
Case Studies with Lurette V2?

Erwan Jahier1, Pascal Raymond1, and Philippe Baufreton2

1 VERIMAG,CNRS – Grenoble, France
2 Hispano Suiza – Moissy Cramayel, France

Abstract. Lurette is an automated testing tool dedicated to reactive programs.
The test process is automated at two levels: given a formal description of the Sys-
tem Under Test (SUT) environment, Lurette generates realistic input sequences;
and, given a formal description of expected properties, Lurette performs the test
results analysis.
Lurette has been reimplemented from scratch. In this new version, the main nov-
elty lies in the way the SUT environment is described. This is done by means
of a new dedicated language calledLucky, a language for programming non-
deterministic reactive machines.
This article recalls the principles of Lurette, briefly presents the Lucky language,
and describes some cases studies from the IST project Safeair II. The objective is
to illustrate the usefulness of Lurette on real case studies, and the expressiveness
of Lucky in accurately describing the SUT environment.

Keywords : Automated testing, tool environment, real-time embedded systems, reac-
tive programs, synchronous languages, stochastic machines.

1 Introduction

This article presents some case studies in testing reactive embedded programs. This
kind of system can be found in domains such as transportation and control/command,
and are in general safety critical. They require to be strongly validated before being
used.

Formal exhaustive validation methods like model-checking are appealing, but they
are limited for theoretical and practical reasons to relatively simple and small systems.
For complex and big systems, in particular those where numerical aspects are important,
testing is in general the only tractable method. Testing is obviously not exhaustive, but
it can help to discover bugs, and increase confidence in the system.

Testing reactive systems raises specific problems. The most obvious is that the ex-
ecution of such systems is (virtually) infinite; a test case is then an arbitrary long se-
quence of input vectors. Moreover, the system is not intended to run in a random envi-
ronment, and the properties of the environment must be taken into account in order to
generate relevant (or even interesting) test sequences. More specifically, the relevance
of the inputs may depend on the behavior of the system itself, since the system influ-
ences the environment which in turn influences the system. This feed-back aspect is

? This work was partially supported by the SAFEAIR II IST-2001-34563.

in general important for reactive systems, and it makes off-line generation of test se-
quences impossible: in some sense, testing a reactive system requires running it in a
simulated environment.

Several methods and tools have been proposed for testing reactive systems, which in
general assume a full knowledge of the system under test (glass-box) [TMC94], and/or
do not deal with numerical programs [MHM95,BORZ98,FJJV97,JPP+97]. Another
difference with our work and the so-called model-based approach [FJJV97,JPP+97]
is the following. The model-based approach supposes that there exists some formal
description of the SUT. This model is used in combination with the hypothesis made
on the environment plus the properties to be checked (the test purposes). Verification
techniques (model-checking, partial orders, bisimulation) are then applied to derive ex-
pected traces to be compared with actual traces, produced by the SUT.

On the other hand, our objective is less ambitious in some sense (and more ambi-
tious in the sense that we deal with numerical aspects): we do not suppose we have
such a model of the SUT, and we only focus on providing a very general and efficient
machinery to describe and generate sets of test cases. We do not deal with how to obtain
such test case models.

In this work, we use a testing tool called Lurette [RWNH98] which is black-box
oriented and able to treat numerical aspects. This tool supports Lustre [HCRP91],
Scade1 [Dio03] and Sildex2 programs. It can also be easily extended to other languages
like Esterel [BG92], or even C programs as far as they meet some interfacing conven-
tions. This tool is the second version of Lurette, where the main difference lies in the
way the environment of the program is described and simulated.

After a brief recall of the Lurette principles, we introduce Lucky, a new language
used to describe and simulate the environment . Then, we present three case studies
that emphasize the main characteristics of the tool. Those examples are extracted (or
just inspired, for confidential reasons) from an application developed in Scade, and
provided by Hispano-Suiza in the framework of the IST project Safeair II.

– The first one is a resistance to temperature converter. It is not a typical reactive
system, in the sense that there is no feedback between the environment and the
program, but it illustrates the numerical capabilities of the tool. Two bugs were
found in this example.

– The second computes a propulsion nozzle position. It is still a combinational pro-
gram, but slightly more complex. One bug was detected.

– The last is a typical example of fault-tolerant controller, where the feedback aspects
are important. For this case study, we illustrate how simple environment models can
be defined quickly, and then refined to more accurate models.

1 Scade is an integrated programming environment based on the Lustre language, see
www.esterel-technologies.com

2 Sildex is an integrated programming environment based on the Signal language [LBBG86],
seewww.tni-world.com/sildex.asp

2

http://www.esterel-technologies.com
http://www.tni-world.com/sildex.asp

2 Lurette, an automated testing tool

We recall in this section the principles of Lurette [RWNH98]. More details about the
new version of the tool can be found in theLurette V2 user guide[Jah04].

Automatic generation of realistic inputs: the SUT Environment. The main chal-
lenge in automating the test process is the ability to generaterealistic input sequences
to feed the SUT. In other words, we need an executable model of the environment in
which the inputs are the SUT outputs, and the outputs are the SUT inputs.

Note that realistic input sequences cannot be generated off-line, since the SUT gen-
erally influences the behavior of the environment it is supposed to control, and vice-
versa. Imagine, for example, a heater controller for which the input is the temperature
in the room, and the output is a Boolean signal controlling the heater.

Basically, the Lurette input sequence generation engine is a linear constraint solver
and drawer. The Boolean part of the solver is based on Bdd [Som98] and the numeric
part is based on a convex Polyhedron Library [Jea02]. Constraints on the environment
variables (that may depend on memories and on SUT outputs), are solved, and one
solution is drawn at each step to feed the SUT. Such SUT environment constraints are
described by Lucky programs. Lucky is a language dedicated to the construction of
non-deterministic machines; it is presented in Section3.

Automatic test decision: the oracle. The second thing that needs to be automated
is the test decision. To do that, we will use the techniqueobserversused in verifica-
tion [HLR93]. An observeris a program that returns exactly one Boolean variable. It
lets one express any safety property [Lam77].

For Lurette, users therefore need to write a Lustre (or a Scade, or Sildex) program
for which the inputs are the SUT inputs and outputs, and which outputs a single Boolean
that is true if and only if the test vectors are correct w.r.t. a given temporal property.

The Lurette data flow loop. Fig. 1 outlines the Lurette data flow between the different
entities, namely, the SUT, its environment, and the test oracle.

Environment

Oracle

SUTTest Manager

oki
Ii Oi

Iiboot / Oi−1

Ii

Oi

Fig. 1.The Lurette data flow loop.

The environment outputs serve as
SUT inputs, and SUT outputs serve as en-
vironment inputs, apart from the first step.
Therefore, in order to be able to start such
a looped design, one entity has to start
first. In order to avoid putting hypotheses
on the SUT (for instance, the SUT should
be able to produce outputs without inputs
at the first step), we specify that the envi-
ronment start first. This means that a valid
environment for Lurette is one that can
generate values without any input at the
first instant. The role of theboot key-

word of Fig.1 is precisely to signal the environment it should start generating values.

3

Hence, once the environment has received theboot signal, it (non-deterministically)
produces a vector of valuesI1. Lurette sends this input vectorI1 to the SUT, which re-
turns back the output vectorO1. Lurette then sends bothI1 andO1 to the oracle. The
oracle returns back a single Booleanok1, which is true if and only ifI1 andO1 satisfy
the property.

If ok1 is false, then the testing process stops and a counter example that violates the
property has been found. Ifok1 is true, then the testing session continues in exactly the
same manner, except that this time,O1 is sent to the environment, which returns yet
another input vectorI2, and so on.

3 Lucky, a language to program non-deterministic machines

In the first Lurette prototype, the SUT environment behavior was described by Lustre
observers made of a set of (linear) constraints over Boolean and numeric variables. The
work of Lurette was to solve those constraints, and to draw a value among the solutions
to produce one SUT input vector.

But, from a language point of view, Lustre is not very convenient, in particular for
expressing sequences of different test scenarios, or to have some quantitative control
over the probabilistic distribution of the solutions. It was precisely to overcome those
limitations that a new language, Lucky, was designed.

A Lucky program is an interpreted automaton whose transitions define the machine
reactions. Each transition is labelled by (1) a set of constraints (a relation) that defines
the set of the possible outputs for one step, and (2) a weight that defines the relative
probability of its transition being taken. We explain the operational semantics of Lucky
on the automaton of Fig.2, which has one Boolean inputswitch, and one real outputt.

1
1000 1

1000

1

2up and down(t, 0, 10, 4)

switch ∧ (t = pre t)

up and down(t, 0, 10, 1)

switch ∧ (t = pre t)

where: up and down(X, Min, Max, Bound) = |X − pre X| < Bound ∧
(if (pre X < Min) ∨ ((pre X < Max) ∧ (pre pre X ≤ pre X))

then (X > pre X) else (X < pre X))

Fig. 2.A Lucky automaton with one Boolean inputswitch and one real outputt.

The relation level. Each transition in this automaton is labelled by a relation (a con-
junction of constraints) and a weight (an integer). Each relation, which holds over the

4

automaton input, output, and memories (e.g.,pre t), defines how to compute one step
of this synchronous machine.

– The relation “switch ∧ t = pre t” is satisfiable if and only if the inputswitch is
true; it states thatt keeps its previous value.

– The relation “up and down(t, 0, 10, 1)” constrains the outputt in the following
manner: the difference betweent and its previous value is never smaller than1 (|t−
pre t| < 1); if t was increasing (resp. decreasing) at the previous step (pre pre t ≤
pre t) thent will increase (resp. decrease) at the current step, unless its previous
value is bigger than10 (resp. smaller than0). See Fig.4 in order to see the shape
of a timing diagram of a variable constrained by such a relation. We will use that
macro in most of the examples in this article.

– The relation “up and down(t, 0, 10, 4)” is similar, except that the bound over the
derivative oft is set to4 instead of1.

The control level. Suppose now that the current node is1 (the behavior of this au-
tomaton is symmetric if the current node is2). If the inputswitch is false, then only
one transition is possible: the one labelled byup and down(t, 0, 10, 4). This constraint
will therefore be solved, and one solution will be drawn among its set of solutions. If
the inputswitch is true, then the transition from 1 to 2 is also possible. One is labelled
by a weight of 1, and the other by a weight of1000; the latter will be drawn with a
probability of1000/1001.

Such an automaton models the fact that the control can move from one mode to
another only when the inputswitch is true. It also models the fact that the current
mode might not change even ifswitch is true (with a probability of 0.1 %), which can
be convenient, for example, to model occasional errors.

Note that there are two sources of non-determinism in Lucky: one at the relation
level, where several solutions to a set of constraints exist; and one at the control level,
over which we have some quantitative control via the use of weights.

Dynamic weights and transient nodes.Two other important concepts in Lucky are
not described on this example, but will be illustrated later:

1. the concept ofdynamic weights; weight labels can also be numerical functions of
the inputs and the past-values. This can be particularly useful to model analive
processwhere the system has a known average life expectancy before breaking
down; at each reaction, the probability working properly dependsnumericallyon
an internal counter of the process age.

2. and the concept oftransientandstable nodes, which is simply a facility that help
to structure Lucky programs better. A complete reaction is a sequence of transi-
tions between two stable nodes, where all the intermediate nodes are transient. The
constraint that is used to perform one reaction is the conjunction of the constraints
labelling the transitions between the two stable nodes.

Restrictions. One restriction on the current version of Lucky is that the constraints on
inputs, at a given point of a sequence, may only depend on thepastvalues of outputs (as
in Lustre). Another restriction is that numeric constraints on outputs should be linear.
Please refer to theLucky language reference manual[JR04] for more information.

5

Lucky, a target language. One of the goals when designing Lucky was to have a lan-
guage with a simple operational semantics (it is a simple interpreted automaton) that is
general enough to model any non-deterministic formal description. It was not necessar-
ily meant to be a language for users but rather a target language for other higher-level
languages, or third-party tools. However, as the examples provided in this article will
illustrate, we believe that this language is user-friendly enough.

Anyhow, we designed another language, Lutin [RR02], which compiles into Lucky.
Lutin also aims at describing and simulating non-deterministic systems, but it is based
on regular expressions instead of an explicit automaton, which sometimes makes the
description of non-deterministic systems easier.

Moreover, a gateway from Lustre observers to Lucky programs can be done straight-
forwardly: it will result in a degenerate Lucky automaton with a single control node and
a single (looping) transition labelled by the Lustre observer equations. Using Lucky in-
stead of Lustre does not change the underlying synchronous computation model, but it
gives a more “operational” style of description, in which non-determinism is explicit.

4 Case study 1: a resistance to temperature converter

We first illustrate the use of Lurette on a case study that has been kindly provided by
Hispano-Suiza, and which is written in Scade. Even if this node is rather small, Lurette
still let us find two problems with it very quickly.

The specification of the converter.Hispano-Suiza has provided the following speci-
fication. The converter is a Scade node with one inputR, representing a resistance (in
Ohms) that comes from a sensor. It has one outputT, representing the corresponding
temperature (in Kelvin). The output is computed from the input using the function:

if R > 0 then T = C*R2 + D*R + 273.15
else T = A* R4 + B* R3 + C*R2 + D*R + 273.15 (1)

whereA,B,C, andDare constants that we do not provide here.

The test session.Fig. 3 shows a Lucky program that models a possible environment
for stimulating this converter. The first two lines declare the Lucky machine interface.
Then come the node and transition declaration definitions. This very simple automaton
contains only one node and one transition. The transition states that the outputRshould
vary up and down between 150 and 500, with a slope smaller than 5. Note that in this
particularly simple case, we make use neither of the inputT nor any memory.

We use as oracle a direct translation in Lustre of Equation 1, and we observe that this
oracle is violated on the first step. Fig.4 displays a visualization of the data produced
by Lurette. The expected output of the converter node is displayed in the graphic in
the variableT expected . The expected output would be to see the two upper curves
superimpose.

As a matter of fact, the bug was in the specification and not in the code. Indeed, in
the definition ofT, Rshould beR-100.0 .

6

inputs { T : real }
outputs { R : real ˜init 200.0 }
nodes { 1 : stable }
start node { 1 }
transitions { 1 -> 1 ˜cond up_and_down(R, 150.0, 500.0, 5.0) }

Fig. 3.A Lucky program modelling the converter environment.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600 700 800 900 1000

steps

R
T

T expected

Fig. 4.The timing diagram of an execution of the converter.

A second problem with this node was revealed by Lurette when we triedR values
smaller than 100. Indeed, in such a case,R-100 is negative, and(R-100) 2 was com-
puted by an exponentiation function of typefloat → float → float, which raises an
exception when its first argument is negative – whereas it should probably have used a
exponentiation function of typefloat → int → float which makes sense even if the
first argument is negative.

5 Case study 2: computing a propulsion nozzle position

This second case study has also been provided by Hispano-Suiza. The task of this com-
ponent is to compute the position of a propulsion nozzle according to the values of
two sensors that measure electric tension. Lurette allowed us to discover one bug in a
preliminary and unvalidated version of the code. This bug has already been corrected.

7

inputs { X : real ; VX : bool }
outputs { U1, U2 : real ˜init 1.8 ; VU1, VU2 : bool }
nodes { 0 : stable }
start node { 0 }
transitions { 0 -> 0 ˜cond abs(U2 - U1) < 0.1

and up_and_down(U1, 0.0, 5.0, 0.1)
and up_and_down(U2, 0.0, 5.0, 0.1) }

Fig. 5.A Lucky program modelling the nozzle environment.

The specification of the component.The propulsion nozzle position Scade node has
four inputs:U1 andU2, which are real values that come from sensors;VU1 andVU2
are which Boolean values that state whether the tensionsU1 andU2 are valid. It has
and two outputs:X, a real value that indicates the nozzle position; andVX, a Boolean
value that states whether the nozzle position is valid.

The specification of that component says that the outputVXought to be true if and
only if the following equation holds:

VU1∧VU2∧(1 ≤ U1≤ 5)∧(1 ≤ U2≤ 5)∧(4 ≤ U1+U2≤ 8)∧X = f(U1, U2) (2)

wheref is a deterministic function ofU1 andU2 that we do not provide here.

A possible test session.From this specification, there are numerous ways we can use
Lurette for an automatic test session. A first extreme way would be to put Equation2
both in the oracle and in the SUT environment. But then, we would never seeVX be-
coming false, e.g., whenU1+U2 is smaller than 4.

Another way would be to put no constraint at all in the environment and thus to
generate completely random input values for the SUT, and to put equation2 in the
oracle only. But then, the probability of getting “interesting” values (i.e., around the
interval [0; 10]) would be very low.

Therefore, the environment we propose in Fig.5 is somewhere between those two
extreme solutions:U1 andU2 vary between 0 and 5. In order to make the environment
more realistic, we add a constraint that enforcesU1andU2 to be close:abs(U2-U1)<0.1 .
Moreover,VU1 andVU2 are left unconstrained. Theinit option is used to set the pre-
vious values ofU1 andU2 at the first instant. The oracle is again just a straightforward
translation in Lustre of equation2.

The timing diagram of a Lurette run with this environment is shown in Fig.6. Note
that the oracle was really useful in deciding automatically whether the tests succeeded
or not. Indeed, for very long sequences3, performing the test decision manually (i.e., by
data file inspection) would be very tedious.

A preliminary and unvalidated version of this program violated the oracle. The bug
was that the equation2 was encoded in Scade withor instead ofand gates. The timing
diagram of Fig.6 has been generated with a corrected version of the component.

3 For this kind of environment, Lurette can generate several thousands of test vectors per second.

8

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160

steps

U1
U2

VU1
VU2

X
VX

Fig. 6.The timing diagram of an execution of the nozzle.

Other possible test sessions.Of course, several other test scenarios can be useful. For
instance, one could enforceVU1 andVU2 to be always true, so that the checking of
the result of the numeric functionf is done at each step. One could also play with the
tension slopes, or let the two tensions evolve independently.

It is precisely the point of having the flexibility of a plain programming language:
be able to tackle the diversity of all the possible situations. In the next case study, we
illustrate how one can write more sophisticated environments.

6 Case study 3: a fault tolerant heater

This case study does not come directly from an industrial application, but has been
inspired from a real one. We believe it is representative of what testing a fault tolerant
controller could be. It lets us illustrate several aspects of the use of Lurette, and in
particular how simple environments can be defined in Lucky, and then refined.

A fault-tolerant heater controller. We want to test a fault-tolerant heater controller
which has three sensors (namely, three real inputs) measuring the temperature in a room,
and which returns a Boolean value indicating to the heater whether it should heat or not.
We only provide its informal specification, which is enough from the Lurette black-box
testing point of view. The full Lustre code for this controller can be found in [JR04].

The main task of the controller is to perform a vote to guess what the temperature
is. Then, if that guessed temperature is smaller than a minimum value (TMIN), it heats;
if it is bigger than a maximum value (TMAX), it does not heat; otherwise, it keeps its

9

previous state. The voting works as follows: the values of each sensor is compared
pairwise, and two sensors are considered suspicious as soon as they differ by a threshold
value (DELTA).

V12 = abs(T1-T2) < DELTA;
V13 = abs(T1-T3) < DELTA;
V23 = abs(T2-T3) < DELTA;

Hence, there are four cases, depending on the values ofV12, V13, andV23.

1. If the three comparisons are true, it returns the median value of the three sensors;
2. If only one comparison is false, it considers it as a false alarm (e.g., becauseDELTA

was too small) and still returns the median value.
3. If two comparisons are false (sayV12 andV13), it deduces the broken sensor (T1)

and returns the average of the other two (T2+T3/2.0);
4. If the three comparisons are false, it is difficult to know whether two or three sensors

are broken, and it safely decides not to heat in that case.

A test session using undegradable sensors.In order to test that program, there are
two things we need to simulate: the real temperature in the room, and the sensors that
measure that temperature.

The Lucky program provided in Fig.7 has one input variable (the output of the
SUT): the BooleanHeat which is true iff the heater is heating. It has four output
variables (the inputs of the SUT): the true temperature in the roomT, as well as the
temperature as it is measured by the 3 sensors:T1, T2, andT3. It also have three local
variables (eps1 , eps2 , andeps3) that are uniformly drawn between−0.1 and0.1
(themin and themax options in the variable declaration are syntax that lets one define
global constraints). Those local variables are used to disturb the value of the temperature
T and simulate the noise a sensor may have (T1 = T + eps1).

We then need to simulateT. T is initialized to7.0 via the init option. A single
transition updatesT as follows: ifHeat is true, thenT is incremented by0.2; otherwise,
it is decremented of0.2. This model is quite simple, but it will be refined further later.

A priori, the real temperature could be a local variable of the SUT environment.
However, in order to write oracles that have access to that temperature, we need to add
it to the SUT interface. That is the reason why the controller has an additional inputT,
which it does not use.

A Lurette run using the Lucky program of Fig.7 produced the timing diagram
shown in Fig.8. There, we can convince ourselves that everything seems to work
fine; the temperature increases andHeat on is true until TMAXis reached. At step
11,Heat on becomes false and the temperature decreases untilTMIN is reached, and
so on.

The test oracle. The property that we propose to check is described by the Lustre ob-
server of Fig.9 which states that the temperature should never be bigger thanTMAX+1
even if all sensors are broken. If we run again our program, we observe that indeed this
oracle is never violated.

10

inputs { Heat: bool }
outputs { T1, T2, T3 : real ; T: real ˜min 0.0 ˜max 50.0 ˜init 7}
locals { eps1, eps1, eps3 : real ˜min -0.1 ˜max 0.1 }
nodes { 0 : stable }
start node { 0 }
transitions { 0 -> 0 ˜cond T = pre T + (if Heat then 0.2 else -0.2)

and T1 = T + eps1 and T2 = T + eps2 and T3 = T + eps3 }

Fig. 7.A Lucky program modelling undegradable sensors.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35 40 45 50

steps

T
T1
T2
T3

Heat

Fig. 8.The timing diagram of an execution generated with the undegradable sensors.

A test session using degradable sensors.The Lucky program of Fig.10models more
realistic sensors that can degrade. The input, output, as well as theepsi local variables
are the same as in the Lucky program of Fig.7 – we have omitted them from the figure
for the sake of conciseness.

There are two additional local variables:cpt , that is incremented at each cycle, and
INV , an invariant that states how the temperatureT is simulated (basically as in Fig.7)
and how to updatecpt at each cycle.

The two transitionss1 -> t1, t1 -> s1 describe exactly the same kind of
behavior as transition1 -> 1 in Fig. 7: T1, T2, andT3 are computed as disturbed
versions ofT. Transitionst2 -> s2, s2 -> t2 simulate the case where one sen-
sor is broken:T3 keeps its previous value (pre T3) whatever the temperature. Tran-
sitions t3 -> s3, s3 -> t3 and transitionst4 -> s4, s4 -> t4 respec-
tively simulate cases where respectively two and three sensors are broken.

11

node not_a_sauna(T, T1, T2, T3 : real ; Heat_on: bool)
returns (ok: bool);

let
ok = true -> pre T < TMAX + 1.0;

tel

Fig. 9.A possible oracle: make sure that temperature never becomes too hot.

locals { cpt : int ; eps : real ˜min 0.0 ˜max 0.2;
INV : bool ˜alias cpt = pre cpt+1 -- Invariant

and T = pre T + (if Heat then eps else -eps) }
nodes { t1, t2, t3, t4 : transient; s1, s2, s3, s4 : stable }
start node { t1 }
transitions {
-- No sensor is broken

t1 -> s1 ˜cond INV and T1=T+eps1 and T2=T+eps2 and T3=T+eps3;
s1 -> t1 ˜weight 1000;
s1 -> t2 ˜weight pre cpt;

-- One sensor is broken
t2 -> s2 ˜cond INV and T1=T+eps1 and T2=T+eps2 and T3 = pre T3;
s2 -> t2 ˜weight 1000;
s2 -> t3 ˜weight pre cpt;

-- Two sensors are broken
t3 -> s3 ˜cond INV and T1=T+eps1 and T2 = pre T2 and T3 = pre T3;
s3 -> t3 ˜weight 1000;
s3 -> t4 ˜weight pre cpt;

-- Three sensors are broken
t4 -> s4 ˜cond cpt = 0 and T = pre T

and T1 = pre T1 and T2 = pre T2 and T3 = pre T3;
-- Start again from the beginning
s4 -> t1 }

Fig. 10.A Lucky program modelling degradable sensors.

Let us detail the execution of that automaton. The initial node is the one labelled
by t1 . The output values for the first cycle are given by the equation that labels the
transitiont1 -> s1 , which states that outputsT, T1, T2, andT3, are set to7.0 , and
the local countercpt is set to0.

The values for the second cycle are computed via one of the two transitions out-
going from nodes1 : s1 -> t1 , which is labelled by1000 , ands1 -> t2 which
is labelled bypre cpt . The meaning of those weights is the following: use the first
transition with a probability of 1000

1000+pre cpt and the second one with a probability of
pre cpt

1000+pre cpt . At the second cycle, sincepre cpt is bound to0, the only possible
transition iss1 -> t1 , which leads to a correct behavior of all sensors. Sincet1 is
transient,t1 -> s1 is also used to compute the output of the current cycle.

At the third cycle, the situation is roughly the same:s1 is the current node, but the
transitions1 -> t2 is now possible, with a probability of 1

1001 . If this transition is

12

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350 400 450 500

steps

T
T1
T2
T3

Heat_on

Fig. 11.The timing diagram of an execution generated with degradable sensors exhibit-
ing test failure.

chosen, we enter in a mode where one sensor is broken. Note that as time progresses,
the probability of going to nodet2 increases; this models the situation where the proba-
bility of failure increases with time. The behavior is similar at stable nodess2 ands3 .
When all sensors are broken, we go back to the initial state and start a new test session
(cpt = 0).

If we launch a Lurette run with the program of Fig.10 often enough or with a test
length that is long enough, we can exhibit sequences that violate the oracle. An example
of such a sequence is displayed in the timing diagram of Fig.11.

The bug explanation. This time, the bug is in the specification itself4. We modelled
sensor breakdowns by making them keep their previous value – which is questionable.
Therefore, if ever two sensors broke down with similar values, the voter will not be able
to realize that they are broken. Hence, the controller keeps on heating forever, which
violates the oracle.

Note that such a configuration is not very probable, hence the need for being able to
generate values fast enough to have a chance to detect it. The timing diagram of Fig.11
was generated in less than 2 seconds on a Pentium 4 clocked at 3.00GHz, with 512 KB
of RAM.

4 Note that this specification was inspired by another (confidential) case study. That bug was
introduced (unintentionally at first!) by us, for didactic purposes.

13

One way to correct that bug would be to check that sensor values do change during
a given number of cycles, and to consider them, at least temporarily, invalid.

7 Conclusion and further work

Conclusion. Lurette has turned out to able to analyze several designs extracted from
real industrial applications and likely to discover errors before the designs were sub-
jected to module testing. This article reports how Lurette let us detect three bugs in an
application provided by Hispano-Suiza. One interesting point is that those bugs were
found with little effort. However, the situation was particularly favorable, since the ap-
plication was in the development stage, and as a consequence more likely to contain
errors.

This article also illustrates the use of Lucky, a new language to describe and sim-
ulate non-deterministic machines. It shows how simple environments can be quickly
defined, and then how they can be refined into more accurate and complex ones. It also
demonstrates that, even if Lurette targets reactive systems, it can be used to test purely
combinational programs.

Note that we insist on the language expressiveness to allow the description of real-
istic environments. But of course, the tool can be used with different motivations. One
can use it to stress the SUT in arbitrary manners, for instance by trying limit values.

Glass-box testing with Lurette and verification tools. Some further work concerns
the weakening of Lurette’s black box hypothesis, via the use of verification tools. The
idea is the following: the abstract interpretation verification tool Nbac [Jea01] provides
semi-decision results: if a property is shown to be true, it is for sure; but otherwise,
the (false) negative answers might be due to some approximations performed by tool.
In such a case, Nbac returns an abstract automaton, for which it is impossible to know
whether a concrete path from the initial to the final node exists (if we knew it, we
would have solved an undecidable problem). Nbac is already able to output this ab-
stract automaton in the Lucky format [GJMJ03], which can then be used to try to find
(randomly) a concrete path in it. Some more work and experimentation are required.

A second step would then to be able to translate Lucky descriptions (forgetting the
weight annotations) of the environment into a format the verification tool can handle.
Indeed, the scheme we use in Lurette is the same as in verification: a formal description
of the property (in our case, the oracle) is checked against the program using some
formal hypotheses made on its environment. In our case, Nbac could be tried before
launching a Lurette test session. If the proof failed, one could then use in Lurette the
result of Nbac in combination with the environment to perform a testing session that is
oriented towards the violation of the oracle.

Code coverage for data-flow languages.Another important point that has not been
addressed yet is to have a suitable notion of code coverage for synchronous data-flow
languages such as Lustre. Indeed, data-flow languages are very different from sequential
ones, for which it is easier to define coverage metrics based on the control structures.

14

References

BG92. G. Berry and G. Gonthier. The Esterel synchronous programming language: Design,
semantics, implementation.Science of Computer Programming, 19(2):87–152, 1992.
2

BORZ98. L. Bousquet, F. Ouabdesselam, J. Richier, and N. Zuanon. Lutess: testing environ-
ment for synchronous software, 1998.1

Dio03. Bernard Dion. Correct-by-construction methods for the development of safety-
critical applications, 2003.1

FJJV97. Jean-Claude Fernandez, Claude Jard, Thierry Jeron, and Cesar Viho. An experiment
in automatic generation of test suites for protocols with verification technology.Sci-
ence of Computer Programming, 29(1-2):123–146, 1997.1

GJMJ03. F. Gaucher, E. Jahier, F. Maraninchi, and B. Jeannet. Automatic state reaching for
debugging reactive programs. November 14 2003.7

HCRP91. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow pro-
gramming language lustre.Proceedings of the IEEE, 79(9):1305–1320, September
1991. 1

HLR93. N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verifica-
tion of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors,Third
Int. Conf. on Algebraic Methodology and Software Technology, AMAST’93, Twente,
June 1993. Workshops in Computing, Springer Verlag.2

Jah04. E. Jahier. The Lurette V2 User guide. Technical Report TR-2004-5, Verimag, 2004.
www-verimag.imag.fr/∼synchron/tools.html.2

Jea01. B. Jeannet. Dynamic partitioning in linear relation analysis. Application to the ver-
ification of reactive systems.Formal Methods in System Design, 2001. 40 pages.
7

Jea02. B. Jeannet. The Polka Convex Polyhedra library Edition 2.0, May 2002.
www.irisa.fr/prive/bjeannet/newpolka.html.2

JPP+97. L. Jategaonkar Jagadeesan, A. A. Porter, C. Puchol, J. C. Ramming, and L. G. Votta.
Specification-based testing of reactive software: Tools and experiments (experience
report). InInternational Conference on Software Engineering, pages 525–535, 1997.
1

JR04. E. Jahier and P. Raymond. The Lucky Language Reference Manual. Technical Report
TR-2004-6, Verimag, 2004. www-verimag.imag.fr/∼synchron/tools.html.3, 6

Lam77. L. Lamport. Proving the correctness of multiprocess programs.IEEE Transactions
on Software Engineering, SE-3(2):125–143, 1977.2

LBBG86. P. LeGuernic, A. Benveniste, P. Bournai, and T. Gautier. Signal , a data flow oriented
language for signal processing.IEEE-ASSP, 34(2):362–374, 1986.2

MHM95. M. Müllerburg, L. Holenderski, and O. Maffeis. Systematic testing and formal veri-
fication to validate reactive programs.Software Quality Journal, 4(4), 1995. 1

RR02. P. Raymond and Y. Roux. Describing non-deterministic reactive systems by means
of regular expressions. InFirst Workshop on Synchronous Languages, Applications
and Programming, SLAP’02, Grenoble, April 2002.3

RWNH98. P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing of reactive
systems. In19th IEEE Real-Time Systems Symposium, Madrid, Spain, December
1998. 1, 2

Som98. F. Somenzi.CUDD: CU Decision Diagram Package Release 2.3.0, 1998. 2
TMC94. P. Thevenod-Fosse, C. Mazuet, and Y. Crouzet. On statistical testing of synchronous

data flow programs. In1st European Dependable Computing Conference (EDCC-1),
pages 250–67, Berlin, Germany, 1994.1

15

	Case Studies with Lurette V2

