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Light induced deformation and instability of a liquid interface- I.

Statics.

Régis Wunenburger,∗ Alexis Casner,† and Jean-Pierre Delville‡

Centre de Physique Moléculaire Optique et Hertzienne, Université Bordeaux I,

351 cours de la Libération, 33405 Talence Cedex, France

Abstract

We study in details the deformations of a liquid-liquid interface induced by the electromagnetic

radiation pressure of a focused cw laser beam. Using a simple linear model of static equilibrium

of the interface under the effect of radiation pressure, buoyancy and Laplace pressure, we explain

the observed hump height variations for any value of the optical Bond number Bo = (ω0/`c)
2 (`c

is the capillary length and ω0 is the waist of the beam) in the regime of weak deformations, and

show that the deformations are independent of the direction of propagation of the laser. Increasing

the beam power, we observe an instability of the interface leading to the formation of a long jet

when the laser propagates from the more refringent phase to the less refringent one. We propose

that the total internal reflection of the incident light on the highly deformed interface could be at

the origin of this instability. Using a nonlinear model of static equilibrium of the interface taking

account of the angular dependance of radiation pressure, we explain the observed beam power

threshold of the instability as well as the shape of the interface deformations observed at large

waists just below the instability onset. According to this model, the instability should occur when

the interface slope reaches the angle of total reflection θTR. We find that the maximum incidence

angle along the interface θ i max just below the instability threshold is significantly smaller than

θTR, and that our nonlinear model does not present any instability up to θ i max = θTR, making the

proposed instability mechanism qualitatively rough although quantitatively accurate. We finally

discuss possible additional effects that could explain the instability.
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I. INTRODUCTION

Since the Maxwell’s calculation of the sunlight radiation pressure on a mirror [1], the force

exerted by light on surfaces is a topic of intense discussions [2–4]. Maxwell predicted that a

light beam of intensity I impinging normally upon a surface of reflectivity R exerts a pressure

Πr analogous to that of a beam of material particles. In 1861, he derived the following

formula: Πr = (1 + R)I/c. The first attempt at an experimental proof of the existence of

the radiation pressure Πr on a mirror in vacuum was performed by Lebedev [5] in 1901.

The experiments was further improved by Nichols and Hull [6] in 1903. Both calculated

and observed surface forces were proved to act inwards to the reflecting mirror. In 1905,

Poynting [7] extended the treatment of the radiation pressure to the case of light refraction.

By considering light incident from vacuum on the surface of a transparent dielectric, he

predicted an outward force, normal to the surface, irrespective of the angle of incidence. This

was in agreement with previous calculations from Thomson [8]. An outward normal force has

indeed been experimentally demonstrated by Ashkin [9] when a laser beam crosses the water

free surface. However, these observations revealed, in fact, a still continuing controversy for

the expression of the photon momentum in dielectric media; depending on the expression of

the momentum density of the electromagnetic field inside a dielectric, either the Abraham or

the Minkowski form, the surface force is predicted to act inwards or outwards. We refer the

reader interested in this conflict on radiation pressure theory to nice reviews and articles as

those written by Brevik [10], Loudon [11], Obukhov [12], or Mansuripur [3]. Despite Ashkin’s

observations, it was concluded that the direction of the fluid interface deformation could not

be considered as a sufficient proof to definitely answer the controversy because laser waves

also give birth to radial forces due to their Gaussian intensity profile [11, 13]. Conversely,

contrary to the theoretical point of view, experiments converge towards a unified picture.

Indeed, since the seminal work of Ashkin [9], all the investigations performed with lasers

on fluid interfaces have invariably retrieved the behavior predicted by Poynting, i.e. the

emergence of an outward surface force [14–17]. The generalization to interfaces between two

dielectrics leads to surface forces directed towards the medium of lowest index of refraction

[18, 19].

As illustrated in the following, the optical surface force is proportional to the refractive

index contrast between the media on both sides of the interface. Consequently, the am-
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plitude of the expected optical forcing is intrinsically weak in any case. Then, since the

radiation pressure has to compete with the surface tension (Laplace pressure) and buoyancy

(hydrostatic pressure), the resulting interface deformation is also very weak in general. The

effect of the surface force is thus difficult to observe. Typically, the height of the deformation

induced at the water free surface by a focused continuous Argon ion laser of a few watts

reaches a ten of nanometers [16]. Consequently, most of the experiments were performed

with laser pulses to compensate the weakness of the index contrast by the irradiance. There

exist nevertheless three major drawbacks. (i) With pulse excitation the control over the spa-

tial and temporal profiles of the wave is not always sufficiently accurate for reproducibility

in measurements. (ii) Stationary behaviors are never observed. (iii) Intense irradiance often

sets off secondary disturbing bulk couplings such as optical nonlinearities (self-focusing and

filamentation) and/or excess heating [20] (thermal expansion and boiling). Bulk heating by

lasers can as well directly couple with liquid interfaces and significantly deform them by

thermocapillary flows [21]. On the other hand, due to its weakness, the induced surface

force is often investigated indirectly from the lensing associated to the interface deformation

[9, 16, 17] or by interferometric holography [14]. This weakness also suggests why radiation

pressure effects received much less attention than optical trapping and tweezing [22]. The

notoriety of optical tweezers even leads to situations where surface properties were indi-

rectly probed by optical actuation of beam trapped beads in contact with the interface [23]

or ”glued” to it [24]. However, the emergence of soft materials in the eighties removed the

laser radiation pressure from its confinement to the optical physics area, and brought a sort

of second birth to optical surface forces. Indeed, as surfactants and membranes are often

characterized by low surface tension, it became possible to directly deform soft interfaces at

reasonably low irradiance without the help of a beam-trapped bead. This property allows for

quantitative measurements of ultra-low surface tension in a contactless manner [19]. More-

over, since optical dynamometry is generally limited to large vesicles, radiation pressure was

also used to quantitatively determine the elasticity of small vesicles [25] and cells [26, 27].

As the bending of these soft interfaces was still weak, all these experiments, and others [18],

essentially investigated the linear regime of deformation. If now this regime starts to be well

documented, our understanding of non-linear behaviors in deformations appearing at much

larger laser illuminations, when reachable, is still at a very early stage. Impressive pictures

of water droplets shape distortions driven by laser pulses were already presented more than
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fifteen years ago by Zhang and Chang [15]. In their experiments, large deformations at the

front and the rear of a water droplet intercepted by the beam were observed with eventual

free-surface disruption on the exit face under even higher illumination. Even if significant

success has been achieved in the theoretical description of the weakly non-linear regime

of deformation [28, 29], such a scheme, based on linear wave theory, cannot explain giant

deformations and the subsequent droplet disruption.

Using very soft transparent liquid interfaces, the aim of the present research is, namely,

to give a general description of these optical radiation pressure effects. We experimentally

investigate the shape and the amplitude of stationary laser-induced interface deformations

from the linear to the highly nonlinear regime until the onset of interface instability. Results

are compared to predictions from existing models. Moreover, by investigating the curvature

of interface deformations very close to the instability onset, we discuss the validity of the

instability mechanism previously suggested [30]. To explore the underlined physics, we used

near-critical liquid-liquid interfaces. As surface tension vanishes close to a critical point,

this near-criticality offers invaluable conditions to investigate the full range in interface

deformation at steady state under continuous wave laser excitation, i.e. in conditions that

are particularly favorable for quantitative investigations. By varying the interface softness

with a temperature scanning and changing the size of the exciting beam, it becomes indeed

possible to give a sort of universal point of view on laser-induced interface deformation. The

related dynamics and the corresponding time scales close and far from instability onset are

discussed in details in a companion article [31].

We first present in Sec. II the characteristic features of the electromagnetic radiation

pressure and of the experimental setup. Sec. III is devoted to the theoretical and exper-

imental results concerning the static interface deformations of small amplitude (so-called

“linear regime”) induced by the radiation pressure. In particular, we show that the height

and the shape of small amplitude deformations do not depend on the direction of propa-

gation of the beam (“up-down” invariance). At large enough beam power, this up-down

invariance breaks down, and the interface shapes vary with the direction of propagation of

the laser beam. In Sec. IV, we study the interface instability which occurs when the inci-

dent laser beam exceeds a given power, leading to the formation of a long jet. We propose

a simple mechanism of instability that accurately predicts the values of the beam power at

which the instability develops. This model is based on the hypothesis that instability occurs
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when the maximum of the angle of incidence along the deformed interface reaches the angle

of total reflection. This leads to a focusing of the incident electromagnetic energy towards

the tip of the deformation and consequently to a huge increase of the radiation pressure

acting on it. In order to check the validity of this instability mechanism, we measure the

angle of incidence along the deformed interface at the instability threshold. We show that

its maximum is noticeably smaller than the angle of total reflection, implying that only a

small amount of the incident electromagnetic energy is reflected towards the deformation

tip at the instability threshold. In Sec. V, we finally show that a simple nonlinear numerical

model of the interface deformation describes satisfactorily the observed deformations just

below the instability threshold, although it does not present any numerical instability. Using

this numerical computation, we explain why the model of total internal reflection, although

crude, accurately predicts the beam power threshold at which the instability occurs. Finally,

we conclude in Sec. VI.

II. PRINCIPLES OF THE EXPERIMENT

In this section, we first present the main characteristic features of the electromagnetic

radiation pressure at the interface between two dielectric fluids. The fact that radiation pres-

sure is usually very weak justifies our choice of a very soft liquid interface, whose properties

are next shortly presented. We finally describe the experimental setup used for deforming

and visualizing deformed liquid interfaces.

A. Electromagnetic radiation pressure at an interface between two dielectric me-

dia

To figure out a simple and intuitive picture of the electromagnetic radiation pressure,

let us consider the flat interface between two dielectric, non-magnetic media labelled 1

and 2, of uniform refractive index n1 and n2 (n1 < n2). We assume this interface to be

irradiated at normal incidence by a monochromatic light beam (frequency ν, direction of

propagation along unit vector u). Since the momentum p of a photon is proportional to the

refractive index of the medium through which it propagates, pi = ni
hν
c
u, it varies when the

photon is refracted at the interface between the two media. From the second Newton’s law,
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this variation of momentum is induced by a force exerted on the photon by the interface.

Considering first the configuration of a downward beam incident from the upper, more

refringent medium 2 to the lower, less refringent medium 1 (cf. Fig. 1a), the decrease of the

photon momentum p1 −p2 = (n1 − n2)
hν
c
u when crossing the interface is due to an upward

force. From the third Newton’s law, the force exerted by the photon on the interface, is its

opposite, i.e. directed downward from the more to the less refringent medium. Considering

now the reversed situation of an upward beam (cf. Fig. 1b), it is straightforward to show

that the force exerted by the photon on the interface is the same, as it gains momentum when

crossing the interface. This simplified corpuscular point of view shows that the direction of

the force exerted on the interface by a refracted photon is independent of the direction of

propagation of the electromagnetic wave.

To determine the actual radiation force exerted by the photons incident on the interface

with an angle of incidence θi, which is equal to the opposite of the variation per unit time

of their momentum, one has to take into account the proportion of refracted and reflected

photons at the interface, given by the classical reflection and transmission coefficients in

electromagnetic energy R and T = 1 − R [32]. Since n1 ' n2 in our two-fluid sample,

R and T do not quantitatively depend on the polarization state of the incident wave [33].

Considering here the case of a downward beam incident from medium 2 to medium 1 with

an angle of incidence θi, as indicated in Fig. 2, it is shown in Appendix A that the radiation

force f acting on a portion of interface of unit area is:

f = n2 cos2 θi

(
1 + R − tan θi

tan θt

T

)
I

c
n2→1, (1)

where I is the laser beam intensity, θt the angle of refraction (n2 sin θi = n1 sin θt), and n2→1

is the unit vector normal to the interface and directed from medium 2 to medium 1. Since

this force is always normal to the interface whatever the angle of incidence, its intensity is

called the radiation pressure (hereafter noted Π). At normal incidence, f simplifies to:

f(θi = 0) = 2n2(
n1 − n2

n1 + n2

)
I

c
n2→1. (2)

Considering now the case of an upward beam incident from medium 1 to medium 2, we

obtain the expression of the radiation force per unit area just by inverting indices 1 and 2

in Eq. (1). Applying this transformation to the expression of f at normal incidence, Eq.

(2) evidences the fact that the direction of the radiation force is independent of the beam
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direction (“up-down” invariance). It has to be noted that this property of the radiation

pressure remains valid for any value of the angle of incidence.

Eq. (2) also allows us to calculate an order of magnitude of the radiation pressure.

For typical conditions, i.e. excitation by a continuous wave laser beam of power P = 1W

focused on a 10µm2 surface at an interface of index contrast 0.1, one finds 10Pa. This

intrinsically small value shows that we need to use very soft fluid interfaces in order to be

able to noticeably deform them. It also illustrates why the deformation of classical interfaces

(liquid free surface, for instance) is so small [9, 16].

B. The fluid interface used

In order to achieve a very soft liquid interface, we consider the near-critical two-phase

equilibrium state of a micellar phase of a microemulsion. The microemulsion is composed of

water, oil (toluene), surfactant (sodium-dodecyl-sulfate, SDS), and co-surfactant (n-butanol-

1). For low concentrations of both water and surfactant, such a mixture organizes at thermo-

dynamic equilibrium as a suspension of surfactant-coated water nanodroplets, the micelles,

dispersed in an oil continuum. The used micellar phase behaves as a binary mixture of

micelles and oil. It exists a critical line of consolute points with associated reverted coex-

istence curves [34]. For the chosen composition (mass fractions: water, 9%, toluene, 79%,

SDS, 4 %, butanol, 17%), the micelle radius is ξ0 = 40 Å[35]. This value is small enough to

let the mixture be transparent in the visible window. This micellar phase of microemulsion

belongs to the d = 3, n = 1 universality class of the Ising model [36]. Its critical temperature

is Tc ' 35◦C. Above Tc, this mixture separates in two micellar phases, labelled 1 and 2,

characterized by different concentrations of micelles φ1 and φ2, as indicated by the phase

diagram schematically shown in Fig. 3a. In the vicinity of its consolute point, some prop-

erties of this critical two-phase mixture present scaling-law behaviors that are characteristic

of the critical phenomena associated to second order phase transition of order parameter

φ1 − φ2. These quantities are the volume fraction contrast:

φ1 − φ2 = ∆φ0

(
T − Tc

Tc

)β

, (3)

with ∆φ0 = 1.458 and β = 0.325, the density contrast:

ρ1 − ρ2 = ∆ρ0

(
T − Tc

Tc

)β

, (4)
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with ∆ρ0 = 284kg.m−3, the refractive index contrast:

n1 − n2 = ∆n0

(
T − Tc

Tc

)β

, (5)

with ∆n0 '
(

∂n
∂ρ

)

T
∆ρ0 and

(
∂n
∂ρ

)

T
= −1.22 × 10−4, the surface tension:

σ = σ0

(
T − Tc

Tc

)2ν

, (6)

with ν = 0.63 and σ0 = 10−4J.m−2, and the capillary length:

`c =

√
σ

(ρ1 − ρ2)g
= `c0

(
T − Tc

Tc

)ν−β/2

, (7)

with `c0 =
√

σ0

∆ρ0g
= 190µm, g being the acceleration of gravity. Our motivations to use

such a medium are clearly illustrated by the following reasons. At T − Tc ∼ 1K, we

find σ ∼ 10−7J.m−2, an extremely low value compared to that of the water free surface,

which makes the interface very soft and deformable. Another obvious advantage of such a

fluid interface is the possibility to tune continuously the above presented properties just by

changing the sample temperature T .

C. Experimental setup

1. Laser beam tuning

Since the laser beam intensity depends on both the beam power and waist, the experi-

mental setup, schematized in Fig. 4, is conceived so as to focus a vertical laser beam on the

horizontal fluid interface in the sample cell C and to tune the beam waist ω0. The beam is

provided by a continuous wave Ar+ laser (wavelength in vacuum λ0 = 514nm) in the TEM00

mode. The lens L1 forms a first intermediate waist. Selection of the upward or downward

direction of the laser beam is achieved by turning the polarization of the laser light with

a half-wave plate λ/2 and directing it using the beam splitter BS. Beam waist tuning in

C is performed by moving the prism Pr to vary the optical path between L1 and the long

working distance microscope objectives (×10), either O1 (upward beam) or O2 (downward

beam). Accessible range of beam waists are ω0 = 4.8 − 32.1µm (resp. ω0 = 3.47 − 11.3µm)

for upward (resp. downward) beam. The associated confocal parameter z =
nπω2

0

λ0

is always
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larger than 100µm. Consequently, close to the interface, the intensity distribution I(r, z)

associated to the incident beam can be assumed as cylindrical along the beam axis (Oz) and

writes: I(r, z) ' I(r) = 2P
πω2

0

exp
(
−2r2

ω2

0

)
. As the beam waist altitude varies with the optical

path between L1 and either O1 or O2, C is mounted on translation stages to precisely locate

the beam waist on the interface.

2. Sample observation

The two-phase micellar microemulsion sample is contained in a hermetical transparent

glass cell, whose temperature is regulated with a stability of ±0.05K. The phase distribution

within the sample cell is shown schematically in Fig. 3 and is illustrated by the picture in

Fig. 4. Interface deformations are illuminated by a white light source and are observed

using a CCD video camera. The beam path through the sample can be either observed,

since some fraction of the beam intensity is scattered by the micelles, or completely hidden

by placing a colored glass filter on front of the camera.

III. LINEAR REGIME OF STATIC DEFORMATION

In order to understand why a liquid interface can be destabilized by the optical radiation

pressure at a well defined beam power onset, it is necessary to get a clear view on the physics

underlying the weak amplitude interface deformation obtained at much lower beam powers.

This section is dedicated to this purpose.

Under the effect of the radiation pressure associated to the focused laser beam, and after a

short transient, the liquid interface presents a steady, axisymmetric bell-shaped deformation.

Two examples are given on top of Fig. 5a and 5b respectively for a downward and an upward

propagating beam. The shape of the deformation results from the equilibrium between

radiation pressure, hydrostatic pressure difference and Laplace pressure at the interface.

A. Scaling approach

As the typical length scale of optical excitation is the beam waist ω0, we define an optical

Bond number Bo =
(

ω0

`c

)2

. Bo can be experimentally varied over a wide range, from 0.01
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to 5, by independently changing the sample temperature T and the beam waist ω0.

On the one hand, regime interfacial effects overcome buoyancy effects in the Bo � 1.

Assuming that the hump of height h has a typical curvature radius of ω0, we can get an

order of magnitude of h by equalling the radiation pressure P (n2−n1)
cω2

0

(using Eq. 2, I ∼ P
ω2

0

and n1 ' n2) and the Laplace pressure σ h
ω2

0

. We find h ∼ P (n2−n1)
σc

.

On the other hand, gravitational effects dominate interfacial effects in the Bo � 1 regime.

By equalling the hydrostatic pressure step at the interface (ρ1 − ρ2)gh and the radiation

pressure, we get h ∼
(

∂n
∂ρ

)
T

P
ω2

0

1
gc

. Note that in the Bo � 1 regime h scales as P , whereas h

scales as I in the Bo � 1 regime.

B. Linear model

The axisymmetric interface deformations are naturally described in cylindrical coordi-

nates (r, ϕ, z) centered along the beam axis (Oz) by the height h(r) of the deformed interface

shifted from its flat position at rest, or equivalently, by the angle θi(r) = arctan (h′(r)) be-

tween the deformed interface and the horizontal (see Fig. 2). Assuming that the equilibrium

shape of the interface is only determined by the balance between the electromagnetic radia-

tion pressure, the hydrostatic pressure difference and the Laplace pressure at the interface,

i.e. neglecting electrostriction [10] and thermo-capillary effects [21], the steady interface

profile should be accurately described by the following equation:

(ρ1 − ρ2)gh(r) − σκ(r) = Π(r, z, θi), (8)

where κ(r) = 1
r

d
dr

(r sin θi(r)) = 1
r

d
dr

(
rh′(r)√
1+h′2(r)

)
is the curvature of the interface and

Π(r, z, θi) the radiation pressure given by Eq. (1).

Small amplitude deformations are defined as those for which |h′(r)| = | tan θi(r)| '
|θi(r)| � 1. This condition has three consequences. (i) κ(r) ' 1

r
d
dr

(rh′(r)). (ii) The laser

beam can be considered as impinging the interface at normal incidence. (iii) Although the

beam propagation is modified by the lens effect of the deformed interface [37], these pertur-

bations do not modify the interface shape in turn (no propagation-deformation feedback).

This means that the radiation pressure is only due to the incident, parallel laser beam:

Π = Π(r, θi = 0). Thus, steady deformations of small amplitude should be described by the
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linearized expression of Eq. (8). This linear approximation leads to:

(ρ1 − ρ2)gh(r) − σ
1

r

d

dr
(rh′(r))

= −ni

c

n2 − n1

n1 + n2

4P

πω2
0

exp

(
−2r2

ω2
0

)
, (9)

where i = 1 (resp. i = 2) corresponds to an upward (resp. downward) beam crossing the

interface from medium 1 to medium 2 (resp. from medium 2 to medium 1).

In the Bo � 1 regime, the solution of Eq. (9) is simply:

h(r)Bo�1 = −
(

∂n

∂ρ

)

T

ni

n1 + n2

4P

πgcω2
0

exp

(
−2r2

ω2
0

)
. (10)

Since n1 ' n2 near criticality, the height of the hump is

h(r = 0)Bo�1 '
(

∂n

∂ρ

)

T

2P

πgcω2
0

, (11)

as predicted by the scaling approach. Moreover, Eq. (10) shows that the curvature radius

of the hump scale as ω0, as assumed in the scaling approach.

In the Bo � 1 regime, the solution of Eq. (9) reads:

h(r)Bo�1 = −ni

c

n2 − n1

n2 + n1

P

2πσ[
E1

(
8

ΓBo

)
− E1

(
2r2

ω2
0

)
− ln

(
ΓBo

4

r2

ω2
0

)]
, (12)

where E1 is the 1-argument exponential function (E1(x) =
∫ +∞

x
e−u

u
du) and Γ = 1.781 is the

Euler constant. Indeed, by integrating Eq. (9) we find:

h(r)Bo�1 = −ni

c

n2 − n1

n2 + n1

P

2πσ[
E1

(
ω2

bc

ω2
0

)
− E1

(
2r2

ω2
0

)
− ln

(
2r2

ω2
0

)]
, (13)

where ωbc is a radius, large compared to ω0, which is defined by the boundary condition

h(r = ωbc)Bo�1 = 0. For integration we also assumed ∂hBo�1

∂r
(r = 0) = 0. To determine ωbc,

we solve Eq. (9) using the Fourier-Bessel transform h(r) =
∫ ∞
0

h̃(k)J0(k)kdk, where J0 is

the 0th-order Bessel J function. The general expression of h(r) becomes:

h(r) = −ni

c

n2 − n1

n2 + n1

P

π

∫ ∞

0

exp
(
−k2ω2

0

8

)

(ρ1 − ρ2)g + σk2
J0(kr)kdk. (14)
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The nice aspect of Eq. (14) is that we can obtain an analytical expression of h(r = 0). we

find:

h(r = 0) = h(r = 0)Bo�1 × F (Bo), (15)

where F (Bo) is given by:

F (Bo) =
Bo

8
exp

(
Bo

8

)
E1

(
Bo

8

)
. (16)

As E1(x � 1) ' − ln(Γx) + x, we find for Bo � 1:

h(r = 0)Bo�1 = −ni

c

n2 − n1

n2 + n1

P

2πσ
ln

(
8

ΓBo

)
, (17)

which leads to ωbc = 2
√

2`c/Γ, and thus to the expression of h(r) given by Eq. (12). This

exact calculation reveals the Bo correction to the Bo � 1 scaling law for h obtained by the

scaling approach. On the other hand, as E1(x)x→∞ → 0 and
ω2

bc

ω2

0

= 8
ΓBo

� 1, the solution of

Eq. (12) close to the beam axis writes:

h(r � ω0)Bo�1 ' −ni

c

n2 − n1

n1 + n2

P

2πσ

[
ln

(
8

ΓBo

)
− 2r2

ω2
0

]
. (18)

Consequently, the curvature radius of the hump scales as ω0.

C. Comparison with experiments

We analyzed the hump height h(r = 0) of small amplitude deformations obtained using

an upward propagating beam, for several beam waists and power values, and we compared

our measurements to the above presented theoretical predictions.

In the Bo � 1 regime the variations of h(r = 0) versus P (n2−n1)
σc

, plotted in Fig. 6, are

found to be linear and independent of ω0. This behavior confirms the validity of Eq. (17)

for the Bo � 1 regime. Moreover, in the bottom of Fig. 5b, the digitized shapes of interface

deformations corresponding to the above snapshots, are compared to the predicted shapes

(solid lines) computed using Eq. (12). The observed satisfactory agreement shows that we

retrieved the expected behavior for the Bo � 1 regime [18].

To illustrate the Bo � 1 regime, the variations of h(r = 0) are plotted versus (n2−n1)
(ρ2−ρ1)

P
gcω2

0

in Fig. 7 for several values of Bo that are larger than 2.0. A linear behavior with a slope

independent of temperature is observed. This confirms the validity of Eq. (11) predicted

for Bo � 1.
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D. “Up-down” invariance

According to Eq. (2), the interface deformations at normal incidence, i.e. their direction,

shape and height, should not depend on the direction of the beam because n1 ' n2 (see also

Fig. 5). Given any value of Bo, Eqs. (15-16) show that the hump height h(r = 0) can be

expressed in a synthetic fashion as a function of both h(r = 0)Bo>>1 and Bo. To evidence

this “up-down” invariance, we plotted in Fig. 8 the variations of the normalized hump

height h̃(Bo) = h(r=0)
h(r=0)|Bo�1

versus Bo, measured for both upward and downward directions

of propagation of the laser beam and for all the experimentally investigated values of Bo.

Both data sets collapse onto the solid line representing the behavior of F (Bo) predicted by

Eq. (16). This agreement confirms the theoretically predicted invariance of the deformation

with respect to the beam direction at small deformation amplitude.

E. Up-down invariance breakdown

We end this section dedicated to the linear regime of deformation by characterizing the

limits of this regime, and more precisely the up-down invariance breakdown in the Bo � 1

regime. Indeed, at moderate beam power, the interface shape starts to noticeably depend

on the direction of propagation of the laser beam.

Let us first consider a laser beam propagating upward. In the Bo � 1 regime, and for

values of the beam power of the order of 6 σcω0

n2−n1

, the interface exhibits a tether-like shape,

as shown by the right-hand picture of Fig. 9, whereas the height h(r = 0) deviates from the

linear relationship h(r = 0) ∝ P (n2−n1)
σc

illustrated by the straight line. Such shapes, which

may be attributed either to the coupling between the deformation of the interface and the

resulting refraction of the laser beam, or to optical nonlinearity induced by electro-osmosis,

shall deserve further investigation.

The situation is totally different for a laser propagating downward. By increasing pro-

gressively the beam power P , h(r = 0) increases first linearly with P , as described in Sec.

IIIC. Then, h(r = 0) presents a sharp increase as P approaches a well defined threshold

value called P↑, but remains finite and stationnary, as shown in Fig. 9. P↑ is defined as the

threshold value of the beam power above which the interface is no longer stable. Instability

leads to the formation of a very long cylindrical jet, as shown in the left-hand picture of
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Fig. 9. Its diameter is of the order of ω0 whereas its length is typically a few hundreds of

micrometers. This instability threshold as well as its possible origin are the purpose of the

next two sections. The physics of the jet will be the subject of a future article.

IV. INTERFACE INSTABILITY

We studied this interface instability mainly in the Bo � 1 regime, where surface effects

overcome gravity effects.

A. Beam power behavior just below the instability threshold

We measured the dependance of P↑ with respect to the beam waist ω0 and temperature

difference T − Tc in the range ω0 = 3.5 − 11µm and T − Tc = 1.5 − 15K, corresponding to

Bo = 0.006 − 0.54. P↑ was determined with an accuracy of ±10mW . The corresponding

variations of P↑ versus ω0 are plotted in Fig. 10a. For each value of T − Tc, P↑ is found to

vary linearly with ω0. The variation of P↑ versus T − Tc for ω0 = 3.5µm are plotted in Fig.

10b in log-log scales. It is found to be compatible with a power law behavior (T −Tc)
1.01±0.05.

B. Dimensional analysis and empirical scaling law

In the Bo � 1 regime, dimensional analysis shows that
P↑

σcω0
is a function of (n2 − n1)

only. Given the power law behavior in (T − Tc) of P↑ shown in Fig. 10b, and considering

Eq. (6) and Eq. (4), we can confidently assume this function to behave as a power law

of n2 − n1: P↑ ∝ σcω0(n2 − n1)
x, and find x = (−0.77 ± 0.13) ' −1. The validity of this

empirical scaling law is confirmed by the variations of the quantity
P↑(n2−n1)

σc
versus ω0 shown

in Fig. 11. The best linear fit of this master curve gives:

P↑ = β
σcω0

n2 − n1
with β = 6.3 ± 0.3 (19)

C. A possible opto-hydrodynamic mechanism for the interface instability

As recently proposed in [30], a possible cause for the up-down invariance breakdown in

the regime of large deformation could be the fact that light rays propagating downward in
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the phase of largest refractive index can encounter total reflection when the laser impinges a

highly deformed interface; note that no such behavior occurs when laser propagates upward

in the phase of smallest optical index. Increasing progressively P , total reflection would

occur first along the circle formed by the inflexion points of the interface shape, where θi

is maximum. This initially small amount of reflected light would be refocused towards the

beam axis, resulting in an increase of the radiation pressure at the tip of the deformation.

This pressure variation would in turn stretch the interface deformation, and consequently

increase the area of the part of the interface which totally reflects light. This positive

feedback could thus be a realistic mechanism for this opto-hydrodynamic instability. As

illustrated in Fig. 12, the plausibility of this mechanism is supported by the observation

of light focusing within the deformation during the instability growth and the following jet

formation.

This mechanism is based on the assumption that the maximum of θi, θi max, equals the

angle of total reflection θTR = arcsin n1

n2
at the instability onset. We test the validity of

this hypothesis by measuring precisely the shape of the interface just below the instability

threshold in order to determine the maximum of the incidence angle along the interface.

Note that, given Eq. (5), one has

θTR = arcsin
n0 − ∆n0

2

(
T−Tc

Tc

)0.325

n0 + ∆n0

2

(
T−Tc

Tc

)0.325 , (20)

where n0 = 1.464. θTR is expected to vary between 85◦ and 82◦ in the investigated temper-

ature range T −Tc = 2−10K. These very large values arise from the smallness of the index

contrast in our near-critical two-phase system.

D. Maximum angle of incidence just below the instability threshold

1. Interface shape digitization

We captured and digitalized the interface profile just below the instability threshold

(|P − P↑| ≤ 10mW ) in the range of beam waists ω0 = 3.47 − 6.95µm and for temperatures

T − Tc = 2 − 10K. In terms of Bo number, the investigated range is Bo = 0.008 − 0.14.

Since we were interested in the slope of the interface shape, particularly around its inflexion

points along its sides, and since the determination of a slope is very sensitive to digitization
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noise, we employed a special process for digitizing the interface shape. We computed the

radial gradient of the raw picture (i.e. along the r axis), and then we detected the intensity

maximum along each pixel line. Thus, the left and right sides of the interface deformation

are defined in an unusual manner as rl(h) and rr(h), as illustrated in Fig. 13. For precision

purpose, the tip of the interface deformation is more classically obtained by computing

the vertical gradient of the raw picture (i.e. along the z axis) and detecting the intensity

maximum of each pixel column. It is thus defined as h(r).

2. Determination of the angle of incidence around the inflexion points of the interface shape

In order to precisely determine the slope of the digitized interface shape around its inflex-

ion point, we fitted each of its sides rl(h) and rr(h) using two different polynomial functions of

third degree Ql(h) and Qr(h), which exhibit a single inflexion point. The angle θi(r) between

the interface and the horizontal is obtained on the left and the right side of the deformation

using respectively θi(r)(
◦) = −90−arctan

(
dQl

dh
(h(r))

)
and θi(r)(

◦) = 90−arctan
(

dQr

dh
(h(r))

)

(see Fig. 13). Although we could not estimate precisely the accuracy of this method for the

determination of the angle of incidence, we checked that fits using polynomial functions of

higher degrees gave close values for the maximum of the angle of incidence, and we concluded

that its accuracy was of the order of ±2◦.

3. Maximum angle of incidence just below the instability threshold

Calling θil max < 0 (resp. θir max > 0) the minimum (resp. maximum) of the angle of

incidence along the left (resp. right) side of the interface shape, we define the maximum

angle of incidence as θimax = θir max−θil max

2
. The variations of θimax measured just below the

instability threshold are plotted in Fig. 14 versus T − Tc for several values of ω0, together

with the variation with T − Tc of the angle θTR predicted for total reflection. While θi max

is found to fluctuate around 72◦ with no noticeable dependance with respect to T − Tc, it is

significantly smaller than θRT by 10 − 15◦.

In Fig. 15, the variations of the same measurements of θi max are plotted as a function

of ω0 for several values of T − Tc. θi max is also found to exhibit no noticeable dependance

with respect to ω0.
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E. Discussion

The 10 − 15◦ gap between θimax and θRT has a dramatic incidence on the validity of the

proposed mechanism which assumes that instability is triggered by total reflection of light

within the deformed interface. As a matter of fact, since n1 ' n2, the Fresnel reflection

coefficient of energy R is very small at any angle of incidence, except very close to θTR,

whatever the polarization of the incident wave [33]. This is illustrated in Fig. 16a for the

particular case of a transverse electric (TE) polarized wave. In particular, R is of the order of

10−3 for θi ' 72◦. As a consequence, instability occurs whereas only a very small amount of

the incident energy is reflected towards the tip of the deformation. Although this instability

mechanism has not to be definitely rejected, the measurements of θimax presented in Figs.

14-15 indicate that the scenario leading to the interface instability is more complex.

To determine more precisely the actual influence of the reflected light on the interface

shape at the instability threshold, we computed the additional contribution of the light

partially reflected at the interface to the radiation pressure within the frame of geometrical

optics. This computation, presented in Appendix B, shows that additional radiation pressure

contribution of the partially reflected light is indeed small compared to the radiation pressure

of the incident light everywhere along the interface except very close to the beam axis, where

focusing of the reflected light is probably overestimated. Consequently, the interface shape

should be accurately described by considering the radiation pressure of the incident light

only.

One way for retaining the idea of reflection induced instability is inspired by Rayleigh-

Bénard convection in pure fluids near the liquid-vapor critical point [38]. In such supercritical

fluids, the onset of convection can be reached without increasing neither the temperature

difference between the top and the bottom of the fluid layer, nor its height, but by increasing

only the thermo-mechanical susceptibility of the fluid, i.e. its coefficient of thermal expansion

at constant pressure αP , by reducing 〈T 〉 − Tc (〈T 〉 is the average sample temperature, Tc

is the critical temperature). In the present experiment, the susceptibility to be considered

would be the rate of variation of the Fresnel reflection coefficient in energy R with respect

to θi,
1
R

dR
dθi

, whose behavior is plotted in Fig. 16b. This quantity, which can be considered as

the relative variation of the reflected energy when θi fluctuates around is steady-state value,

corresponds to the susceptibility of the interface shape to angle fluctuations. As illustrated
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in Fig. 16b, it increases strongly when θi approaches θTR, and takes values comparable

to unity when θi approaches 72◦. At such values of θi, small fluctuations of the angle of

incidence could be amplified due to the shape changes of the interface induced by the large

fluctuations of reflected energy towards the tip of the deformation.

Note finally that 1
R

dR
dθi

is actually independent of temperature (except close to θRT ), in

particular around θi = 72◦. This can be related to the fact that θi max at instability threshold

does not depend on temperature (see Fig. 14).

F. Summary

We proposed that interface instability could be triggered by a radiation pressure increase

due to the total reflection of light towards the tip. We showed that at the instability onset,

only a small amount of the incident electromagnetic energy is reflected towards the tip,

because the maximum angle of incidence along the deformed interface is smaller than the

angle of total reflection, in apparent contradiction with the proposed model. Consequently,

if the instability mechanism still involves the light reflected towards the tip, it is more

complex than previously expected. Nevertheless, assuming that the instability mechanism

should be intimately linked to the interface shape close to the instability threshold, we need

to know whether such a simple model as Eq. (8) describes well the interface shape close

to the instability threshold and whether it can predict the onset of instability. This is the

purpose of the next part.

V. STATIONARY INTERFACE DEFORMATIONS BELOW THE INSTABILITY

THRESHOLD

A. Simple model valid in the Bo � 1 regime

Let us assume deformations of arbitrary amplitude caused by a downward propagating

beam. Then, considering Eq. (1), Eq. (8) simplifies in the Bo � 1 regime to

σ
1

r

d

dr
(r sin θi(r)) = −n2 cos2 θi

(
1 + R − tan θi

tan θt
T

)
2P

πω2
0c

exp

(
−2r2

ω2
0

)
, (21)
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for incidence angles θi smaller than the angle of total reflection θRT = arcsin
(

n2

n1

)
.

Following [39], we use the dimensionless coordinates r̃ =
√

2r
ω0

and h̃ =
√

2h
ω0

. Since

n2 cos2 θi

(
1 + R − tan θi

tan θt
T

)
' 4(n2 − n1)

(
cos θi

cos θi+cos θt

)2

for n2 ' n1, we rewrite Eq. (21)

as:
d sin θi

dr̃
= −sin θi

r̃
− K

(
cos θi

cos θi + cos θt

)2

e−r̃2

, (22)

where K = 4
√

2(n2−n1)P
πσcω0

. This first order non linear differential equation is solved numerically

with θi(r = 0) = 0 as initial condition. The corresponding dimensionless interface profile

h̃(r̃) is obtained by numerical integration of:

dh̃

dr̃
=

sin θi√
1 − sin2 θi

(23)

with h̃(r = 0) = 0 as initial condition. As gravity effects are not taken into account here,

Eq. (23) cannot predict accurately the absolute height of the interface deformation, but

only its shape near the beam axis, where curvature effects overcome gravitational effects.

B. Confrontation to experiments just below the instability threshold

1. Comparison between expected and measured interface shapes

To reproduce numerically the measured steady interface profiles just below the instability

threshold using Eq. (22), we did not use the experimental values of P↑, since they are slightly

noisy (see Fig. 11). We rather choose to fix P so that the computed value of θi max is equal

to 72◦, which corresponds to the average value of the maximum angle of incidence θi max

measured just below the instability threshold (see Figs. 14-15).

The comparison between computed and experimental interface profiles obtained at T −
Tc = 8K is presented in Fig. 17. This confrontation is made in reduced coordinates and for

several values of beam waists. Experimental interface shapes are found to be systematically

wider than the predicted ones. However, satisfactory coincidence is met at the largest values

of ω0, whereas disagreement is more pronounced at the smallest values of ω0. This trend

is found for each investigated temperature. We now discuss three possible causes for this

mismatch between predicted and experimental deformation shapes.

Gravity effects should appear at large values of Bo, i.e. for large values of ω0, and thus

are to be rejected.
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Thermocapillary effects, which are expected to scale as P [21], i.e. as P↑ at instability

threshold (Eq. 19), should decrease with decreasing ω0, and thus are to be rejected too.

Finally, the interface tip could be deformed by the additional radiation pressure contri-

bution of the light partially reflected at the interface. A dimensional analysis shows that,

in the Bo � 1 regime, the resulting perturbation of the angle of incidence should be a

function of P/P↑ and (n2 −n1) only, i.e. of (n2 − n1) only at instability threshold (P = P↑).

However, the interface shape mismatch between experiment and numerical simulation was

not found to depend on temperature. Moreover, it is shown in Appendix B that the amount

of reflected energy at the instabilty threshold is very small and results in a very weak addi-

tional contribution to the radiation pressure. Consequently, this mismatch remains presently

unexplained.

This nonlinear model of steady interface deformation can thus be confidently used to

simulate the interface shapes at the instability threshold for large values of ω0 with the aim

of determining the instability mechanism.

Having confronted the experimental and computed interface shapes just below the insta-

bility threshold, we now compare the experimental and computed beam power thresholds

P↑ required to trigger the instability.

2. Comparison between experimental and computed threshold values of the beam power just

below the instability threshold

Since the maximum angle of incidence just below instability threshold is smaller than the

angle of total reflection, one would expect that the simple model of total internal reflection

induced instability presented in Sec. IVC, which assumes that onset corresponds to θi max =

θRT , would predict too large threshold values for the beam power P↑ at the onset. This is

not the case.

Indeed, we first note that Eq. (22) is numerically stable for θi max > 72◦, in fact up

to θi max = θTR, whereas interface shapes are experimentally found to be unstable for

θi max & 72◦. Consequently, Eq. (22) does not contain the mechanism of opto-hydrodynamic

instability of the interface explaining an instability onset at θi max ' 72◦.

Let us compute the threshold value PTR of the beam power P at which the maximum of

the function θi(r), solution of Eq. (21), reaches θTR. The analytic solution of a linearization
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of Eq. (21) gives PTR = 6.9 σcω0

n2−n1
[30], whereas the numerical solution of Eq. (22) gives

PTR = 6.5 σcω0

n2−n1

. Both theoretical prefactors of these theoretical scaling laws are very close

to the experimental prefactor given in Eq. (19) (relative differences less than 10% and 3%,

respectively).

Let us now compute the value P72◦ of the beam power P at which the maximum of the

function θi(r) solution of Eq. (22), θi max, reaches 72◦. We find that the relative difference

between PTR and P72◦ decreases from 3.4% at T − Tc = 2K to 2.4% at T − Tc = 10K.

A so small relative difference (in fact smaller than the experimental uncertainty of the P↑

measurements) explains why the simple model of total internal reflection induced instability

presented in Sec. IVC gives a prediction of the value of the beam power at onset PTR in

quantitative agreement with measurements of P↑, whereas the instability criterium assumed

by this model basically overestimates P↑.

VI. CONCLUSION

Using a soft interface between the coexisting phases of a near-critical fluid mixture, we

studied the interface deformations induced by the electromagnetic radiation pressure of a

focused cw laser beam. By varying the sample temperature, the power and the waist of the

beam, and making use of the universal power-law behaviors of the physical properties of the

mixture, we showed in Sec. IIIC that the shapes of the deformations result principally from

the equilibrium between the radiation pressure, the hydrostatic pressure difference and the

Laplace pressure at the interface. Using a simple linear model of static equilibrium of the

interface (Eq. 9), we were able to explain the observed hump height variations for any value

of the Bond number Bo in the linear regime of deformation. Furthermore, we showed that

the deformations where independent of the direction of propagation of the laser. The linear

regime of deformation seems to be thus well understood.

When the laser propagates from the more to the less refringent phase, and at moderate

beam power, we observed an instability of the interface leading to the formation of a long jet

acting as a wave-guide for the laser beam. We proposed in Sec. IVC that the total internal

reflection of the incident light on the highly deformed interface could be at the origin of

this instability. Using a simple nonlinear model of static equilibrium of the interface taking

account of the radiation pressure of the incident light only (Eq. 22), we could explain the
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observed beam power threshold of the instability as well as the deformation tip shapes for

the larger waists observed just below the instability onset. According to this model, the in-

stability should occur when the interface slope reaches the angle of total reflection θTR. We

measured the maximum incidence angle along the interface θ i max just below the instability

threshold and found that it was significantly smaller than θTR. Furthermore, (Eq. 22) does

not present any unstable behavior up to θ i max = θTR. Thus, we are in a paradoxical situa-

tion, i.e. we can satisfactorily model the interface shape just below the instability threshold,

whereas the model we use does not contain any instability mechanism. To definitely deter-

mine the relevance of this model of reflection induced instability, a numerical study of the

stability of the deformed interface should be developed by including the additional radiation

pressure contribution of the light partially reflected at the interface. It should couple a

fully nonlinear and unsteady two-phase hydrodynamic model of the interface dynamics and

the computation of the propagation of electromagnetic waves through the interface between

both dielectric liquids.
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APPENDIX A: SIMPLE DETERMINATION OF THE RADIATION FORCE AT

ANY ANGLE OF INCIDENCE

The aim of this appendix is to compute the radiation force acting on an interface un-

der any angle of incidence. We consider two dielectric media, separated by an interface of

arbitrary shape, with different refractive indices n. The indices i and t refer to incidence

and transmission, and θi and θt are respectively the incident and transmission angles. The

momentum carried by the incident light is not necessarily conserved when the beam crosses

the interface separating these two dielectrics. The resulting discontinuity in momentum

gives birth to the radiation pressure applied to the interface. Let us call t and n the tan-

gent and the normal directions to the interface at the location where the light impinges the
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interface (see Fig. 18). We deduce the following properties: (i) an incident photon gives the

momentum nihν
c

(sin θit + cos θin) to the interface, (ii) a reflected photon picks the momen-

tum nihν
c

(sin θit − cos θin) to the interface, (iii) a transmitted photon picks the momentum

nthν
c

(sin θtt + cos θtn) to the interface. To calculate the radiation pressure associated to a

light beam, we denote N the number of photons impinging the interface per unit time and

unit surface area, and R(θi, θt) and T (θi, θt) = 1 − R(θi, θt) the classical Fresnel coefficients

of reflection and transmission of electromagnetic energy. Consequently, the momentum vari-

ation dQ of the photons incident on an interface element of area dS during the time dt is

dQ = dQ‖ + dQ⊥, where the symbols ‖ and ⊥ correspond respectively to its components in

the t and n directions:

dQ = dQ‖ + dQ⊥

= (ni sin θi − (Rni sin θi + Tnt sin θt))
Nhν

c
dSdtt

+(ni cos θi − (−Rni cos θi + Tnt cos θt))
Nhν

c
dSdtn (A1)

Accordingly, dQ‖ reads:

dQ‖ = (ni sin θi(1 − R) − nt sin θtT )
Nhν

c
dSdtt (A2)

As ni sin θi = nt sin θt, dQ‖ = 0. There is no momentum transfer parallel to the interface.

Consequently, one has:

dQ = dQ⊥ = ni cos θi

(
1 + R − tan θi

tan θt
T

)
Nhν

c
dSdt (A3)

Classically, the laser intensity I is defined as I = N0hν, where N0 is the flux of photons

though the beam section. As the incident wave is tilted by an angle θi at the interface, one

gets N = N0 cos θi. We deduce that the radiation force f acting on a portion of interface of

unit area is given by:

f = ni cos2 θi

(
1 + R − tan θi

tan θt

T

)
I

c
n. (A4)

Consequently, f is always normal to the interface. Moreover, by considering the expres-

sions of the reflection and transmission coefficients R and T [32], it can be easily shown

that the optical radiation force is directed towards the dielectric medium of lowest refractive

index.
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APPENDIX B: COMPUTATION OF THE ADDITIONAL CONTRIBUTION TO

THE RADIATION PRESSURE OF THE LIGHT PARTIALLY REFLECTED AT

THE INTERFACE WITHIN THE FRAME OF RAY OPTICS

The aim of this appendix is to compute the additional radiation pressure acting on the

interface due the light partially reflected at the interface just below the instability thresh-

old. The exact computation of the electromagnetic field along the interface resulting from

diffraction and one or several partial reflections requires a heavy numerical effort. Instead,

we propose to evaluate at each point A1 along the interface, the contributions to the radia-

tion pressure (i) of the light directly incident (called hereafter the direct ray) and (ii) of the

light having previously been reflected once at another point A2 along the interface (called

hereafter the reflected rays). Making use of the laws of ray optics, this approximate evalua-

tion should give at least some physical insights into the contribution of partial reflection to

radiation pressure.

The procedure is the following. We consider an interface deformation just below the

instability threshold. Taking account of the conclusions of Sec. IVE, we suppose that

the additional contribution to the radiation pressure of the light partially reflected at the

interface is small compared to the radiation pressure due to the incident beam. So, following

the conclusions of Sec. VB, we use Eq. (23) as a realistic model of interface shape just below

the instability threshold, although Eq. (23) does obviously not contain the mechanism of

instability. We determine the direct and reflected rays reaching each point of this interface.

We finally compute the associated radiation pressure. This procedure is valid as long as the

additional radiation pressure due to the reflected light is small compared to the radiation

pressure due to the incident beam (perturbation method).

1. Selection of rays using ray optics

Let us consider the point A1 of the deformed interface, defined by the radius r1, and

the height h1 = h(r1). A ray incident on point A2 of the interface (of radius r2, height

h2 = h(r2)) is partially reflected towards A1 if (i) the following geometrical condition is

satisfied [40]:
h1 − h2

r1 − r2
= tan

(
2θ2 −

π

2

)
, (B1)
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where θ2 = θi(r2) is the angle of incidence of the incident ray in A2, 2θ2 − π
2

being the angle

between the reflected ray and horizontal, and (ii) the ray joining A2 to A1 propagates in the

phase of refractive index n2 (see Fig. 19.

Knowing the interface shape h(r), we solve numerically these two conditions at each point

A1 of the interface. The reflected rays incident on the left side (r < 0) of a particular interface

profile are plotted in Fig. 20a. A zoom around the tip of the deformation is presented in

Fig. 20b. For r < −3µm (area 1 in Fig. 20a), each point A1 of the left-hand half-interface

is reached by both a direct ray (not represented) and a reflected ray coming from a point

A2 of the facing, right-hand half-interface (r > 0). For −3µm < r < −0.3µm (area 2 in

Fig. 20b), each point A1 of the left-hand half-interface is reached by a second reflected ray

coming from a point A2 of the facing half-interface that is very close to the interface tip.

For −0.3µm < r < 0 (area 3 in Fig. 20b), each point A1 of the interface is also reached

by two additional reflected rays coming from two points A2 of the left-hand half-interface

(i.e. such that r2 < 0). This segmentation of the interface in different areas as a function

of the number of reflected rays reaching them evidences the complexity of computing the

additional radiation pressure due to reflected light.

2. Computation of the additional radiation pressure due to reflected light

After determination of the reflected rays involved in the additional radiation pressure,

we are able to compute the radiation pressure associated to these rays. A ray partially

reflected at point A2 impinges the interface at point A1 with an angle of incidence equal to

π − 2|θ2| − |θ1|, where θ1 = θi(r1) is the angle between the horizontal and the interface in

A1. The intensity I ′(r1) of this ray incident at point A1 after partial reflection at point A2

is

I ′(r1) =
r2

r1

I(r2)R(θ2), (B2)

where I(r2) is the intensity of the direct ray incident at point A2 and R(θ2) is the energy

reflection coefficient of the ray incident at point A2. Since R(θ2) � 1 and I(r) rapidly

decreases with r, I ′(r1) can be large compared to the intensity I(r1) of the direct ray only

if (i) r2

r1
is large, i.e. at points A1 close to the beam axis (the divergence at r1 = 0 is an

artifact of geometrical optics), or if (ii) r2 � r1, i.e. at high irradiance I(r2).

Finally, the additional radiation pressure due to reflected light of intensity I ′(r) is com-
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puted using Eq. (1). In Fig. 21 both the radiation pressure Π due to the incident beam of

intensity I(r) and the additional radiation pressure Π′ due to the reflected light of intensity

I ′(r) are plotted versus r for the left-hand half-interface used in Fig. 20. Several remarks

can be made.

The most important one is that Π′ is found to be much smaller than Π for |r| < 10µm,

as assumed by this perturbation method, except very close to the beam axis, where the

divergence of Π′ is due to an abusive use of ray optics. This explains why Eq. (23) accurately

reproduces the experimental interface shapes, although it does not take into account the

additional radiation pressure due to reflected light. Moreover, Π′ is found to be much larger

than Π for |r| > 10µm because |r2| � |r1|, i.e. I(r2) � I(r1). However, for |r| > 10µm the

total radiation pressure is very small (less than 10−5Pa).

Secondly, the steep variations of Π′(r) are due either to the total reflection at point A1

of the reflected ray, or to the contribution of an additional reflected ray as |r| decreases,

corresponding to the transition from area 1 (resp. 2) to area 2 (resp. 3), as described in

section B1.

The next step of this procedure would be to compute the interface shape resulting from

the radiation pressure of both direct and reflected rays, and to iterate the computation of the

radiation pressure field (procedure of the Hartree-Fock type) in order to investigate whether

it leads to instability. The nonrealistic divergence of the light intensity at the hump tip

nonetheless makes this iteration quantitatively non pertinent.

To summarize this appendix, we showed using ray optics that, close to the beam axis,

the additional radiation pressure due to the light partially reflected on the interface is small

compared to the radiation pressure due to the incident laser beam.
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Captions

Figure 1: Variation of photon momentum (solid arrows) at the interface between two

dielectric, non magnetic liquids. (a) downward propagating photon. (b) upward propagat-

ing photon. Dotted arrows represent the momentum transferred from the photon to the

interface. ρ1 and ρ2 are the densties of the two fluids and ~g is the acceleration of gravity.

Figure 2: Picture of the steady interface just below the instability threshold in order to

illustrate the notations. The interface is deformed by a laser beam of power P = 480mW

and waist ω0 = 3.47µm, propagating downward. The sample temperature T is 41◦C, i.e.

6K above the critical temperature Tc. Incidence, reflection and transmission are illustrated

by the corresponding arrows. θi and θt are respectively the incident and the refracted

angles.

Figure 3: left: schematic phase diagram of the micellar phase of micro-emulsion for the

composition described in text. φ is the micelle volume fraction, T is temperature. Right:

corresponding representation of the phase distribution within the sample in a two-phase

state (T > Tc).

Figure 4: experimental setup.

Figure 5: (a) Pictures of interface deformations due to the radiation pressure of a laser

beam propagating downward of waist ω0 = 7.4µm at T − Tc = 3K. Bottom: the digitized

interface shapes (◦) of the pictures above are compared to the predicted shapes (solid lines)

computed using Eq. (12). (b) Same as (a) for an laser beam propagating upward of waist

ω0 = 14.6µm at T − Tc = 2K.

Figure 6: Variations of h(r = 0) versus P (n2−n1)
σc

in the Bo � 1 regime. Measurements are

performed at T − Tc = 8, 10, 15, 20, and 25K for each beam waist value. The solid line is

the best linear fit.

Figure 7: Variations of h(r = 0) versus n2−n1

ρ2−ρ1

P
gcω2

0

for Bo > 2. Measurements are performed

at ω0 = 25.3, 29.3 and 32.1µm for each T − Tc value. The solid line is the best linear fit.

Figure 8: Variations of the normalized hump height h(r=0)
h(r=0)Bo�1

versus the Bo number

measured for both upward (◦) and downward (•) laser beams. The solid line corresponds

to the function F (Bo) given by Eq. (16).

Figure 9: Variation of the hump height h(r = 0) versus the beam power P when light

propagates upward (N) and downward (O) for ω0 = 5.3µm and T − Tc = 3K. Right-hand

picture: tether-like shape of the interface deformation appearing for increasing P when light
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propagates upward. Left-hand picture: long jet observed above a beam power threshold P↑,

illustrated by the dash-dotted line, when light propagates downward.

Figure 10: (a) Variation of the beam power threshold P↑ versus the beam waist ω0 for

several values of T − Tc. Lines represent linear fits. (b) Variation of P↑ versus T − Tc for

ω0 = 3.5µm in log-log scales. The solid line is a power-law fit P↑ ∼ (T − Tc)
1.01±0.05.

Figure 11: Rescaling of the data set presented in Fig. 10a according to the scaling law

given by Eq. (19). The solid line is the best linear fit.

Figure 12: Proposed mechanism at the origin of the interface instability and the jet

formation at P↑ showing optical lensing (t = 1.2s) followed by total reflection of light at

the edge of the deformation (t = 2.4s) and the resulting optical guiding by the induced jet

(t = 3.6s and t = 7.2s). The experiment is performed at T − Tc = 5K, ω0 = 3.5µm and

P = P↑ = 460mW .

Figure 13: Digitization of the interface shape shown in Fig. 2. (+): digitized left and

right sides of the interface shape rl(h) and rr(h). (◦) : tip digitization. Solid lines are fits

of rl(h) and rr(h) by polynomial functions of third degree Ql(h) and Qr(h).

Figure 14: Variation of the maximum angle of incidence θi max along the interface measured

just below the instability onset versus T − Tc. Solid line: Variation of the angle of total

reflection θTR predicted by Eq. (20).

Figure 15: Variation of the maximum angle of incidence θi max along the interface measured

just below the instability onset versus ω0. The lines decorated with open symbols represent

the corresponding values of the angle of total reflection θTR predicted by Eq. (20).

Figure 16: (a) Energy reflection coefficient R of a TE wave at the interface as a function

of its angle of incidence θi, for several values of T − Tc. Symbols are a guide for the eye.

(b) Energy reflection coefficient growth rate 1
R

dR
dθi

as a function of the angle of incidence θi.

Symbols are the same as (a).

Figure 17: Experimental interface profiles at T − Tc = 8K just below the instability onset

(see Fig. 13 for symbols) represented in reduced coordinates, for several values of the beam

waist. Solid lines : numerical interface profiles computed from Eq. 23 so that θimax = 72◦.

Figure 18: Schematics used for the calculation of the radiation force exerted by a laser

beam on an interface separating two dielectric fluids characterized by the refractive indices

ni and nt. θi and θt are respectively the incidence and the refracted angles. t and n are the

tangent and the normal directions at the location where the beam impinges the interface.
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Figure 19: Geometry of the radiation pressure contribution of light partially reflected

at the interface. A1 is reached by a direct incident ray and a ray having been previously

reflected in A2.

Figure 20: Shape of an interface at T − Tc = 10K deformed by a ω0 = 3.47µm,

P = 822mW laser beam, computed using Eq. (22). The light rays reaching regularly

spaced points of the left-hand half interface after one reflection are represented. (a) wide

view of the interface. 1 labels the family of points of the interface reached by only one

reflected ray. (b) enlarged view of the interface tip. 2 (resp. 3) labels the family of points

of the interface reached by 2 reflected rays (resp. 4).

Figure 21: Radiation pressure contributions acting on the interface shown in Fig. 20. Π

is the contribution of the direct incident light, whereas Π′ is the contribution of the light

having been previously reflected one time at the interface.
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