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Abstract

We construct the quadratic analogue of the boson Fock functor.
While in the first order (linear) case all contractions on the 1–particle
space can be second quantized, the semigroup of contractions that
admit a quadratic second quantization is much smaller due to the
nonlinearity. The encouraging fact is that it contains, as proper sub-
groups (i.e. the contractions), all the gauge transformations of second
kind and all the a.e. invertible maps of R

d into itself leaving the
Lebesgue measure quasi-invariant (in particular all diffeomorphism

of R
d). This allows quadratic 2-d quantization of gauge theories, of

representations of the Witt group (in fact it continuous analogue), of
the Zamolodchikov hierarchy, and much more. . . . Within this semi-
group we characterize the unitary and the isometric elements and we
single out a class of natural contractions.

1 Introduction

The boson (this specification will be omitted in the following) Fock functor
has its origins in Heisenberg commutation relations. If H is a complex Hilbert
space the Heisenberg ∗–Lie algebra Heis(H) is defined by generators.

{Ag, A
+
f , 1 (central element) : f ∈ H}

commutation relations

[Af , A
+
g ] = 〈f, g〉 · 1 ; f, g ∈ H
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(the omitted commutation relations are zero) and involution

(Af)
∗ = A+

f ; f ∈ H

On the universal enveloping algebra of Heis(H), denoted U(Heis(H)), there
is a unique state satisfying

ϕ(1) = 1

ϕ(xAg) = 0 ; ∀x ∈ U(Heis(H)) ; ∀g ∈ H

Denoting Γ(H) the GNS space of U(Heis(H)) with respect to ϕ, the map
H 7→ Γ(H) is a functor defined on the category of Hilbert spaces, with mor-
phisms given by contractions to the category of infinite dimensional Hilbert
spaces with the same morphisms.
Γ(H) is called the Fock space over H and, if V is a contraction on H its
image Γ(V ) is called the Fock second quantization of V .
The domain of Γ is maximal in the sense that, if V is not a contraction on
H , then Γ(V ) cannot be a bounded operator on Γ(H).

Our goal in this paper is to extend the picture described above, from the
Heisenberg algebra, describing the white noise commutation relations, to the
algebra describing the commutation relations of the renormalized square of
white noise.
The algebra of the renormalized square of white noise (RSWN) with test
function algebra

A := L2(Rd) ∩ L∞(Rd)

is the ∗-Lie-algebra, with central element denoted 1, generators

{B+
f , Bh, Ng : f, g, h ∈ L2(Rd) ∩ L∞(Rd)}

involution
(B+

f )∗ = Bf , N∗
f = Nf̄

and commutation relations

[Bf , B
+
g ] = 2c〈f, g〉 + 4Nf̄g, [Na, B

+
f ] = 2B+

af , c > 0

[B+
f , B+

g ] = [Bf , Bg] = [Na, Na′ ] = 0

for all a, a′, f , g ∈ L2(Rd) ∩ L∞(Rd) (the theory can be developed for more
general Hilbert algebras, but we will deal only with this case). This is a
current algebra over sl(2, R) with test function algebra A. One can prove

2



that, on the universal enveloping algebra U(RSWN) of the RSWN algebra,
there exists a unique state ϕF such that

ϕF (1) = 1

ϕF (xBg) = ϕF (xNf ) = 0 ; ∀f, g ∈ A ; ∀x ∈ U(RSWN)

By analogy with the Heisenberg algebra, it is natural to call this state the
quadratic Fock state and the associated GNS space, denoted Γ2(A), the
quadratic Fock space. The Fock representation of the RSWN is characterized
by a cyclic vector Φ, also called vacuum as in the first order case, satisfying

BfΦ = NgΦ = 0

for all f, g ∈ L2(Rd) ∩ L∞(Rd).
We refer the interested reader to [4], [5] for more details.
The extensions, to the quadratic case, of the second quantization procedure
for linear operators on A requires the solution of the following two problems:
(1) when does a linear operator on A induce a linear operator on Γ2(A)?
(2) In the cases in which the answer to problem (1) is positive, when is the
induced operator bounded (a contraction, unitary, isometric, . . .)?
By inspection on the explicit form of the scalar product of the quadratic Fock
space (see Lemma 2 below) one is led to conjecture that two classes of linear
transformations of A should induce contractions on Γ2(A):

(i) ∗–endomorphisms of the Hilbert algebra A

(ii) generalized gauge transformations of the form

f 7→ eαf ; eαf(x) := eα(x)f(x) ; x ∈ R
d

where α ∈ Rd → C is a complex valued Borel function with negative
real part (the −∞ value is allowed to include functions with non full
support).

One of our main results is that these are essentially all the linear operators
on A which admit a contractive second quantization on the quadratic Fock
space.
The scheme of the present paper is the following. In section 2, we recall some
properties on the quadratic exponential vectors. Moreover, we prove that
the quadratic Fock space is an interacting Fock space with scalar product
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given explicitly. In section 3, we characterize those operator on the one–
particle Hilbert algebra whose quadratic second quantization is isometric
(resp. unitary). In section 4, we show with a counter–example that even
very simple contractions have a second quantization that is not a contraction
and we give a sufficient condition for this to happen. We also introduce the
natural candidates for the role of quadratic analogue of the free Hamiltonian
evolution and of the Ornstein–Uhlenbeck semigroup.

2 The quadratic Fock space

For n ∈ N the quadratic n–particle space is the closed linear span of the set

{B+n
f Φ : f ∈ L2(Rd) ∩ L∞(Rd)}

where by definition B+0
f Φ = Φ, for all f ∈ L2(Rd) ∩ L∞(Rd). The quadratic

Fock space Γ2(L
2(Rd) ∩ L∞(Rd)) is the orthogonal sum of all the quadratic

n–particle spaces. The quadratic exponential vector with test function
f ∈ L2(Rd) ∩ L∞(Rd), if it exists, is defined by

Ψ(f) =
∑

n≥0

B+n
f Φ

n!
(1)

where by definition
Ψ(0) = B+0

f Φ = Φ (2)

The following theorem was proved in [2].

Theorem 1 The quadratic exponential vector Ψ(f) exists if and only if
‖f‖∞ < 1

2
. The set of these vectors is linearly independent and total in

Γ2(L
2(Rd)∩L∞(Rd)). Furthermore, the scalar product between two exponen-

tial vectors, Ψ(f) and Ψ(g), is given by

〈Ψ(f), Ψ(g)〉 = e−
c
2

R

Rd ln(1−4f̄(s)g(s))ds (3)

The explicit form of the scalar product between two quadratic n–particle
vectors is due to Barhoumi, Ouerdiane, Riahi [6]. Its proof, which we include
for completeness, one needs the following preliminary result which uses the
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identity, proved in Proposition 1 of [2]. This identity will be frequently used
in the following:

||B+m
f Φ||2 = c

m−1
∑

k=0

22k+1 m!(m − 1)!

((m − k − 1)!)2
|‖fk+1‖2

2‖B
+(m−k−1)
f Φ‖2

= c

m−1
∑

k=1

22k+1 m!(m − 1)!

((m − k − 1)!)2
|‖fk+1‖2

2‖B
+(m−k−1)
f Φ‖2

+2mc‖f‖2
2‖B

+(m−1)
f Φ‖2

= c

m−2
∑

k=0

22k+3 m!(m − 1)!

(((m − 1) − k − 1)!)2
‖fk+2‖2

2‖B
+((m−1)−k−1)
f Φ‖2

+2mc‖f‖2
2‖B

+(m−1)
f Φ‖2 (4)

Lemma 1 For all f, g ∈ L2(Rd) ∩ L∞(Rd) such that ‖f‖∞ < 1
2
, ‖g‖∞ < 1

2
,

one has

〈B+n
f Φ, B+n

g Φ〉 = n!
dn

dtn

∣

∣

∣

t=0
〈Ψ(tf), Ψ(g)〉 (5)

Proof. Let f, g ∈ L2(Rd) ∩ L∞(Rd) such that ‖f‖∞ < 1
2
, ‖g‖∞ < 1

2
. For all

0 ≤ t ≤ 1, one has

〈Ψ(tf), Ψ(g)〉 =
∑

m≥0

tm

(m!)2
〈B+m

f Φ, B+m
g Φ〉

We now prove that, for 0 ≤ t ≤ 1, the above series can be differentiated (in
t) term by term. For all m ≥ n, one has

dn

dtn

( tm

(m!)2
〈B+m

f Φ, B+m
g Φ〉

)

=
m!tm−n

(m!)2(m − n)!
〈B+m

f Φ, B+m
g Φ〉

=
tm−n

m!(m − n)!
〈B+m

f Φ, B+m
g Φ〉

So that, for 0 ≤ t ≤ 1

∣

∣

∣

dn

dtn

( tm

(m!)2
〈B+m

f Φ, B+m
g Φ〉

)
∣

∣

∣
≤ Um :=

1

m!(m − n)!
‖B+m

f Φ‖‖B+m
g Φ‖
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From the identity (4) it follows that

c

m−2
∑

k=0

22k+3 m!(m − 1)!

(((m − 1) − k − 1)!)2
‖fk+2‖2

2‖B
+((m−1)−k−1)
f Φ‖2

≤
(

4m(m − 1)‖f‖2
∞

)[

c

m−2
∑

k=0

22k+1 (m − 1)!(m − 2)!

(((m − 1) − k − 1)!)2
‖fk+1‖2

2

‖B
+((m−1)−k−1)
f Φ‖2

]

=
(

4m(m − 1)‖f‖2
∞

)

‖B+m
f Φ‖2

In conclusion

||B+m
f Φ||2 ≤

[

4m(m − 1)‖f‖2
∞ + 2m‖f‖2

]

‖B
+(m−1)
f Φ‖2

Therefore

‖B+m
f Φ‖‖B+m

g Φ‖ ≤
√

4m(m − 1)‖f‖2
∞ + 2m‖f‖2

2
√

4m(m − 1)‖g‖2
∞ + 2m‖g‖2

2‖B
+(m−1)
f Φ‖‖B+(m−1)

g Φ‖

The definition of Um then implies that

Um ≤

√

4m(m − 1)‖f‖2
∞ + 2m‖f‖2

2

√

4m(m − 1)‖g‖2
∞ + 2m‖g‖2

2

m(m − n)
Um−1

If f and g are non-vanishing functions, then

lim
m→∞

Um

Um−1

≤ 4‖f‖∞‖g‖∞ < 1

because ‖f‖∞ < 1
2
, ‖g‖∞ < 1

2
. Hence, the series

∑

m Um converges. This
implies that

dn

dtn
〈Ψ(tf), Ψ(g)〉 =

∑

m≥n

tm−n

m!(m − n)!
〈B+m

f Φ, B+m
g Φ〉

Evaluating the derivative at t = 0, one obtains (5). �

Lemma 2 For all f, g ∈ L2(Rd) ∩ L∞(Rd) the following identity holds

〈B+n
f Φ, B+n

g Φ〉 =
∑

i1+2i2+...+kik=n

(n!)222n−1ci1+...+ik

i1! . . . ik!2i2 . . . kik
〈f, g〉i1〈f 2, g2〉i2 . . . 〈fk, gk〉ik (6)

6



Proof. The complex linearity of the map f 7→ B+
f implies that, for all

λ1, λ2 ∈ C,
〈B+n

λ1fΦ, B+n
λ2gΦ〉 = λ̄n

1λ
n
2 〈B

+n
f Φ, B+n

g Φ〉

Therefore it will be sufficient to prove the identity (6) for all f, g ∈ L2(Rd)∩
L∞(Rd) such that ‖f‖∞, ‖g‖∞ < 1

2
. In this case one has

〈B+n
f Φ, B+n

g Φ〉 = n!
dn

dtn

∣

∣

∣

t=0
〈Ψ(tf), Ψ(g)〉

= n!
dn

dtn

∣

∣

∣

t=0

(

exp ( − 〈log(1 − 4tf̄g)〉)
)

(7)

where

〈log(1 − 4tf̄g)〉 :=
c

2

∫

Rd

log (1 − 4tf̄(s)g(s))ds

Denoting h(t, s) := log (1 − 4tf̄(s)g(s)), its k–th derivative (in t) is

h(k)(t, s) = 22k(k − 1)!(f̄(s))k(g(s))k(1 − 4tf̄(s)g(s))−k

Hence, uniformly for t ≤ 1

|h(k)(t, s)| ≤
22k(k − 1)!|f(s)|k|g(s)|k

(1 − 4‖f‖∞‖g‖∞)k
(8)

Thus, the left hand side of (8) is integrable in s and

〈h(k)(t)〉 = 22k(k − 1)!

∫

Rd

(f̄(s))k(g(s))k

(1 − 4tf̄(s)g(s))k
ds

Putting t = 0 one finds

〈h(k)(0)〉 = 22k(k − 1)!〈fk, gk〉 (9)

Combining the identity (cf. Refs [6], [7])

dn

dtn
eϕ(t) =

∑

i1+2i2+...+kik=n

22nn!

i1! . . . ik!

(ϕ(1)(t)

1!

)i1
. . .

(ϕ(k)(t)

k!

)ik
eϕ(t) (10)

with (7), (9) and (10) one obtains

〈B+n
f Φ, B+n

g Φ〉 = n!
dn

dtn

∣

∣

∣

t=0
〈Ψ(tf), Ψ(g)〉

=
∑

i1+2i2+...+kik=n

n!22n−1n!ci1+...+ik

i1! . . . ik!2i2 . . . kik
〈f, g〉i1〈f 2, g2〉i2 . . . 〈fk, gk〉ik
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from which (6) follows. �

The following theorem is an immediate consequence of Lemma 2.

Theorem 2 There is a natural ismorphism between the quadratic Fock space
Γ2(L

2(Rd)∩L∞(Rd)) and the interacting Fock space ⊕∞
n=0⊗

n
symm{L

2(Rd), 〈·, ·〉n},
with scalar products:

〈f⊗n, g⊗n〉n =
∑

i1+2i2+...+kik=n

22n−1(n!)2ci1+...+ik

i1! . . . ik!2i2 . . . kik
〈f, g〉i1〈f 2, g2〉i2 . . . 〈fk, gk〉ik

3 Quadratic second quantization of contrac-

tions

Let T be a linear operator on L2(Rd) ∩ L∞(Rd). If the map

Ψ(f) 7→ Ψ(Tf) (11)

is well defined for all quadratic exponential vectors then, by the linear inde-
pendence of these vectors, it admits a linear extension to a dense subspace of
Γ2(L

2(Rd) ∩ L∞(Rd)), denoted Γ2(T ) and called the quadratic second quan-
tization of T .
From (2) and (11) it follows that, if Γ2(T ) exists then, whatever T is, it leaves
the quadratic vacuum invariant:

Γ2(T )Φ = Φ

Lemma 3 Let T be a linear operator on L2(Rd) ∩ L∞(Rd). Then Γ2(T ) is
well defined on the set of all the exponential vectors if and only if T is a
contraction on L2(Rd) ∩ L∞(Rd) equipped with the norm ‖.‖∞.

Proof. Sufficiency. If T : L∞(Rd) → L∞(Rd) is a contraction, then
‖Tf‖∞ ≤ ‖f‖∞ < 1/2 for any test function f ∈ L2(Rd) ∩ L∞(Rd) such that
‖f‖∞ < 1/2. Therefore Γ2(T )Ψ(f) is well defined.
Necessity. If Γ2(T ) is well defined, then one has ‖Tg‖∞ < 1

2
, for any

g ∈ L2(Rd) ∩ L∞(Rd) such that ‖g‖∞ < 1
2
. By linearity T maps the open

unit ‖.‖∞–ball of L2(Rd) ∩ L∞(Rd) into itself, i.e. it is a contraction. �

8



3.1 Isometric and unitarity characterization of the quadratic

second quantization

Let us start by giving a sufficient condition on T , which ensures that Γ2(T )
is an isometry (resp. unitary operator).

A Hilbert algebra endomorphism (resp. automorphism) T of
L2(Rd) ∩ L∞(Rd) is said to be a ∗-endomorphism (resp. ∗-automorphism) if
T is an isometry (resp. a unitary operator) with respect to the pre-Hilbert
structure of L2(Rd) ∩ L∞(Rd), which satisfies

T (fg) = T (f)T (g), (T (f))∗ = T (f̄).

The following proposition is an immediate consequence of Lemma 2.

Proposition 1 If α : R
d → R is a Borel function, T1 is a ∗-endomorphism

of L2(Rd) ∩ L∞(Rd) and
T := eiαT1

then Γ2(T ) is an isometry. Moreover, if T1 is a ∗-automorphism of
L2(Rd) ∩ L∞(Rd), then Γ2(T ) is unitary.

Proof. To prove that Γ2(T ) is an isometry it is sufficient to prove that it
preserves the scalar product of two arbitray quadratic exponential vectors.
From (1) and the mutual orthogonality of different n–particle spaces, it will
be sufficient to prove that, for each n ∈ N and f, g ∈ L2(Rd) ∩ L∞(Rd) one
has:

〈B+n
Tf Φ, B+n

Tg Φ〉 = 〈B+n
f Φ, B+n

g Φ〉

and, because of Lemma 2, this identity follows from

〈(Tf)k, (Tg)k〉 = 〈fk, gk〉 ; ∀k ∈ N ; ∀f, g ∈ L2(Rd)∩L∞(Rd)

But this identity holds because our assumptions on T imply that

〈(Tf)k, (Tg)k〉 = 〈eikα(T1f)k, eikα(T1g)k〉 = 〈T1(f
k), T1(g

k)〉 = 〈fk, gk〉

Thus Γ2(T ) is an isometry. If, in addition, T1 is a ∗-automorphism of
L2(Rd)∩L∞(Rd), then T is surjective. Hence the range of Γ2(T ), containing
all the quadratic exponential vectors, is the whole quadratic Fock space. The
thesis then follows because an isometry with full range is unitary. �

In the following our goal is to prove the converse of the above proposition.
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Lemma 4 i) If Γ2(T ) is a unitary operator, then

〈(Tf)n, (Tg)n〉 = 〈fn, gn〉 (12)

for all n ∈ N∗ and f, g ∈ L2(Rd) ∩ L∞(Rd).

ii) If Γ2(T ) is an isometry, then for all n ∈ N∗ and f ∈ L2(Rd) ∩ L∞(Rd)

‖(Tf)n‖2 = ‖fn‖2

Proof. Suppose that Γ2(T ) is a unitary operator. Let us fix two functions
f, g ∈ L2(Rd) ∩ L∞(Rd) such that ‖f‖∞ < 1

2
, ‖g‖∞ < 1

2
. Then, one has

〈Ψ(Tf), Ψ(Tg)〉 = 〈Ψ(f), Ψ(g)〉

It follows that
〈Ψ(tTf), Ψ(Tg)〉 = 〈Ψ(tf), Ψ(g)〉

for all t such that |t| < 1. Therefore, Lemma 1 implies that

〈B+n
Tf Φ, B+n

Tg Φ〉 = 〈B+n
f Φ, B+n

g Φ〉 (13)

for all n ∈ N. Let us prove the statement i) by induction.
- For n = 1, we have

〈B+
TfΦ, B+

TgΦ〉 = 〈B+
f Φ, B+

g Φ〉

This gives
〈Tf, Tg〉 = 〈f, g〉

- Suppose that (12) holds for k ≤ n. Then, from (13) and the identity (4),
one obtains

〈B
+(n+1)
Tf Φ, B

+(n+1)
Tg Φ〉

= c
n

∑

k=0

22k+1 n!(n + 1)!

((n − k)!)2
〈(Tf)k+1, (Tg)k+1〉〈B

+(n−k)
Tf Φ, B

+(n−k)
Tg Φ〉

= 22n+1n!(n + 1)!c 〈(Tf)n+1, (Tg)n+1〉

+c
n−1
∑

k=0

22k+1 n!(n + 1)!

((n − k)!)2
〈(Tf)k+1, (Tg)k+1〉〈B

+(n−k)
Tf Φ, B

+(n−k)
Tg Φ〉

= 22n+1n!(n + 1)!c 〈fn+1, gn+1〉

+c
n−1
∑

k=0

22k+1 n!(n + 1)!

((n − k)!)2
〈fk+1, gk+1〉〈B

+(n−k)
f Φ, B+(n−k)

g Φ〉

10



By the induction assumption, one has

c

n−1
∑

k=0

22k+1 n!(n + 1)!

((n − k)!)2
〈(Tf)k+1, (Tg)k+1〉〈B

+(n−k)
Tf Φ, B

+(n−k)
Tg Φ〉

= c

n−1
∑

k=0

22k+1 n!(n + 1)!

((n − k)!)2
〈fk+1, gk+1〉〈B

+(n−k)
f Φ, B+(n−k)

g Φ〉

which implies that

〈(Tf)n+1, (Tg)n+1〉 = 〈fn+1, gn+1〉 ; ∀n ∈ N
∗

Thus (12) holds for all n ∈ N∗.
The proof of statement ii) is obtained by replacing, in the above argument,
the test function g by f . �

Lemma 5 Suppose that Γ2(T ) is an isometry. Then, for any I ⊂ Rd such
that |I| < ∞, one has

|T (χI)(x)| = 1

on supp(T (χI)) a.e.

Proof. By assumption Γ2(T ) is an isometry, hence from Lemma 4, ∀n ∈ N:

〈(T (χI))
n, (T (χI))

n〉 = 〈(χI)
n, (χI)

n〉 = 〈χI , χI〉 = |I| (14)

for any subset I ⊂ Rd such that |I| < ∞. But, one has

〈(T (χI))
n, (T (χI))

n〉 = |{x ∈ R
d, |T (χI)(x)| = 1}| +

∫

J

|T (χI)(x)|2ndx (15)

where | · | denotes Lebesgue measure and

J := {x ∈ R
d, |T (χI)(x)| 6= 1 and |T (χI)(x)| > 0}

Since the identity (15) holds ∀n ∈ N, it follows that

∫

J

|T (χI(x)|2ndx =

∫

J

|T (χI(x)|2(n+1)dx ; ∀n ∈ N

But it is not difficult to prove that this is impossible if |J | > 0. �
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Lemma 6 If I ⊂ Rd such that |I| < ∞ and Γ2(T ) is an isometry, then there
exist a function αI : Rd → R and a subset τ(I) ⊂ Rd such that

T (χI) = eiαI χτ(I)

and |I| = |τ(I)|. Moreover, if I1, I2 is an arbitrary partition of I, then

τ(I) = τ(I1) ∪ τ(I2) , a.e. (16)

In particular, if I1 ⊂ I, then a.e. τ(I1) ⊂ τ(I).

Proof. Lemma 5 implies that there exist a function αI : Rd → R and a
subset τ(I) ⊂ Rd such that T (χI) = eiαI χτ(I). From (14) one has

|τ(I)| = 〈T (χI), T (χI)〉 = 〈χI , χI〉 = |I|

Let I1, I2 be a partition of I. From χI = χI1∪I2 = χI1 + χI2 , it follows that

T (χI) = T (χI1) + T (χI2)

i.e.
eiαI χτ(I) = eiαI1χτ(I1) + eiαI2 χτ(I2)

Multiplying both sides by χτ(I1)∪τ(I2), one finds

eiαI χτ(I)∩[τ(I1)∪τ(I2)] = eiαI1 χτ(I1) + eiαI2χτ(I2) = eiαI χτ(I)

Therefore, one has τ(I) = τ(I1) ∪ τ(I2) a.e. Since the partition I1, I2 of I is
arbitrary, it follows that I1 ⊂ I implies that τ(I1) ⊂ τ(I). �

Lemma 7 If Γ2(T ) is an isometry and I1, I2 ⊂ Rd are such that
|I1| < ∞, |I2| < ∞ and |I1 ∩ I2| = 0, then |τ(I1) ∩ τ(I2)| = 0.

Proof. Suppose that |I1 ∩ I2| = 0. Then, from the identity

χI1∪I2 = χI1 + χI2 − χI1∩I2

it follows that, a.e.
χI1∪I2 = χI1 + χI2

and therefore also

T (χI1∪I2) = T (χI1) + T (χI2) ; a.e

12



Applying (14) one then gets

|I1| + |I2| = 〈χI1∪I2, χI1∪I2〉

= 〈T (χI1∪I2), T (χI1∪I2)〉

= 〈T (χI1), T (χI1)〉 + 〈T (χI2), T (χI2)〉

+〈T (χI1), T (χI2)〉 + 〈T (χI2), T (χI1)〉

= |I1| + |I2| +

∫

τ(I1)∩τ(I2)

ei(αI2
−αI1

)(x)dx

+

∫

τ(I1)∩τ(I2)

e−i(αI2
−αI1

)(x)dx

= |I1| + |I2| + 2

∫

τ(I1)∩τ(I2)

cos((αI2 − αI1)(x))dx (17)

which implies that
∫

τ(I1)∩τ(I2)

cos((αI2 − αI1)(x))dx = 0 (18)

Put I = I1 ∪ I2. From the identities

eiαI χτ(I) = eiαI1 χτ(I1) + eiαI2 χτ(I2)

τ(I) = τ(I1) ∪ τ(I2) a.e

it follows that if x ∈ τ(I1) ∩ τ(I2), then

eiαI (x) = eiαI1 (x) + eiαI2 (x)

Thus, one obtains

ei(αI (x)−αI1
(x) = 1 + ei(αI2

(x)−αI1
(x))

This gives

1 = |1 + ei(αI2
(x)−αI1

(x))|2 = 2 + 2cos(αI2(x) − αI1(x))

which yields that

cos(αI2(x) − αI1(x)) = −
1

2

This, together with (18) implies that |τ(I1) ∩ τ(I2)| = 0. �
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Lemma 8 In the notations and assumptions of Lemma 6, for any I ⊂ Rd

such that |I| < ∞ and any I1 ⊂ I one has

eiαI1 χτ(I1) = eiαI χτ(I1)

for almost any x ∈ τ(I1).

Proof. Let I2 = I \ I1. Arguing as in the proof of of Lemma 6 one finds that

eiαI χτ(I) = eiαI1χτ(I1) + eiαI2 χτ(I2)

Thus, if we multiply the two sides in the above identity by χτ(I1), then from
Lemmas 6, 7, it follows that

eiαI χτ(I1) = eiαI1 χτ(I1) , a.e

�

Lemma 9 In the notations and assumptions of Lemma 6 there exists a func-
tion α : Rd → R such that for any I ⊂ Rd, with |I| < ∞

T (χI) = eiαχτ(I)

where τ(I) ⊂ Rd and |τ(I)| = |I|.

Proof. Let (In)n be an increasing sequence of subsets of Rd such that
|In| < ∞, ∀n ∈ N and

⋃

n∈N
In = R

d. Define the function α : R
d → R by

α(x) = αIn
(x), for any n ∈ N such that x ∈ In, where αIn

is defined as in
Lemma (6). Then α is well defined because, denoting

n(x) := min{n ∈ N, x ∈ In} ; x ∈ R
d

Lemma 8 implies that, for any m, n ∈ N such that n(x) ≤ m ≤ n,

eiαIm χτ(Im) = eiαIn χτ(Im)

In particular, for any n ≥ n(x), one has

eiαIn χτ(In(x)) = e
iαIn(x)χτ(In(x))

which implies that
αIn

(x) = αIn(x), ∀n ≥ n(x)

This ends the proof of the above lemma. �

Using all together Proposition 1, Lemmas 4, 6 and 9, we prove the fol-
lowing.

14



Theorem 3 Γ2(T ) is an isometry (resp. unitary) if and only if there exist
a function α from Rd to R and a ∗-endomorphism (resp. ∗-automorphism)
T1 of L2(Rd) ∩ L∞(Rd) such that

T = eiαT1

Proof. Sufficiency has been proved in Proposition 1.
Necessity. Suppose that Γ2(T ) is an isometry. Then, from Lemma 4, T is an
isometry. Moreover, Lemma 9 implies that there exists a function α : Rd → R

such that for any I ⊂ Rd, |I| < ∞

T (χI) = eiαχτ(I)

where τ(I) ⊂ Rd and |τ(I)| = |I|. Define the map T1 by:

T1 : χI ∈ L2(Rd) ∩ L∞(Rd) → T1(χI) := χτ(I) (19)

for all I ⊂ Rd such that |I| < ∞. In order to prove that T1 extends,
by linearity and continuity, to a ∗-endomorphism of L2(Rd) ∩ L∞(Rd), it is
sufficient to prove that for all I, J ⊂ R with |I| < ∞, |J | < ∞

T1(χIχJ) = T1(χI)T1(χJ) = χτ(I)χτ(J) = χτ(I)∩τ(J) , a.e (20)

But, by definition of T1 one has

T1(χIχJ) = T1(χI∩J) = χτ(I∩J)

therefore our thesis is equivalent to

τ(I) ∩ τ(I) = τ(I ∩ J) , a.e (21)

Finally, since from Lemma 6 we know that τ(I ∩ J) ⊂ τ(I) ∩ τ(J), (21) will
follow if we prove that

|τ(I) ∩ τ(J)| = |τ(I ∩ J)| (22)

To prove (22) notice that, since T , hence T1, is an isometry, one has

〈T1(χI∪J), T1(χI∪J)〉 = 〈χI∪J , χI∪J〉 = |I| + |J | − |I ∩ J | (23)
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On the other hand, from Lemma 6 we know that the map I 7→ τ(I) is finitely
addditive, hence monotone. Therefore, using linearity, (19) and the identity
χI∪J = χI + χJ − χI∩J , we find

〈T1(χI∪J), T1(χI∪J)〉 = 〈T1(χI) + T1(χJ) − T1(χI∩J), T1(χI)

+T1(χJ) − T1(χI∩J)〉

= 〈T1(χI), T1(χI)〉 + 〈T1(χI), T1(χJ)〉

−〈T1(χI), T1(χI∩J)〉 + 〈T1(χJ), T1(χI)〉

+〈T1(χJ), T1(χJ)〉 − 〈T1(χJ), T1(χI∩J)〉

−〈T1(χI∩J), T1(χI)〉 − 〈T1(χI∩J), T1(χJ)〉

+〈T1(χI∩J), T1(χI∩J)〉

= 〈χτ(I), χτ(I)〉 + 〈χτ(I), χτ(J)〉 − 〈χτ(I), χτ(I∩J)〉

+〈χτ(J), χτ(I)〉 + 〈χτ(J), χτ(J)〉 − 〈χτ(J), χτ(I∩J)〉

−〈χτ(I∩J), χτ(I)〉 − 〈χτ(I∩J), χτ(J)〉

+〈χτ(I∩J), χτ(I∩J)〉

Using the isometry property and the fact that τ(I ∩J) ⊆ τ(I)∩ τ(J), we see
that this expression is equal to

|I| + |τ(I) ∩ τ(J)| − |τ(I ∩ J)| + |τ(I) ∩ τ(J)| + |J | − |τ(I ∩ J)|

−|τ(I ∩ J)| − |τ(I ∩ J)| + |τ(I ∩ J)|

= |I| + |J | + 2|τ(I) ∩ τ(J)| − 3|τ(I ∩ J)|

= |I| + |J | + 2|τ(I) ∩ τ(J)| − 3|I ∩ J |

Since this is equal to the right hand side of (23), we conclude that

−|I ∩ J | = 2|τ(I) ∩ τ(J)| − 3|I ∩ J | ⇔ |τ(I) ∩ τ(J)| = |I ∩ J | = |τ(I ∩ J)|

which is equivalent to (22) and therefore to (20).
Since a unitary operator is an isometry we conclude that, if Γ2(T ) is unitary,
then T1, defined by (19), is an invertible ∗-endomorphism of L2(Rd)∩L∞(Rd),
i.e. a ∗-automorphism. �

4 Quadratic second quantization of contrac-

tions

We will use the following remark.
Remark Let A = (aij)i,j , B = (bij)i,j, C = (cij)i,j and D = (dij)i,j be
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matrices such that, in the operator order:

0 ≤ A ≤ B, and 0 ≤ C ≤ D

Then by Schur’s Lemma

0 ≤ ((bij − aij)cij)i,j ⇔ (aijcij)i,j ≤ (bijcij)i,j

0 ≤ (bij(dij − cij))i,j ⇔ (bijcij)i,j ≤ (bijdij)i,j

Consequently one has

0 ≤ (aijcij)i,j ≤ (bijdij)i,j (24)

Theorem 4 The set of all operators T such that Γ2(T ) is a contraction is a
multiplicative semigroups denoted Contr2(L

2 ∩ L∞). Moreover

Γ2(S)Γ2(T ) = Γ2(ST ) ; ∀S, T ∈ Contr2(L
2 ∩ L∞) (25)

Proof. Let S, T ∈ Contr2(L
2∩L∞). Then Γ2(S), Γ2(T ) and hence Γ2(S)Γ2(T )

is a contraction on Γ2(L
2 ∩ L∞). Therefore it is uniquely determined by its

value on the quadratic exponential vectors. If Ψ(f) is such a vector, then

Γ2(S)Γ2(T )Ψ(f) = Γ2(S)Ψ(Tf) = Ψ(STf) = Γ2(ST )Ψ(f)

Thus Γ2(ST ) is a contraction and (25) holds. �

Now, we prove the following.

Proposition 2 If T = MϕT1 is a contraction for L2(Rd) and L∞(Rd), where
ϕ ∈ L2(Rd) ∩ L∞(Rd) such that ‖ϕ‖∞ ≤ 1 and T1 is an homomorphism of
L2(Rd) ∩ L∞(Rd), then Γ2(T ) is a contraction.

Proof. We have

‖Γ2(T )(α1Ψ(f1) + . . . + αlΨ(fl))‖
2 = ‖α1Ψ(Tf1) + . . . + αlΨ(Tfl)‖

2

=

l
∑

i,j=1

ᾱiαj〈Ψ(Tfi), Ψ(Tfj)〉 (26)

=
∑

n≥0

1

(n!)2

[

l
∑

i,j=1

ᾱiαj〈B
+n
Tfi

Φ, B+n
Tfj

Φ〉
]

.
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Put
An,T =

(

〈B+n
Tfi

Φ, B+n
Tfj

Φ〉
)

i,j
, An =

(

〈B+n
fi

Φ, B+n
fj

Φ〉
)

i,j
.

Now, our purpose is to prove, under the assumptions of the above proposition,
that

0 ≤ An,T ≤ An, (27)

for all n ∈ N.
Note that, for v = (α1, . . . , αl), one has

〈v, An,Tv〉 =

l
∑

i,j=1

ᾱiαj〈B
+n
Tfi

Φ, B+n
Tfj

Φ〉

= ‖α1B
+n
Tf1

Φ + . . . + αlB
+n
Tfl

Φ‖2.

This implies that An,T is a positive matrix. Now, let us prove the second
inequality in (27) by induction on n.

- For n = 1, one has

〈v, A1,Tv〉 =

l
∑

i,j=1

ᾱiαj〈B
+
Tfi

Φ, B+
Tfj

Φ〉

= 2c
l

∑

i,j=1

ᾱiαj〈Tfi, T fj〉

= 2c‖T (α1f1 + . . . + αlfl)‖
2
2

≤ 2c‖α1f1 + . . . + αlfl‖
2
2.

Because

2c‖α1f1 + . . . + αlfl‖
2
2 =

l
∑

i,j=1

ᾱiαj〈B
+
fi
Φ, B+

fj
Φ〉 = 〈v, A1v〉,

one obtains that A1,T ≤ A1.
- Let n ≥ 1 and suppose that An,T ≤ An. Note that for any f, g ∈

L2(Rd) ∩ L∞(Rd), Proposition 1 of [2] implies that

〈B
+(n+1)
f Φ, B+(n+1)

g Φ〉 = c

n
∑

k=0

22k+1 n!(n + 1)!

((n − k)!)2
〈fk+1, gk+1〉

〈B
+(n−k)
f Φ, B+(n−k)

g Φ〉.
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Then, one gets

〈v, An+1,Tv〉 =

l
∑

i,j=1

ᾱiαj〈B
+(n+1)
Tfi

Φ, B
+(n+1)
Tfj

Φ〉

= c
n

∑

k=0

22k+1 (n + 1)!n!

((n − k)!)2

[

l
∑

i,j=1

ᾱiαj〈(Tfi)
k+1, (Tfj)

k+1〉〈B
+(n−k)
Tfi

Φ, B
+(n−k)
Tfj

Φ〉
]

.

Put
Mk = (〈fk+1

i , fk+1
j 〉)i,j, Mk,T = (〈(Tfi)

k+1, (Tfj)
k+1〉)i,j.

This gives

〈v, Mk,Tv〉 =

l
∑

i,j=1

ᾱiαj〈(Tfi)
k+1, (Tfj)

k+1〉

= ‖α1(Tf1)
k+1 + . . . + αl(Tfl)

k+1‖2
2

= ‖ϕk+1T1(α1f
k+1
1 + . . . + αlf

k+1
l )‖2

2

≤ ‖ϕ‖k
∞‖T (α1f

k+1
1 + . . . + αlf

k+1
l )‖2

2

≤ ‖α1f
k+1
1 + . . . + αlf

k+1
l ‖2

2 = 〈v, Mkv〉.

This proves that
0 ≤ Mk,T ≤ Mk. (28)

Note that by induction assumption

0 ≤ An−k,T ≤ An−k, (29)

for all k = 0, . . . , n. Therefore, Lemma 24 and identies (28), (29) implies
that

An+1,T ≤ An+1.

Hence, we have proved that

〈v, An,Tv〉 =

l
∑

i,j=1

ᾱiαj〈B
+n
Tfi

Φ, B+n
Tfj

Φ〉 ≤ 〈v, Anv〉 =

l
∑

i,j=1

ᾱiαj〈B
+n
fi

Φ, B+n
fj

Φ〉,
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for all n. After using (26), it is easy to conclude that Γ2(T ) is a contraction.
�

Remark

The contractions considered in Proposition 2 are very special, however they
are sufficient to prove the existence of the quadratic free Hamiltonian and
the quadratic Ornstein–Uhlenbeck semigroup. In fact taking

T = T = ez1A

with Re(z) ≤ 0 where A = L2(Rd) ∩ L∞(Rd), Proposition 2 implies that
Γ2(e

z1A) is a holomorphic semigroup which, by the remark done at the be-
ginning of section (3), leaves the vacuum vector Φ invariant. In particular,
for z = it, t ∈ R, the generator H0 of the strongly continuous 1–parameter
unitary group

Γ2(e
it1A) = eitH0

is the quadratic analogue of the free Hamiltonian. By analytic continuation
one has

Γ2(e
z1A) = ezH0

Moreover Lemma 2 shows that its action on the n–particle space is the same
as the action of the number operator in the usual Fock space, i.e. it is reduced
to multiplication by

ezn

Thus H0 is the positive self–adjoint operator characterized by the property
that, for any n ∈ N, the n–particle space is the eigenspace of H0 correspond-
ing to the the eigenvalue n.
By considering the action of the number operators Nf , defined at the be-
ginning of section (1), one easily verifies that the definition of Nf can be
extended to the case in which f is a multiple of the identity function 1, so
that N1 is well defined. With this notation one has the identity

H0 =
1

2
N1

Using the functional realization of the quadratic Fock space given by Theorem
2 it is clear that the contraction semigroup

Γ2(e
−t1A) = e−tH0
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is positivity preserving and its explicit form gives that

Γ2(e
−t1A)1 = e−t1 ≤ 1

(here we are extending in the obvious way the action of Γ2(e
−t1A) to the mul-

tiples of the identity function which is not in L2(Rd)∩L∞(Rd)). This means
that the semigroup e−tH0 is sub–Markovian. The above discussion shows
that e−tH0 is a natural candidate for the role of quadratic analogue of the
Ornstein–Uhlenbeck semigroup. A more detailed analysis of this semigroup
and of its properties will be discussed elsewhere.

4.1 A counterexample

In this subsection, we discuss the behavior of contractions under quadratic
second quantization.

Lemma 10 Let T be a linear operator on L2(Rd) ∩ L∞(Rd). If T is a con-
traction on L2(Rd) and on L∞(Rd), then for any quadratic exponential vector
Ψ(f) one has

‖Γ2(T )Ψ(f)‖ ≤ ‖Ψ(f)‖ (30)

Proof. Recall that

‖Γ2(T )Ψ(f)‖2 = ‖Ψ(Tf)‖2 =
∑

n≥0

‖B+n
Tf Φ‖2

(n!)2
(31)

and that, because of Lemma 2:

‖B+n
Tf Φ‖2 =

∑

i1+2i2+...+kik=n

22n−1(n!)2ci1+...+ik

i1! . . . ik!2i2 . . . kik
‖Tf‖i1

2 ‖(Tf)2‖i2
2 . . . ‖(Tf)k‖ik

2

If T is a contraction on L2(Rd) and on L∞(Rd) then by the Riesz–Thorin
Theorem, for all p ≥ 2, T is also a contraction from Lp(Rd) into itself.
Therefore, for any p ≥ 1 and i ∈ N:

‖(Tf)p‖i
2 =

[

(
∫

|Tf |2p

)1/2p
]pi

= ‖Tf‖pi
2p ≤ 1
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for all j = 1, . . . , k. This proves that for any n ∈ N

‖B+n
Tf Φ‖2 ≤ ‖B+n

f Φ‖2

and, in view of (31), this implies (30). �

From Lemma (10) it follows that the fact that T is a contraction for
L2(Rd) and for L∞(Rd) is a necessary condition for Γ2(T ) to be a contrac-
tion. The following counterexample shows that this condition is not sufficient.

Define the linear operator T : L2(R) ∩ L∞(R) → L2(R) ∩ L∞(R) by

Tf =
(

∫ 1

0

f(t)dt
)

χ[0,1]

It is easy to verify that T is a contraction in both L2 and L∞. Therefore,
from Lemma 10, one has

‖Γ2(T )Ψ(f)‖ ≤ ‖Ψ(f)‖

In the following we will show that some linear combinations of quadratic
exponential vectors violate the inequality

‖Γ2(T )
(

∑

i

αiΨ(fi)
)

‖ ≤ ‖
∑

i

αiΨ(fi)‖

In fact taking

f1 := λχ[0, 1
2
] ; f2 := λχ[0,1] ; λ ∈ R ; |λ| <

1

2

one has

Tf1 =
λ

2
χ[0,1] ; Tf2 = λχ[0,1]

and

‖Γ2(T )
(

α1Ψ(f1) + α2Ψ(f2)
)

‖2 = 〈

(

α1

α2

)

, B

(

α1

α2

)

〉,

‖α1Ψ(f1) + α2Ψ(f2)‖
2 = 〈

(

α1

α2

)

, A

(

α1

α2

)

〉

where the matrices A, B are defined by:

A := (〈Ψ(fi), Ψ(fj)〉)1≤i,j≤2 ; B := (〈Ψ(Tfi), Ψ(Tfj)〉)1≤i,j≤2
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The contraction condition

‖Γ2(T )
(

α1Ψ(f1) + α2Ψ(f2)
)

‖2 ≤ ‖α1Ψ(f1) + α2Ψ(f2)‖
2

is equivalent to say that B ≤ A. In the following we prove that this inequality
is not true. In fact recalling (3), i.e.

〈Ψ(f), Ψ(g)〉 = e−
c
2

R

R
ln(1−4f̄(x)g(x))dx

one finds

A =

(

( 1
1−4λ2 )

c
4 ( 1

1−4λ2 )
c
4

( 1
1−4λ2 )

c
4 ( 1

1−4λ2 )
c
2

)

, B =

(

( 1
1−λ2 )

c
2 ( 1

1−2λ
)

c
2

( 1
1−2λ2 )

c
2 ( 1

1−4λ2 )
c
2

)

and a simple calculation proves that det(A − B) ≤ 0.
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