
HAL Id: hal-00389850
https://hal.science/hal-00389850v1

Submitted on 29 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Level Synthesis Assisted Rapid Prototyping for
Digital Signal Processing

Bertrand Le Gal, Emmanuel Casseau, Pierre Bomel, Chirstophe Jégo,
Nathalie Le Héno, Eric Martin

To cite this version:
Bertrand Le Gal, Emmanuel Casseau, Pierre Bomel, Chirstophe Jégo, Nathalie Le Héno, et al.. High
Level Synthesis Assisted Rapid Prototyping for Digital Signal Processing. IEEE International Con-
ference on Microelectronics, Dec 2004, Tunis, Tunisia. pp.000. �hal-00389850�

https://hal.science/hal-00389850v1
https://hal.archives-ouvertes.fr

High-Level Synthesis Assisted Rapid Prototyping for Digital Signal Processing

B. Le Gal1, E. Casseau1, P. Bomel1, C. Jego2, N. Le Heno3, E. Martin1

1. LESTER Lab.– CNRS FRE 2734

UBS University FRANCE
{First-Name.Surname}@univ-ubs.fr

http://lester.univ-ubs.fr:8080

2. ENST Bretagne, FRANCE
christophe.jego@enst-bretagne.fr

http://www.enst-bretagne.fr

3. Turbo Concept SAS, FRANCE
nathalie.leheno@turboconcept.com

http://www.turboconcept.com

Abstract

The increasing needs of higher data rates associated with

mobility constraints motivate the development of Digital Satellite
News Gathering (DSNG) and Digital Video Broadcasting
applications by Satellite (DVB_S). Error control codes like
Reed-Solomon and Viterbi codes are widely used in these
communication systems against channel noise. Traditional methods
for rapid prototyping of hardware cores for this kind of applications
are based on RTL specifications However, they suffer from heavy
limitations that prevent them from efficiently addressing both the
algorithmic complexity and the high flexibility required by the
various application profiles in fast implementation and prototyping
issues. For this reasons, we propose to reduce hardware IP core
development time by benefiting from the emerging High-Level
Synthesis (HLS) tools in a platform-based approach dedicated to
rapid prototyping. This technique has been successfully applied to
the design of Reed-Solomon (RS) and Viterbi decoder IP cores for
the DVB-DSNG standard and can be easily extended to many DSP
dataflow applications.

1. Introduction

As semi-conductor very deep sub-micron technologies
ever get deeper, platforms and prototypes have become
important concepts in the design and validation of electronic
systems. As generic terms, platforms and prototypes have
meant different things to different people, but are both related
to three clear and serious difficulties the electronic industry
has to face with: 1) industry disaggregation/horizontalization
(market identification, system specification, components
development, system assembly, silicon manufacturing, test
and packaging are performed by distinct organizations), 2)
time-to-market pressure and 3) a dramatic increase in
non-recurrent-engineering (NRE) costs. These issues are
pushing for consolidation of methodologies able to provide
correct-the-first-time IC designs for high-volume and
low-cost systems on a chip (SoC). These methodologies are
based on systematic component reuse [1] at all abstraction
levels and (potentially high-level) synthesis of specific
interfaces. They exploit the concept of orthogonalization of
concerns: a clear separation between architecture design and
communication design is an important concept to handle SoC
complexity and get productivity gains.

In this context, platforms aim at providing an IP-reuse
framework for SoC design, thus reduce the IP development
and integration phases. Potential system heterogeneity due to
IP reuse is handled by either communication interface
synthesis or definition of interface standards the reusable IP

must comply with (i.e. point to point interfaces, generic
interfaces: OCP, VCI/VSIA, or proprietary buses: AMBA,
CoreConnect, PI-bus, etc.).

This paper presents our contribution in the field of digital
signal processor high-level synthesis (DSP-HLS) for a
platform-based approach dedicated to rapid prototyping.
We’ll demonstrate that the platform-based design
meet-in-the-middle paradigm fits not only to silicon design,
but also perfectly to a rapid prototyping methodology assisted
by high-level synthesis of hardware intellectual properties
(IPs). It frees designers from implementing time consuming
specific interfaces or designing custom processor cores to
reach the application efficiency required. Hence, it shortens
prototype refinements and then allows a wider system space
validation by rapid prototyping instead of pure (co)simulation
or emulation.

The paper is organized as follow: in section 2 we describe
our contribution in term of rapid prototyping platform design
and synthesis target using high level synthesis. We provide in
section 3 experimental results of the rapid prototyping of a
radio communication system design involving a DVB-DSNG
(Digital Video Broadcasting - Digital Satellite News
Gathering) system. We finally conclude and give insights in
the future research our work suggested us.

2. System Design Flow with High-Level Synthesis

2.1. System Design Flow

In the prototyping platform context the design flow
consists in mapping the functional architecture
(interconnected algorithmic functions) of the application to
be implemented onto the targeted platform architecture. The
functional architecture model is thus mapped onto a
heterogeneous platform, as represented by the “function
mapping” on Figure 1. Actually two design methodologies
are currently used for the hardware parts of a SOC:
• Hand written design at the RT level (Register Transfer)

allows optimal performance but is associated to
important development and verification time,

• IP core including the design of a wrapper
(communication interface) in order to satisfy from the
one hand the system constraints and the IP requirements
from the other hand.

Our approach consists in reducing the hardware IP core
development time by benefiting from the emerging
High-Level Synthesis (HLS) tools. Our methodology aims at

facilitating design, validation and synthesis of IP cores at the
behavioral level, and exploits functional as well as
architectural flexibility by allowing straightforward
instantiation of various RTL architectures – fulfilling various
sets of functional parameters and performance constraints
such as gate count, speed, etc. – starting from a single
high-level description of the behavior.

Inputs

Functional specifications

Outputs

Algorithm C

Algorithm C

Algorithm C

Inputs Outputs

Hardware
Blocs (FPGA…)

Processor
(µP, DSP)

High Level
Synthesis

Software
Compilation

Micro-architecture model

Top - Down

Platform
Based

Hardware
Blocs (FPGA…)

?

 Figure 1 Architecture Mapping including High Level Synthesis

2.2. Introduction to High Level Synthesis

High Level Synthesis [1][2] is analogous to software
compilation transposed to the hardware domain. The source
specification is written in a high-level language (Matlab,
SystemC, C, VHDL, etc.) that models the algorithmic
behavior of a complex hardware component. An automatic
refinement process allows the mapping of the described
behavior onto a specific technology target depending of
targeted constraints.

A flow including High Level Synthesis thus allows fast
algorithm implementations. Thanks to formal proven
automation algorithms, HLS tools generate an RTL
architecture which respects the designer and the system
constraints and which is reliable (error less) compared to a
hand coded design. It claims especially to speed up design
time versus register transfer level hand coding.

HLS is a constraint-based synthesis flow: hardware
resources are selected from technology-specific libraries of
components designed and characterized for a specified target.
HLS can also be constrained to limit the hardware complexity
(i.e. the number of allocated resources) and reach a given
computation speed. Some HLS tools also support other
system synthesis constraints: placement of data in dedicated
memorization units [3], data interfacing (arrival/production
dates of input/output data) [4]…

The high-level synthesis refinement process follows a top
down approach as shown in figure 2. The first synthesis task
is the transformation of the algorithmic description to an
internal representation model, which captures the algorithmic
semantics. From this internal model, four main tasks [2] are
performed:
(1) Internal representation analyzing, computation

identifying;

(2) Hardware resource selection and allocation: for each
kind of operation an operator type and its quantity has to
be defined. Operators are selected from the component
library defined by the user (components are
characterized in terms of gate count, delay, etc.).

(3) Operation scheduling consists in ordering operations on
an allocated operator, optimizing hardware reuse,
minimizing power consummation and interconnect
costs.

(4) Optimized architecture generation, including a
datapath, a control finite-state machine and other units
if needed (memory units, communication units etc.).

Thanks to its high abstraction level, a behavioral
description for HLS can be made customizable through
functional parameters. Each set of supported parameter
values and synthesis constraints allows to instantiate a
different dedicated architecture that will fulfill specific
functional requirements and achieve specific performance.

As a result, HLS tools can be seen as a relevant approach
for implementing and benchmarking algorithms on different
platforms and hardware resources in a rapid prototyping
design process.

HLS Core
(Selection, Allocation, Scheduling,

Optimisation, Generation)

* Latency
* Area
* Power Consumption
* Communication (I/O)

Behavioral
Description

Parser

Internal
Model

Components
Library

VHDL
RTL

Memory
Synthesis

Communication
Interface Synthesis

VHDL
RTL

VHDL
RTL

Design Constraints

Processing Unit
Synthesis

Figure 2 High Level Synthesis Refinement Process

2.3. HLS design context

Many commercial and academic high level synthesis tools
can be used: Catapult-C (Mentor Graphics), AccelFPGA
(AccelChip), SystemC Compiler (Synopsys) for commercials
and GAUT, SPARK, Cathedral, etc. for academics. For our
experiments the tool we use is GAUT1. GAUT is an pipeline
architecture synthesis tool dedicated to Signal and Image
processing applications under real time execution constraints.
This architectural synthesis tool performs synthesis under

1 GAUT tool is downloadable after a free registration on LESTER web site
http://lester.univ-ubs.fr:8080

latency constraint, memory mapping and data
communication consumption/production dates. It thus allows
the designer to accurately stipulate the system interaction and
constraints with the algorithm to be synthesized. The
generated architecture is composed of 3 units as shown in
figure 3: the processing unit (Data-Path and Control-Unit),
the memorization units and the communication unit which
sends and receives data from/to the rest of the system. This
architecture is generated in VHDL-RTL (direct input for
commercial logical synthesis tools like ISE/Foundation from
Xilinx, Quartus from Altera, etc.).

Memory
Unit

Communication
Unit

Processing Unit

Interface

The rest
of the System

Figure 3 Generated Architecture

As we target rapid prototyping system designs the
architecture is currently generated using formal component
libraries characterized for FPGA families (more than 190
libraries for Xilinx and Altera FPGAs) providing circuit
constraint correctness.

GAUT also provides a VHDL test bench automatic
generation which allow the designer to reuse its algorithmic
level input stimulus avoiding hand coded errors and harmful
time lost in time to market objective.

3. Experimental results

The proposed methodology is currently used in the
ALIPTA (Algorithmic Level IP for Telecom Applications)
project. This project aims at developing a complete receiver
compliant with the DVB-DSNG standard. Maximum
cohesion with DVB-S1 is maintained, such as concatenated
error protection to improve digital communications quality.
In particular, concatenated coding employing an inner
convolutional code combined (Viterbi Decoder) with a
Reed-Solomon outer code constitutes an attractive scheme
that is commonly encountered in many applications (fig. 4).

As said before the behavioral descriptions of these IP cores
have been written and synthesized using a HLS tool. From a
single behavioral description, a variety of architectures have
been generated, spanning a wide range of performance,
including the constraints of the DVB-DSNG standard we
target.

Before experimenting our approach with the Digital Video
Broadcasting and Digital Satellite News Gattering
application [5] we first analyze the decoding part.
Computation metrics aims us to make implementation
choices for each function of the DVB-DSNG decoding part.
Our mapping scheme is shown on figure 4 where the Viterbi
and Reed Solomon decoders are implemented onto hardware
blocs (computational intensive functions) and the
synchronization part onto a general processor (software part).

Viterbi
Decoder

Synchronization
+

Interleaving

Reed Solomon
Decoder

Received
Symbols

MPEG-2
Trame

OutputsHardware
Blocs (FPGA…)

Processor
(µP, DSP)

Implementation architecture model

Hardware
Blocs (FPGA…)

Inputs

High Level
Synthesis

High Level
Synthesis

Software
Compiler

Figure 4 DVB-DSNG Application Mapping

The Sundance platform [6] we used in the ALIPTA project
as a rapid prototyping support is composed of the last
generation of C6x DSPs and Virtex FPGAs. Communications
between different functional blocs are implemented with high
throughput SDB links [6]. Automatic generation of
communication interface for software and hardware IP frees
designer form interface design.

At the hardware level the communication between
computing nodes is handled by 4-phases handshaking
protocols and decoupling FIFOs. The handshaking protocols
synchronize computing with communication and the FIFOs
enable to store data in order to overcome potential data flow
irregularities. Handshaking protocols are used either to
communicate seamlessly between hardware nodes or
between hardware and software nodes. Handshaking
protocols are automatically refined by the GAUT tool to fit
with the selected (SDB) inter-node platform communication
interfaces (bus width, signal names, etc …).

To end the software code generation, platform specific
code has to be written to ensure the inter processing elements
communication. The communication drivers of the targeted
platform are called inside the interface functions introduced
in the macro-architecture model through an API mechanism.
Thereby we have developed C++ concurrent sequential
process like I/O drivers: we provide a specific class for each
type of link available on the platform.

Design synthesis results for the Viterbi and Reed Solomon
decoders are presented in the next sections. Results are based
on a Virtex-E FPGA technology with a 10 ns clock period,
which is the maximum latency of the sequential operators in
the technological library.

3.1. Viterbi decoding

The Viterbi algorithm is applicable to a variety of decoding
and detection problems which can be modeled by a
finite-state discrete-time Markov process, such as
convolutional and trellis decoding in digital communications
[7]. Based on the received symbols, the Viterbi algorithm
estimates the most likely state sequence according to an
optimization criterion, such as the a posteriori maximum
likelihood criterion, through a trellis which generally
represents the behaviour of the encoder.

The generic description of the Viterbi algorithm allowed us
to synthesize architectures using different values for the
following functional parameters: state number and
throughput. For each generated architecture, the complexity
(amount of logic elements) of the processing unit is given in

figure 5. Note that with the DVB-DSNG standard, the Viterbi
decoder includes 64 states.

State Number 8 16 32 64 128
Throughput (Mbps) 44 39 35 26 22

Number of Operations 50 94 182 358 582
Synthesis Time (s) 1 1 3 9 27

Number of logic
elements

223 434 1130 2712 7051

Figure 5 Synthesis results for different Viterbi decoders

In the particular case of the DVB-DSNG Viterbi decoder
(64 states) different throughput constraints (from 1 Mbps to
50 Mbps) have been tested.

Figure 6 Logic size for different throughputs

3.2. Reed Solomon Decoding

Reed-Solomon codes are block error correction codes with
burst error-correcting capabilities that have found widespread
use in storage devices and digital communication systems [5].
The channel coding scheme in the DVB-DSNG use a
(204,188) Reed-Solomon code. This RS code is a punctured
version of the RS(255,239) working on bytes. It is able to
correct up to 8 erroneous bytes per received packet of 204
bytes [5].

Thanks to the high level of the input specification of the RS
algorithm, several RS decoder architectures have been
generated using different bit rate values according to different
communication standards. In the case of the DVB-DSNG
standard transmissions are allowed from 1.5 Mbps to 72
Mbps. Figure 7 gives the complexity of the processing unit of
the RS decoder. The complexity is about 650 logic elements
until 10 Mbps. It increases until 3500 logic elements for 42
Mbps.

Figure 7 Logic size versus throughput different standards

In order to validate our methodology, we have implemented
on the Sundance platform [6] the decoding part of a
DVB-DSNG compliant receiver with a 26Mbits/s throughput
constraint. Synchronization and interleaving parts have been
implemented in software on the C6x DSP. For the
interleaving part, a row writing / column reading process has
been used with a 204x204 matrix.

Synthesis time results show that high level synthesis helps
the designer in rapid prototyping. It allows fast
implementations fulfilling various sets of system constraints
(latency, throughput) and application constraints (number of
coding states, …) from a single high-level description of the
behavior.

4. Conclusion and perspectives

Traditional methods for rapid prototyping of hardware cores
suffer from heavy limitations that prevent them from
efficiently addressing both the algorithmic complexity and
the high flexibility required by the various application
profiles in fast implementation and prototyping issues. A
high-level synthesis tool has been used for generating a set of
hardware IP cores for Viterbi and Reed-Solomon decoders
fitting various communication standards in a fastest way that
hand coding. The generated architectures have been used in
the case of a 26 Mbits/s DVB-DSNG decoder design. Results
prove that high-level synthesis tools can manage complex
algorithmic descriptions and generate high performance
architectures. Moreover HLS allows fast prototyping for
different behavioral parameters and architecture exploration.
Further efforts in our rapid prototyping methodology
including HLS will focus on exploiting the possibility on the
integrator’s side to parameterize the communication channels
accurately in order to automate the generation of the
communication interface.

5. References

[1] M. Keating, P. Bricaud, Reuse Methodology Manual for
System-on-a-Chip Design, 3rd edition, Kluwer Academic
Publishers, 2003.

[2] D. D. Gajski, N. D. Dutt, Allen C-H. Wu, Steve Y-L. Lin,
High-Level Synthesis: Introduction to Chip and System Design,
Kluwer Academic Publishers, Boston, MA, 1992.

[3] G. Corre, E. Senn, N. Julien, E. Martin , Memory Accesses
management during High Level Synthesis, CODES+ISSS,
September 2004.

[4] P. Coussy, A. Baganne, E. Martin, Communication and Timing
Constraints Analysis for IP Design and Integration, In Proc. of
VLSI-SOC Conference, pp. 38-43, December, 2003.

[5] Standard ETSI EN 301 210, Digital Video Broadcasting (DVB);
Framing structure, channel coding and modulation for Digital
Satellite News Gathering (DSNG) , March 1999.

[6] Sundance Multiprocessor Technology,
http://www.sundance.com

[7] A. J. Viterbi, Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm, IEEE Trans. Inform.
Theory, vol. IT-13, pp. 260-269, Apr. 1967.

