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In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by various numerical examples showing that the new semi-implicit discretization that we propose seems to be a good compromise between robustness and accuracy.

Introduction

Multiphase flows are involved in many industrial applications. For instance, in nuclear safety [START_REF] Seiler | Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors[END_REF], during a hypothetical major accident in a reactor, the degradation of the core may produce multicomponent flows where interfaces undergo extreme topological changes, e.g. break-up and coalescence. Because of their ability to capture interfaces implicitly, diffuse-interface models are attractive for the numerical simulation of such phenomena. They consist in assuming that the interfaces between phases in the system have a small but positive thickness. Each phase i is represented by a smooth function c i called the order parameter. The evolution of the system is then driven by the gradient of the total free energy, which is a sum of two terms: the bulk free energy term with a "multiple-well" shape and the capillary term depending on the gradients of the order parameters and accounting for the energy of the interfaces, that is the surface tension. For two phase flows, there has been much algorithm development and many simulations of the Cahn-Hilliard equations [START_REF] Barrett | Finite element approximation of an Allen-Cahn/Cahn-Hilliard system[END_REF][START_REF] Boyer | A theoretical and numerical model for the study of incompressible mixture flows[END_REF][START_REF] Feng | Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows[END_REF][START_REF] Feng | Analysis of finite element approximations of a phase field model for two-phase fluids[END_REF][START_REF] Kim | Conservative multigrid methods for Cahn-Hilliard fluids[END_REF]. Generalizations of diffuse-interface models to any number of components have been recently introduced and studied. Numerical methods and simulations were proposed, for instance, in [START_REF] Barrett | An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy[END_REF][START_REF] Barrett | On fully practical finite element approximations of degenerate Cahn-Hilliard systems[END_REF][START_REF] Blowey | Numerical analysis of a model for phase separation of a multi-component alloy[END_REF][START_REF] Boyer | Study of a three component Cahn-Hilliard flow model[END_REF][START_REF] Garcke | A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions[END_REF][START_REF] Kim | Conservative multigrid methods for ternary Cahn-Hilliard systems[END_REF][START_REF] Kim | Phase field modeling and simulation of three-phase flows[END_REF].

In this article we investigate numerical schemes for solving the three component Cahn-Hilliard model fully derived and studied in [START_REF] Boyer | Study of a three component Cahn-Hilliard flow model[END_REF]. We recall its main properties in Section 1.1, 1.2 and 1.3. One of the key features of this model is a relevant choice of the bulk free energy which enables its exact coincidence with the diphasic Cahn-Hilliard model when only two phases are present in the mixture.

The space discretization is performed by using the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy which is crucial to establish the existence and the convergence of approximate solutions. In some physical situations, the implicit Euler time discretization does not satisfy an energy inequality and the corresponding numerical solvers do not converge. To tackle this issue, semi-implicit schemes are proposed and studied in Section 2 and 3.

We state a convergence theorem for these schemes, which enables in particular to get a proof (different from the one in [START_REF] Boyer | Study of a three component Cahn-Hilliard flow model[END_REF]) of the existence of a weak solution of the Cahn-Hilliard model. Note that more general boundary conditions are taken into account here since we allow Dirichlet boundary conditions on the order parameters on some part of the boundary of the domain. Finally, in Section 5, the three schemes are numerically compared on various test cases.

Three component Cahn-Hilliard model

The domain Ω is an open bounded, connected, subset of R d with d = 2 or d = 3. The Cahn-Hilliard approach consists in assuming that the interfaces between phases in the system have a small but positive thickness ε. Each phase i is represented by a smooth function c i called the order parameter (which is taken to be the volumic fraction of the component in the mixture). The three unknowns c 1 , c 2 and c 3 are linked though the relationship:

c 1 + c 2 + c 3 = 1. (1) 
In other words, the vector c = (c 1 , c 2 , c 3 ) belongs to the hyperplane S = (c 1 , c 2 , c 3 ) ∈ R 3 ;

c 1 + c 2 + c 3 = 1 of R 3 .
The model we propose to study has been introduced in [START_REF] Boyer | Study of a three component Cahn-Hilliard flow model[END_REF] (see also [START_REF] Boyer | Cahn-Hilliard / Navier-Stokes model for the simulation of three-phase flows[END_REF]) as a generalization of the two-phase Cahn-Hilliard model. In the diphasic case, the free energy of the mixture depends on two parameters: the interface width ε and the surface tension σ. It can be written as follows:

F diph σ,ε (c) = Ω 12 σ ε c 2 (1 -c) 2 + 3 4 σε|∇c| 2 dx.
Therefore, in [START_REF] Boyer | Study of a three component Cahn-Hilliard flow model[END_REF], the authors have postulated that the three-phase free energy can be written as follows:

F triph Σ,ε (c 1 , c 2 , c 3 ) = Ω 12 ε F (c 1 , c 2 , c 3 ) + 3 8 εΣ 1 |∇c 1 | 2 + 3 8 εΣ 2 |∇c 2 | 2 + 3 8 εΣ 3 |∇c 3 | 2 dx. (2) 
The triple of constant parameters Σ = (Σ 1 , Σ 2 , Σ 3 ) and the bulk energy F have been determined so that the model fits with the prescribed surface tension σ 12 , σ 13 and σ 23 and is "consistent" with the two-component situation (Subsection 1.2). The evolution of the system is then driven by the gradient of the total free energy F triph Σ,ε and the time evolution of c = (c 1 , c 2 , c 3 ) is governed by the following system of equations:

       ∂c i ∂t = ∇ • M 0 (c) Σ i ∇µ i , for i = 1, 2, 3 
µ i = f F i (c) - 3 4 εΣ i ∆c i , for i = 1, 2, 3 (3) 
where M 0 (c) is a diffusion coefficient called mobility which may depend on c and

f F i (c) = 4Σ T ε j =i 1 Σ j (∂ i F (c) -∂ j F (c)) with Σ T defined by 3 Σ T = 1 Σ 1 + 1 Σ 2 + 1 Σ 3 .
This choice of f F i , obtained by the use of a Lagrange multipliers technique, enforces the condition (1) all along the time. Thus, one of the unknowns can be arbitrarily eliminated from the system [START_REF] Barrett | On fully practical finite element approximations of degenerate Cahn-Hilliard systems[END_REF]. In Section 2.3, we will prove that we can only discretize equations satisfied by (c 1 , c 2 , µ 1 , µ 2 ) and use the relationship [START_REF] Barrett | An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy[END_REF] to deduce c 3 .

Algebraic consistency

At this point, it remains to specify the expression of the triple of constant parameters Σ and of the bulk energy F . These parameters have been determined so that the three phase model (defined by ( 2) and ( 3)) coincide with the diphasic model when one of the order parameters is zero. More precisely, the consistency (or algebraic consistency) of the three-phase model with the diphasic systems corresponding to one of the given surface tensions σ 12 , σ 13 , σ 23 respectively means that the following properties hold:

• When the component i is not present, that is c i ≡ 0, the total free energy F triph Σ,ε (c 1 , c 2 , c 3 ) of the system has to be exactly equal to the total free energy F diph σ jk ,ε (c j ) of the diphasic system corresponding to the two other phases.

• When the component i is not present in the mixture at the initial time, the component i must not appear during the time evolution of the system. It is shown in [START_REF] Boyer | Study of a three component Cahn-Hilliard flow model[END_REF] that the model defined by ( 2) and ( 3) is algebraically consistent with the diphasic systems of surface tensions σ 12 , σ 13 , σ 23 respectively if and only if we have

Σ i = σ ij + σ ik -σ jk , ∀i ∈ {1, 2, 3}, (4) 
and there exists a smooth function Ψ such that

F (c) = σ 12 c 2 1 c 2 2 + σ 13 c 2 1 c 2 3 + σ 23 c 2 2 c 2 3 + c 1 c 2 c 3 (Σ 1 c 1 + Σ 2 c 2 + Σ 3 c 3 ) + c 2 1 c 2 2 c 2 3 Ψ(c), ∀c ∈ S.
In the physical literature, the coefficient S i = -Σ i defined by ( 4) is well known [START_REF] Rowlinson | Molecular theory of capillarity[END_REF] and called the spreading coefficient of the phase i at the interface between phases j and k. If S i is positive (that is Σ i < 0), the spreading is said to be total and if S i is negative, it is said to be partial.

Notice that, in the following study, the coefficients Σ i are not assumed to be positive, so that the model presented above lets us cope with some total spreading situations (see numerical illustrations in section 5.2.1 and 5.2.2). However, as shown in [START_REF] Boyer | Study of a three component Cahn-Hilliard flow model[END_REF], in order for the system to be well-posed, it is needed to assume that the following condition holds:

Σ 1 Σ 2 + Σ 1 Σ 3 + Σ 2 Σ 3 > 0. ( 5 
)
This condition is equivalent to the coercivity of capillary terms and consequently ensures that these terms bring a positive contribution to the total free energy. This is detailed in the following proposition.

Proposition 1.1. Let Σ = (Σ 1 , Σ 2 , Σ 3 ) ∈ R 3 . There exists Σ > 0 such that, for all n ≥ 1, for all (ξ 1 , ξ 2 , ξ 3 ) ∈ (R n )

3 such that ξ 1 + ξ 2 + ξ 3 = 0, Σ 1 |ξ 1 | 2 + Σ 2 |ξ 2 | 2 + Σ 3 |ξ 3 | 2 Σ |ξ 1 | 2 + |ξ 2 | 2 + |ξ 3 | 2 ,
if and only if the two following conditions are satisfied

Σ 1 Σ 2 + Σ 1 Σ 3 + Σ 2 Σ 3 > 0 and Σ i + Σ j > 0, ∀i = j. (6) 
This proposition and the following corollary will be useful in the sequel. In particular, under condition (6), Proposition 1.1 shows that the bilinear form defined by (ξ 1 , ξ 2 , ξ 3 ), (η 1 , η 2 , η 3 ) →

3 i=1 Σ i ξ i • η i is a scalar product on {(ξ 1 , ξ 2 , ξ 3 ) ∈ (R n )
3 such that ξ 1 + ξ 2 + ξ 3 = 0}. The following corollary is then deduced applying the Cauchy-Schwarz inequality for this scalar product and the Young inequality.

Corollary 1.2. Let Σ = (Σ 1 , Σ 2 , Σ 3 ) ∈ R 3 satisfying the condition (6). Then, for all (ξ 1 , ξ 2 , ξ 3 ) ∈ (R n ) 3 , satisfying ξ 1 + ξ 2 + ξ 3 = 0, for all (η 1 , η 2 , η 3 ) ∈ (R n ) 3 , satisfying η 1 + η 2 + η 3 = 0, 3 i=1 Σ i ξ i • η i 1 2 3 i=1 Σ i |ξ i | 2 + 3 i=1 Σ i |η i | 2 .

Existence of weak solutions

We denote by Γ the boundary of the domain Ω and we assume that Γ is divided in two distinct parts Γ = Γ c D ∪ Γ c N . We supplement the previous system with mixed Dirichlet-Neumann boundary conditions for each order parameter c i and with Neumann boundary conditions for each chemical potential µ i . That is, for i = 1, 2 and 3,

c i = c iD and M 0 ∇µ i • n = 0, on Γ c D , (7) 
∇c i • n = 0 and M 0 ∇µ i • n = 0, on Γ c N , (8) 
where

c D = (c 1D , c 2D , c 3D ) ∈ H 1 2 (Γ)
3 is given such that c D (x) ∈ S for almost every x ∈ Γ.

Remark 1.3. The Neumann boundary condition for µ i ensures in particular the conservation of the volume of the phase i. Indeed, we have, d dt

Ω c i dx = Γ 1 Σ i (-M 0 ∇µ i ) • n = 0.
The Neumann boundary conditions for c i impose that interfaces are normal to the boundaries of the domain and the Dirichlet boundary conditions for c i , less classical, are used on inflow boundaries to simulate the injection of the phase i (when the Cahn-Hilliard model is coupled to the Navier-Stokes equations [START_REF] Boyer | Cahn-Hilliard / Navier-Stokes model for the simulation of three-phase flows[END_REF]).

In view of boundary conditions ( 7)-( 8), we introduce the following functional spaces:

V c = V µ = H 1 (Ω), V ci D = {ν ci ∈ H 1 (Ω); ν ci = c iD on Γ c D }, for i = 1, 2 and 3, V c D,0 = {ν c ∈ H 1 (Ω); ν c = 0 on Γ c D }, V c D,S = {c = (c 1 , c 2 , c 3 ) ∈ V c1 D × V c2 D × V c3 D ; c(x) ∈ S for a.e. x ∈ Ω}.
Finally, we assume that at the initial time, we have

c i (t = 0) = c 0 i , (9) 
where

c 0 = (c 0 1 , c 0 2 , c 0 3 ) ∈ V c D,S is
given. The existence of weak solutions of the problem (3) together with the initial condition [START_REF] Deimling | Nonlinear functional analyis[END_REF] and the Neumann boundary conditions ( 8) (Γ = Γ c N ) for each unknowns (c i , µ i ), was proved in [START_REF] Boyer | Study of a three component Cahn-Hilliard flow model[END_REF] under the following general assumptions in 2D and 3D:

• The mobility M 0 is a bounded C 1 (R 3 ) class function and there exists three positive constants M 1 , M 2 and M 3 such that:

∀c ∈ S, 0 < M 1 M 0 (c) M 2 , |DM 0 (c)| M 3 . (10) 
• The bulk energy F is a non negative C 2 (R 3 ) class function which satisfies the following polynomial growth assumptions: there exist B 1 > 0 and a real p such that 2 p < +∞ if d = 2 or 2 p 6 if

d = 3, and ∀c ∈ S, |F (c)| B 1 (1 + |c| p ) , |DF (c)| B 1 1 + |c| p-1 , D 2 F (c) B 1 1 + |c| p-2 . ( 11 
)
Theorem 1.4. Assume that conditions (5), [START_REF] Ern | Theory and Pratice of Finite Elements[END_REF], [START_REF] Feng | Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows[END_REF] hold. Consider the problem (3) together with the initial condition [START_REF] Deimling | Nonlinear functional analyis[END_REF] and the Neumann boundary conditions (8) (Γ = Γ c N ) for each unknowns (c i , µ i ). Then, there exists a weak solution

(c, µ) on [0, +∞[ such that c ∈ L ∞ (0, +∞; (H 1 (Ω)) 3 ) ∩ C 0 ([0, +∞[; (L q (Ω)) 3 ), for all q < 6, µ ∈ L 2 (0, +∞; (H 1 (Ω)) 3 ), c(t, x) ∈ S, for a.e. (t, x) ∈ [0, +∞[×Ω.
Remark 1.5. In [START_REF] Boyer | Study of a three component Cahn-Hilliard flow model[END_REF], a uniqueness theorem is also available under additional assumptions on the Hessian of the potential F . Notice that, in three dimensions, the proof requires a constant mobility coefficient and a slight modification of the potential F that we do not consider here.

In this article we will consider Cahn-Hilliard potentials with the following form

F (c) = σ 12 c 2 1 c 2 2 + σ 13 c 2 1 c 2 3 + σ 23 c 2 2 c 2 3 + c 1 c 2 c 3 (Σ 1 c 1 + Σ 2 c 2 + Σ 3 c 3 ) F0(c) + 3Λc 2 1 c 2 2 c 2 3 P (c) . (12) 
It is important to note that in the case of partial spreading situations, i.e. Σ i > 0, ∀i = 1, 2, 3, that the potential F 0 satisfies assumptions [START_REF] Feng | Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows[END_REF] and, consequently, the simplest choice F = F 0 is always acceptable. However, in the case of total spreading situations, i.e. one of Σ i is negative, the potential F 0 may be unbounded from below. Nevertheless, the following proposition, from [START_REF] Boyer | Study of a three component Cahn-Hilliard flow model[END_REF], ensures that F = F 0 + P satisfies [START_REF] Feng | Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows[END_REF] provided that Λ is large enough. Proposition 1.6. Under condition [START_REF] Boyer | A theoretical and numerical model for the study of incompressible mixture flows[END_REF], there exists Λ 0 > 0 such that for all Λ Λ 0 the potential F defined by [START_REF] Feng | Analysis of finite element approximations of a phase field model for two-phase fluids[END_REF] is non negative and satisfies properties [START_REF] Feng | Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows[END_REF].

The outline of the rest of this article is the following. In section 2, we give the numerical scheme that we use to approximate the solution of system [START_REF] Barrett | On fully practical finite element approximations of degenerate Cahn-Hilliard systems[END_REF]. The discretization of the non linear terms is stated in a general form, and we give sufficient conditions on this discretization to ensure existence of the approximate solution and its convergence towards a solution of (3). In section 3, we provide several possible choices of these discretizations and we describe their main properties. In Section 4, we give the proofs of the existence and convergence theorems stated in Section 2. Note that we do not need to assume the existence of solutions of the continuous problem: we get it as a by-product of the convergence of the scheme. Hence, we provide a new proof of Theorem 1.4 considering more general boundary conditions ( 7)- [START_REF] Boyer | Cahn-Hilliard / Navier-Stokes model for the simulation of three-phase flows[END_REF]. Finally, Section 5 is dedicated to some numerical experiments, in particular for the simulation of a spreading lens between two stratified other phases. The conclusion of these simulations is that the semi-implicit time discretization method we propose is a good compromise between accuracy and robustness.

Discretization, existence and convergence of approximate solutions

In this section, we present the discretization of the Cahn-Hilliard system (3) that we will study. We first describe a semi-discretization in time in Subsection 2.1. Time discretization of nonlinear terms is stated in a general form; several particular possible choices will be given in Section 3. In Subsection 2.2, we give the space discretization which is performed thanks to a Galerkin approximation and the finite element method. The full discrete problem is first formulated using the three couple of unknowns (c n ih , µ n ih ), i = 1, 2, 3, and then we show in Subsection 2.3 that this problem can be formulated using only two chosen couples of unknowns, the third one being a posteriori deduced. Finally, the rest of this Section is devoted to the study of the full discrete problem.

The following approach is used:

• Some a priori estimates follows from the equality of energy given in Subsection 2.4.

• The nonlinear discrete problem is linked by homotopy to a linear problem. The existence of an approximate solution is then deduced from the above mentioned a priori estimates and the existence of a solution of the linear problem (by applying the topological degree theory). • The convergence of the approximate solution is obtained from the above mentioned a priori estimates by using compactness results. Existence and convergence theorems are stated in Section 2.5. Their proofs are postponed to Section 4.

Time discretization

Let N ∈ N * and t f ∈]0, +∞[. The time interval [0, t f ] is uniformly discretized with a fixed time step ∆t = t f N .

For n ∈ 0, N , we define t n = n∆t.

Let n ∈ N. We assume that functions (c n 1 , c n 2 , c n 3 ) ∈ V c D,S are given. We use a semi-implicit time discretization with a special care for nonlinear terms. The scheme is written in a general way as follows, for i = 1, 2, 3,

       c n+1 i -c n i ∆t = ∇ • M n+α 0 Σ i ∇µ n+1 i , µ n+1 i = D F i (c n , c n+1 ) - 3 4 εΣ i ∆c n+β i , (13) 
where

• M n+α 0 = M 0 (1 -α)c n + αc n+1 with α ∈ [0, 1], • c n+β i = (1 -β)c n i + βc n+1 i with β ∈ 1 2 , 1 , • D F i (a n , a n+1 ) = 4Σ T ε j =i 1 Σ j d F i (a n , a n+1 ) -d F j (a n , a n+1 ) , ∀(a n , a n+1 ) ∈ S 2 . ( 14 
)
The functions d F i represent a semi-implicit discretization of ∂ ci F . At this point, in order to ensure consistency, we only assume that

D F i (c, c) = ∂f F i ∂c i (c), ∀c ∈ S. (15) 
Various possible choices for these nonlinear terms will be proposed and studied in section 3. Following ( 7) and ( 8), the discrete boundary conditions are, for i = 1, 2, 3,

c n+1 i = c iD and M 0 ∇µ n+1 i • n = 0, on Γ c D , ∇c n+1 i • n = 0 and M 0 ∇µ n+1 i • n = 0, on Γ c N .

Space discretization

For the space discretization, we use a Galerkin approximation and the finite element method. Let V c h and V µ h be two finite element approximation subspaces of V c and V µ respectively. Since order parameters verify non-homogeneous Dirichlet boundary conditions on Γ c D , we use c 0 i as a lifting of c iD in V c and we assume that functions c 0 ih ∈ V c h are given for all i ∈ {1, 2, 3}, for all h > 0 such that

c 0 h (x) ∈ S, ∀h > 0, a.e. x ∈ Ω and c 0 h -c 0 (H 1 (Ω)) 3 -→ h→0 0.
These functions c 0 ih can be obtained from c 0 i by H 1 (Ω)-projection or, as this is the case in practice, by finite element interpolation provided that c 0 i is smooth enough. We then define the following spaces:

V c Dh,0 = {ν c h ∈ V c h ; ν c h = 0 on Γ c D }, V ci Dh = c 0 ih + V c Dh,0 , V c Dh,S = {c h = (c 1h , c 2h , c 3h ) ∈ V c1 Dh × V c2 Dh × V c3 Dh ; c h (x) ∈ S for a.e. x ∈ Ω}.
The general assumptions concerning the approximation spaces that we need are the following:

• 1 ∈ V c h and 1 ∈ V µ h , (16) 
• ∀ν µ ∈ V µ , inf ν µ h ∈V µ h |ν µ -ν µ h | H 1 (Ω) -→ h→0 0 and ∀ν c ∈ V c D,0 , inf ν c h ∈V c Dh,0 |ν c -ν c h | H 1 (Ω) -→ h→0 0, (17) 
• there exists a positive constant C independent of h such that:

∀ν µ ∈ V µ , Π V µ h 0 (ν µ ) H 1 (Ω) C|ν µ | H 1 (Ω) , (18) 
where Π

V µ h 0 denote the L 2 (Ω)-projection on V µ h , • V c h ⊂ V µ h . ( 19 
)
Remark 2.1. Assumption ( 18) is available, for instance, for a family of quasi-uniform triangulations and the corresponding conforming Lagrange finite element approximation spaces [10, p.72 (1.117)].

We assume that c n h ∈ V c Dh,S is given and the Galerkin approximation of Problem (13) at time t n+1 is written as follows: Problem 2.2 (Formulation with three order parameters). Find (c n+1 h

, µ n+1 h ) ∈ V c1 Dh × V c2 Dh × V c3 Dh × (V µ h ) 3 such that ∀ν c h ∈ V c Dh,0 , ∀ν µ h ∈ V µ h , we have, for i = 1, 2, 3,        Ω c n+1 ih -c n ih ∆t ν µ h dx = - Ω M n+α 0h Σ i ∇µ n+1 ih • ∇ν µ h dx, Ω µ n+1 ih ν c h dx = Ω D F i (c n h , c n+1 h )ν c h dx + Ω 3 4 Σ i ε∇c n+β ih • ∇ν c h dx, (20) 
where

M n+α 0h = M 0 (1 -α)c n h + αc n+1 h and c n+β ih = (1 -β)c n ih + βc n+1 ih .
Note that we do not seek c n+1 h in V c Dh,S . The constraint c n+1 1h + c n+1 2h + c n+1 3h = 1 is imposed thanks to the particular form of D F i in the model (see Theorem 2.6).

Remark 2.3. Assumption (16) allows to take ν µ h ≡ 1 in the first equation of [START_REF] Seiler | Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors[END_REF]. This yields the exact conservation of the volume of the phases at the discrete level:

Ω c n+1 ih dx = Ω c n ih dx, ∀i ∈ {1, 2, 3}, ∀n ∈ 0, N -1 . (21) 

Equivalence with a system of two coupled equations

In practice, only the two coupled Cahn-Hilliard equations satisfied by (c 1 , c 2 , µ 1 , µ 2 ) have to be solved. Indeed, Problem 2.2 is equivalent to the following one: Problem 2.4 (Formulation with two order parameters). Find (

c n+1 1h , c n+1 2h , µ n+1 1h , µ n+1 2h ) ∈ V c1 Dh × V c2 Dh × (V µ h ) 2 such that ∀ν c h ∈ V c Dh,0 , ∀ν µ h ∈ V µ h , we have, for i = 1 and 2,        Ω c n+1 ih -c n ih ∆t ν µ h dx = - Ω M n+α 0h Σ i ∇µ n+1 ih • ∇ν µ h dx, Ω µ n+1 ih ν c h dx = Ω D F i (c n h , c n+1 h )ν c h dx + Ω 3 4 Σ i ε∇c n+β ih • ∇ν c h dx. ( 22 
) with c n+1 h = (c n+1 1h , c n+1 2h , 1 -c n+1 1h -c n+1 2h
). Then, it remains to define 

c n+1 3h = 1 -c n+1 1h -c n+1 2h and µ n+1 3h = - Σ 3 Σ 1 µ n+1 1h + Σ 3 Σ 2 µ n+1 2h . ( 23 
)
3 i=1 µ n+1 ih Σ i = 0. ( 24 
)
Proof. First, by using definition [START_REF] Kim | Conservative multigrid methods for Cahn-Hilliard fluids[END_REF] and after a reordering of terms, we find (j and k are the two indices different from i):

3 i=1 1 Σ i D F i (c n h , c n+1 h ) = 4Σ T ε 3 i=1 1 Σ i 1 Σ j + 1 Σ k - 1 Σ i Σ j - 1 Σ i Σ k d F i (c n h , c n+1 h ) = 0. ( 25 
)
Assume now that Problem (22)-( 23) is satisfied. Then, adding equations of (22) for i = 1, 2 and using (23) and (25) yields to

         Ω 1 -c n+1 3h -(1 -c n 3h ) ∆t ν µ h dx = - Ω M n+α 0h ∇ - µ n+1 3h Σ 3 • ∇ν µ h dx, Ω - µ n+1 3h Σ 3 ν c h dx = Ω - 1 Σ 3 D 3 (c n h , c n+1 h ) ν c h dx + 3 4 ε Ω ∇ 1 -c n+β 3h • ∇ν c h dx.
This proves that c n+1 3h satisfies (20) for i = 3. Conversely, if we assume that (20) is satisfied, then by adding the equations for i = 1, 2, 3, thanks to (25), we get

       Ω S n+1 h -S n h ∆t ν µ h dx = - Ω M n+α 0h ∇Θ n+1 h • ∇ν µ h dx Ω Θ n+1 h ν c h dx = 3 4 ε Ω (1 -β)∇S n h + β∇S n+1 h • ∇ν c h dx, (26) 
where

S ℓ h = 3 i=1 c ℓ ih and Θ ℓ h = 3 i=1 µ ℓ ih Σ i
for ℓ = n and ℓ = n + 1. These equations are satisfied for all ν µ h ∈ V µ h and for all ν c h ∈ V c Dh,0 . In particular, we take

ν µ h = Θ n+1 h and ν c h = S n+1 h -S n h ∆t ∈ V Dh,0
, so that the left-hand sides of the two equations (26) are the same. Noting that

(1 -β)∇S n h + (1 -β)∇S n+1 h • ∇(S n+1 h -S n h ) = 1 2 ∇S n+1 h 2 -|∇S n h | 2 + (2β -1) ∇S n+1 h -∇S n h 2 ,
we finally get the equality 

3 8 ε Ω ∇S n+1 h 2 -|∇S n h | 2 + (2β -1) ∇S n+1 h -∇S n h 2 dx + ∆t Ω M n+α 0h ∇Θ n+1 h 2 dx = 0 (27) Since S n h ≡ 1 (c n h ∈ V Dh,S ), M 0 is positive

Discrete energy estimate

The general energy estimate for our problem is obtained by a calculation similar to the one used to prove the equivalence between Problem 2.2 and 2.4 in the proof of Theorem 2.6 (see [START_REF] Lapuerta | Echanges de masse et de chaleur entre deux phases liquide stratifiées dans un écoulement à bulles[END_REF]). 

F triph Σ,ε (c n+1 h )-F triph Σ,ε (c n h ) + ∆t 3 i=1 Ω M n+α 0h Σ i ∇µ n+1 ih 2 dx + 3 8 (2β -1)ε Ω 3 i=1 Σ i ∇c n+1 ih -∇c n ih 2 dx = 12 ε Ω F (c n+1 h ) -F (c n h ) -d F (c n h , c n+1 h ) • c n+1 h -c n h dx, (28) 
where d F (•, •) is the vector (d F i (•, •)) i=1,2,3 . Proof. On the one hand, using definition (2), we have

F triph Σ,ε (c n+1 h ) -F triph Σ,ε (c n h ) = Ω 12 ε F (c n+1 h ) -F (c n h ) dx + Ω 3 i=1 3 8 Σ i ε ∇c n+1 ih 2 -|∇c n ih | 2 dx. (29) 
On the other hand, taking [START_REF] Seiler | Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors[END_REF], we get for i = 1, 2, 3,

ν µ h = µ n+1 ih and ν c h = c n+1 ih -c n ih ∆t in
                   Ω c n+1 ih -c n ih ∆t µ n+1 ih dx = - Ω M n+α 0h Σ i ∇µ n+1 ih 2 dx, Ω µ n+1 ih c n+1 ih -c n ih ∆t dx = Ω 4Σ T ε j =i 1 Σ j d F i (c n h , c n+1 h ) -d F j (c n h , c n+1 h ) c n+1 ih -c n ih ∆t dx + Ω 3 4 Σ i ε∇c n+β ih • ∇ c n+1 ih -c n ih ∆t dx. (30) 
Recall that c n+β ih = (1 -β)c n ih + βc n+1 ih , so that we have

∇c n+β ih • ∇(c n+1 ih -c n ih ) = 1 2 ∇c n+1 ih 2 -|∇c n ih | 2 + (2β -1) ∇c n+1 ih -∇c n ih 2 .
By reordering the terms and using 3 i=1

(c n+1 ih -c n ih ) = 0 (Theorem 2.6), we also obtain

3 i=1 j =i 1 Σ j d F i (c n h , c n+1 h ) -d F j (c n h , c n+1 h ) c n+1 ih -c n ih = 3 Σ T 3 i=1 c n+1 ih -c n ih d F i (c n h , c n+1 h ).
Hence,we deduce from (30) that ∆t

3 i=1 Ω M n+α 0h Σ i ∇µ n+1 ih 2 dx = - 12 ε Ω 3 i=1 d F i (c n h , c n+1 h ) c n+1 ih -c n ih dx - 3 8 ε Ω 3 i=1 Σ i ∇c n+1 ih 2 -|∇c n ih | 2 dx - 3 8 (2β -1)ε Ω 3 i=1 Σ i ∇c n+1 ih -∇c n ih 2 dx. (31) 
The claim follows by adding ( 29) and (31).

Remark 2.8. Even though the Σ i are not necessarily positive, the two terms

3 i=1 Σ i ∇c n+1 ih -∇c n ih 2 and 3 i=1 ∇µ n+1 ih 2 Σ i
, involved in the left-hand side of equation ( 28), are non negative when condition (5) holds.

Indeed, in this case, Proposition 1.1 shows that

3 i=1 ∇µ n+1 ih 2 Σ i = 3 i=1 Σ i ∇µ n+1 ih 2 Σ 2 i Σ 3 i=1 ∇µ n+1 ih 2 Σ 2 i 0, since 3 i=1 ∇µ n+1 ih Σ i = 0 (Theorem 2.6), and 
3 i=1 Σ i ∇c n+1 ih -∇c n ih 2 Σ 3 i=1 ∇c n+1 ih -∇c n ih 2 0, since 3 i=1 ∇(c n+1 ih -c n ih ) = 0 (Theorem 2.6).
Equality ( 28) is a discrete version of the energy equality satisfied by solutions (c, µ) of the continuous Cahn-Hilliard system (3):

d dt F triph Σ,ε (c) = - Ω 3 i=1 M 0 (c) Σ i |∇µ i | 2 dx.
This equality shows in particular that the energy of solutions of system (3) decreases in time. At the discrete level, the energy equality (28) may provide not only the decrease of the discrete energy but also the a priori estimates required to prove existence of approximate solutions and their convergence towards a weak solution of (3). However, two additional terms appear in the discrete counterpart (28) and, consequently, the validity of the discrete free energy decrease and a priori estimates depend on the sign of these terms:

• The last term in the left-hand side of (28) is a standard numerical diffusion term due to the time discretization of "∆c i " in the second equation of (3). This term has a "good sign" when β ≥ 0.5 (Remark 2.8) and can be removed by setting β = 0.5. • The right-hand side of (28) involves the time discretization d F of non linear terms and, consequently its sign depends on particular choices of d F .

Thus, the discretization of nonlinear terms d F may be chosen thanks to a study of the right-hand side of (28). The simplest situation is when d F is such that this term is zero. In this case, the discrete energy equality exactly mimics the continuous one. When the right-hand side of (28) has a "good sign", i.e. is negative, it is still possible to eliminate it in order to obtain an energy inequality. More generally, it is sufficient to be able to control the right-hand side of (28) in order to obtain convenient a priori estimates (see Subsection 3.2). This is the reason why, in the following section, assumptions on the discretization of nonlinear terms are given under the form of estimates involving the terms of the energy equality (28). In both Theorems 2.9 and 2.10, these assumptions are used to bound the approximate solution (c n+1 h , µ n+1 h ) (in convenient norms). A key point is that, in existence theorem, bounds may depend on the solution at previous time c n h , on the time step ∆t or on the mesh size h (all these quantities are fixed here) whereas, in convergence theorem, this is crucial that these a priori estimates lead to bounds which are independent on the time step ∆t and the mesh size h. The different assumptions will be validated for all the schemes presented in Section 3.

Existence and convergence theorems

This subsection is devoted to state general existence and convergence theorems whose proofs are given in Section 4. First of all, we give general assumptions on the discretization of non linear terms d

F : R 3 × R 3 → R 3 .
The function d F belongs to the C 1 (R 3 × R 3 ) class and satisfies the following assumption of polynomial growth: there exist a constant B 1 0 and a real p such that 2

≤ p < +∞ if d = 2 or p = 6 if d = 3 and ∀i ∈ {1, 2, 3}, ∀(a n , a n+1 ) ∈ S 2 , d F i (a n , a n+1 ) B 1 1 + |a n | p-1 + a n+1 p-1 , D d F i (a n , •) (a n+1 ) B 1 1 + |a n | p-2 + a n+1 p-2 , (32) 
Theorem 2.9 (Existence of a discrete solution). Let c n h ∈ V c Dh,S given. Assume that: • the coefficients (Σ 1 , Σ 2 , Σ 3 ) satisfy (5), the mobility satisfies [START_REF] Ern | Theory and Pratice of Finite Elements[END_REF], and the bulk energy F satisfies [START_REF] Feng | Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows[END_REF],

• the discretization of the non linear terms d F satisfies (32) and the following property: there exists

K c n h 1 > 0 (possibly depending on c n h ) such that Ω F (a n+1 h ) -F (c n h ) -d F (c n h , a n+1 h ) • a n+1 h -c n h dx K c n h 1 , ∀a n+1 h ∈ V c Dh,S . (33) 
Then, there exists at least one solution

(c n+1 h , µ n+1 h ) of Problem 2.2.
For each N ∈ N, we can now introduce piecewise defined functions of time, on [0, t f ], defined as follows:

c N ih (t, •) = c n ih (•), if t ∈]t n , t n+1 [, (34) 
c N ih (t, •) = c n+1 ih (•), if t ∈]t n , t n+1 [, (35) 
c N ih (t, •) = t n+1 -t ∆t c n ih (•) + t -t n ∆t c n+1 ih (•), if t ∈]t n , t n+1 [. ( 36 
)
For the chemical potential, we introduce piecewise-constant functions in time: for each N ∈ N, let

µ N ih (t, •) = µ n+1 ih (•), si t ∈]t n , t n+1 [. ( 37 
)
Theorem 2.10 (Convergence theorem). Assume that assumptions of Theorem 2.9 are satisfied so that the approximate solutions

(c N h , µ N h ) of Problem 2.
2 exists for all N ∈ N * and for all h > 0. Assume that β ∈ 1 2 , 1 , that the consistency property [START_REF] Kim | Conservative multigrid methods for ternary Cahn-Hilliard systems[END_REF] holds and that there exists constants C > 0 and ∆t 0 > 0 such that for all ∆t ∆t 0 and for all n ∈ 0, N -1 ,

F triph Σ,ε (c n+1 h ) -F triph Σ,ε (c n h ) + C ∆t 3 i=1 Ω M n+α 0h Σ i ∇µ n+1 ih 2 dx + 3 8 (2β -1)ε Ω 3 i=1 Σ i ∇c n+1 ih -∇c n ih 2 dx 0. ( 38 
)
Consider the problem (3) together with the initial condition (9) and boundary conditions [START_REF] Boyer | Cahn-Hilliard / Navier-Stokes model for the simulation of three-phase flows[END_REF]. Then, there exists a weak solution

(c, µ) on [0, t f [ such that c ∈ L ∞ (0, t f ; (H 1 (Ω)) 3 ) ∩ C 0 ([0, t f [; (L q (Ω)) 3 ), for all q < 6 µ ∈ L 2 (0, t f ; (H 1 (Ω)) 3 ), c(t, x) ∈ S, for a.e. (t, x) ∈ [0, t f [×Ω.
and for all sequences

(h K ) K∈N * such that h K -----→ K→+∞ 0, the sequences (c N hK ) (N,K)∈(N * ) 2 and (µ N hK ) (N,K)∈(N * ) 2
, defined by [START_REF] Seiler | Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors[END_REF], satisfy, up to a subsequence, the following convergences, when min(N, K) -→ +∞ :

c N hK → c in C 0 (0, t f , (L q ) 3 ) strong , for all q < 6 (39) µ N hK ⇀ µ in L 2 (0, t f , (H 1 ) 3 ) weak . (40) 
Remark 2.11. In Theorem 2.10, we assume that 1 2 < β 1. Indeed, the last term in the left hand side of inequality (38) (which vanish in the case where β is equal 1 2 ) is crucial in the estimates of remainders (see Section 4.2.2) and in the proof of the energy estimate for the implicit scheme (see Section 3.2.2).

Remark 2.12. Under an additional assumption on the Hessian of the Cahn-Hilliard potential F , it is shown in [START_REF] Boyer | Study of a three component Cahn-Hilliard flow model[END_REF] that the model (3) has a unique weak solution. In this case, we can conclude that the convergence in Theorem 2.10 holds for the entire sequences (c N hK , µ N hK ).

Different discretizations for non linear terms

In this section, we present different possible choices of the discretization of nonlinear terms d F . Since Definition [START_REF] Feng | Analysis of finite element approximations of a phase field model for two-phase fluids[END_REF] provides a natural splitting of F : F = F 0 + P , we will choose a discretization of the form

d F i = d F0 i + d P i where d F0 i
and d P i represent a discretization of ∂ ci F 0 and ∂ ci P respectively. We give three possible choices of the discretization of the contribution of F 0 in Subsection 3.2, 3.3 and 3.4, and a semiimplicit discretization of the contribution of P in Subsection 3.5. In each of these subsection, estimates on the corresponding contribution in the right-hand side of (28) are proven. The results are then gathered in Subsection 3.6 in order to get the existence of approximate solutions and their convergence towards a weak solution of (3). Finally in Subsection 3.7, we show that the algebraic consistency property (see Section 1.2) has its discrete counterpart by identifying schemes that we obtained when only two phases are present.

Preliminary remark

The relationship c 1 + c 2 + c 3 = 1 allows to find a useful equivalent expression of F 0 on the hyperplane S. This expression involves the diphasic Cahn-Hilliard potential f defined by:

f (x) = x 2 (1 -x) 2 , ∀x ∈ R. (41) 
Indeed, the function defined by:

F0 (c) = 3 i=1 Σ i 2 f (c i ), ∀c ∈ R 3 , (42) 
is equal to F 0 on the hyperplane S:

F0 (c) = F 0 (c), ∀c ∈ S.
These two different expressions can be equivalently used since we can readily prove that

∇F 0 (c) • ξ = ∇ F0 (c) • ξ, ∀(c, ξ) ∈ S 2 . ( 43 
)
and consequently,

f F0 i (c) = f F0 i (c), ∀c ∈ S.

Implicit discretization for the contribution of F 0

The implicit discretization corresponds to the following definition:

d F0 (a n , a n+1 ) = ∇F 0 (a n+1 ), ∀(a n , a n+1 ) ∈ S 2 . ( 44 
)
In Subsection 3.2.1 and 3.2.2, we respectively prove that the contribution of F 0 satisfies estimates (33) of Theorem 2.9 and (38) of Theorem 2.10 when using the implicit discretization (44). Note that we need to assume here that: Σ i > 0, ∀i ∈ {1, 2, 3}, that is the case of partial spreading situations. In total spreading situations (i.e. when one of the Σ i is negative), the proof of existence and convergence theorems when using the implicit discretization (44) is still an open problem. In numerical experiments, we observe that, in this case, the Newton linearization method may fail to converge in the resolution of Problem 2.4 (see Table 4 in Section 5).

Existence of discrete solution

We prove here, in the case where all Σ i are positive, that assumption (33) of Theorem 2.9 holds for the contribution of F 0 when using the implicit discretization (44). The proof makes use of the expression (42) of F 0 (valid on the hyperplane S) and of the preliminary remark given in Subsection 3.1.

Proposition 3.1. Let c n h ∈ V c
Dh,S . Assume that: ∀i ∈ {1, 2, 3}, Σ i > 0. Then, there exists K c n h 1 > 0 possibly depending on c n h such that:

Ω F 0 (a n+1 h ) -F 0 (c n h ) -∇F 0 (a n+1 h ) • a n+1 h -c n h dx K c n h 1 , ∀a n+1 h ∈ V c Dh,S . (45) 
Proof. Let us begin with an elementary inequality on an auxiliary function. Recall that the function f is defined by (41), and let y ∈ R fixed. The function g defined by

g(x) = f (x) -f (y) -f ′ (x)(x -y)
is a fourth order polynomial function of x with negative leading coefficient. Hence, this function has a maximum, say x 0 which a priori depends on y but satisfies g ′ (x 0 ) = 0 i.e. -f ′′ (x 0 )(x 0 -y) = 0. Consequently, we have only two possible cases, either x 0 = y or x 0 is a solution of the second order polynomial equation: f ′′ (x) = 0. In the case where x 0 = y, we have, for all x ∈ R, g(x) g(y) = 0. In the second case, x 0 is independent of y and we get g(x) f (x 0 ) -f (y) -f ′ (x 0 )(x 0 -y). Thus, in every case, by setting

C 1 = |f (x 0 ) -f ′ (x 0 )x 0 | and C 2 = |f ′ (x 0 )|, we get f (x) -f (y) -f ′ (x)(x -y) C 1 + C 2 |y| + |f (y)|, ∀x ∈ R. ( 46 
)
where C 1 and C 2 are two constants independent of x and y.

Then, by combining (42) and (46), since all Σ i are positive, we have, for all

a n+1 h ∈ V c Dh,S , Ω F0 (a n+1 h ) -F0 (c n h )-∇ F0 (a n+1 h ) • a n+1 h -c n h dx C|Ω| 3 i=1 Σ i 2 + C 3 i=1 Σ i 2 Ω |c n ih | dx + C 3 i=1 Σ i 2 Ω |f (c n ih )| dx := K c n h 1 .
The conclusion is obtained thanks to equality (43).

Convergence of approximate solution

The estimate of Proposition 3.1 holds for all time steps but is not sufficient to prove the convergence theorem. In this section we give here another estimate (which corresponds to assumption (38) of Theorem 2.10) only available for small enough time steps. Proposition 3.2. Assume that: ∀i ∈ {1, 2, 3}, Σ i > 0 and that assumption [START_REF] Ern | Theory and Pratice of Finite Elements[END_REF] hold. Then, we get

F triph Σ,ε (c n+1 h ) -F triph Σ,ε (c n h ) + ∆t 2 3 i=1 Ω M n+α 0h Σ i ∇µ n+1 ih 2 dx + 3 16 ε(2β -1) Ω 3 i=1 Σ i ∇c n+1 ih -∇c n ih 2 dx 0, ( 47 
)
as soon as ∆t ∆t 0 = (2β -1)ε 3 24M 2 .
Proof. Considering the function f defined by (41) and since inf R f ′′ = -1, we readily obtain

f (x) -f (y) -f ′ (x)(x -y) (x -y) 2 2 , ∀x ∈ R, ∀y ∈ R.
Since all Σ i are positive, we get

F0 (c n+1 h ) -F0 (c n h ) -∇ F0 (c n+1 h ) • c n+1 h -c n h = 3 i=1 Σ i 2 f (c n+1 ih ) -f (c n ih ) -f ′ (c n+1 ih )(c n+1 ih -c n ih ) 3 i=1 Σ i 4 c n+1 ih -c n ih 2 .
Owing to equalities (28) and (43), we find the estimate

F triph Σ,ε (c n+1 h ) -F triph Σ,ε (c n h )+∆t 3 i=1 Ω M n+α 0h Σ i ∇µ n+1 ih 2 dx 3 ε Ω 3 i=1 Σ i c n+1 ih -c n ih 2 dx - 3 8 ε(2β -1) Ω 3 i=1 Σ i ∇c n+1 ih -∇c n ih 2 dx. (48) 
In order to bound the term

3 i=1 Σ i c n+1 ih -c n ih 2 , we take ν µ h = Σ i c n+1 ih -c n ih as a test function in the first equation of (20) (remark that ν µ h ∈ V µ h since V c Dh,0 ⊂ V µ h (assumption (19)))
. Hence, we obtain

Ω Σ i c n+1 ih -c n ih ∆t c n+1 ih -c n ih dx = - Ω Σ i M n+α 0h Σ i ∇µ n+1 ih • ∇ c n+1 ih -c n ih dx.
Adding these equations for i = 1, 2, 3, and applying Corollary 1.2, yield

Ω 3 i=1 Σ i c n+1 ih -c n ih 2 dx ∆t 2 Ω M n+α 0h ε 3 3 i=1 ∇µ n+1 ih 2 Σ i + 3 ε 3 i=1 Σ i ∇c n+1 ih -∇c n ih 2 dx.
Using [START_REF] Ern | Theory and Pratice of Finite Elements[END_REF], we get

3 ε Ω 3 i=1 Σ i c n+1 ih -c n ih 2 dx ∆t 2 3 i=1 Ω M n+α 0h Σ i ∇µ n+1 ih 2 dx + 9M 2 ∆t 2ε 2 3 i=1 Ω Σ i ∇c n+1 ih -∇c n ih 2 dx. (49) 
Thus, by combining the inequality (48) and (49), we finally have

F triph Σ,ε (c n+1 h ) -F triph Σ,ε (c n h ) + ∆t 3 i=1 Ω M n+α 0h Σ i ∇µ n+1 ih 2 dx ∆t 2 3 i=1 Ω M n+α 0h Σ i ∇µ n+1 ih 2 dx + 9M 2 ∆t 2ε 2 3 i=1 Ω Σ i ∇c n+1 ih -∇c n ih 2 dx - 3 8 ε(2β -1) Ω 3 i=1 Σ i ∇c n+1 ih -∇c n ih 2 dx.
The conclusion is readily obtained by using that ∆t (2β -1)ε 3 24M 2 .

Convex-concave discretization for the contribution of F 0

In Subsection 3.2, we saw that the implicit scheme (44) ensures the decrease of the discrete energy only for small enough time steps. Moreover, the results hold only in the case of partial spreading situations. To overcome these difficulties, in this subsection, we look for a discretization d F0 such that:

F 0 (a n+1 ) -F 0 (a n ) -d F0 (a n , a n+1 ) • a n+1 -a n 0, ∀(a n , a n+1 ) ∈ S 2 . ( 50 
)
Assume for a moment that d F0 is the implicit discretization (44); the inequality (50) would hold if the function F 0 was convex on the hyperplane S. In the same manner, when using the explicit discretization, the inequality (50) would hold if the function F 0 was concave on the hyperplane S. The potential F 0 is neither convex nor concave, nevertheless these remarks provides a natural way (see [START_REF] Lapuerta | Echanges de masse et de chaleur entre deux phases liquide stratifiées dans un écoulement à bulles[END_REF]) to obtain a discretization d F0 which satisfies (50) assuming that the function F 0 is decomposed as the sum of a convex function and a concave one. Indeed, if

F 0 = F + 0 + F - 0 with F + 0 convex and F - 0 concave then we can define d F0 (a n , a n+1 ) = ∇F + 0 (a n+1 ) + ∇F - 0 (a n ) (51)
In our case, the diphasic Cahn-Hilliard potential is naturally written with a convex-concave decomposition:

f (x) = x - 1 2 4 f + (x) + 1 16 1 -2(2x -1) 2 f -(x) . ( 52 
)
This decomposition readily leads to a convex-concave decomposition of F0 and to the following definitions:

F + 0 (c) = 3 i=1 Σ + i 2 f + (c i ) - 3 i=1 Σ - i 2 f -(c i ) F - 0 (c) = 3 i=1 Σ + i 2 f -(c i ) - 3 i=1 Σ - i 2 f + (c i ),
where Σ + i = max(Σ i , 0) and Σ - i =min(Σ i , 0). Since F 0 and F0 coincide on the hyperplane S (see ( 43)), the inequality (50) holds and thus assumptions (33) of Theorem 2.9 and (38) of Theorem 2.10 hold for the contribution of F 0 when using the convex-concave discretization (51) (See Subsection 3.6 for more details). These assumptions are satisfied for all time steps ∆t and even in the case of total spreading situations.

Semi-implicit discretization for the contribution of F 0

The convex-concave scheme presented in Subsection 3.3 ensures the decrease of the energy for all time step and even in total spreading situations. However, it suffers from an important lack of accuracy (See Figure 3 and 14 in Section 5). This is certainly due to the fact that the convex-concave discretization unequally splits the two parts of the Cahn-Hilliard potential which would act together or rather enter in competition. We propose here a more specific semi-implicit discretization built in order to obtain,

F 0 (a n+1 ) -F 0 (a n ) -d F0 (a n , a n+1 ) • (a n+1 -a n ) = 0, ∀(a n , a n+1 ) ∈ S 2 . (53) 
In [START_REF] Kim | Conservative multigrid methods for ternary Cahn-Hilliard systems[END_REF] and [START_REF] Kim | Conservative multigrid methods for Cahn-Hilliard fluids[END_REF], the authors give other semi-implicit discretizations obtained thanks to Taylor expansion of the Cahn-Hilliard potential.

In order to simplify notation, we denote a := a n and b := a n+1 in the following calculation. We write F 0 (b) -F 0 (a) as a sum of terms containing δ 1 , δ 2 or δ 3 in factor where

δ i = b i -a i for i = 1, 2, 3. Since F 0 (c 1 , c 2 , c 3 ) = σ 12 c 2 1 c 2 2 + σ 13 c 2 1 c 2 3 + σ 23 c 2 2 c 2 3 + c 1 c 2 c 3 (Σ 1 c 1 + Σ 2 c 2 + Σ 3 c 3 )
, it is sufficient to separately consider terms of the form b 2 i b j b k -a 2 i a j a k with (i, j, k) ∈ {1, 2, 3} 3 . We use the identities a 2 i = b 2 i -(a i + b i )δ i and a j = b j -δ j in order to introduce δ i , δ j and δ k in the formula:

b 2 i b j b k -a 2 i a j a k = b 2 i (b j b k -a j a k ) + (a i + b i )a j a k δ i = b 2 i (b j δ k + a k δ j ) + (a i + b i )a j a k δ i = (a i + b i )a j a k δ i + b 2 i a k δ j + b 2 i b j δ k .
We now use this expression to build a symmetric formula in order to obtain, at least formally, a second order convergent discretization. By inverting the roles of j and k, we can readily find

b 2 i b j b k -a 2 i a j a k = (a i + b i )a j a k δ i + 1 2 b 2 i (a k + b k )δ j + 1 2 b 2 i (a j + b j )δ k ,
and finally, by inverting the roles of a and b, we get

b 2 i b j b k -a 2 i a j a k = 1 2 (a i + b i )(a j a k + b j b k )δ i + 1 4 (a 2 i + b 2 i )(a k + b k )δ j + 1 4 (a 2 i + b 2 i )(a j + b j )δ k . ( 54 
)
We obtain a formula for terms of the form b 2 i b 2 j -a 2 i a 2 j by taking k = j in (54):

b 2 i b 2 j -a 2 i a 2 j = 1 2 (a i + b i )(a 2 j + b 2 j )δ i + 1 2 (a 2 i + b 2 i )(a j + b j )δ j . (55) 
Hence, we propose to define, for any i ∈ {1, 2, 3}, the following consistent approximation of the non linear terms:

d F0 i (a n , a n+1 ) = Σ i 4 a n+1 i + a n i (a n+1 j + a n+1 k ) 2 + (a n j + a n k ) 2 + Σ j 4 (a n+1 j ) 2 + (a n j ) 2 a n+1 i + a n+1 k + a n i + a n k + Σ k 4 (a n+1 k ) 2 + (a n k ) 2 a n+1 i + a n+1 j + a n i + a n j , (56) 
we can readily deduce from the definition of F 0 and the formula (54) and (55) that, for any

F 0 (a n+1 ) -F 0 (a n ) = 3 i=1 d F0 i (a n , a n+1 )(a n+1 i -a n i ), ∀(a n , a n+1 ) ∈ S 2 ,
and for any c ∈ S,

d F0 i (c, c) = ∂F 0 ∂c i (c).
Thus, from equality (53), we can deduce that assumptions (33) of Theorem 2.9 and (38) of Theorem 2.10 hold for the contribution of F 0 when using the semi-implicit discretization (56) (See Subsection 3.6 for more details). These assumptions are satisfied for all time steps ∆t and even in the case of total spreading situations.

Semi-implicit discretization for the contribution of P

Recall the definition of P :

P (c) = 3Λc 2 1 c 2 2 c 2 3 .
We only consider a semi-implicit discretization of the contribution of P since numerical experiments from [START_REF] Lapuerta | Echanges de masse et de chaleur entre deux phases liquide stratifiées dans un écoulement à bulles[END_REF] shows the difficulties to use an implicit discretization for this term (non convergence of the Newton linearization method in the resolution of Problem 2.4). Moreover, we do not have a natural convex-concave decomposition of P . Hence, in order to obtain an energy estimate, we look for functions d P 1 , d P 2 and d P 3 such that d P i (c, c) = ∂P ∂c i (c), ∀c ∈ S and

P (a n+1 ) -P (a n ) -d P (a n , a n+1 ) • (a n+1 -a n ) = 0, ∀(a n , a n+1 ) ∈ S 2 . ( 57 
)
As in the previous subsection, we define, for i ∈ {1, 2, 3}, δ i = b i -a i and we use the identity a 2 i = b 2 i -(a i +b i )δ i and then the equality (55) in order to introduce δ i , δ j and δ k in the term b

2 i b 2 j b 2 k , (i, j, k) ∈ {1, 2, 3} 3 : b 2 i b 2 j b 2 k -a 2 i a 2 j a 2 k = b 2 i (b 2 j b 2 k -a 2 j a 2 k ) + (a i + b i )a 2 j a 2 k δ i = (a i + b i )a 2 j a 2 k δ i + 1 2 b 2 i (a j + b j )(a 2 k + b 2 k )δ j + 1 2 b 2 i (a 2 j + b 2 j )(a k + b k )δ k . ( 58 
)
Adding the three formulas given by ( 58) with (i, j, k) = (1, 2, 3), (2, 1, 3) and (3, 1, 2) yields to

b 2 1 b 2 2 b 2 3 -a 2 1 a 2 2 a 2 3 = 1 3 a 2 2 a 2 3 + 1 2 b 2 2 a 2 3 + 1 2 a 2 2 b 2 3 + b 2 2 b 2 3 (a 1 + b 1 )δ 1 + 1 3 a 2 1 a 2 3 + 1 2 b 2 1 a 2 3 + 1 2 a 2 1 b 2 3 + b 2 1 b 2 3 (a 2 + b 2 )δ 2 + 1 3 a 2 1 a 2 2 + 1 2 b 2 1 a 2 2 + 1 2 a 2 1 b 2 2 + b 2 1 b 2 2 (a 3 + b 3 )δ 3 .
Thus, by defining

d P i (a n , a n+1 ) = Λ(a n i + a n+1 i ) (a n j ) 2 (a n k ) 2 + 1 2 (a n+1 j ) 2 (a n k ) 2 + 1 2 (a n j ) 2 (a n+1 k ) 2 + (a n+1 j ) 2 (a n+1 k ) 2 (59) 
we get Property (57) and for any c ∈ S,

d P i (c, c) = ∂P ∂c i (c).
Thus, as in previous subsection, from inequality (57), we can deduced that assumptions (33) of Theorem 2.9 and (38) of Theorem 2.10 hold for the contribution of P when using the semi-implicit discretization (59) (See Subsection 3.6 for more details).

Summary

In previous subsections 3.2, 3.3, 3.4 and 3.5, we separately presented several discretizations d F0 for the contribution of F 0 and a discretization d P for the contribution of P (recall that the Cahn-Hilliard potential F is defined by F = F 0 + P ). For the contribution of P , we only consider the semi-implicit discretization (59) which is then combined with three possible discretizations for the contribution of F 0 : when we use the discretization (44), resp. (51), resp. (56), we refer to the scheme we obtained as the implicit, resp. convex-concave, resp. semi-implicit one.

We can now state existence and convergence theorems thanks to general Theorems 2.9 and 2.10 and to estimates (45), (47), ( 50) and (53) valid for particular discretizations. First of all, recall that the Cahn-Hilliard potential F = F 0 + P satisfies assumption [START_REF] Feng | Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows[END_REF] (in fact only non negativity is not trivial, see Proposition 1.6) provided that:

• Λ 0 when Σ i > 0 for all i ∈ {1, 2, 3},
• Λ Λ 0 when assumption ( 5) is satisfied (it allows the existence of at most one negative Σ i ).

In the first case, existence and convergence theorems are proven for the three schemes (implicit, convex-concave and semi-implicit one) whereas when one of the Σ i is negative, existence and convergence theorems are proven only for convex-concave and semi-implicit schemes, the existence of a solution for the implicit scheme being still an open problem. Note that in this last case, we observe, in some numerical experiments (see Section 5), a non convergence of the Newton linearization method in the resolution of Problem 2.4. In the case where all Σ i are positive, we can also remark that the implicit scheme ensures the decrease of the energy only for small enough time step (see Proposition 3.2) whereas convex-concave or semi-implicit scheme guarantees the decrease of energy for all time step. All these results are stated in Proposition 3.3 and 3.4 and summarized in Table 1.

Proposition 3.3 (Partial spreading). Assume that: ∀i ∈ {1, 2, 3}, Σ i > 0, that F = F 0 + P with Λ 0 and that the mobility satisfies [START_REF] Ern | Theory and Pratice of Finite Elements[END_REF] Then, there exists solutions of Problem 2.2 where d F corresponds to the implicit, convex-concave or semi-implicit scheme. Moreover, these solutions satisfies the conclusions of Theorem 2.10 provided that 1 2 < β 1. Proposition 3.4 (Total spreading). Assume that the triple of coefficients Σ satisfy [START_REF] Boyer | A theoretical and numerical model for the study of incompressible mixture flows[END_REF], that F = F 0 + P with Λ Λ 0 (see Proposition 1.6) and that the mobility satisfies [START_REF] Ern | Theory and Pratice of Finite Elements[END_REF]. Then, there exists solutions of Problem 2.2 where d F corresponds to the convex-concave or semi-implicit scheme. Moreover, these solutions satisfies the conclusions of Theorem 2.10 provided that 1 2 < β 1.

Corresponding schemes in the diphasic case

Consider a system with two components (denoted below with underscripts 1 and 2 respectively) and assume that the evolution of the associated order parameters c i , (i = 1, 2) and the associated chemical potentials μi , 

d F = d F0 + d P Λ Λ 0

Decrease of energy ∀∆t

Open problems Existence ∀∆t

Convergence (β > 1/2)
Table 1. Summary of theoretical results (i = 1, 2) of these two phases is governed by the diphasic Cahn-Hilliard model:

     ∂c i ∂t = ∇ • (M (c 1 , c 2 )∇μ i ) , for i = 1, 2, μi = 12 ε σ 12 f ′ (c i ) - 3 2 εσ 12 ∆c i for i = 1, 2. (60) 
where ε stands for the interface thickness, M (c 1 , c 2 ) is a diffusion coefficient called mobility and σ 12 is the surface tension between the two components. The unknowns are linked by the following relationship c 1 + c 2 = 1 and μ1 + μ2 = 0. The algebraic consistency (see Section 1.2) ensures that the triple c 1 , c 2 = 1 -c 1 , c 3 = 0 is a particular solution of the triphasic Cahn-Hilliard model (3) (with M 0 (c) = 2σ 12 M (c 1 , c 2 )) for any choice of the surface tensions σ 13 and σ 23 involving the third component. In this case, the ternary chemical potentials are given by

µ i = Σ i 2σ 12 
μi for i = 1, 2 and µ 3 = 0.

The same kind of results can be obtained for the full discrete system and we can identify the following corresponding schemes for the diphasic model (60

): Given (c n ih , µ n ih ) ∈ V ci Dh × V µ h , • Implicit scheme in the diphasic case: for i = 1, 2, find (c n+1 ih , µ n+1 ih ) ∈ V ci Dh × V µ h s.t.        Ω c n+1 ih -c n ih ∆t ν µ h dx = - Ω M (c n+α 1h , c n+α 2h )∇μ n+1 ih ∇ν µ h dx, ∀ν µ h ∈ V µ h , Ω μn+1 ih ν c h dx = 12 ε σ 12 Ω f ′ (c n+1 ih )ν c h dx + 3 2 εσ 12 Ω ∇c n+β ih ∇ν c h dx, ∀ν c h ∈ V c Dh,0 . (61) 
• Convex-concave scheme in the diphasic case:

for i = 1, 2, find (c n+1 ih , µ n+1 ih ) ∈ V ci Dh × V µ h s.t.                  Ω c n+1 ih -c n ih ∆t ν µ h dx = - Ω M (c n+α 1h , c n+α 2h )∇μ n+1 ih ∇ν µ h dx, ∀ν µ h ∈ V µ h , Ω μn+1 ih ν c h dx = 12 ε σ 12 Ω (f + ) ′ (c n+1 ih ) + (f -) ′ (c n ih ) ν c h dx + 3 2 εσ 12 Ω ∇c n+β ih ∇ν c h dx, ∀ν c h ∈ V c Dh,0 , (62) 
where f = f + + f -is the convex-concave decomposition of f given in (52).

• Semi-implicit scheme in the diphasic case:

for i = 1, 2, find (c n+1 ih , µ n+1 ih ) ∈ V ci Dh × V µ h s.t.                  Ω c n+1 ih -c n ih ∆t ν µ h dx = - Ω M (c n+α 1h , c n+α 2h )∇μ n+1 ih ∇ν µ h dx, ∀ν µ h ∈ V µ h , Ω μn+1 ih ν c h dx = 12 ε σ 12 Ω f ′ c n ih + c n+1 ih 2 - 1 2 (1 -c n ih -c n+1 ih )(c n+1 ih -c n ih ) 2 ν c h dx + 3 2 εσ 12 Ω ∇c n+β i ∇ν c h dx, ∀ν c h ∈ V c Dh,0 . (63) 
Proposition 3.5. The above diphasic schemes (61), ( 62) and (63) have at least one solution. Moreover, defining

M 0 = 2σ 12 M , µ n+1 ih = Σ i 2σ 12 μn+1 ih for i = 1, 2 and µ n+1 3h = 0, we have that if (c n+1 1h , μn+1 1h ), (c n+1 2h , μn+1 2h )
is a solution of (61), ( 62) or (63) respectively then (c n+1 1h , µ n+1 1h ), (c n+1 2h , µ n+1 2h ), (0, 0) is a solution of the corresponding three phase discrete problem (2.2) where d F is given by (44), ( 51) or (56) respectively. Remark 3.6. The expression of the ternary chemical potential µ i differs from the two phase chemical potential μi but the quantities of interest in our application are the order parameters which give the position of phases and the capillary forces f ca which are typically used for the coupling with Navier-Stokes equation in a complete diffuse-interface ternary flows modelling (see [START_REF] Boyer | Cahn-Hilliard / Navier-Stokes model for the simulation of three-phase flows[END_REF]). In the triphasic model, we use the expression

f ca = 3 i=1 µ i ∇c i .
The key point is that in the case where c 3 = 0, we have

f ca = µ 1 ∇c 1 + µ 2 ∇c 2 = Σ 1 2σ 12 μ1 ∇c 1 + Σ 2 2σ 12 (-μ1 )∇(1 -c 1 ) = μ1 ∇c 1 ,
which is the classical expression of capillary forces in the diphasic case.

Proofs of existence and convergence of approximate solutions

Let us recall the following Poincaré like result which will be very useful in the sequel: Lemma 4.1 (Poincaré inequality). Let θ be a given function in H 1 (Ω) such that m(θ) = 0. There exists a constant C p,θ > 0 such that

∀ν ∈ H 1 (Ω), |ν| H 1 (Ω) C p,θ |∇ν| L 2 (Ω) + |m(νθ)| . (64) 
4.1. Proof of Theorem 2.9

We are going to prove the existence of the solution of problem [START_REF] Seiler | Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors[END_REF]. The key points are the a priori estimates given by the discrete energy estimate and the following lemma from the topological degree theory [START_REF] Deimling | Nonlinear functional analyis[END_REF]. Lemma 4.2 (Topological degree). Let W be a finite dimensional real vector space and G a continuous function from W to W . Assume that there exists a continuous function

H from W × [0; 1] to W satisfying (i) H(•, 1) = G and H(•, 0) is affine, (ii) ∃R > 0 such that ∀(w, δ) ∈ W × [0; 1], if H(w, δ) = 0 then |w| W = R, (iii) the equation H(w, 0) = 0 has a solution w ∈ W such that |w| W < R,
then there exists at least one solution w ∈ W such that G(w) = 0 and |w| W < R.

Reformulation of the problem

Denote by W the finite dimensional vector space V c Dh,0

2 × (V µ h ) 2 .
We define a norm on W ,

|w| 2 W = |c 1h | 2 H 1 (Ω) + |c 2h | 2 H 1 (Ω) + |µ 1h | 2 H 1 (Ω) + |µ 2h | 2 H 1 (Ω) , ∀w = (c 1h , c2h , µ 1h , µ 2h ) ∈ W
and we introduce the function H such that

H : W × [0; 1] → W w n+1 = (c n+1 1h , cn+1 2h , µ n+1 1h , µ n+1 2h , δ) → (R µ1 δ , R c1 δ , R µ2 δ , R c2 δ )
where R µ1 δ , R c1 δ , R µ2 δ and R c2 δ are defined by their coordinates in the finite element basis (

ν c I ) I∈ 1,N c (respec- tively (ν µ I ) I∈ 1,N µ ) of V c Dh,0 (respectively V µ h ): for I ∈ 1, N µ , (R µi δ ) I = Ω c n+1 ih -c n ih ∆t ν µ I dx + Ω M n+α 0hδ Σ i ∇µ n+1 ih • ∇ν µ I dx, for I ∈ 1, N c , (R ci δ ) I = Ω µ n+1 ih ν c I dx - Ω δD i (c n h , c n+1 h )ν c I dx - Ω 3 4 Σ i ε∇c n+β ih • ∇ν c I dx, with c n+1 ih = cn+1 i + c iDh , c n ih = cn i + c iDh and M n+α 0hδ = M 0 (1 -δα)c n + δαc n+1 . The function G is defined by G : W → W w → H(w, 1)
The problem "Find w n+1 such that G(w n+1 ) = 0"is equivalent to problem [START_REF] Seiler | Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors[END_REF]. To prove the claim, we are going to show that the functions H and G satisfy the assumptions of Lemma 4.2. The continuity of the function H is readily obtained by using (32) and the Lebesgue's theorem and the function H(•, 0) is clearly affine by construction.

Validation of assumption (ii) of Lemma 4.2

Let (w n+1 , δ) ∈ W × [0; 1] such that H(w n+1 , δ) = 0. We remark that H(w n+1 , δ) = 0 is equivalent to saying that w n+1 = (c n+1 1h , cn+1 2h , µ n+1 1h , µ n+1 2h ) is a solution of a problem similar to (22) with δF instead of F , δd F (c n , c n+1 ) as a choice of the discretization of non linear terms and a slightly modified mobility. It is possible to apply Theorem 2.7(the modification of the mobility M 0h do not change the calculation). We obtain the following equality:

F triph Σ,ε,δ (c n+1 h )-F triph Σ,ε,δ (c n h ) + ∆t 3 i=1 Ω M n+α 0hδ Σ i ∇µ n+1 ih 2 dx + 3 8 (2β -1)ε Ω 3 i=1 Σ i ∇c n+1 ih -∇c n ih 2 dx = 12 ε δ Ω F (c n+1 h ) -F (c n h ) -d F (c n h , c n+1 h ) • c n+1 h -c n h dx with F triph Σ,ε,δ (c k h ) = Ω δ 12 ε F (c k h ) + 3 i=1 3 8 εΣ i ∇c k ih 2 dx
. By using the assumption (33) and Remark 2.8, we get

F triph Σ,ε,δ (c n+1 h ) + ∆t Ω M n+α 0hδ 3 i=1 ∇µ n+1 ih 2 Σ i dx F triph Σ,ε,δ (c n h ) + δ 12 ε K c n h 1 . (65) 
Since the mobility is bounded from below (assumption [START_REF] Ern | Theory and Pratice of Finite Elements[END_REF]) and thanks to Remark 2.8, the second term of the left-hand side of (65) is bounded from below:

Ω M 1 Σ 3 i=1 ∇µ n+1 ih 2 Σ 2 i dx Ω M n+α 0hδ 3 i=1 ∇µ n+1 ih 2 Σ i dx. (66) 
Furthermore, since F 0 and δ 1, we have

F triph Σ,ε,δ (c k h ) F triph Σ,ε (c k h ), (67) 
and then, owing to (65), (66), (67) and Proposition 1.1, there exists a constant K

c n h 2 = F triph Σ,ε (c n h ) + 12 ε K c n h 1 > 0 independent of δ and c n+1 h such that Ω δ 12 ε F (c n+1 h ) + 3 8 εΣ 3 i=1 ∇c n+1 ih 2 dx + ∆t Ω M 1 Σ 3 i=1 ∇µ n+1 ih 2 Σ 2 i dx K c n h 2 . ( 68 
)
Since F is positive and δ 0, we obtained the following bound for the second and third terms of the left-hand side of (68): for i = 1, 2, 3,

∇c n+1 ih L 2 ≤ 8 3 K c n h 2 εΣ := K c n h 3 and ∇µ n+1 ih L 2 ≤ max i=1,2,3 (|Σ i |) K c n h 2 M 1 Σ∆t := K c n h 4 .
We now use the discrete form of the volume conservation ( 21): m(c n+1 ih ) = m(c n ih ). Thus, thanks to the Poincaré inequality (64) (with θ ≡ 1), there exists a positive constant C p such that

c n+1 ih H 1 (Ω) C p ∇c n+1 ih L 2 + m(c n+1 ih ) = C p ∇c n+1 ih L 2 + m(c n ih ) ,
and then there exists a positive constant K

c n h 5 = C p K c n h 3 + m(c n ih ) independent of δ and c n+1 h such that c n+1 ih H 1 (Ω) ≤ K c n h 5 . ( 69 
)
It remains to bound the average value m(µ n+1 ih ). Because of Dirichlet boundary conditions on c, constants do not belong to V c Dh,0 . Hence, we take a fixed function θ h of V c Dh,0 such that m(θ h ) = 0. Since R ci δ = 0, we have

m(µ n+1 ih θ h ) = Ω δD F i (c n+1 h , c n h )θ h dx + Ω 3 4 Σ i ε∇c n+β ih • ∇θ h dx.
This can be controlled by c n+1 h

H 1 (Ω) and |c n h | H 1 (Ω)
under the assumption (32). Indeed, the polynomial growth (32) of d F i implies that there exists a positive constant

C 1 = 16Σ T 3Σ m B 1 such that D F i (c n+1 h , c n h ) C 1 1 + c n+1 h p-1 + |c n h | p-1 .
Thus, since δ 1, and by using (69),

m(µ n+1 ih θ h ) C 1 |θ h | L ∞ (Ω) |Ω| + c n+1 h p-1 L p -1 + |c n h | p-1 L p -1 + 3 4 Σ M ε |∇c n ih | L 2 + ∇c n+1 ih L 2 |∇θ h | L 2 C 1 |θ h | L ∞ (Ω) |Ω| + K c n h 5 p-1 + |c n h | p-1 H 1 + 3 4 Σ M ε |c n ih | H 1 + K c n h 5 |θ h | H 1 := K h,c n h 6 .
Thanks to the Poincaré inequality (64), there exists a constant C p,θ h such that

µ n+1 ih H 1 (Ω) C p,θ h ∇µ n+1 ih L 2 + m(µ n+1 ih θ h ) C p,θ h K c n h 4 + K h,c n h 6 . (70) 
Thus, collecting (69) and ( 70), we get a positive constant K c n h independent of δ and c n+1 h such that

w n+1 W K c n h . Hence, taking R > K c n h 0 ensures that for all (w, δ) ∈ W × [0; 1], H(w, δ) = 0 =⇒ |w| W = R.

Validation of the assumption (iii) of Lemma 4.2

We have to show the existence of a solution for the linear problem H(w n+1 , 0) = 0. This problem can be written under the following variational form:

Find (c n+1 h , µ n+1 h ) ∈ V c Dh,0 3 × (V µ h ) 3 such that ∀i = 1, 2, 3, ∀ν µ h ∈ V µ h , ∀ν c h ∈ V c Dh,0 , a i (c n+1 ih , µ n+1 ih ), (ν c h , ν µ h ) = Ω cn ih ν µ h dx - Ω 3 4 Σ i ε∇c n iDh • ∇ν c h dx,
where

a i ((c n+1 ih , µ n+1 ih ), (ν c h , µ h )) = Ω cn+1 ih ν µ h + M n 0h Σ i ∆t∇µ n+1 ih • ∇ν µ h dx + Ω 3 4 Σ i εβ∇c n+1 ih • ∇ν c h -µ n+1 ih ν c h dx, with M n 0h = M 0 (c n h ) and c n iDh = βc iDh + (1 -β)c n ih .
Since this linear problem is posed in finite dimension, it is sufficient to prove that, for all (c n+1 ih , µ n+1 ih ) ∈ V c Dh,0

3 × (V µ h ) 3 : a i ((c n+1 ih , µ n+1 ih ), (ν c h , ν µ h )) = 0, ∀(ν c h , ν µ h ) ∈ V c Dh,0 3 × (V µ h ) 3 =⇒ (c n+1 ih , µ n+1 ih ) = (0, 0).
Hence, let us assume that we have (c

n+1 ih , µ n+1 ih ) ∈ V c Dh,0 3 × (V µ h ) 3 such that a i ((c n+1 ih , µ n+1 ih ), (ν c h , ν µ h )) = 0, ∀(ν c h , ν µ h ) ∈ V c Dh,0 3 × (V µ h ) 3 , (71) 
and take (ν c h , ν µ h ) = (c n+1 ih , µ n+1 ih ) in (71). We get:

Ω cn+1 ih µ n+1 ih dx + Ω M n 0h Σ i ∆t ∇µ n+1 ih 2 dx + 3 4 Σ i εβ Ω ∇c n+1 ih 2 dx - Ω µ n+1 ih cn+1 ih dx = 0.
This is equivalent to: Inequality (38) enables to obtain bounds on the discrete solutions: we can prove a bound in the discrete L ∞ (0, t f , H 1 (Ω)) norm for the order parameter, in the discrete L 2 (0, t f , H 1 (Ω)) norm for the chemical potentials and in the discrete L 2 0, t f , (H 1 (Ω)) ′ norm for the discrete time derivative of the order parameters. Moreover, the presence of numerical diffusion terms in the estimate (38) enables to prove that the discrete time derivatives of the order parameters grow at most as 1 √ ∆t in the L 2 0, t f , H 1 (Ω) norm. Proposition 4.3. Assume that assumptions of the existence theorem 2.9 are satisfied. Then, there exists h 0 > 0 and positive constants K 1 , K 2 , independent of ∆t and h such that, for all h h 0 , we have

Ω M n 0h ∆t ∇µ n+1 ih 2 dx + 3 4 Σ 2 i εβ Ω ∇c n+1 ih 2 dx = 0.
sup n N |c n h | (H 1 (Ω)) 3 + N -1 n=0 ∆t 3 i=1 µ n+1 ih 2 H 1 (Ω) K 1 , N -1 n=0 ∆t 3 i=1 c n+1 ih -c n ih ∆t 2 (H 1 (Ω)) ′ + ∆t N -1 n=0 ∆t 3 i=1 c n+1 ih -c n ih ∆t 2 H 1 (Ω) K 2 .
Proof. Let Σ m = min i=1,2,3

|Σ i | and Σ M = max i=1,2,3 |Σ i |.
(i) The discrete energy estimate (38), gives in particular an uniform bound on the discrete total energy:

∀n ∈ 0, N , F triph Σ,ε (c n h ) F triph Σ,ε (c 0 h ). (72) 
Furthermore, thanks to the polynomial growth assumption [START_REF] Feng | Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows[END_REF] of F , the initial energy F triph Σ,ε (c 0 h ) can be bounded independently of h:

F triph Σ,ε (c 0 h ) B 1 |Ω| + c 0 h p L p + Σ M c 0 h 2 H 1 B 1 |Ω| + c 0 p H 1 + Σ M c 0 2 H 1 := K 0 . ( 73 
)
Since F is non negative and by using Proposition 1.1, the bound (72) gives in particular, ∀n ∈ 0, N ,

Ω 3 i=1 |∇c n ih | 2 dx 8 3εΣ K 0 . (74) 
Moreover, the discrete form of the conservation of the volume (21) leads to

∀n ∈ N, |m(c n ih )| |Ω| -1 2 c 0 ih L 2 |Ω| -1 2 c 0 i H 1 (75) 
Hence, using (74), (75) and the Poincaré inequality (64), we find that

∀n ∈ 0, N , |c n h | H 1 (Ω) C p 16 3εΣ m K 0 + 2 |Ω| 3 i=1 c 0 i 2 H 1 1 2 := K ′ 1 . (76) 
(ii) Now we add the equations (38) for n between 0 and N -1:

F triph Σ,ε (c N h ) -F triph Σ,ε (c 0 h ) + C N -1 n=0 ∆t 3 i=1 Ω M n+α 0h Σ i ∇µ n+1 ih 2 dx + 3 8 (2β -1)ε Ω N -1 n=0 3 i=1 Σ i ∇c n+1 ih -∇c n ih 2 dx 0. ( 77 
)
Since F is non negative and the mobility is bounded from below, (77) gives in particular

N -1 n=0 ∆t 3 i=1 Ω ∇µ n+1 ih 2 dx 2Σ M M 1 K 0 . ( 78 
)
Let θ be a non negative given function in H 1 (Ω) with compact support in Ω. We denote by θ h its H 1 -projection on V c hD,0 and we take ν c h = θ h as a test function in the second equation of [START_REF] Seiler | Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors[END_REF]. We get

|Ω|m(µ n+1 ih θ h ) = Ω D F i (c n h , c n+1 h )θ h dx + Ω 3 4 Σ i ε (1 -β)∇c n ih + β∇c n+1 ih • ∇θ h dx.
Hence, we deduce that

|Ω| m(µ n+1 ih θ h ) 4Σ T ε j =i 1 |Σ j | Ω d F i (c n h , c n+1 h ) |θ h | dx + Ω d F j (c n h , c n+1 h ) |θ h | dx + 3 4 |Σ i |ε (1 -β) Ω |∇c n ih ||∇θ h | dx + β Ω ∇c n+1 ih |∇θ h | dx ,
The first term can be bounded as follows (by using ( 76)):

Ω d F k (c n h , c n+1 h ) |θ h | dx B 1 1 + c n+1 h p-1 L 6 (Ω) + |c n h | p-1 L 6 (Ω) |θ h | L 6 7-p (Ω) B 1 C 2 S,6 1 + c n+1 h p-1 H 1 (Ω) + |c n h | p-1 H 1 (Ω) |θ h | H 1 (Ω) 2B 1 C 2 S,6 (K ′ 1 ) p-1 |θ| H 1 (Ω) ,
and we get

m(µ n+1 ih θ h ) 1 |Ω| 16Σ T ε|Σ j | 2B 1 C 2 S,6 (K ′ 1 ) p-1 |θ| H 1 (Ω) + 3 4 |Σ i |ε (1 -β)|c n ih | H 1 (Ω) |θ h | H 1 (Ω) + β c n+1 ih H 1 (Ω) |θ h | H 1 (Ω) := M θ 1 .
Finally, we readily find m(µ n+1 ih θ)

1 |Ω| Ω µ n+1 ih |θ -θ h | dx + m(µ n+1 ih θ h ) 1 |Ω| µ n+1 ih H 1 (Ω) |θ -θ h | L 2 (Ω) + M θ 1 ,
and the Poincaré inequality (64) yields to

1 - C p,θ |Ω| |θ -θ h | L 2 (Ω) µ n+1 ih H 1 (Ω) C p,θ ∇µ n+1 ih L 2 (Ω) + M θ 1 .
Owing to [START_REF] Lapuerta | Echanges de masse et de chaleur entre deux phases liquide stratifiées dans un écoulement à bulles[END_REF], we can take h 0 such that for all h h 0 , we have

C p,θ |θ -θ h | L 2 (Ω) 1 2
|Ω|. We can the conclude by using (78) that, for all h h 0 ,

N -1 n=0 ∆t 3 i=1 µ n+1 ih 2 H 1 (Ω) 8C 2 p,θ 2Σ M M 1 K 0 + (M θ 1 ) 2 := K ′′ 1 .
(iv) From ( 73) and (77), we obtain

3 8 (2β -1)Cε Ω N -1 n=0 3 i=1 Σ i ∇c n+1 ih -∇c n ih 2 dx K 0 . Defining K ′ 2 = 8C 2 p 3(2β -1)
Σε K 0 , using Proposition 1.1, the Poincaré inequality and the volume conservation property (75), we finally get

N -1 n=0 ∆t 3 i=1 c n+1 ih -c n ih ∆t 2 H 1 (Ω) K ′ 2 ∆t . (v) Let ν ∈ H 1 (Ω). Denote by ν µ h the L 2 -projection of ν in V µ h . Owing to (18), we have |ν µ h | H 1 (Ω) C|ν| H 1 (Ω)
. By using the first equation of ( 20), we obtain

Ω c n+1 ih -c n ih ∆t ν µ h dx = - Ω M n+α 0h Σ i ∇µ n+1 ih • ∇ν µ h dx.
Hence, we find

c n+1 ih -c n ih ∆t , ν L 2 (Ω) = c n+1 ih -c n ih ∆t , ν µ h L 2 (Ω) M 2 C Σ m ∇µ n+1 ih L 2 (Ω) |ν| H 1 (Ω) .
Since this inequality holds for all ν ∈ H 1 (Ω), we have

c n+1 ih -c n ih ∆t (H 1 (Ω)) ′ = sup ν∈H 1 (Ω) c n+1 ih -c n ih ∆t , ν L 2 (Ω) |ν| H 1 (Ω) M 2 C Σ m ∇µ n+1 ih L 2 (Ω) ,
and thus,

N -1 n=0 ∆t 3 i=1 c n+1 ih -c n ih ∆t 2 (H 1 (Ω)) ′ M 2 C Σ m 2 K ′′ 1 := K ′′ 2 .

Estimates of remainders

The bounds established in Proposition 4.3 and compactness arguments enable to extract convergent subsequences from a given sequence of approximate solutions. Then, it remains to prove that the limit we obtain is a weak solution of the three-phase Cahn-Hilliard model [START_REF] Barrett | On fully practical finite element approximations of degenerate Cahn-Hilliard systems[END_REF]. Thus, the first step is to specify the link between equations satisfied by the approximate solutions and those satisfied by the weak solution of (3).

The following proposition gives estimates on the remainder terms due to the time discretization.

Proposition 4.4. Let τ ∈ C ∞ 0 (]0, t f [), ν c h ∈ V c Dh,0 and ν µ h ∈ V µ h . The sequences (c N h ) N ∈N and (µ N h ) N ∈N satisfy the following equations,                    t f 0 Ω dc N ih dt (t, x)ν µ h (x) dx τ (t)dt = - t f 0 Ω M N +α 0h Σ i ∇µ N ih (t, x) • ∇ν µ h (x) dx τ (t)dt t f 0 Ω µ N ih (t, x)ν c h (x) dx τ (t)dt = t f 0 Ω f F i (c N h (t, x))ν c h (x) dx τ (t)dt + t f 0 Ω 3 4 Σ i ε∇c N ih (t, x) • ∇ν c h (x) dx τ (t)dt + R i1 (∇ν c h , ∆t) + R i2 (ν c h , ∆t) (79) 
where

M N +α 0h = M 0 (1 -α)c N h + αc N h
and the remainder terms R i1 and R i2 satisfy the following estimates: there exists two constants K 3 and K 4 independent of h and ∆t such that, for all i ∈ {1, 2, 3},

|R i1 (ν c h , ∆t)| K 3 |ν c h | H 1 (Ω) √ ∆t, (80) 
|R i2 (∇ν c h , ∆t)| K 4 |∇ν c h | L 2 (Ω) ∆t. ( 81 
)
Proof. We extend the function τ on R by 0. The first equation of ( 79) is readily obtained from the first equation of ( 20) by using Definitions (36), ( 35), ( 34), (37) of c N h , c N h ,c N h and µ N h . Furthermore, multiplying the second equation of ( 20) by the function τ and integrating on the interval [0, t f ] yields the second equation of (79) with

R i1 = N -1 n=0 tn+1 tn Ω D F i (c n h (x), c n+1 h (x)) -D F i (c N h (t, x), c N h (t, x)) ν c h (x) dx τ (t)dt, R i2 = N -1 n=0 tn+1 tn Ω 3 4 Σ i ε (1 -β)∇c n ih (x) + β∇c n+1 ih (x) -∇c N ih (t, x) • ∇ν c h (x) dx τ (t)dt.
Notice that we use here the consistency assumption (15) which implies that

D F i (c N h (t, x), c N h (t, x)) = f F i (c N h (t, x)).
It remains to prove that R i1 and R i2 satisfy the bounds (80) and ( 81). (i) The bound for R i1 is based on the assumptions (32). Indeed, (32) implies that there exists a constant

T 1 such that for (a, b) ∈ S 2 , for λ ∈ [0, 1], |d k (a, b) -∂ k F (λa + (1 -λ)b)| |d k (a, b) -d k (a, a)| + |∂ k F (a) -∂ k F (λa + (1 -λ)b)| sup s∈[0,1] D d F k (a, •) (sa + (1 -s)b) |b -a| + sup s∈[0,λ] D 2 F (sa + (1 -s)b)) (1 -λ)|b -a| T 1 |b -a| 1 + |b| p-2 + |a| p-2 .
Thus, we obtain, thanks to Young's inequality, that there exists a positive constant T 1 such that, for all (a, b) ∈ S 2 , for all λ ∈ [0, 1],

|d k (a, b) -∂ k F (λa + (1 -λ)b)| T 1 |b -a| 1 + |b| p-2 + |a| p-2 . ( 82 
)
Since R i1 can be written as follows

R i1 = 4Σ T ε j =i 1 Σ j N -1 n=0 tn+1 tn Ω d F i (c n h (x), c n+1 h (x)) -∂ i F (c N h (t, x)) -d F j (c n h (x), c n+1 h (x)) -∂ j F (c N h (t, x)) ν c h (x)dx τ (t)dt;
and, owing to (82), we have

d F k (c n h (x), c n+1 h (x)) -∂ k F (c N h (t, x)) T 1 c n+1 h (x) -c n h (x) 1 + |c n h (x)| p-2 + c n+1 h (x) p-2 .
Thus, since 2 p 6, we have 1 

Ω d F k (c n h (x), c n+1 h (x)) -∂ k F (c N h (t, x)) ν c h (x)dx T 2 1 + 2K p-2 1 |ν c h | H 1 (Ω) c n+1 h -c n h H 1 (Ω) .
It follows that

N -1 n=0 tn+1 tn Ω d F k (c n h (x), c n+1 h (x)) -∂ k F (c N h (t, x)) ν c h (x)dx τ (t)dt T 2 1 + 2K p-2 1 |ν c h | H 1 (Ω) sup t∈[0,t f ] |τ (t)| ∆t N -1 n=0 ∆t c n+1 h -c n h ∆t 2 H 1 (Ω) 1 2 
.

In conclusion, using the third bound of Theorem 4.3, we get

|R i1 | T 2 K 2 1 + 2K p-2 1 |τ | L ∞ ([0,t f ]) |ν c h | H 1 (Ω) ∆t 1 2 .
Hence, estimate (80) holds with

K 3 := T 2 K 2 1 + 2K p-2 1 |τ | L ∞ ([0,t f ]) .
(ii) A renumbering of the terms yields

R i2 = N -1 n=0 tn+1 tn Ω 3 4 Σ i ε β - t -t n ∆t (∇c n+1 ih (x) -∇c n ih (x)) • ∇ν c h (x) dx τ (t)dt = 3 4 Σ i ε N -1 n=0 1 0 Ω ∆t (β -u)(∇c n+1 ih (x) -∇c n ih (x)) • ∇ν c h (x) dx τ ((n + u)∆t)du = 3 4 Σ i ε N n=0 ∆t Ω ∇c n ih (x) • ∇ν c h (x) dx 1 0 (β -u) τ ((n -1 + u)∆t) -τ ((n + u)∆t) ∆t|τ ′ | L ∞ (R)
du and by Theorem 4.3, we obtain

|R i2 | 3 4 Σ M ε(N + 1)∆tK 1 |∇ν c h (x)| L 2 (Ω) ∆t|τ ′ | L ∞ (R) 3 4 Σ M ε2t f |∇ν c h (x)| L 2 (Ω) ∆t|τ ′ | L ∞ (R) .
Hence, estimate (81) holds with

K 4 = 3 2 K 1 t f Σ M ε|τ ′ | L ∞ (R) .
In order to be able to show the convergence when the time step and the mesh size tend to zero, we have also to estimate the remainders due to the space discretization.

Proposition 4.5. Let τ ∈ C ∞ 0 (]0, t f [), ν c ∈ V c D,0 and ν µ ∈ V µ . The sequences (c N h ) N ∈N and (µ N h ) N ∈N satisfy the following equations, t f 0 Ω dc N ih dt (t, x)ν µ (x) dx τ (t)dt = - t f 0 Ω M N +α 0h Σ i ∇µ N ih (t, x) • ∇ν µ (x) dx τ (t)dt + R i3 (h, ∆t) t f 0 Ω µ N ih (t, x)ν c (x) dx τ (t)dt = t f 0 Ω f F i (c N h (t, x))ν c (x) dx τ (t)dt + t f 0 Ω 3 4 Σ i ε∇c N ih (t, x) • ∇ν c (x) dx τ (t)dt + R i1 (h, ∆t) + R i2 (h, ∆t) + R i4 (h, ∆t)
where R i1 , R i2 , R i3 and R i4 satisfy the following estimates: there exist four constants K 5 , K 6 , K 7 and K 8 independent of h and ∆t such that,

|R i1 (h, ∆t)| K 5 ∆t, |R i2 (h, ∆t)| K 6 √ ∆t, |R i3 (h, ∆t)| K 7 inf ν µ h ∈V µ h |ν µ -ν µ h | H 1 (Ω) , |R i4 (h, ∆t)| K 8 inf ν c h ∈V c Dh,0 |ν c -ν c h | H 1 (Ω) .
Proof. Let ν c h , (resp. ν µ h ), be the H 1 -projection of ν c , (resp. ν µ ), on V c hD,0 , (resp. V µ h ). By using Theorem 4.4 and then denoting by R i1 (h, ∆t) and R i2 (h, ∆t) the terms R i1 (ν c h , ∆t) and R i2 (∇ν c h , ∆t), we see that the remainder terms R i3 and R i4 are given by

R i3 (h, ∆t) = t f 0 Ω dc N ih dt (t, x) (ν µ (x) -ν µ h (x)) dx τ (t)dt + t f 0 Ω M N +α 0h Σ i ∇µ N ih (t, x) • ∇ (ν µ (x) -ν µ h (x)) dx τ (t)dt,
and

R i4 (h, ∆t) = t f 0 Ω µ N ih (t, x) (ν c (x) -ν c h (x)) dx τ (t)dt - t f 0 Ω f F i (c N h (t, x)) (ν c (x) -ν c h (x)) dx τ (t)dt - t f 0 Ω 3 4 Σ i ε∇c N ih (t, x) • ∇ (ν c (x) -ν c h (x)) dx τ (t)dt.
The bound for R i1 and R i2 readily follows from

|ν c h | H 1 (Ω) |ν c | H 1 (Ω)
. The bound for R i3 is obtained as follows:

|R i3 | dc N ih dt L 2 (0,t f ,(H 1 (Ω)) ′ ) |τ | L 2 (0,t f ) |ν µ -ν µ h | H 1 (Ω) + M 2 Σ m µ N ih L 2 (0,t f ,H 1 (Ω)) |τ | L 2 (0,t f ) |ν µ -ν µ h | H 1 (Ω) K 7 |ν µ -ν µ h | H 1 (Ω) , with K 7 := M 2 Σ m √ K 1 + K 2 |τ | L 2 (0,t f )
, and the bound for R 4 is deduced from the following inequalities:

|R i4 | µ N ih L 2 (0,t f ,L 2 (Ω)) |τ | L 2 (0,t f ) |ν c -ν c h | L 2 (Ω) + 24Σ T εΣ m t f 0 B 1 c N ih (t, •) p-1 L 6 (Ω) |ν c -ν c h | L 6 7-p (Ω) + |Ω| 1 2 |ν c -ν c h | L 2 (Ω) τ (t)dt + 3 4 Σ M εt f c N ih L ∞ (0,t f ,H 1 (Ω)) |τ | L ∞ (0,t f ) |ν c -ν c h | H 1 (Ω) K 1 |τ | L 2 (0,t f ) + 24Σ T εΣ m t f |τ | L ∞ (0,t f ) B 1 K p-1 1 + |Ω| 1 2 + 3 4 Σ M εK 1 |τ | L ∞ (0,t f ) t f :=K8 |ν c -ν c h | H 1 (Ω) .

Proof of Theorem 2.10

Theorem 4.3 readily yields to the following bounds:

c N hK L ∞ (0,t f ,(H 1 (Ω)) 3 ) + µ N hK 2 L 2 (0,t f ,(H 1 (Ω)) 3 ) + ∂c N hK ∂t 2 L 2 (0,t f ,(H 1 (Ω)) ′ ) K 1 + K 2 , (84a) 
c N hK -c N hK L 2 (0,t f ,(H 1 (Ω)) 3 ) + c N hK -c N hK L 2 (0,t f ,(H 1 (Ω)) 3 ) 2 K 2 ∆t, (84b) 
By using estimates (84a), we can extract subsequences of (c N hK ) (N,K) and (µ N hK ) (N,K) (still denoted by (c N hK ) (N,K) and (µ N hK ) (N,K) ) such that

c N hK ⇀ c in L ∞ (0, t f , (H 1 (Ω)) 3 ) weak- * , (85) 
µ N hK ⇀ µ in L 2 (0, t f , (H 1 (Ω)) 3 ) weak, ( 86 
)
∂c N hK ∂t ⇀ ∂c ∂t in L 2 0, t f , (H 1 (Ω)) ′ weak. ( 87 
)
From estimate (84a), we can use the Aubin-Lions-Simon's compactness theorem [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] to obtain, up to a subsequence, c N hK → c in C 0 (0, t f , (L q (Ω)) 3 ) strong, for all 1 q < +∞ if d = 2, or 1 q < 6 if d = 3.

(88)

In particular, (88) implies that

c N hK → c in L 2 (0, t f , (L 2 (Ω)) 3 ) strong, (89) 
and then estimate (84b) leads to

c N hK → c in L 2 (0, t f , (L 2 (Ω)) 3 ) strong, (90) 
c N hK → c in L 2 (0, t f , (L 2 (Ω)) 3 ) strong. ( 91 
) Let τ ∈ C ∞ 0 (]0, t f [), ν c ∈ V c D,0 and ν µ ∈ V µ .
We can apply Theorem 4.5 and pass to the limit in (83): (i) Convergences (87), ( 86) and (85) allow to pass to the limit in the linear terms. (ii) The terms R i1 , R i2 , R i3 and R i4 tend to 0 thanks to assumptions [START_REF] Lapuerta | Echanges de masse et de chaleur entre deux phases liquide stratifiées dans un écoulement à bulles[END_REF].

(iii) Let η > 0. Since the space C ∞ (Ω) is dense in V µ = H 1 (Ω), we can take ν µ η ∈ C ∞ (Ω) (depending on η) such that

ν µ -ν µ η H 1 (Ω) < Σ m M 2 K 1 |τ | L 2 (0,t f ) -1 η 4 
(where M 2 and K 1 are the constants involved in [START_REF] Ern | Theory and Pratice of Finite Elements[END_REF] and Theorem 4.3). Then we obtain,

t f 0 Ω M N +α 0hK Σ i ∇µ N ihK (t, x) • ∇(ν µ -ν µ η )(x) dx τ (t)dt η 4 , (92) 
and similarly,

t f 0 Ω M 0 (c) Σ i ∇µ N ihK (t, x) • ∇(ν µ -ν µ η )(x) dx τ (t)dt η 4 . (93) 
Moreover, by using the assumption (10), we have

t f 0 Ω M N +α 0hK -M 0 (c) Σ i ∇µ N ihK (t, x) • ∇ν µ η (x) dx τ (t)dt ∇ν µ η L ∞ (Ω) 3 Σ m t f 0 Ω M 3 (1 -α)(c N hK -c) + α(c N hK -c) ∇µ N ihK (t, x) dx |τ (t)|dt ∇ν µ η L ∞ (Ω) 3 Σ m M 3 K 1 |τ | L ∞ (0,t f ) c N hK -c L 2 (0,t f ,L 2 (Ω) 3 ) + c N hK -c L 2 (0,t f ,L 2 (Ω) 3 ) .
Owing to convergences (90) and (91), there exists P 1 ∈ N (depending on η) such that: ∀(N, K) ∈ N 2 such that min(N, K) P 1 we have

t f 0 Ω M N +α 0hK -M 0 (c) Σ i ∇µ N ihK (t, x) • ∇ν µ η (x) dx τ (t)dt η 4 . (94) 
Furthermore, assumption [START_REF] Ern | Theory and Pratice of Finite Elements[END_REF] implies that M 0 (c) ∈ L ∞ (]0, t f [, L ∞ (Ω)), and thus M 0 (c)∇ν µ η τ belongs to L 2 (0, t f , (L 2 (Ω)) d ). Hence, the convergence (40) implies that

t f 0 Ω M 0 (c) Σ i ∇µ N ihK (t, x) • ∇ν µ η (x) dx τ (t)dt -→ min(N,K)→∞ t f 0 Ω M 0 (c) Σ i ∇µ i (t, x) • ∇ν µ η (x) dx τ (t)dt.
Hence, there exists P 2 ∈ N such that: ∀(N, K) ∈ N 2 such that min(N, K) P 2 we have

t f 0 Ω M 0 (c) Σ i ∇(µ N ihK -µ i )(t, x) • ∇ν µ η (x) dx τ (t)dt η 4 . (95) 
Finally, using (92), (93), (94), (95) and the triangle inequality, we obtain: ∀(N, K) ∈ N 2 such that min(N, K) max(P 1 , P 2 ),

t f 0 Ω M 0 (c) Σ i ∇µ i (t, x) • ∇ν µ (x) dx τ (t)dt - t f 0 Ω M N +α 0hK Σ i ∇µ N ihK (t, x) • ∇ν µ (x) dx τ (t)dt η.
Hence, we conclude that

t f 0 Ω M N +α 0hK Σ i ∇µ N ihK (t, x) • ∇ν µ η (x) dx τ (t)dt -→ t f 0 Ω M 0 (c) Σ i ∇µ i (t, x) • ∇ν µ η (x) dx τ (t)dt.
(iv) By using the converse of Lebesgue's theorem and the convergence (89), there exists a subsequence of (c N hK ) (N,K) (always denoted by (c N hK ) (N,K) ) and a function S ∈ L q (0, t f , L q (Ω)) such that:

c N hK → c almost everywhere, (96) 
and c N hK (t, x) S(t, x) for almost every (t, x) ∈]0, t f [×Ω, for all (N, K) ∈ N 2 . Thanks to (32), we have,

f F i (c N hK )ν c (x)τ (t) 16Σ T Σ m ε B 1 |S(x)| p-1 + 1 ν c (x)τ (t),
for almost every (t, x) ∈]0, t f [×Ω, for all (N, K) ∈ N 2 . The right-hand side belongs to L 1 (0, t f , L 1 (Ω)). Hence, thanks to the convergence (96) and Lebesgue's Theorem, we have

t f 0 Ω f F i (c N hK (t, x))ν c (x) dx τ (t)dt → t f 0 Ω f F i (c(t, x))ν c (x) dx τ (t)dt
This shows the existence of a weak solution (c, µ) to problem (3) and the convergence (39) and (40).

Numerical experiments

In this section, we present some numerical experiments in one dimension and two dimensions in order to compare the different time discretizations of the nonlinear terms presented in Section 3. The practical implementation has been performed using the software object-oriented component library PELICANS [START_REF] Pelicans | Collaborative Development environment[END_REF], developed at the "Institut de Radioprotection et de Sûreté Nucléaire (IRSN)" and distributed under the CeCILL-C license agreement (an adaptation of LGPL to the French law).

We use the following notation for the schemes:

• Impl. stands for the implicit discretization (44) for the contribution of F 0 , the semi-implicit discretization (59) for the contribution of P and β = 1, • CC. stands for the convex-concave discretization (51) for the contribution of F 0 , the semi-implicit discretization (59) for the contribution of P and β = 1, • SImpl.(β) stands for the semi-implicit discretization (56) for the contribution of F 0 , the semi-implicit discretization (59) for the contribution of P and the given value of β, • SImpl. stands for SImpl [START_REF] Barrett | An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy[END_REF]. In one dimensional test cases, the spatial discretization is performed by using an uniform grid and piecewise linear finite element functions. In two dimensions, in order to limit the computational cost, we use Q 1 Lagrange finite element on square local adaptive refined meshes [START_REF] Boyer | A local adaptive refinement method with multigrid preconditionning illustrated by multiphase flows simulations[END_REF]. The refinement criterion imposes the value of the smaller diameter h min of a cell and ensures that refined areas are located in the neighborhood of the interfaces (i.e. where no order parameter is equal to one). In practice, we take h min = ε 2 to ensure the presence of at least two cells in interfaces. In all of the two dimensional test cases, the approximate solutions are visualized through the isolines of the function:

(c 1 , c 2 , c 3 ) → (1 -c 1 )(1 -c 2 )(1 -c 3 ) (97) 
which is non zero only in the interface; and figures which represent approximate solutions also show the refined mesh used for the corresponding computation.

For convergence studies, for each scheme, different approximate solutions c ∆tj are computed using several time steps ∆t j . Since non trivial analytic solutions of Cahn-Hilliard system (3) are not known, we use an approximate solution c ∆t ref obtained with a reference time step ∆t ref as a reference solution. Obviously, ∆t ref is assumed to be small enough compared to ∆t j . Although the refinement criterion is the same for all computations, the refined grids can slightly differ from a computation to another since time steps are different. However the L 2 norm of the error

e j (t) = c ∆tj (t, •) -c ∆t ref (t, •) (L 2 (Ω)) 3 ,
at a fixed time t, is exactly computed on the uniform grid of size h min during a post-processing step.

Two-phase test cases

In this subsection, the schemes are compared on two-phase test cases. In other words, the three-phase Problem 2.4 is numerically solved but the third order parameter c 3 is initialized to zero on the whole domain so that the two phases in presence are described by the order parameters c 1 and c 2 = 1 -c 1 . The consistency property (see Sections 1.2 and 3.7) ensures that the order parameter c 3 will stay at zero all along the simulations and, consequently, the schemes we actually compare are the ones presented in Section 3.7.

Two test cases are given in order to illustrate the two different behaviors of the Cahn-Hilliard system: the first one is the stability of the observed interface thickness close to ε and the second one is the motion of the interface governed by surface tensions.

Dynamics of one interface

The first experiment is performed on the space domain [-1, 1] with the following parameters: the interface thickness ε = 0.5, a constant mobility M = 8 and a surface tension between the two present phases σ = 1. We impose Neumann boundary conditions for both order parameters and chemical potentials. The initial data is given by:

c 0 1 (x) = 1 2 1 + tanh 2x 10ε
, and c 0 2 (x) = 0, ∀x ∈ [-1, 1].

Figure 1 shows the evolution of the order parameter c 1 towards the equilibrium shape. We also represent, in this figure, an approximation of the steady solution:

c 0 (x) = 1 2 1 + tanh 2x ε , ∀x ∈ R,
which is obtained by exactly solving the following interface profile problem on an infinite domain: Figure 2 presents the convergence study. The reference solution is computed using the SImpl.(0.5) scheme with ∆t ref = 10 -8 . We perform several computations using the different schemes and for each of the following time steps ∆t j : 2.10 -4 , 5.10 -4 , 10 -4 , 2.10 -5 , 5.10 -5 , 10 -5 , 10 -6 . The L 2 -norm of the corresponding errors e j (t) at time t = 0.01 are represented in the picture on the left and the convergence rates of each scheme are given in the table on the right. We observe a first order convergence for the Impl., CC., SImpl. schemes and a (almost) second order convergence for the SImpl.(0.5) scheme. Note also that the CC. scheme is less accurate than the other ones, whereas the SImpl. scheme enables to achieve the same accuracy as the Impl. scheme.

     - 3 2 σεc ′′ 0 (x) + 12 σ ε f ′ (c 0 (x)) = 0, ∀x ∈ R, lim +∞ c 0 = 1, lim -∞ c 0 = 0, c 0 (0) = 1 2 .
The influence of the different schemes on the shape of the solution is illustrated in Figure 3. We represent, for different time steps, the first order parameter c 1 as a function of the space variable on the whole domain (at the top) and on a zoomed part (at the bottom). The Impl., SImpl, SImpl.(0.5) schemes give very close results whereas the CC. scheme gives a significantly different profile. This experiment is performed on the space domain [-0.2, 0.2] 2 with the following parameters: the interface thickness ε = 0.01, a constant mobility M = 10 -4 and a surface tension between the two present phases σ = 1. We impose Neumann boundary conditions for both order parameters and chemical potentials. The initial data is given by:

Ellipsoidal bubble -Neumann boundary conditions

c 0 1 (x, y) = 1 2 1 + tanh 2 ε x 2 a 2 + a 2 y 2 1 2 -0.1 , c 0 2 (x, y) = 0, ∀(x, y) ∈ [-0.2, 0.2] 2 ,
where a = 1.5. Figure 4 shows the initial configuration on the left and the position of the interfaces and meshes at the initial time on the right. Recall that the representation of interfaces is performed thanks to the isolines of the function defined by (97).

Figure 5 shows the evolution of the interface position. The system tends to a position which minimizes the length of the interface while conserving the volume of phases, that is a circular interface. Note that the actual steady state is not yet achieved at the end of our computation (t = 4.8).

Figure 6 presents the convergence study. The reference solution is computed using the SImpl.(0.5) scheme with ∆t ref = 5.10 -4 . Several computations are performed using the different schemes and for each of the following time steps ∆t j : 10 -1 , 5.10 -2 , 10 -2 , 5.10 -3 , 10 -3 . The L 2 -norm of the corresponding errors e j (t) at time t = 3.8 are represented in the picture on the left and convergence rates are presented in the table on the right. We essentially obtain the same results as in one dimension, that is a first order convergence for the Impl., CC., SImpl. schemes and a (almost) second order convergence for the SImpl.(0.5) scheme. The CC. scheme is still less accurate than the other ones. 

Ellipsoidal bubble -Dirichlet boundary conditions

This experiment is performed on the space domain [-0.1, 0.1] × [0, 0.2] with the following parameters: the interface thickness ε = 6.10 -3 , a constant mobility M = 10 -4 and a surface tension between the two present phases σ = 1. The initial data is given by:

c 0 1 (x, y) = 1 2 1 + tanh 2 ε 4x 2 + y 2 12.25 1 2 -0.05 , c 0 2 (x, y) = 0, for all (x, y) ∈ [-0.1, 0.1] × [0, 0.2].
Figure 7 shows the initial configuration on the left and the position of the interfaces and meshes at the initial time on the right. We impose Neumann boundary conditions for both order parameters and chemical potentials except for the bottom part of the domain, that is [-0.1, 0.1] × {0}, where Dirichlet boundary conditions for the order parameters are imposed. Recall that the representation of interfaces is performed thanks to the isolines of the function defined by (97).

Figure 8 shows the evolution of the interface position. The system tends to a position which minimizes the length of the interface while conserving the volume of phases, the interface describes an arc of a circle since the value of the order parameter is imposed on the bottom part of the domain. Figure 9 presents the convergence study. The reference solution is computed using the SImpl.(0.5) scheme with ∆t ref = 10 -5 . Several computations are performed using the different schemes and for each of the following time steps ∆t j : 5.10 -3 , 10 -3 , 5.10 -4 , 2.10 -4 , 10 -4 , 5.10 -5 . The L 2 -norm of the corresponding errors e j (t) at time t = 1.5 are represented in the picture on the left and convergence rates are presented in the table on the right. We obtain a first order convergence for CC., Impl. and SImpl. schemes and a second order convergence for the SImpl.(0.5) scheme. Remark that SImpl.(0.5) and Impl. schemes give significantly more accurate results than the CC. one.

Three phase test cases

In this section, we illustrate the properties of the different schemes with the spreading of a liquid lens between two stratified phases in two dimensions. In the following test cases, the initial solution is less smooth than it was in the previous two-phase test cases. Hence, we avoid to take the value 0.5 for the parameter β, since this value corresponds to the limit of unconditional stability of the Crank-Nicholson time stepping method for this problem. Moreover, for the same reason, we use the value β = 1 (that is the implicit discretization of the diffusion term) for the first iteration even for the SImpl.(β) scheme.

Partial spreading situation

The values of parameters are given in Table 2. Note that in this case, all of the Σ i , i = 1, 2, 3, are positive. Hence, we take Λ = 0 (see Section 3.6), so that the Cahn-Hilliard potential is F = F 0 . Figure 11 shows the evolution of the interface position. At equilibrium, the expected shape of the lens is the intersection of two spherical caps (the contact angles depend on the three surface tensions through the Young relations).

Figure 12 presents the convergence study. The reference solution is computed using the Impl. scheme with ∆t ref = 10 -4 . Several computations are performed using the different schemes and for each of the following . The L 2 -norm of the corresponding errors e j (t) at time t = 2. are represented in the picture on the left and the convergence rates are presented in the table on the right. As expected, we obtain a first order convergence for the four schemes. Nevertheless, the Impl. scheme is clearly the more accurate. We observe in particular a three order of magnitude ratio in the error compared to the CC. scheme. In Figure 13, we show the discrete energy F triph Σ,ε (c n h ) as a function of time t n ∈ [0, t f ]. For each of the four schemes, we performed three simulations with ∆t = 10 -1 , 10 -2 and 5.10 -3 . Figure 13 shows a comparison more robust one because the computation nicely runs for any value of the time step. SImpl. and SImpl.(0.6) schemes work for a large range of time steps. P P P P P P P P Scheme ∆t 10 -1 5.10 -2 10 -2 5.10 -3 10 -3 5.10 -4 10 -4 CC. Impl.

------7

CPU time 5min 9min 40min 1h10 5h45 11h 53h

Table 4. Number of iterations in the Newton linearization method. The symbol "-" means that there is no convergence These results have to be balanced by the convergence rates presented in Figure 18. Indeed, The CC. scheme appears to be the less accurate compared to the SImpl. and SImpl.(0.6) ones, even though the three schemes are first order convergent. We can also visualize the difference between schemes thanks to Figure 19 which shows how the discrete energy decrease when using the different schemes. We performed simulations for ∆t = 10 -2 , 10 -3 , 10 -4 and we observed that SImpl. and SImpl.(0.6) schemes give significantly more accurate results than the CC. one.

Conclusion

We proposed here a full discretization of the ternary Cahn-Hilliard model taken from [START_REF] Boyer | Study of a three component Cahn-Hilliard flow model[END_REF]. Different time discretizations are compared with the objective to get an accurate and robust algorithm for a wide range of situations including partial and total spreading situations.

At the theoretical level, for the implicit scheme, we are able to show the convergence of the discrete solution only in the case of partial spreading situation. Moreover, even in these situations, the Impl. scheme ensures the decrease of discrete energy only for small enough time steps. Convex-concave and semi-implicit schemes enable to show the convergence even for total spreading cases (provided that the condition (5) holds) and ensure the decrease of the discrete energy for all time steps. In practice, for partial spreading situation, the implicit scheme is the more accurate and the semi-implicit one enables to reduce the truncation error compared with the convex-concave one. For total spreading situations, we observe in some numerical computations that the implicit scheme can be ill-posed if the time step is not small enough whereas we can prove that the semi-implicit scheme is well-posed. Using the implicit scheme requires smaller time step, thus leading to a much higher computational cost.

In summary, we can say that the semi-implicit discretization of the non linear terms we proposed is a good compromise between robustness and accuracy, compared to the other more classical possible discretizations.

Proposition 2 . 7 (

 27 Discrete energy equality). Let c n h ∈ V c Dh,S . Assume that there exists a solution (c n+1 h , µ n+1 h ) of Problem 2.2. Then, the following equality holds:

Since the mobility satisfies ( 10

 10 these constants in (71) readily leads to (c n+1 ih , µ n+1 ih ) = (0, 0).
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 3 Figure 3. First order parameter c 1 as a function of the space variable x at time t = 0.01. Top: x ∈ [-1, 1], Bottom: x ∈ [0.4, 0.6] (zoom)
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 11 Figure 11. Evolution of the interface position for ∆t = 10 -4 using the Impl. scheme.
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 12 Figure 12. Errors e j (t) = c ∆tj (t, •)c ∆t ref (t, •) (L 2 (Ω)) 3 at time t = 2. as a function of the time step ∆t j (left) and convergence rates (right) obtained for the different schemes
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 313 Figure 13. Time evolution of energy in a partial spreading situation
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 18419 Figure 18. Errors e j (t) = c ∆tj (t, •)c ∆t ref (t, •) (L 2 (Ω)) 3 at time t = 3.8 as a function of the time step ∆t j (left) and convergence rates (right) obtained for the different schemes
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between the four schemes, using the same time step. SImpl. and SImpl.(0.6) schemes give significantly more accurate results than the CC. one. Figure 14 shows the influence of the schemes on the bubble shape at the time t = 2. With the Impl. scheme, the same shape is obtained for the three time steps. For large time steps, the CC. scheme does not give the bubble shape which is expected. This phenomenon is significantly reduced by the use of the SImpl. or SImpl.(0.6) schemes.

Total spreading situation

The values of parameters are given in Table 3. 3. Parameters values for the three phase test case in partial spreading situation

The initial data c 0 is given by

where x = (x, y) ∈ Ω. This corresponds (Figure 15) to an initial bubble of phase 3 put on the interface between the two stratified phases 1 and 2. In this case, Σ 1 is negative but condition (5) holds. It corresponds to the case of the extraction of the bubble (Figure 16): at the steady state the bubble is entirely within one of the other phases. We have to take Λ large enough to ensure the positivity of the Cahn-Hilliard potential F (see Subsection 3.6). We take here Λ = 7/3.

Figure 17 shows that the corresponding potential F has the expected shape: F is non negative and has only three minima which correspond to pure phases. The potential F is represented on the hyperplane S using barycentric coordinates.

We perform simulations using the different schemes with time steps ∆t: 10 -1 , 5.10 -2 , 10 -2 , 5.10 -3 , 10 -3 , 5.10 -4 , 10 -4 . We observe that the Newton linearization method fails to converge when using the Impl. scheme unless the time step is smaller than 10 -4 . Table 4 shows the maximum of the number of iterations in the Newton linearization method over all the time iterations of the simulation. The CC. scheme appears as the