 1 and α′

I + αJ = 1
(12)

In this case, two auxiliary unknowns are created.

A simple choice for xp is the barycenter between xl and xm where up = (ul + um)/2. This particular

case enables an easy implementation since we have :

αIu
∗
I + αJuJ = ul (13)

α′
Iu

∗
I + αKuK = um (14)
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A summation of these two constraints gives :

αIu
∗
I + αJuJ + α′

Iu
∗
I + αKuK = ul + um (15)

what is equivalent to build a constraint imposing up at xp with a P2
1 interpolation :

(αI + α′
I)u

∗
I + αJuJ + αKuK

2
= up ,

with 0 <
αI + α′

I

2
,
αJ

2
,
αK

2
< 1 ,

αI + α′
I

2
+
αJ

2
+
αK

2
= 1 (16)

Hence, an easy general implementation consists in summing the constraints corresponding to each direc-

tion, no matter the number of neighbors of xI . If the elements σl of Σh used to define xl and xm are

not the same, the barycenter xp of these two points is not necessarily on Σh, especially for interfaces

of strong curvature. However, the distance d(xp,Σh) between xp and Σh varies like O(h2) and so this

additional error does not spoil the second-order precision of our discretization. The convergence of this

additional error is numerically tested in section (3.3.1). If the curvature of Σh is small enough relatively

to the Eulerian mesh, i.e. if the Eulerian mesh is sufficiently fine, xI almost never has a third or a fourth

neighbor in Ω0. However, if this case appears, a simple constraint u∗I = uB is used with uB being an

average of uD at the neighbor intersection points. In any case, by decreasing the Eulerian mesh step h,

the number of points xI having more than two neighbors in Ω0 also decreases.

Hence, the present method is suitable to impose a Dirichlet boundary condition on Σ for Ω0, when the

solution in Ω1 has no interest. The solution u∗I for I ∈ N1 is an extrapolation of the solution in Ω0 in

order to satisfy the boundary condition on Σ and thus is non-physical. Hence, the solution at the nodes

of Ω1 far from the interface does not impact on the solution in Ω0. Nevertheless, the fictitious domain

approach computes a non-physical solution in Ω1. Correct physical values can be obtained with the initial

set of equations together with a volume penalty method such as VPM [14]. The imposed solution can be

analytical when possible, or an arbitrary constant value. The computational cost of this approach can

be reduced by switching the solving of uI , xI ∈ Ω1 off, or by totally removing these nodes in the solving

matrix.

2.3.3 Symmetric version for Dirichlet interface conditions

The next step is to allow for multiple Dirichlet boundary conditions on both sides of the immersed

interface. Thin objects could be treated with this approach. The problem is now:
−∇ · (a∇u) = f in Ω

u−|Σ = uD on Σ

u+|Σ = uG on Σ

(17)

The problem (17) requires for each point xI a physical unknown uI as well as an auxiliary unknown u∗I
on both sides of the interface.

Practically, the AIIB algorithm for a Dirichlet BC is applied a first time with Ω0 as domain of interest,

and auxiliary unknowns are created near Σh in Ω1. As a second step, the Heaviside function is modified

as χ := 1−χ and the algorithm is applied a second time. Now, Ω1 is the domain of interest and auxiliary

unknowns are created near Σ in Ω0.

2.3.4 AIIB algorithm for a scalar equation with Neumann boundary conditions

Let us now consider the following model scalar problem with a Neumann BC on the interface Σ:{
−∇ · (a∇u) = f in Ω0

(a · ∇u) · n = gN on Σ
(18)
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The principle is about the same as for Dirichlet BC, and the same interpolations, once derived, can

be used to approximate the quantity (a · ∇u) · n. Hence, at any point xl, l ∈ I on Σh we use

(a · ∇ul) · n ≈ (a · ∇p(xl) · n). (19)

For p ∈ Q2
1, we get ∇p(x, y)·n = (p3y+p2)nx+(p3x+p1)ny whereas for p ∈ P2

1, ∇p(x, y)·n = p2nx+p1ny

is obtained which means that the normal gradient is approximated by a constant over the whole support.

For example, in the configuration of Fig. 3.left, with p ∈ P2
1, we have:

∇p(x, y) · n =
u∗I − uJ
hx

nx +
uK − u∗I
hy

ny = u∗I(
nx
hx

− ny
hy

) + uJ
nx
hx

+ uK
ny
hy

(20)

The diagonal coefficient of the raw related to u∗I in C2 is (nx

hx
− ny

hy
). The case where nx

hx
≈ ny

hy
leads

to numerical instabilities. If we consider the configuration of Fig. 3.left, using the normal vector of the

segment [xl, xm] implies that the signs of nx and ny are always different so the diagonal coefficient is

always dominant. The same property occurs for the other cases.

When xI has only one neighbor xJ in Ω0, the Q2
1 and P2

1 interpolations degenerate to L1
1 interpola-

tions which suit for Dirichlet BC. For Neumann BC, this loss of dimension no longer allows the interface

orientation to be accurately taken into account, as one of the components of the normal unit vector dis-

appears from the interfacial constraint. Hence, a third point xK in Ω0 is caught to build P2
1 interpolations

(see Fig. 3 right). This point is a neighbor of xJ and is taken as [xI , xJ ]⊥[xJ , xK ]. In 2D, two choices

generally appear, and the point being so that the angle (n, xK − xJ) is in [−π/2;π/2] is taken.

Figure 3: Example of selection of points for Dirichlet (left) and Neumann (right) constraints

2.3.5 Algebraic elimination using the Schur complement

The Schur complement method allows an algebraic reduction to be performed. For a Dirichlet or Neumann

BC, each constraint is written such as only one auxiliary unknown is needed:

u∗I =
∑
J∈N

αJuJ + uS (21)

where uS is the source term. In this case, the matrix C2 in (8) is diagonal and thus the Schur complement

(Ã−BC−1
2 C1) is easy to calculate. Practically, when the algebraic reduction is made, Ã is built directly

by the suitable modification of A without considering the extended matrix A′. The part −BC−1
2 C1 is

then added to Ã whereas −BC−1
2 b∗ is added to b. As will be subsequently demonstrated, the algebraic

reduction decreases the computational cost of the solver by 10− 20%.

If only L1
1 interpolations are used with the algebraic elimination, the matrix obtained with this method

is similar to the one obtained in [8] for a Dirichlet problem. However, in this last paper, the auxiliary

unknowns are taken into account before the discretization of the operator which requires additional

calculations for each discretization scheme.
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If P2
1 interpolations are used, the computed solution in Ω0 is the same as for the SMP [29] method

(when the penalty parameter tends to zero) and the DF-IB method [37]. These methods change the

discretization of the initial equation for the nodes xI , I ∈ N1. The SMP method uses a penalty term

and the DF-IB method uses terms of opposite signs to erase some part of the initial equation. The

discretization matrix obtained with both methods is not equivalent to the one obtained with the AIIB

method, with or without algebraic reduction. With algebraic reduction, the discretization for the nodes

xI , I ∈ N0 is modified, and without algebraic reduction, both auxiliary and physical unknowns coexist at

xI , I ∈ N1. The accuracy of these methods will be discussed in the next section.

The present algorithm seems simpler, as the standard discretization of the operators is automatically

modified in an algebraic manner. So, various discretization schemes of the spatial operators can be used.

However, the discretization of an operator at xI ∈ Ω0 can only use in Ω1 the fictitious unknowns and

not the physical ones. Hence, the only limitation concerns the stencil of these operators which have to

be limited, if centered, to three points by direction.

2.3.6 Application to the Navier-Stokes equations

The SMP method has been applied to the NS equations in [29, 31]. For immersed boundary problems, the

SMP and the AIIB methods give equivalent results and the AIIB method can be used to immerse obstacles

in fluid flows. Both methods can be used for the scalar and the NS equations. In the latter, the procedure

is done componentwise for the velocity vector. However, the AIIB method, with L1
1 interpolations only,

cannot be applied to the NS equations on staggered grid (no tests have been performed for a collocated

approach). An illustration is given Fig. 4. With such interpolations, two auxiliary unknowns u∗I and

u∗
′

I , I ∈ N1, can coexist at the same location xI . Hence, u∗I is the natural neighbor of uJ and u∗
′

I is the

natural neighbor of uK . So a problem occurs for the discretization of the inertial term since a node of a

given velocity component has to use an auxiliary unknown of an other velocity component. In this case,

neither u∗I nor u∗
′

I are natural neighbors for vl, a velocity unknown in the y direction. No matter which

unknown is used, or an average of the two collocated unknowns, the simulation is unstable outside of the

Stokes regime.

Figure 4: Illustration of the application to the Navier-Stokes equations on staggered grid

A particular attention has also to be given to the velocity-pressure coupling. If a fractional step

method is used, the prediction step is modified by any fictitious domain method to impose an immersed

boundary condition for the velocity. Thus, the projection step has to be modified according to the

prediction step to remain consistent with the overall problem. Details about this point can be found in

[31] where a consistent pressure correction is proposed in the framework of the penalty methods.

2.4 The AIIB for immersed interface problems with jump conditions

With the symmetric method described in (2.3.3), the problem can be solved on both sides of the interface

when explicit Dirichlet BC are imposed. For many problems, the solution is not a priori known on the
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interface and some jump transmission conditions on the interface Σ are required. Let us now consider

the problem:

(Pi)

{
−∇ · (a∇u) = f in Ω

+ Interface conditions on Σ

where the interface conditions are:

JuKΣ = φ on Σ (22)J(a · ∇u) · nKΣ = ψ on Σ (23)

The notation J KΣ denotes the jump of a quantity over the interface Σ. In the symmetric version of the

AIIB method, a given intersection point xl, l ∈ I, is associated with two auxiliary unknowns on both

sides of the interface. Hence, the interface constraints (22) and (23) of (Pi) can be imposed at each

intersection point xl by using the two auxiliary unknowns. For example, the Inth row of the matrix

A′ with u∗I , I ∈ N0, can be used to impose the constraint (22) and the Jnth line of the matrix with

u∗J , J ∈ N1, is then used to impose the constraint (23).

2.4.1 The solution constraint

The symmetrized AIIB methods for Dirichlet BC reads :{
u+Σ = α1uI + α2u

∗
J

u−Σ = α1u
∗
I + α2uJ

(24)

when L1
1 interpolations are used. With JuKΣ = u+Σ − u−Σ = φ, we obtain :

α1uI + α2u
∗
J − α1u

∗
I − α2uJ = φ (25)

which is the first constraint to be imposed.

2.4.2 The flux constraint

Following the same idea and using P2
1 interpolations,{

(a · ∇u+Σ) · n = a+(
uI−u∗

J

hx
nx +

u∗
K−uI

hy
ny)

(a · ∇u−Σ) · n = a−(
u∗
I−uJ

hx
nx +

uK−u∗
I

hy
ny)

(26)

for the case presented in Fig. 3 left. Using (23), we obtain:

a+
(
uI − u∗J
hx

nx +
u∗K − uI
hy

ny

)
− a−

(
u∗I − uJ
hx

nx − uK − u∗I
hy

ny

)
= ψ (27)

which is the second constraint to be imposed. With such an interpolation, the solution gradient is constant

over the whole stencil. As demonstrated later, the second-order accuracy can be reached on Cartesian

grids when ψ = 0.

Three auxiliary unknowns are thus involved in the discretizations (25) and (27). The auxiliary un-

known u∗K is also involved in the discretization of (22) and (23) at another intersection point on Σh.

Hence, the whole system A′u′ = b′ is closed.

On can notice that in [4], the same kind of augmented system is considered. Contrary to the AIIB

method, no auxiliary nodes are used andthe spatial discretization at the grid points at the vicinity of the

interface has to be modified ”by-hand”.
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2.4.3 Algebraic reduction

Since we need more than one auxiliary unknown to discretize each constraint, the matrix C2 is not

diagonal and a solver has to be used to compute C−1
2 .

For the matched interface and boundary (MIB) method, Zhou et al. [42] use a different discretization

of the interface conditions which allows an easy algebraic reduction which is directly performed raw by

raw.

The algebraic reduction for the immersed interface problems has not been yet implemented. However,

the standard discretization of the AIIB method requires a more compact stencil than for the MIB method,

and the additional computational time generated by the auxiliary nodes is small. Hence, the lack of

algebraic reduction does not seem to a problem.
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3 Numerical results for scalar problems

Elliptic equations are discretized using the standard second-order centered Laplacian. For all problems,

similar results have been obtained with a PARDISO direct solver [33], and an iterative BiCGSTAB

solver [10], preconditioned under a ILUK method [28]. Unless otherwise mentioned, a numerical domain

[−1; 1]× [−1; 1] is used for every simulation. Two discrete errors are used.

The discrete relative L2 error in a domain Ω is defined as:

∥u∥L2
rel(Ω) =

∥u− ũ∥L2(Ω)

∥ũ∥L2(Ω)
(28)

=


(∑

xI∈Ωmeas(VI)|uI − ũ(xI)|2
)

(∑
xI∈Ωmeas(VI)|ũ(xI)|2

)


1
2

(29)

with ũ the analytical solution.

The discrete L∞ error is defined as:

∥u∥L∞(Ω) = maxxI∈Ω|uI − ũ(xI)| (30)

Only Ω0 is taken into account for the immersed boundary problems.

3.1 Immersed boundary problems

3.1.1 Problem 1

The homogenous 2D Laplace equation is solved. The interface Σ is a centered circle of radius R1 = 0.5m

with a Dirichlet condition of U1 = 10 ◦C. An analytical solution which accounts for the presence of

a second circle with a radius R2 = 2m and U2 = 0 ◦C is imposed on the boundary conditions. The

analytical solution is:

u(r) =
U2 − U1

ln(R2)− ln(R1)
ln(r) + U1 − (U2 − U1)

ln(R1)

ln(R2)− ln(R1)
(31)

Accuracy tests are performed with L1
1, P2

1 and Q2
1 interpolations. Fig. 5 shows the solution and the

error map for a 32 × 32 mesh with P2
1 interpolations. The same results are always obtained with and

without algebraic reduction. Fig. 6 shows the convergence of the error for the L2 and L∞ norms. For all

Figure 5: Solution and error map for problem 1 on a 32× 32 grid

interpolations, the convergence slopes are approximatively 2 for the relative L2 error. For the L∞ error,

the slopes are about 1.8. The P2
1 interpolation is the more accurate, followed by the L1

1 interpolation
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although it uses more auxiliary points (but a smaller stencil). However, the differences of accuracy

between the different interpolations remain small. The performances of the ILUK-BiCG-Stab solver are

now benchmarked for the three interpolations with and without algebraic reduction and for the SMP

method. Tab. 1 shows the computational times of the matrix inversions (average time in seconds for

25 matrix inversions) and Tab. 2 shows the time ratio between the standard and the reduced matrix.

Except for the Q1
1 interpolation on the 1024×1024 mesh, the differences between the two methods seem to

decrease with the size of the matrix. In fact, as interfaces are d− 1 manifolds, the number of intersection

points does not increase as fast as the Eulerian points. Hence, the ratio between the size of a reduced

and a complete matrix tends to 1. The computational time for the SMP method is quite similar to the

one obtained with the AIIB method and algebraic reduction. Figures 7, 8, 9, 10 shows the convergence of

the ILUK-BiCG-Stab solver for the seven configurations. The type of interpolation does not significantly

impact on solver performances. As expected, the number of solver iterations have to be increased to

reach a given residual when the number of computational nodes is also increased.

Figure 6: Curves of errors for section 3.1.1

Mesh L1
1 std L1

1 red P2
1 std P2

1 red Q2
1 std Q2

1 red P2
1 SMP

128 0.215 0.189 0.216 0.182 0.208 0.181 0.181

256 2.18 1.89 2.14 1.83 2.14 1.88 1.88

512 19.7 17.6 19.5 17.1 20.3 18.4 16.9

1024 168 159 171 156 173 141 168

Table 1: Computational times in seconds for problem 1. Tests are performed with three different inter-

polations with (red) and without (std) algebraic reduction, and compared to the SMP method

Mesh L1
1 P2

1 Q2
1 std

128 88.3% 84.5% 87.3%

256 86.9% 85.5% 88.2%

512 89.4% 87.5% 90.9%

1024 94.6% 91.2% 81.5%

Table 2: Ratio of computational times for reduced and standard matrices for section 3.1.1
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Figure 7: Residual against iterations of ILUK solver for problem 1 with a 128× 128 mesh

Figure 8: Residual against iterations of ILUK solver for problem 1 with a 256× 256 mesh
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Figure 9: Residual against iterations of ILUK solver for problem 1 with a 512× 512 mesh

Figure 10: Residual against iterations of ILUK solver for problem 1 with a 1024× 1024 mesh
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3.1.2 Problem 2

The 3D equation ∆T = 6 is solved. The solution is T (r) = r2. The solution is imposed on an immersed

centered sphere of radius 0.2m. As expected, the second-order code gives the exact solution to almost

computer-error accuracy without this inner boundary.

Results of the numerical accuracy test with the spherical inner boundary are presented in Fig. 11.

The average slope for the L2 norm is 2.33 and increases for the denser meshes. Even if the method has

Figure 11: Curves of errors for problem 2

the same convergence order as the initial discretizeation, computer error accuracy can not be expected,

at least because the immersed boundary Σh is an approximation of the initial sphere Σ.

3.1.3 Problem 3

The 3D equation ∆T = 12r2 is solved. The solution is T (r) = x4 + y4 + z4.

Figure 12: Curves of errors for problem 3

The results are presented in Fig. 12. For the L∞ norm, the second order is regularly obtained. For

the L2 norm, the second order is not obtained for the coarsest meshes as the code has not reached its

asymptotical convergence domain. As can be noticed by comparing results with and without the AIIB

method, this last one does not spoil the convergence order of the code, and the presence of the immersed
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interface with an analytical solution imposed on Σh improves the accuracy. For both cases, the numerical

solution tends to a second order in space.

3.1.4 Problem 4

The 2D equation ∆T = 4 is solved. The analytical solution is imposed on the boundaries of the domain

and a Neuman BC is imposed on a centered circle of radius R = 0.5m. As can be seen in Fig. 13, the

global convergence has an average slope of 1.10 and can be explained by the simplicity of the discretization

of the Neumann BC.

Figure 13: Curves of errors for problem 4

3.2 Immersed interface problems

3.2.1 Problem 5

The 2D problem Pii with f = −4 and a = 1 is solved. As the equation remains the same in both domains,

this problem can be solved without immersed interface method. The analytical solution is u = r2. As can

be expected with our second order code, computer error is reached for all meshes with or without AIIB

method. The difference with problem 2, where the solution is a second-order polynomial too, is that the

solution is not explicitly imposed at a given location. In the present case, the interface condition is still

correct anywhere in the domain so the approximation of the interface position does not generate errors.

Fig. 14 shows that the same result is obtained with a solution jump on a circular interface such as

u = r2 for r > 0.5 and u = r2 + 1 otherwise.

An equivalent quality of result is obtained (see Fig. 15) with Σ such as:{
x(α) = (.5 + .2 sin(5α)) cos(α)

y(α) = (.5 + .2 sin(5α)) sin(α)
(32)

with α ∈ [0, 2π]. The small stencil of the method allows interfaces with relatively strong curvatures to

be used.
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Figure 14: The solution and the error for problem 5 with a 32× 32 mesh

Figure 15: The solution and the error for problem 5 with a 64× 64 mesh

3.2.2 Problem 6

The same problem as in 3.2.1 is now considered with a discontinuous coefficient a such as a = 10 in Ω0

and a = 1 in Ω1, involving the following analytical solution:

u(r) =

{
r2 in Ω0

r2

10 + 0.9
4 in Ω1

(33)

Accuracy tests are first performed with the interface almost passing by some grid points (called odd

mesh). The interface does not strictly lies on these points, as the shape is shifted by an ϵ = 10−10. This

configuration is difficult as the interpolations degenerates. Accuracy tests are then performed with a box

of length 1.0001 (called even mesh). In this configuration, the interface never passes by a grid point. The

results of the numerical accuracy test are presented in Fig. 16. For the odd series of test, the slope is

1.86 for the L2 and L∞ errors. For the even series, where no geometrical singularity is present, the slope

for both errors is 2.04.

Figures 17 shows the solution and the L2 relative error for a 32× 32 mesh. As the analytical solution

is imposed on the numerical boundary, the error is principally located in the interior subdomain.
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Figure 16: Curves of errors for odd and even meshes for problem 6

Figure 17: The solution and the error for problem 6 with a 33× 33 mesh

3.2.3 Problem 7

The homogenous 2D Laplace equation is considered with the following analytical solution:

u(x, y) =

{
0 in Ω0

ex cos(y) in Ω1

(34)

where Ω0 and Ω1 are delimited by Σ a centered circle of radius 0.5m. Fig. 18 shows that the convergence

for both L2 and L∞ error are of first order only. The Fig. 19 shows the numerical solution (which is not

so different from the analytical solution) and the error map for a 32× 32 mesh.

Hence, the drawback of the compacity of the discretization is a first-order convergence in space only

for cases with flux jump.

3.3 Shape management

3.3.1 Convergence

We measure the sensibility of the method with the accuracy of the discretization of the immersed interface.

Problem 1 is solved on 32 × 32 and 128 × 128 meshes. Fig. 20 shows the accuracy of the solution with

respect to the number of points used to discretized the interface which is here a circle. The reference

solutions (Fig. 6) have been computed with an analytical circle. As can be seen, a second order in space is

globally obtained. The numerical solutions of reference for the 32×32 and 128×128 meshes are different

but the sensitivity of the error to the number of points in the Lagrangian mesh is almost the same.
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Figure 18: Convergence of the L2 relative error and the L∞ error for problem 7

Figure 19: The solution and the L2 relative error for problem 7 with a 32× 32 mesh

3.3.2 The Stanford bunny

This last case demonstrates how a second-order method enhances the representation of the boundary

condition compared to a first-order method. The homogenous Laplace problem with a Dirichlet BC

TΣ = 10 ◦C is solved on a 60 × 60 × 50 mesh bounding an obstacle of complex shape (the Stanford

bunny). The extension of the solution in Ω1 is used for the post treatment. Thus, all uJ , J ∈ N1,

are replaced by u∗J . Then, the iso-surface T = TΣ gives an idea of the approximation of the boundary

condition. Fig. 21 shows the iso-surface for a first order method. As can be seen, the shape of the

obstacle endures a rasterization effect as the solution is imposed in the entire control volumes. Fig. 22

shows the iso-surface for the second order AIIB method. The improvement brought by this approach

is straightforward. Fig. 23 shows a slice of the solution passing through the bunny. As can be seen,

overshoots are present inside the shape which corresponds to the auxiliary values allowing the correct

solution at the Lagrangian interface points to be obtained.

22



Figure 20: Convergence of the error with respect to the number of elements forming the Lagrangian shape

for problem 1

Figure 21: Iso-surface T = 10 ◦C for the Stanford bunny with a first order method

Figure 22: Iso-surface T = 10 ◦C for the Stanford bunny with a second order method

3.4 Some remarks about the solvers

The kind of interpolation function used and the position of the interface have an impact on the final

discretization matrix C ′, especially on its conditionning. Let us consider an intersection xl of Σh between
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Figure 23: Iso-surface T = 10 ◦C and a slice of the solution

two points xJ , J ∈ N0 and xI , I ∈ N1. A Dirichlet BC ul is imposed on it. The constraint constructed

with a L1
1 interpolation is (1 − α)uJ + αu∗I , with α = xl−xJ

xI−xJ
. Hence, α

1−α tends to 0 when xl tends to

xJ . As the matrix loses its diagonal dominance, solver problems can be encountered. Tseng et al. [37]

proposed changing the interpolation by using a new node which is the image of xI through the interface.

In [8, 7], authors pointed out this problem and suggest to slightly move the interface to a neighboring

point (in our case xJ) if xI is too close to Σh.

In this case, for the Dirichlet BC, an unknown u∗J is created, and the equation at xJ is simply uJ = ul.

For the Neumann BC, the standard interpolation is written at xJ with u∗J and its neighbor unknowns in

Ω0.

For the transmission conditions (22)-(23), if ϕ = 0 and ψ = 0, no auxiliary unknown is created and

the standard finite-volume centered discretization is used. However, for this case, or for ϕ ̸= 0 and ψ ̸= 0,

our implementation using ILUK preconditionner or a PARDISO direct solver does not necessarily require

such methods, even if α
1−α ≈ 10−10. Correct solutions are always obtained.
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4 Discussion and conclusion

A new immersed interface method, the algebraic immersed interface and boundary (AIIB) method, which

uses algebraic manipulations and compact stencil discretizations, has been presented. This method is able

to treat elliptic equations with discontinuous coefficients and solution jumps over complex interfaces. A

second order in space is reached for several configurations with minor modifications of the original code

(especially if the reduction of the linear system is not considered).

The aim was to design a method as simple as possible. Contrary to some extensions of the IIM

and MIB methods, no particular attention has been paid to treat interfaces with critical curvature or

singularities. However, the compact stencil of AIIB method allows it to treat interfaces with quite high

curvatures without modification and satisfies the goal of simplicity.

For the immersed boundary problems with a Dirichlet BC, the method has shown a second order

of convergence in space for various kinds of interpolations. An algebraic reduction has been applied to

accelerate the convergence of the solver. For the Neumann BC, a first order has been obtained.

For the immersed interfaces, a second order of convergence in space is obtained when the jump of the

normal flux is zero, even if the equation has discontinuous coefficients.

Future work could be devoted to increase the accuracy of the method when the jump of the normal

flux is not zero. It is the main drawback of the method compared to the IIM, MIB method or [4]. A

challenge will be to keep a compact stencil. A study of the matrix conditioning would be important too

as a strong solver is required for the present method. Another interesting point would be to couple the

method with alternative interface conditions such as the Jump Embedded Boundary Conditions proposed

in [1] which are :

Ja · ∇u) · nKΣ = αu|Σ − h on Σ (35)

(a · ∇u) · nΣ = βJuK − g on Σ (36)

where uΣ = (u+ − u−)/2 denotes the arithmetic mean of the traces of a quantity on both sides of the

interface, α, β, h and g are scalar values which can be chosen in order to obtain Dirichlet, Neumann,

Fourier of transmission conditions on the interface.

At last, a long-term goal is to extend the method to the Navier-Stokes equations with immersed

interfaces. To perform fluid/structure coupling, the implicit tensorial penalty method [27, 35] can be

considered. With this approach, the solid medium is treated as a fluid with a high viscosity. At the

fluid/solid interface, average physical quantities are imposed. Such strategy is generally less accurate

that methods using polynomial interpolations so a coupling with the AIIB method is desirable.

Appendix : Definition of the interpolation

We explain the calculation of the interpolation coefficients for 2D problems. Let us consider xI , xJ , xK

and xL which define a dual control cell V ′
I . A p ∈ Q2

1 interpolation over V ′
I is such that p(xi) = ui for

i = I, J,K,L, and p(x, y) = a0 + a1x+ a2y + a3xy. The following coordinates matrix can be defined :

Q =


1 xI yI xIyI

1 xJ yJ xJyJ

1 xK yK xKyK

1 xL yL xLyL

 (37)

If a is the vector of the interpolation coefficient, p(x, y) = aQ and a = Q−1p.

As each term ai of a is a linear combination of ui, one can write p(x, y) =
∑

i=I,J,K,L

αiui with (x, y)

the coordinates of the Lagrangian intersection point xl, l ∈ I. Practically, the four Eulerian points are
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the four corners of an unit square and xl is easily projected in this new frame by ensuring

ξ =
xl − xI
xJ − xI

and η =
yl − xI
xK − xI

. (38)

Fig. 24 illustrates the projection. Then, a unique trivial Q−1 matrix has to be found for each kind of

interpolation. The coefficients for the p ∈ Q2
1 interpolation are the following:

αI = (1− ξ)(1− η) (39)

αJ = (1− ξ)η (40)

αK = ξη (41)

αL = (1− ξ)η. (42)

In [37], the authors uses three Eulerian points and an interface point to construct the interpolation

Figure 24: The projection of the initial square defined by the Eulerian mesh to an unit square

providing a more complex linear system which has to be solved for each intersection point.
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