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Abstract

We construct the quadratic analogue of the boson Fock functor.
While in the first order (linear) case all contractions on the 1-particle
space can be second quantized, the semigroup of contractions that
admit a quadratic second quantization is much smaller due to the
nonlinearity. The encouraging fact is that it contains, as proper sub-
groups (i.e. the contractions), all the gauge transformations of second
kind and all the a.e. invertible maps of R? into itself leaving the
Lebesgue measure quasi-invariant (in particular all diffeomorphism
of R%). This allows quadratic 2-d quantization of gauge theories, of
representations of the Witt group (in fact it continuous analogue), of
the Zamolodchikov hierarchy, and much more.... Within this semi-
group we characterize the unitary and the isometric elements and we
single out a class of natural contractions.

1 Introduction

The boson (this specification will be omitted in the following) Fock functor
has its origins in Heisenberg commutation relations. If H is a complex Hilbert
space the Heisenberg x—Lie algebra Heis(H) is defined by generators.

{Ag, A}, 1 (central element) : f € H}
commutation relations

[Ap Agl={f.9)-1 5 fgeH
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(the omitted commutation relations are zero) and involution
(Ap)*=A7  ;  feH

On the universal enveloping algebra of Heis(H), denoted U(Heis(H)), there
is a unique state satisfying
p(1) =1
p(xA,) =0 ; Ve e U(Heis(H)) ; Vg€ H

Denoting I'(H) the GN.S space of U(Heis(H)) with respect to ¢, the map
H — T'(H) is a functor defined on the category of Hilbert spaces, with mor-
phisms given by contractions to the category of infinite dimensional Hilbert
spaces with the same morphisms.

['(H) is called the Fock space over H and, if V' is a contraction on H its
image I'(V') is called the Fock second quantization of V.

The domain of I' is maximal in the sense that, if V' is not a contraction on
H, then I'(V') cannot be a bounded operator on I'(H).

Our goal in this paper is to extend the picture described above, from the
Heisenberg algebra, describing the white noise commutation relations, to the
algebra describing the commutation relations of the renormalized square of
white noise.

The algebra of the renormalized square of white noise (RSWN) with test

function algebra
A= L*(RY) N L®(RY)

is the *-Lie-algebra, with central element denoted 1, generators
{Bf . B, Ny + [.g.h€ LR N L*(RY)}

involution
(B;{)* = By , N; = Ny

and commutation relations

[Bf, By] =2¢(f,9) +4Ng,, [Na, By| = 2B,

c>0
[B;[,B;] = [By, By] = [Na, Nor] =0

for all a, o, f, g € L*(R?) N L*>°(R?) (the theory can be developed for more
general Hilbert algebras, but we will deal only with this case). This is a
current algebra over sl(2,R) with test function algebra 4. One can prove
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that, on the universal enveloping algebra U(RSW N) of the RSW N algebra,
there exists a unique state ¢ such that

pr(l) =1
(pF(LUBg) = QOF(SL’Nf) =0 ; Vf,g eA; Vx e U(RSWN)

By analogy with the Heisenberg algebra, it is natural to call this state the
quadratic Fock state and the associated GNS space, denoted I'5(A), the
quadratic Fock space. The Fock representation of the RSWN is characterized
by a cyclic vector @, also called vacuum as in the first order case, satisfying

B;® = N,® = 0

for all f,g € L*(R?) N L>(RY).

We refer the interested reader to [, [F] for more details.

The extensions, to the quadratic case, of the second quantization procedure
for linear operators on A requires the solution of the following two problems:
(1) when does a linear operator on A induce a linear operator on I'y(A)?
(2) In the cases in which the answer to problem (1) is positive, when is the
induced operator bounded (a contraction, unitary, isometric, ...)?

By inspection on the explicit form of the scalar product of the quadratic Fock
space (see Lemma f] below) one is led to conjecture that two classes of linear
transformations of A should induce contractions on I'y(\A):

(i) *—endomorphisms of the Hilbert algebra A
(ii) generalized gauge transformations of the form
frerf ; e f(z) =@ f(z); x € RY

where o € R? — C is a complex valued Borel function with negative
real part (the —oo value is allowed to include functions with non full
support).

One of our main results is that these are essentially all the linear operators
on A which admit a contractive second quantization on the quadratic Fock
space.

The scheme of the present paper is the following. In section [, we recall some
properties on the quadratic exponential vectors. Moreover, we prove that
the quadratic Fock space is an interacting Fock space with scalar product



given explicitly. In section [J, we characterize those operator on the one-
particle Hilbert algebra whose quadratic second quantization is isometric
(resp. unitary). In section [, we show with a counter-example that even
very simple contractions have a second quantization that is not a contraction
and we give a sufficient condition for this to happen. We also introduce the
natural candidates for the role of quadratic analogue of the free Hamiltonian
evolution and of the Ornstein—Uhlenbeck semigroup.

2 The quadratic Fock space
For n € N the quadratic n—particle space is the closed linear span of the set
{Bj"® : fe L*(RY)NL*R}

where by definition Bf’® = @, for all f € L*(R%) N L*(R?). The quadratic
Fock space I'y(L?(R?) N L>®(RY)) is the orthogonal sum of all the quadratic

n—particle spaces. The quadratic exponential vector with test function
f € L3R4 N L>®(RY), if it exists, is defined by

Bf"®
w(H=3 " (1)
n>0 )
where by definition
V(0) = Bf°® = @ (2)

The following theorem was proved in [B].

Theorem 1 The quadratic exponential vector V(f) exists if and only if
1flle < 5. The set of these vectors is linearly independent and total in
[o(L3(RY) N L>®(RY)). Furthermore, the scalar product between two exponen-

tial vectors, V(f) and V(g), is given by
<\If(f), W(Q)) =3 Jpa In(1=4f(s)g(s))ds (3)

The explicit form of the scalar product between two quadratic n—particle
vectors is due to Barhoumi, Ouerdiane, Riahi [[]. Its proof, which we include
for completeness, one needs the following preliminary result which uses the



identity, proved in Proposition 1 of [ff]. This identity will be frequently used
in the following:

m—1
mi(m — 1)! k+1(2) ptm—k=1) 512
IBIm®|2 = Y 22! EB "
! kZ:O ((m k— )l) 2/l Py
m—1 (m 1)'
m—k—1
= el B B e
k=1
2mel £I31B; "V )
m— '(m—l)l o
= 92k+3 m k4212 gH(m=1)=k=1) g 12
‘2 (((m—l)—k:_1)!)2||f 1211 B I
2mel £ 313V | "

Lemma 1 For all f, g € L*(RY) N L>(RY) such that || flle < 3, l9]loc < 3.

one has
mn

(B @, BIr) = nt | (w(if), ¥(g) 9

Proof. Let f, g € L*(R%) N L*°(R?) such that || f||e < 3, ||g]/cc < 3. For all
0 <t <1, one has

(V). V) = 3 oo (B0, 5;7)

m>0

We now prove that, for 0 < ¢ < 1, the above series can be differentiated (in
t) term by term. For all m > n, one has

ar mltm—"
B+m(1> B+mCI) o mr B+m(I) B+mq)
dt <( 2 < >) (mh2(m —n)! < )
tm—n
= - 2 === B+mq) B+m(I)
ml(m —n)! i )
So that, for 0 <t <1
dr s t™m 1
B—I—mq) B+mq) ‘ = +m +m
dt <( )2 5! >> U mi(m —n)! 1B @||| B, ™|



From the identity (f]) it follows that

m—2 '(m_ 1)'
92k+3 m . k4212 g Hm=1)=k=1) g 12
> (((m_l)_k_l)!)2!|f HE? H
m—2
—1)l(m —2)!
< . 2 2k+1 k+1)2
< (4m(m = DI FI )[Ckz:oz g sy A
| B0 )12] = (4 —1>||f||2)||B;m<1>||2

In conclusion
1B @I < [4m(m — DI I + 2mlf|I1B] " Ve

Therefore

|BF B0l < y/Am(m — D FI% + 2m] I3

m—1 m—
VAm(m — 1)lg|2, + 2ml|g|31 BV e||| B V|
The definition of U,, then implies that

\/4m — DIIfIIE +2m][f]5v/4m(m — Dlgl% +2milg[3 U
m(m —n)

If f and g are non-vanishing functions, then

U,
lim —— <A fllsollgllee < 1
Tim = < 4] fllollg]

m—1

1

because [|flloo < 3. g/l < 3-

implies that

Hence, the series ) U, converges. This

dn tm—n
t _— B+m<1> B+m<1>
W0 = 3 )
Evaluating the derivative at ¢t = 0, one obtains (). O

Lemma 2 For all f, g € L*(R?) N L>(R%) the following identity holds
( ) 22n 1 21+ A
1

1!...Zk!222...

(Bf"®, B/"®) = >

11+2i2+...+kip=n

—(F9)"(f% 97" (5 ") (6)



Proof. The complex linearity of the map f +— B;{ implies that, for all

A, Ay € C, B
<B;7}(I>, Bj\_;;(m = Xf)x?(B}m(I), B;n(m

Therefore it will be sufficient to prove the identity () for all f, g € L*(R%) N

L>=(R?) such that || f||s, [|g]l < 3. In this case one has

(B e, By = aT] ), v()
= ] (e~ (oa(1 - 4479))))

where
(o1~ 4tfg)) == 5 [ Jog (1 = 4t7(s)a(s))ds
Denoting h(t, s) :=log (1 — 4t f(s)g(s)), its k—th derivative (in t) is
W9 (t,s) = 2% (k — 1!(F(3))" (9(5))*(1 — 4t f(s)g(s))
Hence, uniformly for ¢ < 1

22k — 1\ k k
0y < 240 DG gto)
(1 =4[ fllllgll0)
Thus, the left hand side of () is integrable in s and

B (), o2k(1 (f(s)"(g(s))*
) =2 1) [ G
Putting ¢ = 0 one finds
(h(0)) = 2% (k — 1)I(f*, ¢")
Combining the identity (cf. Refs [f], [1])
o 2l oW (f)y i CION»
LTS 2 !<%0 (t)> (M) ()

n o N ; | |
dt it L) 1! k!

with ([7), (A) and ([[0) one obtains

(Bf"®,Bj"®) = n | ). we))

“dtm

S

=0
nl22n—Iplcht+ik

== 1 2 2\i2
= 2 i ame ot

i1+2i2+...+kik:n

(9)

(10)

(f*, ")y



from which (f]) follows. O
The following theorem is an immediate consequence of Lemma [

Theorem 2 There is a natural ismorphism between the quadratic Fock space
Lo(L*(RYNL>(RY)) and the interacting Fock space &2 (@7 {L*(R?), (-, -)n},
with scalar products:

22n—1 (n!)2ci1+...+ik

AR N

(g (F2 g% gb)™

(fe" g% )n = Z

i14+2i2+...+kig=n

3 Quadratic second quantization of contrac-
tions

Let T be a linear operator on L2(R?) N L>(R%). If the map

U(f) = W (Tf) (11)

is well defined for all quadratic exponential vectors then, by the linear inde-
pendence of these vectors, it admits a linear extension to a dense subspace of
[y (L3 (RY) N L>=(RY)), denoted ['y(T) and called the quadratic second quan-
tization of T.

From (B)) and ([]) it follows that, if I'y(7") exists then, whatever T is, it leaves
the quadratic vacuum invariant:

Io(T)® = @

Lemma 3 Let T be a linear operator on L?*(R?) N L=(R?). Then I'y(T) is
well defined on the set of all the exponential vectors if and only if T is a
contraction on L?(R?) N L>®(R?) equipped with the norm ||.| s

Proof. Sufficiency. If T : L>®(R?) — L*(R?) is a contraction, then

1T flloo < |Iflloe < 1/2 for any test function f € L?(R?) N L>(RY) such that
| fllco < 1/2. Therefore I's(T)W(f) is well defined.

Necessity. If Ty(T) is well defined, then one has [|Tg||o < 3, for any

g € L*(R?) N L>(R?) such that ||g]| < 3. By linearity 7" maps the open
unit ||.||e—ball of L2(R?) N L>®(RY) into itself, i.e. it is a contraction. O



3.1 Isometric and unitarity characterization of the quadratic
second quantization

Let us start by giving a sufficient condition on 7', which ensures that I'y(T")
is an isometry (resp. unitary operator).

A Hilbert algebra endomorphism (resp. automorphism) 7" of
L*(RY) N L>(R?) is said to be a *-endomorphism (resp. *-automorphism) if
T is an isometry (resp. a unitary operator) with respect to the pre-Hilbert
structure of L2(R?) N L>(R?), which satisfies

T(fg) =T(NHT(g9), (T(f) =T(f).
The following proposition is an immediate consequence of Lemma [.

Proposition 1 If a: R? — R is a Borel function, Ty is a *-endomorphism
of L*(RY) N L>*°(R%) and ‘
T := e}
then U'y(T) is an isometry. Moreover, if 11 is a x-automorphism of
L2(RY) N L=(R?), then Ty(T) is unitary.

Proof. To prove that I';(T') is an isometry it is sufficient to prove that it
preserves the scalar product of two arbitray quadratic exponential vectors.
From ([J) and the mutual orthogonality of different n—particle spaces, it will
be sufficient to prove that, for each n € N and f, g € L*(R?) N L>(R?) one
has:

<B;}L<I>, B;g”@ = (B;{”QD, B;"CI))
and, because of Lemma [, this identity follows from
(T H* (Tg)*y = (f*, g") ; Vk € N ; Vf, g € L*(RYNL>(RY)
But this identity holds because our assumptions on 7" imply that

(T (Tg)*) = (" (T )", " (T19)*) = (T (7). Ti(g")) = (", 9")

Thus I'y(T') is an isometry. If, in addition, 7} is a x-automorphism of
L*(R*) N L>(R?), then T is surjective. Hence the range of I'y(T'), containing
all the quadratic exponential vectors, is the whole quadratic Fock space. The
thesis then follows because an isometry with full range is unitary. 0
In the following our goal is to prove the converse of the above proposition.



Lemma 4 i) If Uo(T) is a unitary operator, then
()" (Tg)") = (" 9" (12)
for alln € N* and f, g € L*(R?) N L>®(RY).
i) If To(T) is an isometry, then for allm € N* and f € L*(R?) N L>(R?)
IS 2 = 11"l

Proof. Suppose that I'o(7) is a unitary operator. Let us fix two functions
f, g € L*(RY) N L>(R?) such that || f|l < 3, [|9]lsc < 3. Then, one has

(W(Tf),¥(Tg)) = (¥(f), ¥(9))
It follows that

(W(ETf), ¥ (Tg)) = (W(tf), ¥(g))
for all ¢ such that |t| < 1. Therefore, Lemma [[] implies that

(Bfrd, Bird) = (Bi"®, Bi"®) (13)
for all n € N. Let us prove the statement i) by induction.
- For n =1, we have
(B} ;®, B},®) = (B @, B ®)
This gives
(Tf,Tg) = f.9)

- Suppose that ([[J) holds for £ < n. Then, from ([[3) and the identity ([),

one obtains

<B;:JE-”+1)(I)’ B;:g(n-l—l)q)>

- n'(n + 1)! n—k n—k

= e 2 S @ (T (B e, B )
k=0

= 22" pl(n + Dle (T )™, (Tg)" )
= 2k+1 n!(” + 1)! k41 k+1 +(n—k) +(n—k)

+ey 2 W((Tf) (Tg)" ) (Bry —®,Bpy " ®)

k=0

=22l (n + D)le (f*, g" )

n—1

Z okt P+ DUy i k) +(n—k
k=0

10



By the induction assumption, one has

cZ et S () (T B0, B )
ok 2l (n+ 1) B)r oo
— ¢ kzo 22k+1W <fk+1 k+1> <B+ (I) B+( k) (I)>

which implies that
<(Tf)n+1 (Tg)n—i—l) <fn+1 n+1> : Vn, c N*

Thus ([[2) holds for all n € N*.
The proof of statement ii) is obtained by replacing, in the above argument,
the test function g by f. O

Lemma 5 Suppose that I'y(T) is an isometry. Then, for any I C R? such
that |I| < 0o, one has
T(xr)(z)] =1

on supp(T(x1)) a.e

Proof. By assumption I'y(7') is an isometry, hence from Lemma [, Vn € N:

(TOxa)™, (T(x0)") = ((xn)"™s (x0)™) = o xa) = || (14)

for any subset I C R? such that |I| < co. But, one has

(TOe))™ (T(en))™) = {z € RY | T(xr) ()] = 1} + /J T (x1)(2)]*"dz (15)
where | - | denotes Lebesgue measure and

J:={z € RY, [T(xs)(z)| # 1 and |T(x1)(x)| > 0}

Since the identity (L) holds Vn € N, it follows that

/\T |2”d:c—/|T (@)2*Vde ;. VneN

But it is not difficult to prove that this is impossible if |J| > 0. O
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Lemma 6 IfI C R? such that |I| < oo and T'y(T) is an isometry, then there
exist a function oy : R4 — R and a subset 7(I) C RY such that

T(x1) = € X1
and |I| = |t(I)|. Moreover, if I, Is is an arbitrary partition of I, then
7(I) =7(I) UT(ly) : a.e. (16)
In particular, if Iy C I, then a.e. 7(Iy) C 7(I).

Proof. Lemma [J implies that there exist a function a; : R — R and a
subset 7(I) C R? such that T'(x;) = €"*’x,(). From ([4) one has

[T(D] = (T(xr), TOxa)) = s xa) = |

Let I, I be a partition of I. From x; = xr,ur, = X1, + X1o, it follows that

T(xr) =T(xn)+T(xn)

ie.
62aIXT(I) — 62&11 XT(I1) + ezaIZ XT(Iz)
Multiplying both sides by Xr(1,)ur(1,), one finds

[1e%;

e X (D (Iur()] = € Xr(n) + €2 X (1) = €Y X7 (D)

Therefore, one has 7(I) = 7(I;) U 7(I3) a.e. Since the partition Iy, I5 of I is
arbitrary, it follows that Iy C I implies that 7(1;) C 7({). O

Lemma 7 If Ty(T) is an isometry and I,, I, C R? are such that
|[1| < 00, ‘12‘ < o0 and |Il N [2‘ = 0, then |T(]1) ﬁT(]2>| =0.

Proof. Suppose that |I; N [5| = 0. Then, from the identity
XIlLJIz = XIl + sz - Xflﬂfz

it follows that, a.e.
Xnul, = Xn + XI,

and therefore also

T(XI1U12) = T(Xh) + T(Xb) ) a.e
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Applying ([[4) one then gets

|Il| + |12| X11U12aX11U12>

(
= (T(xnun), T(xnun))

<T(X11> (Xh)) + <T(X12)7 T(X12>>
+<T(XI1)> T(X12)> + <T(X12)a T(XI1)>

= Ll + |G|+ / ¢On=on) (1) dg
(Il)ﬂT(Iz)

+ / e~ mon) (p)dy
T(I1)N7(I2)

= |L]|+|L|+ 2/ cos((ay, —ay,)(x))dx

T(Il)ﬂT(IQ)

which implies that

/ cos((ap, —ap)(z))dr =0
(Il)ﬂT(IQ)

Put I = I; U I,. From the identities

wq

Xr( = €N Xom) + € X
(1) = 7(L)UTt(ly) a.e

it follows that if = € 7(1;) N 7(13), then
e (z) = € () + €2 (z)
Thus, one obtains
gilar@)—ar, (@) _ 1 4 gilon,@-ar, @)
This gives
1= |1+ ¢len@=on@)|2 = 9 1 9cos(ay,(x) — ar, ()

which yields that
1
cos(an,(x) = ap (1)) = =3

This, together with (I§) implies that |7(1;) N 7(l2)| = 0.

13
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Lemma 8 In the notations and assumptions of Lemma [, for any I C R?
such that |I| < oo and any I; C I one has

eioql XT(Il) — eiaI XT(Il)
for almost any x € 7(I4).
Proof. Let I, = I\ I;. Arguing as in the proof of of Lemma f] one finds that
eiaIXT(I) — 6ia11 XT(I1) + ez’a12 XT(IZ)

Thus, if we multiply the two sides in the above identity by x,(,), then from
Lemmas [, [, it follows that

[1e% __ tlarg
€ Xr(I) = € 1 Xr(h) ) a.e

O

Lemma 9 In the notations and assumptions of Lemmalf there exists a func-
tion a : R — R such that for any I C R?, with |I| < oo

T(xr) = eiaXT(z)
where (1) C R and |7(I)| = |1].

Proof. Let (I,,), be an increasing sequence of subsets of R? such that

|1,| < oo, Vn € N and {J, .y ln = R% Define the function a : R? — R by
a(z) = ag, (), for any n € N such that x € I,,, where oy, is defined as in
Lemma (f). Then « is well defined because, denoting

n(z) :=min{n e N, z € I,,} ; reR?
Lemma [ implies that, for any m, n € N such that n(z) < m <n,
€ X (1) = € X (1)
In particular, for any n > n(x), one has
e'in Xr(In(z)) = eioqn(x)Xr(In(x))

which implies that
ar, () = ap, @), Yn 2 n(z)

This ends the proof of the above lemma. O
Using all together Proposition [, Lemmas [, f§ and [, we prove the fol-
lowing.
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Theorem 3 I'y(T') is an isometry (resp. unitary) if and only if there exist
a function o from R to R and a x-endomorphism (resp. x-automorphism,)
Ty of L*(RY) N L=(RY) such that

T = Ty

Proof. Sufficiency has been proved in Proposition [i.

Necessity. Suppose that I'y(T") is an isometry. Then, from Lemma [, 7" is an
isometry. Moreover, Lemma [J implies that there exists a function o : R — R
such that for any I C R?, |I| < oo

T(xr) = eiaXT(I)
where 7(I) C R? and |7(I)| = |I|. Define the map T} by:
Ty :xr € LR N L¥(RY) — Ty(x1) = X (19)
for all I C R? such that |I| < oco. In order to prove that T extends,

by linearity and continuity, to a *-endomorphism of L*(R?) N L>°(RY), it is
sufficient to prove that for all I, J C R with |/] < oo, |J| < o0

Ti(xixs) = Tix))Ti(Xs) = XeXr) = Xeney > @€ (20)
But, by definition of T} one has
Ti(xrxs) = Ti(Xing) = Xr(i0)
therefore our thesis is equivalent to
r(HNnr(l)=7INJ) , a.e (21)

Finally, since from Lemma [ we know that 7(I NJ) C 7(I) N 7(J), (BT) will
follow if we prove that

[T(I) N7 (J)| = (I N J) (22)
To prove (B2) notice that, since T', hence T3, is an isometry, one has

(T (x1us)s Th(xrug)) = (o xrog) = |+ |J] = |1 N J| (23)

15



On the other hand, from Lemma [f we know that the map I — 7([) is finitely
addditive, hence monotone. Therefore, using linearity, ([9) and the identity

X1uJ = X1+ XJ — XinJ, We find
(Tv(x10s), Tai(xaus)) = (Tilxr) +Talxs) — Tolxang) Ta(xr)
+T1(x.s) — Ti(X1ns))
= (Ti(x0), Ti(xa)) + (Ti(xa), Ta(xa))
—(T(x1), Ta(xans)) + (Ta(xa), Ta(xa))
HT(xa), Ti(xa)) — (Ta(xs), Ti(Xing))
—(T1(xana), Ti(xan)) — (Ti(xang), Ta(xa)
(T (x1n), T (X1n7))
= (Xr)s Xr (D) + X )5 Xr (1)) — Xr(D)s Xr(In0T))

F(Xr ()5 Xr (D)) F+ X ()5 X () — X ()5 Xr(in))
—{(Xr(1n1), Xr(n) — {Xr(1n07)s X7 ()
+{Xr(100)s Xr (1))

Using the isometry property and the fact that 7(INJ) C 7(I)N7(J), we see

that this expression is equal to

[+ () nr(N)| = [t N D)+ |[=(I) N ()| + [J] = [=(I 1 J)|
—|lr(InJ)|=|r(INJ)|+ |r(INJ)]
= I+ |J|+2|7(I)N7(J)| = 3|T(INJ)]
= |I|+ |J|+2|7(I) N7 (J)| = 3|INJ|
Since this is equal to the right hand side of (23), we conclude that
—InJ=21r()nr(J)| =3 InJ < |r()nr(J)|=|InJ| = |r(InJ)

which is equivalent to (Bg) and therefore to (R{).

Since a unitary operator is an isometry we conclude that, if I'y(7") is unitary,
then T}, defined by ([[9), is an invertible *-endomorphism of L?(R?)NL>(R?),
i.e. a x-automorphism. 0

4 Quadratic second quantization of contrac-
tions

We will use the following remark.
Remark Let A = (aij)i,j, B = (bij)i,ja C = (Cij)i,j and D = (dij)i,j be
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matrices such that, in the operator order:
0<A<LB, and 0K<C<D

Then by Schur’s Lemma
0 < ((bij — aij)ciz);

0 < (bij(dij — cij))

Consequently one has

i e (aey), ; < (bijeij),

& (bijcij); < (bijdis)

i,J i,J 0,

0 < (aicij)ig < (bijdiz)i; (24)

Theorem 4 The set of all operators T such that T's(T) is a contraction is a
multiplicative semigroups denoted Contry(L* N L™). Moreover

[o(S)Do(T) =To(ST) 5 VS, T € Contry(L* N L) (25)

Proof. Let S, T € Contry(L*NL>). Then I'y(S), ['o(T) and hence T'y(S)To(T)
is a contraction on I'y(L? N L*°). Therefore it is uniquely determined by its
value on the quadratic exponential vectors. If U(f) is such a vector, then

Lo(S)Ea(T)W(f) = DaS)U(T f) = W(STf) = To(ST)W(S)

Thus T'5(ST) is a contraction and (BH) holds. O
Now, we prove the following.

Proposition 2 IfT = MT; is a contraction for L*(R?) and L>°(R?), where
o € LARY) N L°(RY) such that ||¢||le < 1 and Ty is an homomorphism of
L3R N L°(RY), then Ty(T) is a contraction.

Proof. We have

ITo(T) (P (f1) + ...+ ()P = [ W(Th)+ ...+ (T h)|

= > @y (W(TH), W(TE)  (26)

1,j=1

1 !
- Z n!)2[z @iO‘j<B;zq)aB;};q)> :

n>0 i,j=1

—~

17



Put
Anr = ((BE7 @, B3 @) A= ((B} @, B}"0))
J 27] 4 J

Now, our purpose is to prove, under the assumptions of the above proposition,
that

i7j

0 S An,T S Anu (27>
for all n € N.
Note that, for v = (a1, ..., ), one has

1
(v, Aprv) = ) @ (Bf}®, B} ®)
ij=1
= [laBy}® + ...+ BfL |
This implies that A, r is a positive matrix. Now, let us prove the second
inequality in (27) by induction on n.
- For n =1, one has

!
(v, Aypv) = > oy (B}, @, Bf, @)

ij=1
l
20 Z O_éiOéj <Tf2, Tfj>
ij=1
QCHT(Ozlfl + ...+ Oélfl)Hg
2cljar fi + ...+ afill3-

IN

Because
!
2confy + .. 4+ afills = @i (Bf®, Bf ) = (v, Aw),
ij=1
one obtains that A; r < A;.

- Let n > 1 and suppose that A, < A,. Note that for any f, g €
L*(R?) N L*°(R?), Proposition 1 of [F] implies that

nl(n+1)

- !
(B;[( H)(I),B;("H)(I)) _ 022%—1—1 . <fk+1’gk+1>

— ((n—k)!)
+(n—k) n—k
(By"M®, Bf "M a).

18



Then, one gets

(v, Apsr7v) = Z aioy(Bi Ve, B @)

i,j=1
_ 2k+1 (n+1)n!
Z (n—k)!)?
l
Y @y (@) (B e, B e

ij=1
Put

My = ((fF5 )i M = (TR (TF)M)
This gives

(0, Mygv) = Y aag(TF) (T )

ij=1

loa (T )M 4.+ ao(T )3
1" Ty (Oélka At afFYI3
lellk, ||T(CY1f]ngl A fY3
loa fEFh+ .+ alflk+1||2 = (v, Myv).

IA A

This proves that
0 < Myr < M. (28)

Note that by induction assumption
0 S An—k,T S An—ka (29)

for all k = 0,...,n. Therefore, Lemma P4 and identies (B§), (B9) implies
that
Aniir < Apia.

Hence, we have proved that

!
(v, Ap.7v) Z Qi (Bf 1@, BI7 ®) < (v, Ayo) = > aia; (Bf"®, B"®),

2,7=1 i,7=1
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for all n. After using (B), it is easy to conclude that I'o(7’) is a contraction.
O

Remark
The contractions considered in Proposition [] are very special, however they
are sufficient to prove the existence of the quadratic free Hamiltonian and
the quadratic Ornstein—Uhlenbeck semigroup. In fact taking

T=T=¢'4

with Re(z) < 0 where A = L?(R%) N L>*(RY), Proposition P implies that
['y(e*!4) is a holomorphic semigroup which, by the remark done at the be-
ginning of section (fJ), leaves the vacuum vector ® invariant. In particular,
for z = it, t € R, the generator Hy of the strongly continuous 1-parameter

unitary group
1’\2 (eitlA) — eitHo

is the quadratic analogue of the free Hamiltonian. By analytic continuation
one has
FQ(@ZIA) — €ZH0

Moreover Lemma ] shows that its action on the n—particle space is the same
as the action of the number operator in the usual Fock space, i.e. it is reduced
to multiplication by

ezn

Thus H, is the positive self-adjoint operator characterized by the property
that, for any n € N, the n—particle space is the eigenspace of Hy correspond-
ing to the the eigenvalue n.

By considering the action of the number operators Ny, defined at the be-
ginning of section ([l]), one easily verifies that the definition of Ny can be
extended to the case in which f is a multiple of the identity function 1, so
that N; is well defined. With this notation one has the identity

H() - §N1

Using the functional realization of the quadratic Fock space given by Theorem
g it is clear that the contraction semigroup

Fg(e_tl‘A) — e—tH()
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is positivity preserving and its explicit form gives that
Dyfe ™)1 =ef1<1

(here we are extending in the obvious way the action of I'y(e~*!4) to the mul-
tiples of the identity function which is not in L2(R?) N L>(R%)). This means
that the semigroup e~*#° is sub-Markovian. The above discussion shows
that e "0 is a natural candidate for the role of quadratic analogue of the
Ornstein—Uhlenbeck semigroup. A more detailed analysis of this semigroup
and of its properties will be discussed elsewhere.

4.1 A counterexample

In this subsection, we discuss the behavior of contractions under quadratic
second quantization.

Lemma 10 Let T be a linear operator on L?*(RY) N L>(RY). If T is a con-
traction on L*(RY) and on L™ (R?), then for any quadratic exponential vector
U(f) one has

ITo(T)C (A < ([ (30)
Proof. Recall that

Bi1®|?
IDo(T)® (AP = 2T HI? = I1Brs "

N2
= (n!)

(31)

and that, because of Lemma PJ:

. 22n—1(n!)2ci1+...+ik . . .
1B oP = Y e ITAB IS T

114+2i2+...+kig=n

If T is a contraction on L?(RY) and on L>°(R?) then by the Riesz—Thorin
Theorem, for all p > 2, T is also a contraction from LP(R?) into itself.
Therefore, for any p > 1 and 7 € N:

1/2p] 7" .
([irse) ] ~ 175l <1
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for all y =1,..., k. This proves that for any n € N
|Bff ol < ||Bf"®|?

and, in view of (B1)), this implies (B0). O

From Lemma ([[7) it follows that the fact that 7" is a contraction for
L*(RY) and for L>®(R%) is a necessary condition for T'y(T) to be a contrac-
tion. The following counterexample shows that this condition is not sufficient.

Define the linear operator T : L*(R) N L°(R) — L?(R) N L>=(R) by

rr=( 0d) v

It is easy to verify that 7" is a contraction in both L? and L>. Therefore,
from Lemma [[{, one has

ITa(T)T (NI < A

In the following we will show that some linear combinations of quadratic
exponential vectors violate the inequality

[Po(T) (Yo () < I Y (£

In fact taking

1

fi:= )‘X[O,%} i for=Axpa 3 AER A< B

one has \
TfH= 5)([0,1] ; T f2 = AX[o.1]
and
« «
Iea() (w7 + e = o 00 )5 (2 )
vt () +aw(rlP = 2 )oa (o)
2 &%)
where the matrices A, B are defined by:
A= (Vi) (i) h<ig<e 5 B:= W), Y(Tf;)hi<ijee
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The contraction condition
ITa(T) (1 ®(f1) + a9 () ) P < (i) + a0 (o)

is equivalent to say that B < A. In the following we prove that this inequality
is not true. In fact recalling ([), i.e.

<\Il(f), \If(g)) = 6_% f]R ln(1_4f(x)9(l’))dx
one finds
(1—4/\2)4 (1—4,\2)2 (1—2,\2)2 2

and a simple calculation proves that det(A — B) < 0.
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