N

N

High Level Synthesis Assisted Rapid Prototyping for
Digital Signal Processing
Bertrand Le Gal, Emmanuel Casseau, Pierre Bomel, Chirstophe Jégo,
Nathalie Le Héno, Eric Martin

» To cite this version:

Bertrand Le Gal, Emmanuel Casseau, Pierre Bomel, Chirstophe Jégo, Nathalie Le Héno, et al.. High
Level Synthesis Assisted Rapid Prototyping for Digital Signal Processing. TEEE International Con-
ference on Microelectronics, Dec 2004, Tunis, Tunisia. pp.000. hal-00389850

HAL Id: hal-00389850
https://hal.science/hal-00389850
Submitted on 29 May 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00389850
https://hal.archives-ouvertes.fr

High-Level Synthesis Assisted Rapid Prototyping for Digital Signal Processing

B. Le Gal, E. CasseduP. Bomel, C. Jeg, N. Le Hend, E. Martirt

1. LESTER Lab.— CNRS FRE 2734
UBS University FRANCE
{First-Name.Surname}@univ-ubs.fr
http://lester.univ-ubs.fr:8080

Abstract

The increasing needs of higher data rates associated with
mobility constraints motivate the development of Digital Satellite
News Gathering (DSNG) and Digital Video Broadcasting
applications by Satellite (DVB_S). Error control codes like
Reed-Solomon and Viterbi codes are widely used in these
communication systems against channel noise. Traditional methods
for rapid prototyping of hardware coresfor thiskind of applications
are based on RTL specifications However, they suffer from heavy
limitations that prevent them from efficiently addressing both the
algorithmic complexity and the high flexibility required by the
various application profilesin fast implementation and prototyping
issues. For this reasons, we propose to reduce hardware IP core
development time by benefiting from the emerging High-Level
Synthesis (HLS) tools in a platform-based approach dedicated to
rapid prototyping. This technique has been successfully applied to
the design of Reed-Solomon (RS) and Viterbi decoder IP cores for
the DVB-DSNG standard and can be easily extended to many DSP
dataflow applications.

1. Introduction

As semi-conductovery deep sub-micron technologies
ever get deeper, platforms and prototypes have nbeco
important concepts in the design and validatioele€tronic
systems. As generic terms, platforms and prototyypese
meant different things to different people, butlaoéh related
to three clear and serious difficulties the elatittandustry
has to face with: 1) industry disaggregation/hartatization
(market identification, system specification, comeots
development, system assembly, silicon manufactyiest
and packaging are performed by distinct organina)io2?)
time-to-market pressure and 3) a dramatic incrdase
non-recurrent-engineering (NRE) costs. These issues are
pushing for consolidation of methodologies ablettovide
correct-the-first-time IC designs for high-volume and
low-costsystems on a chip (SoC). These methodologies are
based on systematic component reuse [1] at altaadtistin
levels and (potentially high-level) synthesis ofesific
interfaces. They exploit the conceptarthogonalization of
concerns. a clear separation between architecture desidn an
communication design is an important concept tallea8oC
complexity and get productivity gains.

In this context, platforms aim at providing an Buse
framework for SoC design, thus reduce the IP d@reént
and integration phases. Potential system heterigehe to
IP reuse is handled by either communication interfa
synthesis or definition of interface standardsréesable IP

2. ENST Bretagne, FRANCE
christophe.jego@enst-bretagne.fr
http://www.enst-bretagne.fr

3. Turbo Concept SAS, FRANCE
nathalie.leheno@turboconcept.com
http://www.turboconcept.com

must comply with (i.e. point to point interfacesgngric
interfaces: OCP, VCI/VSIA, or proprietary buses: BM,
CoreConnect, Pl-bus, etc.).

This paper presents our contribution in the fieldigftal
signal processor high-level synthesis (DSP-HLS) for a
platform-based approach dedicated to rapid prototyp
We'll demonstrate that the platform-based design
meet-in-the-middle paradigm fits not only to silicon design,
but also perfectly to a rapid prototyping methodglassisted
by high-level synthesis of hardware intellectuabparties
(IPs). It frees designers from implementing timasuoming
specific interfaces or designing custom processoes: to
reach the application efficiency required. Henteshortens
prototype refinements and then allows a wider systpace
validation by rapid prototyping instead of pure)&mulation
or emulation.

The paper is organized as follow: in section 2 wecdbe
our contribution in term of rapid prototyping platin design
and synthesis target using high level synthesispxieide in
section 3 experimental results of the rapid prqimty of a
radio communication system design involving a DVBNIG
(Digital Video Broadcasting Digital Satellite New
Gathering) system. We finally conclude and givéghts in
the future research our work suggested us.

2. System Design Flow with High-Level Synthesis
2.1. System Design Flow

In the prototyping platform context the design flow
consists in mapping the functional architecture
(interconnected algorithmic functions) of the apation to
be implemented onto the targeted platform architectThe
functional architecture model is thus mapped onto a
heterogeneous platform, as represented by the tfumc
mapping” on Figure 1. Actually two design methodés
are currently used for the hardware parts of a SOC:

Hand written design at the RT level (Register Transf

allows optimal performance but is associated to

important development and verification time,

IP core including the design of a wrapper

(communication interface) in order to satisfy frahe

one hand the system constraints and the IP regeiresm

from the other hand.
Our approach consists in reducing the hardwareole c
development time by benefiting from the emerging
High-Level Synthesis (HLS) tools. Our methodologysiat

facilitating design, validation and synthesis ofciftes at the
behavioral level, and exploits functional as wel§ a
architectural flexibility by allowing straightforwa
instantiation of various RTL architectures — fulfillj various
sets of functional parameters and performance @init
such as gate count, speed, etc. — starting fronmgles
high-level description of the behavior.

Functional specifications

Inputs " :’E ¥ Outputs
Top - bown T
M 1 "
i " i
n i Vo
4 iHighLew I Software ¢
1 i Snthesis :ECmpiIation
I H
A H
Platform Hardware
Based

Micro-architecture model

Figure 1 Architecture Mapping including High Level Synthesis

2.2. Introduction to High Level Synthesis

High Level Synthesis [1][2] is analogous to software
compilation transposed to the hardware domain. Boecs
specification is written in a high-level languagdatiab,
SystemC, C, VHDL, etc.) that models the algorithmic
behavior of a complex hardware component. An autema
refinement process allows the mapping of the desdri
behavior onto a specific technology target depemdih
targeted constraints.

A flow including High Level Synthesis thus allowssta
algorithm implementations. Thanks to formal proven
automation algorithms, HLS tools generate an RTL
architecture which respects the designer and tlstersy
constraints and which is reliable (error less) cared to a
hand coded design. It claims especially to speedagign
time versus register transfer level hand coding.

HLS is a constraint-based synthesis flow: hardware
resources are selected from technology-specifiarigs of
components designed and characterized for a spat#iget.
HLS can also be constrained to limit the hardwareglexity
(i.e. the number of allocated resources) and readiven
computation speed. Some HLS tools also support othe
system synthesis constraints: placement of datkedicated
memorization units [3], data interfacing (arrivadguction
dates of input/output data) [4]...

The high-level synthesis refinement process follaviep
down approach as shown in figure 2. The first sgsithtask
is the transformation of the algorithmic descriptito an
internal representation model, which captures kperghmic
semantics. From this internal model, four main sggk are

performed:
(1) Internal representation analyzing, computation
identifying;

Hardware resource selection and allocation: foheac
kind of operation an operator type and its quaiity to

be defined. Operators are selected from the conmpone
library defined by the user (components are
characterized in terms of gate count, delay, etc.).
Operation scheduling consists in ordering operatam

an allocated operator, optimizing hardware reuse,
minimizing power consummation and interconnect
costs.

Optimized architecture generation, including a
datapath, a control finite-state machine and otimés

if needed (memory units, communication units etc.).

Thanks to its high abstraction level, a behavioral
description for HLS can be made customizable through
functional parameters. Each set of supported pasmet
values and synthesis constraints allows to ingtntia
different dedicated architecture that will fulfigpecific
functional requirements and achieve specific pentorce.

As a result, HLS tools can be seen as a relevambagip
for implementing and benchmarking algorithms orfiedént
platforms and hardware resources in a rapid prpiogy
design process.

)

®3)

(4)

Behavioral
Description

Components

Library Design Constraints

Parser

* Power Consumption
* Communication (1/0)

HLS Core
(Selection, Allocation, Scheduling,
Optimisation, Generation)

Processing Unit
Synthesis

Communication

Memory
Synthesis

Figure 2 High Level Synthesis Refinement Process

D.3. HL S design context

Many commercial and academic high level synthexitst
can be used: Catapult-C (Mentor Graphics), AccelkPG
(AccelChip), SystemC Compiler (Synopsys) for conriads
and GAUT, SPARK, Cathedral, etc. for academics. dtor
experiments the tool we use is GAUTGAUT is an pipeline
architecture synthesis tool dedicated to Signal bBndge
processing applications under real time executiorstraints.
This architectural synthesis tool performs synthesigder

1 GAUT tool is downloadable after a free registaton LESTER web site
http://lester.univ-ubs.fr:8080

latency constraint, memory mapping and data
communication consumption/production dates. It tllsvs

the designer to accurately stipulate the systeenastion and
constraints with the algorithm to be synthesizede T
generated architecture is composed of 3 units arshn
figure 3: the processing unit (Data-Path and Cdtdrot),

the memorization units and the communication urhictv
sends and receives data from/to the rest of thiersysThis
architecture is generated in VHDL-RTL (direct inpuat f
commercial logical synthesis tools like ISE/Founalatirom

Xilinx, Quartus from Altera, etc.).
of the System

Figure 3 Generated Architecture

Memory
Unit

Il

Communication
Unit

Il

Processing Unit

ESR]

Receved Viterbi ST IET Reed Solomon MPEG-2
Symbols Decoder itz Decoder Trame

High Level High Level
Synthesis Synthesis

Hardware | ("Hardware |
Blocs(epca...)

“Blocs(eroa..)

Implementation architecture model

Software
Compiler

Inputs [Processor | Outputs

"_wP,osP) J

Figure 4 DVB-DSNG Application Mapping

The Sundance platform [6] we used in the ALIPTA proje
as a rapid prototyping support is composed of tst |
generation of C6x DSPs and Virtex FPGAs. Commuitnat
between different functional blocs are implementédt high
throughput SDB links [6]. Automatic generation of
communication interface for software and hardw&rdrées
designer form interface design.

At the hardware level the communication between
computing nodes is handled by 4-phases handshaking
protocols and decoupling FIFOs. The handshakintppots
synchronize computing with communication and thEQ4
enable to store data in order to overcome potedéitd flow

As we target rapid prototyping system designs thejregularities. Handshaking protocols are used eeitto

architecture is currently generated using formahgonent
libraries characterized for FPGA families (morenthEg0
libraries for Xilinx and Altera FPGAS) providing rcuit
constraint correctness.

GAUT also provides a VHDL test bench automatic
generation which allow the designer to reuse gethmic
level input stimulus avoiding hand coded errors hadnful
time lost in time to market objective.

3. Experimental results

communicate seamlessly between hardware nodes or
between hardware and software nodes. Handshaking
protocols are automatically refined by the GAUT Ittmfit

with the selected (SDB) inter-node platform comnoation
interfaces (bus width, signal names, etc ...).

To end the software code generation, platform sjgecif
code has to be written to ensure the inter proegsdements
communication. The communication drivers of the ¢ted
platform are called inside the interface functigmsoduced
in the macro-architecture model through an API raegm.
Thereby we have developed C++ concurrent sequential

The proposed methodology is currently used in theProcess like I/O drivers: we provide a specificssléor each

ALIPTA (Algorithmic Level IP for Telecom Applications)
project. This project aims at developing a comptetziver
compliant with the DVB-DSNG standard. Maximum
cohesion with DVB-S1 is maintained, such as comzatsl
error protection to improve digital communicaticomsality.

In particular, concatenated coding employing aneinn
convolutional code combined (Viterbi Decoder) with
Reed-Solomon outer code constitutes an attracthense
that is commonly encountered in many applicatidigs 4).

As said before the behavioral descriptions of thBsmores
have been written and synthesized using a HLS Evom a
single behavioral description, a variety of arattiiees have
been generated, spanning a wide range of perfomnanc
including the constraints of the DVB-DSNG standavd
target.

Before experimenting our approach with the Digitaleo
Broadcasting and Digital Satellite News Gattering
application [5] we first analyze the decoding part.

type of link available on the platform.

Design synthesis results for the Viterbi and Reeldr&on
decoders are presented in the next sections. Regelbased
on a Virtex-E FPGA technology with a 10 ns clockiper
which is the maximum latency of the sequential afmes in
the technological library.

3.1. Viterbi decoding

The Viterbi algorithm is applicable to a varietydafcoding
and detection problems which can be modeled by a
finite-state discrete-time Markov process, such as
convolutional and trellis decoding in digital comnizations
[7]. Based on the received symbols, the Viterbioatgm
estimates the most likely state sequence accorttingn
optimization criterion, such as the a posterioriximam
likelihood criterion, through a trellis which geady
represents the behaviour of the encoder.

Computation metrics aims us to make implementation The generic description of the Viterbi algorithroaled us

choices for each function of the DVB-DSNG decodiagt.
Our mapping scheme is shown on figure 4 where fterbf
and Reed Solomon decoders are implemented ontavaeed
blocs (computational intensive functions) and the
synchronization part onto a general processon{soé part).

to synthesize architectures using different valtms the
following functional parameters: state number

throughput. For each generated architecture, theplaxity
(amount of logic elements) of the processing wdiven in

and

figure 5. Note that with the DVB-DSNG standard, thterbi
decoder includes 64 states.

State Number 8 16 32 64 | 128
Throughput (Mbps)| 44 | 39 35 26 | 22
Number of Operations50 | 94 182 | 358 582
Synthesis Time (s) 1 1 3 9 27|
Number of logic | 551 434 | 1130| 2714 7051
elements

Figure5 Synthesisresultsfor different Viterbi decoders

In the particular case of the DVB-DSNG Viterbi ddeo
(64 states) different throughput constraints (frbrivibps to
50 Mbps) have been tested.

Number of logic elements

@000]]

3500

2000

2500 Joonnnae

2000

1500

10003

500

[o]

4 5 678 10 20
Throughput (Mbps)

Figure6 Logic sizefor different throughputs

i @ s

30 4050

3.2. Reed Solomon Decoding

Reed-Solomon codes are block error correction cavités
burst error-correcting capabilities that have foundespread
use in storage devices and digital communicatietesys [5].

In order to validate our methodology, we have immated

on the Sundance platform [6] the decoding part of a
DVB-DSNG compliant receiver with a 26Mbits/s thrdwpgit
constraint. Synchronization and interleaving phege been
implemented in software on the C6x DSP. For the
interleaving part, a row writing / column readinggess has
been used with a 204x204 matrix.

Synthesis time results show that high level synghesips
the designer in rapid prototyping. It allows fast
implementations fulfilling various sets of systeomstraints
(latency, throughput) and application constraintsngber of
coding states, ...) from a single high-level des@ipbf the
behavior.

4. Conclusion and per spectives

Traditional methods for rapid prototyping of harde/aores
suffer from heavy limitations that prevent them nfro
efficiently addressing both the algorithmic comjtg»and
the high flexibility required by the various appiton
profiles in fast implementation and prototypinguiss. A
high-level synthesis tool has been used for geingratset of
hardware IP cores for Viterbi and Reed-Solomon der®
fitting various communication standards in a fastesy that
hand coding. The generated architectures have sshin
the case of a 26 Mbits/s DVB-DSNG decoder desigesults
prove that high-level synthesis tools can managapbex
algorithmic descriptions and generate high perforcea
architectures. Moreover HLS allows fast prototypifugy
different behavioral parameters and architectupdogation.
Further efforts in our rapid prototyping methodaglog

The channel coding scheme in the DVB-DSNG use aincluding HLS will focus on exploiting the possiltylion the

(204,188) Reed-Solomon code. This RS code is atpret
version of the RS(255,239) working on bytes. lakde to
correct up to 8 erroneous bytes per received pank20d4
bytes [5].

Thanks to the high level of the input specificatidthe RS
algorithm, several RS decoder architectures haven be
generated using different bit rate values accortbrdifferent
communication standards. In the case of the DVB-BSN
standard transmissions are allowed from 1.5 Mbp§2o
Mbps. Figure 7 gives the complexity of the procegsinit of
the RS decoder. The complexity is about 650 logments
until 10 Mbps. It increases until 3500 logic elensefor 42
Mbps.

Number oflogic elements

[<LLL)) RS(207,187, 10y ATSC

RS(255,239,8): IEEE 802.16
o AS(255,223,16) CCSD! %
+ RS(225,205, 10) IESS308
o RS(255,223,16). ADSL2.
* RS(204,188,8): DVB-T

2000 * RS(204,188,8): DVB-C DVB-S A

3500

3000

2000

1500

1000

500

al

4 5 678 10 20
Throughput (Mbps)

30 40p0|

(] : s

Figure 7 Logic size ver sus throughput different standards

integrator’s side to parameterize the communicatitannels
accurately in order to automate the generation raf t
communication interface.

5. References

[1] M. Keating,
System-on-a-Chip
Publishers, 2003.

[2] D. D. Gajski, N. D. Dutt, Allen C-H. Wu, Stevé-L. Lin,
High-Level Synthesis: Introduction to Chip and System Design,
Kluwer Academic Publishers, Boston, MA, 1992.

[3] G. Corre, E. Senn, N. Julien, E. MartirMemory Accesses
management during High Level Synthesiss CODES+ISSS,
September 2004.

[4] P. Coussy, A. Baganne, E. Marti@pmmunication and Timing
Constraints Analysis for IP Design and Integration, In Proc. of
VLSI-SOC Conference, pp. 38-43, December, 2003.

[5] Standard ETSI EN 301 21Djgital Video Broadcasting (DVB);
Framing structure, channel coding and modulation for Digital
Satellite News Gathering (DSNG) , March 1999.

[6] Sundance
http://www.sundance.com

[7]1 A. J. Viterbi, Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm, IEEE Trans. Inform.
Theory, vol. IT-13, pp. 260-269, Apr. 1967.

P. Bricaud,Reuse Methodology Manual for
Design, 3rd edition, Kluwer Academic

Multiprocessor Technology,

