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1 Introduction.

The reader should see [K] for the descriptive set theoretiation used in this paper. This work
is the continuation of a study started in [L1]-[L5], and ishaanced in [L6]. The usual notion of
comparison for Borel equivalence relatiofisC X2 and E'C X’* on Polish spaces is the Borel
reducibility quasi-order:

E<p E < 3u:X— X' Borel with E=(uxu) " }(E')

(recall that a quasi-order is a reflexive and transitiveti@i. Note that this makes sense evetvif

E’ are not equivalence relations. It is known that#,) is a sequence of Borel subsetsf then
there is a finer Polish topology aki making theB,,’s clopen (see exercise 13.5 in [K]). So assume
that E <p E’, and leto be a finer Polish topology oA makingw continuous. If moreovefF’ is in
some Baire clasE, thenE ¢ T'([X, 0]?). This motivates the following (see [L02]):

Definition 1.1 (Louveau) LetX, Y be Polish spacesd a Borel subset ofX x Y, andI" a Baire
(or Wadge) class. We say thatis potentially in T’ (denotedA € pot(T")) iff there is a finer Polish
topologyo (resp.,7) on X (resp.,Y) with AcI'([X, o] x[Y, 7]).

This notion is a natural invariant fot z: if £’ is pot{I"') andE <p F’, thenFE is potT'). Using
this notion, A. Louveau proved that the coIIectionX)? equivalence relations is not cofinal farg,
and deduces from this the non existence of a maximum Borévaguce relation fo g (this non
existence result is due to H. Friedman and L. Stanley). Mecemtly, G. Hjorth, A. Kechris and A.
Louveau determined the potential classes of the Borel aprice relations induced by Borel actions
of closed subgroups of the symmetric group (see [Hj-K-Lo]).

A standard way to see that a set is complicated is to note thatmore complicated than a
well-known example. For instance, we have the following (&R]):

Theorem 1.2 (Hurewicz) LetP;:={a€2¥ | Incw Vm > n a(m)=0}, X be a Polish space, and
A a Borel subset of. Then exactly one of the following holds:

(@) The setd is TI3(X).

(b) There isu:2* — X continuous and one-to-one wifPy =u~1(A).

This result has been generalized to all Baire classes (se8R]). We state this generalization in
two parts:

Theorem 1.3 (Louveau-Saint Raymond) L&k wq, S € 2(1]+§(2“’), X be a Polish space, and, B
disjoint analytic subsets of . Then one of the following holds:

(a) The setd is separable fronB by aH(1]+§(X) set.

(b) There isu:2* — X continuous withS Cu~1(A4) and2*\ S Cu~!(B).

If we moreover assume thatf H?+§, then this is a dichotomy.

Note that in this dichotomy, we can havene-to-one if > 2. This is not possible if < 2.

Theorem 1.4 There is a concrete example of a $gt_¢ € 2?+§(2“)\H?+5(2w), for eachf <w;.

We try to adapt these results to the Borel subsets of the plane



The following result is proved in [H-K-LO0]:

Theorem 1.5 (Harrington-Kechris-Louveau) LeX be a Polish spacel a Borel equivalence rela-
tion on X, and Ey :={(e, 3) €2“ x2¥ | In€w Ym>n a(m)=F(m)}. Then exactly one of the
following holds:

(@) The relationE is pot(T1Y).

(b) Ey <p F (with u continuous and one-to-one).

For the Borel subsets of the plane, we need some other natffawmnparison. LefX, Y, X', Y’
be Polish spaces, antl(resp.,A’) a Borel subset oK x Y (resp.,. X’ xY’). We set

A<p A" & Ju:X—X' Fv:Y —-Y’ Borelwith A= (uxv)~1(4).
The following result is proved in [L1]:

Theorem 1.6 Let A(2¥):={(a, 3) €2“ x2¥ | a=f}, Lo:={(a, ) €2 x2* | a<|exf}, X, Y be
Polish spaces, and a pot D, (3?)) subset of{ x Y. Then exactly one of the following holds:
(@) The setd is pot(T19).

(b) ~A(2¥) <3 Aor Ly < A (with u, v continuous and one-to-one).

The classD,(X9) is the class of unions of a closed set and of an open set. Thagsne more
complicated at the leveD,(X9) of differences of two open sets (see [L5]):

Theorem 1.7 (a) There is a perfeck’;-antichain (A, )acae C D2(X9)(2% x 2¥) such that4,, is
<%.-minimal amongA1\ pot(I1}) sets, for anyx e 2«.
(b) There is a perfect g-antichain (R, ) e~ such thatR,, is < z-minimal amongAl\pot(I1?) sets,
for anya € 2¥. Moreover,(R,)qc2+ €an be taken to be a subclass of any of the following classes:
- Graphs (i.e., irreflexive and symmetric relations).
- Oriented graphs (i.e., irreflexive and antisymmetric telas).
- Quasi-orders.
- Partial orders (i.e., reflexive, antisymmetric and traia relations).

In other words, the case of equivalence relations, for whiethave a unique (up to bi-reducibili-
ty) minimal non potentially closed element with Theorem, 1s&ery specific. Theorem 1.7.(b) says,
among other things, that the mixture between symmetry ausitivity is very strong. Theorem
1.7.(a) shows that the classical notions of reduction (enithole product) don't work, at least at the
first level. So we must find another notion of comparison. Tdteding result is proved in [L5]:

Theorem 1.8 There isS; € A}(2¥ x 2¥) such that for any Polish spaces, Y, and for any Borel
subsetd of X xY, exactly one of the following holds:
(@) The setd is pot(I19).
(b) There areu:2¥ — X andv:2* —Y continuous satisfying the inclusiosg C (uxv)~!(A) and
S1\S1 C (uxv)~L(=A).

Moreover, we can neither replac \ S; with =51, nor ensure that: andv are one-to-one.



So we get a minimum non-potentially closed set if we do notfasla reduction on the whole
product. We will show that this dichotomy is true for each mialble ordinal > 1. The result is
actually stronger than that. First tig’s are concrete examples. Secondly it is better to statefkat
reduction in condition (b) holds in the sgf'] of the branches of some trééthat does not depend on
¢, rather than4,. Finally, to get the full strength of the result, it is bettersplit it in two parts. We
need some notation and a definition:

Notation. If Fy, F; are finite sets an@ C F, x F;, we denote by=7 the bipartite graph with set of
vertices the sundfFy @ F;, and with set of edges

{{(0,0), (f1,D}C Fo& P | (fo, 1) ET ).

(see [B] for basic notions about graphs). In the sequel, viedemnote f. := (f., ¢).

Definition 1.9 We say that a tred” on 2 x 2 is atree with acyclic levels if, for each integemp, the
graph G, associated witl7,:=T" N (2P x 2P) C 2P x 27, is acyclic.

Now we can state the main results proved in this paper:

Theorem 1.10 (Debs-Lecomte) L&f be a tree with acyclic levelg, < wy, S € 2?+§((T1), X, Y

Polish spaces, and, B disjoint analytic subsets of x Y. Then one of the following holds:

(a) The set4 is separable fronB by a potII{ +§) set.

(b) There areu:2* — X andv:2 —Y continuous withS C (uxv)~(A) and [T]\S C (uxv)~(B).
If we moreover assume thatg pot(l‘[?+5), then this is a dichotomy.

Note that we can deduce Theorem 1.3 from the proof of Theor&éth Theorem 1.10 is the ana-
logous of Theorem 1.3 in dimension two. The proofs of Theotednin [Lo-SR], and also Theorem
I1I-2.1 in [D-SR], use games. This is not the case here, sovikaget a new proof of Theorem 1.3.

Theorem 1.11 We can find concrete examples of a ttBewith acyclic levels, together with sets
Si+e €29, ([T])\pot(ILY, ), for each <w.

The following corollary has initially been shown by D. Lectamvhenl+¢ is a successor ordinal.
Then G. Debs showed it whdnt-¢ is a limit ordinal.

Corollary 1.12 (Debs-Lecomte) L&t<w;. There isS € A{(2¥x2¢) such that for any Polish spaces
X, Y, and for any disjoint analytic subsets B of X xY, exactly one of the following holds:
(a) The set is separable froni3 by a pofI1Y ) set.

(b) There areu:2* — X andv:2¥ —Y continuous withS C (uxv)~1(A4) and S\ S C (uxv)~1(B).

Theorem 1.8 shows that we cannot repladgs with —.S in Corollary 1.12 wherg =0. G. Debs
found a simpler proof, which moreover works in the generakca

Theorem 1.13 (Debs) We cannot replacg\ S with -5 in Corollary 1.12.

Once again, some cycles are involved, so that the acyciicégsentially necessary and sufficient
in Corollary 1.12 (even if we have two different notions ofelicity). G. Debs proved very recently
that we can haves andv one-to-one in Corollary 1.12 if > 2. This is not possible if < 2 (see
Theorem 1.8 whefi=0, and Theorem 15 in [L4] whefi=1).



This paper is organized as follows:

- In Section 2 we recall the material used to state the reptaen theorem of Borel sets proved in
[D-SR]. We use it to prove Theorem 1.10, also in this sectido.do this we assume some results
proved in [Lo2]. We also prove Theorem 1.13.

- In Section 3 we prove Theorem 1.11.

- We use some tools of effective descriptive set theory @haeder should see [M] for the basic notions
about it). In Section 4 we give an alternative proof of thaitssin [Lo2] that we assumed in Section
2. This leads to the following:

Theorem 1.14 (Debs-Lecomte-Louveau) L&tgiven by Theorem 1.1%,< wICK, S given by Theo-
rem 1.11,X, Y be recursively presented Polish spaces, and3 disjoint X' subsets o xY". Then
the following are equivalent:

(a) The setd cannot be separated frofi by a po{II? +5) set.

(b) The setd cannot be separated frofi by a A} N pot(I1Y ) set.

(c) There arey: 2% — X andv:2¥ — Y continuous withs C (uxv)~(A) and [T\S C (uxv)~1(B).

The equivalence between (a) and (b) is proved in [Lo2]. Weaeilually prove more than Theo-
rem 1.14, with some additional notation that will be introdd later. Among other things, we will

use the fact that the set of codes b} and pofI1?, ) sets isll}'.

2 Proof of Theorem 1.10.

2.1 Acyclicity.

In this subsection we prove a result that will be used latshtiaw Theorem 1.10. This is the place
where the essence of the notion of a tree with acyclic legaisally used. We will also prove that we
cannot have a reduction on the whole product, using somesy8lome of the arguments used in the
initial proof of Corollary 1.12 by D. Lecomte (wheint-¢ is a successor ordinal) are replaced here by
Lemma 2.1.2 below.

Definition 2.1.1 (Debs) LetFy, F1, Xo, X1 be setsT C Fyx F; and ¥ : Fy x F; — 2X0* X1 We say
that ¢ =1y x 1 : Fox F1 — Xox X1 isam—selector on T for VY if:

@ v (fo, f1)=[vo(fo), ¥1(f1)], for each(fo, f1) € Fox Fi.
(b) ¥(t) e W(t), foreachte 7.

Notation. Let X be a recursively presented Polish space. We denotd pythe topology onX
generated byAl(X). This topology is Polish (see (ii}(i) in the proof of Theorem 3.4 in [Lo2]).
We setr; := Ax x Ay if Y is also a recursively presented Polish space.

Lemma 2.1.2 (Debs) LetF,, F; be finite sets7 C Fy x F; such that the graplGs associated
with 7 is acyclic, Xy, X, recursively presented Polish spacds; Fy x F; — Ell(Xo x X1), and
U': Fox F1— E}(Xox X,) defined byl () :=¥(¢) . Then¥ admits arr-selector on if ¥ does.



Proof. (a) Letty:= (fo, f1) €7, and® : Fy x F; — X{(Xo x X1). We assume thab(t) = ¥(¢) if
t#£to, and thatb (to) C W (ty) . We first prove thatt admits ar-selector or if ® does.

e Fix am-selectorp on 7 for &. We defineEl1 setsU,, for e €2, by
Us:={zeX. | Jp: FoxF1—Xox X1 x=p(fc) andVteT o(t)cd(t) }.

As $(to) =[Go(fo), $1(f1)] € B(to) N (Uox Ur) we getd# B(to) N (UpxU1) S (to) " N (UoxU1).

By the separation theorem this implies thatt,) N (Uy x Uy) is not empty and contains some point
(20, 21). Fixee2. Asz. €U, there isy® : FoxF; — XoxX; such thate, =5 (f.) andy®(t) € D(¢),
foreachte7.

o If ey #ef, € Fp and|[(é;, j;)]i<; is a path inG7 with (éo, jo) =€ and(é;, ji) :e_{), then it is unigue
by Theorem 1.2.5 in [B]. We call ipeo,eé. We will define a partition offy x F;. We put

N := { (60, 61) Ef() Xfl\ {to} | (60, 61) ¢T or [EO#fO andpemfo does not exis}t},
H = { (eo,e1) €T\ {to} | eo# fo andpey s, ([peo,fol =2) =11 },

V = {(eo,e1) €T\ {to} | eo=fo Or [eo# fo andpeo,fo(|peo,fo|_2)?’éﬁ] }

The definition ofH means that if we view the grapghi; as7 itself in the productF, x F; instead
of seeing it in the sund, ® F7, then the last edge in the path fr, e1) to ¢ is horizontal (and
vertical inV). So we defined a partitiof{to }, N, H, V') of Fy x Fi.

e Let us show thatlz [H] N II£ [V]=0, for eachs €2.

We may assume that= 1. We argue by contradiction. This gives € I, [H] N IIz [V], and
alsoeg (resp.,eq) such that(eg, e1) € H (resp.,(eg, e1) € V). Note thatey # fo, and also that; # f1
(by contradiction, we get;, # fo since(ey, e1) # to, andpe; 7, = (¢, f1, fo), which is absurd). If
ey = fo, thener "pe, 1, €1 gives aiycle, which is absurd. ¢f # fo, thener " pe,_ 1, ander ™ pe; f,
give two different pathes frora; to fj, which is also absurd.

e Now we can define). : 7. — X.. We put

zo if eo=fo,

¢0(60) = 1/16(60) if €0€H]:O[H],
L ¥9(eo) otherwise,

(z1 if er=f1,

Pi(er) == Yiler) if er€llr [H\{f1},

Y9(e1) otherwise.

Then we set)(eg, e1) :=[1o(eo), 11 (e1)]-



e It remains to see thap(t) € ¥(t), for eacht € 7. Notice first thaty(ty) = (o, z1) € U(to). If
t:=(ep,e1) €V andeg # fo, then we get

(1) =[o(en), P1(e1)] = [0 (e0), ¥ (e1)] =1 (t) € B(t) = W(t).
Now if t €V andey = fy, then we get
B(t) =Tlzo, ¥7 (e1)] =[5 (fo), ¥} (e1)] = 10 (o), 7 (e1)] =¢°(t) € B(t) = W(2).
We argue similarly ift € H.

If te NNT,theney # fo. If moreovere; ¢ ({ f1} U Il [H]), then we get

(1) =[o(eo), ¥1(er)] = (v (eo), v} (e1)] =0°(t) € D(t) =L ().
If e1 = f1, thenp,. 5, = (€0, €1, fo) exists, which is absurd. H; € Lz [H]\ {f1}, lete) € Fo with

(ep,e1) € H. The sequencéey, e1, €), - - - , f1, fo) shows thap,, , exists, which is absurd again.

(b) Write 7 := {t1,...,t,}, and se®, := V. We define®; . ;: Fyx F; — X} (Xo x X;) as follows.
We put®;q(t) :=P;(t) if t #tj11, and P 1(tj41):=Y(tj4+1), for j <n. The result now follows
from an iterative application of (a). O

Proof of Theorem 1.13.We argue by contradiction. This gives a Borel §&t Consider first that
A :=S"and B := -S’. Then (b) holds withu = v = Id;». So (a) does not hold anf is not
pOt(H?Jrg)-

Consider now thatl := S and B := [T']\ S, whereT and S are given by Theorem 1.11. As (a)
does not hold, (b) holds. This gives continuous maps with

S'C (uxv)~H(S) C (uxv)~H([T7),

=8 C (uxv)H([TT\S) S (uxv)"H([TT).
Claim. There is a Borel subset of 2¢ with S’ = A x 2% or §'=2% x A.

¢ We argue by contradiction to prove the claim. Therecaee2“, ands £ 3’ € 2% such that«, ) € S’
and(a, 3') ¢ S’ (otherwiseA := (S')°" € Al(2¥) and satisfiess’ = A x 2). Then(u(a),v(3)) €S
and(u(a),v(3')) ¢S, thusv(B) #v ().

e Note that(«/, 8) € ', for eacha’ € 2*. Indeed, we argue by contradiction. This giv&swith
(u(a’),v(3)) ¢ S. Thusu(a) #u(a’), and(u(), v(B)), (u(a’),v(B)), (u(e), v(3)), (u(a’),v(8"))
are in[T]. Letp € w with e := u(a)[p # ey :=u(d)[p and e :=v(B)[p # €| :=v(3)[p.
Then(eg, e1), (e, e1), (€0, €}), (€5, €1) € Tp, and the sequendey, e1, e, €}, €o) is a cycle, which is
absurd.

e Letye S/. We have(d/,v) € 57, for eacha’ € 2¥, as before. Conversely, assume thet v) € 5.

Thenvye S.,, as before. Thus’ =2 xS/, which is absurd. This proves the claim. o
Now the claim contradicts the fact théitis not po{II® +e) O



2.2 The topologies.

In this subsection we prove another result that will be useshbw Theorem 1.10. Some topolo-
gies are involved, and this is the place where we use somks@s{Lo2].

Notation. Let X, Y be recursively presented Polish spaces.

e Recall the existence off}' setsWX C w, CX C wx X with AL(X)={CX | ne WX} and
{(n,r)ewxX | neWXandz ¢ C;X} € IT] (wx X) (see Theorem 3.3.1 in [H-K-Lo]).

o Set potTIY):= Al(X) x Al(Y) and, for¢ <wCK,
WY ={pe WY | GV e pot(ITY) }.
We also setV 2" :=J, ., WY

The following result is essentially proved in [Lo2]. Howeyvehe statement is not in it, so we give
a proof, which uses several statements in [Lo2]. Recallthé&t defined before Lemma 2.1.2.

Theorem 2.2.1 (Louveau) LeE<w1CK, X, Y be recursively presented Polish spaces. Tﬁgﬁxy

and ngxy are I1. If moreoverA, B are disjoint X} subsets of{ x Y, then the following are
equivalent:

(a) The setd is separable fronB by a potII! +§) set.

(b) The setd is separable fronB by a A} N pot(I1Y, ) set.

(c) The setd is separable fronB by aIl, (1) set.

Proof. By the second paragraph page 44 in [LoA}(X) and A}(Y) are regular families (see
Definition 2.7 in [Lo2] for the definition of a regular familyBy Theorem 2.12 in [L02], the family
@ := pot(II)) is regular too. We define a sequer{de) oK of families as follows (see Corollary
2.10.(v) in [L02)):

E<w

q)o 1:<I>,
Det1:=(P¢)oc,
®y =, ¢ if 0<A<wKisalimitordinal.

By Corollary 2.10.(v) in [Lo2],®, is a regular family for eacly < wICK. In particular, the set

Wa, :=={p € WY | C;¥*Y € &} is II}'(w). By Theorem 2.8 in [Lo2], the familyb, is
a separating family (see Definition 2.1 in [Lo2] for the ddfam of a separating family), for each
£<w1CK. An easy induction og shows the following facts:

O =poyIIY) if £<w,
®e =, POUILY) if 0<&<wKisalimit ordinal,
<I>§+1:pot(1'lg) if w§§<w1C:K.

This shows thatV;* Y = We, is 1] if € <w, WY =W, is I} if w < <wCKIf 0 <€ <wK

is a limit ordinal, therV 2" = Wi, is I1{.



(b) = (c) follows from Theorem 3.4 in [Lo2].
(c) = (a) follows from the fact that x and Ay are Polish.

(&) = (b) Assume first thag <w. Then po(l‘I(l)Jrg) =&, =P¢y is aseparating family. Sd and

B are separable by 41 N ®¢; = A} N poy(I1], ) set. fw<¢< w1CK, then we use the fact that

POY(TTLY, ;) =pOt(TIY) = D¢ 1. O
Notation. Let X, Y be recursively presented Polish spaces.

e We will use the Gandy-Harrington topologyx on X generated by~ (X). Recall that the set
Qx :={z e X | w¥ =wCK} is Borel andx}, that[Q2x, Zx] is a0-dimensional Polish space (the
intersection of2x with any nonemptyZ; set is a nonempty clopen subsetf@fy, X'x]) (see [L1]).

elet2<Eé< wPK. The topologyr is generated byl (X xY) N 1‘[26(71). We have the inclusion
30 (e) CX2(71), so thatll)(r) CII(r1). These topologies are similar to the ones considered in
[Lol] (see Definition 1.5).

Lemma 2.2.2 Let X, Y be recursively presented Polish spaces, aﬁdulc'(.

(@) Fix Se X (X xY). ThenS '™ € ¥ (X xY).

(b) Letn>1,1<& <& <... <&, <1+€ andSy, ..., S, be I sets. Assume thaét, C S,y "'
for 1<n’<n. ThenS, NNycic, S isTi-dense inS; .

Proof. (a) This is essentially proved in [Lo2] (see the proof of Tieswn 2.8 in [Lo2]). We emphasize
the fact that the analogous version of (a) in [Lo2] and the@isss of Theorem 2.2.1 are proved
simultaneously by induction ofy and interact. Assume first thét=0. Then

(z,9)¢5" & Ve ANX)IVeAY) (z,9)eUxV and(UxV)NS=0
& ImeWX IneWY (CX(z) and CY (y) and V(z',y/) € X xY
[(meWX andz’' ¢ C;X) or (ne WY andy’ ¢ CY) or (z', ') ¢ 5] ).

SoS™ € X1 (X xY). Now assume that> 1. We have, by Theorem 2.2.1:

(z,9)¢S5™" & ITe XX xY)NIL (1) (z,y)eT andT N S=0

& JEeAI(XxY)Nnpo(MY, ) (z,y)c EandENS=0

& EImGWfﬁY (CXY (g, y) and V(2,9 ) e X XY

[(meW*>*¥ and(a’,y') ¢ C7*Y) or (', y') £ 5] ).

By Theorem 2.2.1\V 2\ € IT} and we are done.

(b) LetU (resp.,V) a A}(X) (resp.,Al(Y)) setwithS;" N (U x V) #@. ThenS; N (U x V) #0,
which proves the desired property for= 1. Then we argue inductively on. So assume that the
property is proved fon. We haveS,, C S, 1 ", andS,, NN, <,~,, Si  N(UxV)#0, by induction
assumption. ThuS,, 11 "' N(,<ic,, Si & NUXV)AD. ASy<icry Si S NUXV) i B9 (7e, 11),
we getS, 1 N (Nycicy, B¢ N (UXV)#D. o m



2.3 Representation of Borel sets.

Now we come to the representation theorem of Borel sets byeBsand J. Saint Raymond (see
[D-SRY]). It specifies the classical result of Lusin assertimat any Borel set in a Polish space is the
bijective continuous image of a closed subset of the Baieeep The following definitions can be
found in [D-SRY]:

Definition 2.3.1 (Debs-Saint Raymond) Letbe a finite set. A partial order relatio® on a<“ is a
tree relation if, for t € a<%,

@0 Rt.
(b) The setPr(t):={s€a~“ | s Rt} is finite and linearly ordered by.
For instance, the non strict extension relatienis a tree relation.

e Let R be a tree relation. AlR—branch is an C-maximal subset af<“ linearly ordered byR. We
denote by R] the set of all infiniteR-branches.

We equip(a<¥)“ with the product of the discrete topology af“. If R is a tree relation, the
space[R] C (a<¥)“ is equipped with the topology induced by tha{@f“)~. The map : a* — [<]
defined by () :=[v]j]c. is an homeomorphism.

e Let R, S be tree relations witlR C S. Thecanonical map I1:[R] — [S] is defined by

I1(A) :=the uniqueS-branch containingA.

e Let S be atree relation. We say th& C S is distinguished in S if

sStSu
Vs, t,u€a<¥ } = sRt.

sRu
For example, let” be a closed subset af’, and define:
sRt & s=<tandN;NC#0.

ThenR is distinguished in<. In this case, the distinction expresses the fact that “whereave the
closed set, it is for ever”.

o Letn<wi. Afamily(R\),<, of tree relations is aesolution family if:

(a) R*t1) is a distinguished subtree &#*), for all p<1.
(b) RN =, R, for all limit A<n.

We will use the following extension of the property of disfiion:

Lemma 2.3.2 Letn < wy, (R"),<, a resolution family withR(®) = <, andp < 5. Assume that
s<s' R " ands RtD) " Thens R(PHY o,

Proof. We argue by induction op. Assume that the property is proved fok p. As s’ R(?) s” and
R+ is distinguished inR(®) we haves R(*+1) . O
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Notation. Letn <wy, (R%),<, a resolution family withR(®) = <, p<n andz€a<“\ {#}. We set
2=z [max{r<|z| | z[r R") z}.

We enumeratd2” | p <n} by {z% | 1 <i<n}, wherel <n cw and&; <...<&,=n. We can
write 25 < 281 <, .. < 2% <, 281 <, 2. By Lemma 2.3.2 we haveti+t R+ 24 for each
1<i<n.

Lemma 2.3.3 Letn <wi, (R(),<, a resolution family witlR®) = <, z€a<w\{#} and1 <i<n.

(@) Setn;:={p<n | 25 < 2°}. Then; is a successor ordinal.
(b) We may assume that+! <, 25

Proof. (a) First notice that); is an ordinal. Note thaf;+1 <n; <n+1. We argue by contradiction, so
thatrn; <n. Let&; < p<mn;. Then we havesi =27, 28 R() z, 26 RM) 5 andz8 < 2. Asn; <n,
we getn; € n;, which is absurd.

(b) So we can write; = ;4 1. Note thatz": = 2% since¢; <v;. If v;+1 <1 we getz” ! <2 2", S0
we may assume thaf=uv;. If v;+1=n+1 we gety; =7 andz% = 2 = 2 = 2¢», which is absurd]

The following is part of Theorem 1-6.6 in [D-SR].

Theorem 2.3.4 (Debs-Saint Raymond) Let< wy, F be al‘IgJrl subset of[<]. Then there is a
resolution family(R(")) <, with:

(@) RV = <.

(b) The canonical mapl: [R(] — [<] is a bijection.

(c) The sell~!(E) is a closed subset 6R(")].

Now we come to the actual proof of Theorem 1.10.

2.4 Proof of Theorem 1.10.

Theorem 2.4.1LetT be a tree with acyclic levelg, < w1CK such thatl +¢ is a successor ordinal,
Se E?+§((T1), X, Y recursively presented Polish spaces, ahdB disjoint X} subsets of{ x Y.
Then one of the following holds:

(@ A" N B=0.

(b) There areu:2¥ — X andv:2* —Y continuous withS C (uxv)~(A) and [T]\S C (uxv)~1(B).
Proof. Fix n<w§:K with 1+&=n+1.

o We identify (2 x 2)% with 2¢ x 2@, for Q < w. With the notation of Definition 2.3.1 ang:=2 x 2,
we getE:=0[[T]\S] e 1‘[97+1([<]). Theorem 2.3.4 provides a resolution family. We put

D:={(s,t)eT | Iyl Y (E) (s,t)E7}.

For example, we may assume tti@at() € D.

11



o We setN :=A"'** N B. Applying Lemma 2.2.2.(a), we see thaitis YL We assume thaV is not
empty. Recall thal2x .y, Y'x xy| is a Polish space (see the notation before Lemma 2.2.2). Ve fix
complete metrial (resp., metricdx, dy) on [Qx«y, Xxxy]| (resp.,X, Y equipped with the initial
topologies).

o We construc(zs)sero(r) € X, (Yt)ierm, 11 S Yy (Ugs,)) s,y © 21 (X xY) with:

(i) (ws,y1)€ U(s,t) CQxxy.
(i) diamy(Ugss) <2718, 6x (g, 25c) <2718, Sy (g1, yee) <271
(III ) U(s,t) CNif (S, t) eD.

(IV) U(s7t) CAIf (S, t) §é D.

Tp

(v) [1<p<n and (s,t) R¥) (s,t")] = U STy

(Vi) [((s,t)eD « (s',¢')eD) and (s,t) R (s',)] = Uy ) CUs -

e Let us show that this construction is sufficient to get theotbm. If (o, ) € [T'], then we can

define(j;)icw == (i{"")icw by I ([(a, B) [4]jew) =[(at, B) [}ilicw, Wherej; < jit1. In particular, we
have(a, 8)[j; R™ (a, 8)[ji+1. We have the following:

(0475)65 ~ 9(0475)2[(0475)[7]]'@@?15 <~ [(a7ﬂ)Ui]i€w¢H_1(E)
& Jigew Vi>ig (a,ﬂ)fy,gﬁD

sincell~!(F) is a closed subset ¢R(")]. Similarly, (a, 3) € [T\ S is equivalent to the existence of
ip €w such that«, ) [j; € D for eachi > iy (with ig=0).

ThereforeU(aﬂ) [Gig1 - U(Oc,ﬁ) (4 COxxy ifi> ) and (Oé, ﬁ) € [T-| . ThUS(U(aﬂ) fji)iZiO is a
decreasing sequence of nonempty clopen subsétsxafy, d] whose diameters tend €o Therefore
{F(a, 8)}=Nisiy Utapyrj; definest'(a, B) in Qx«y. Note thatF'(«, 8) is the limit of the sequence

(Zar) ¥874:))icw

Letaelly([T]), andg, such thata, 5,) € [T']. We setu(a) :=1Ix (F(a, B4)). Note thatu(ca)
is the limit of some subsequence(af, ;)ic.,, by continuity of the projection. A8x (s, vs) < 2~ Isl,
u(c) is also the limit of(x,[;)icw- Thusu(a) does not depend on the choice®f. This also shows
that w is continuous oIy ([7']). AsIly([T]) is a closed subset &, we can find a continuous
retractionry from 2« ontoIly([7]) (see Proposition 2.8 in [K]). We se{«) :=u(ro(«)), so thatu
is continuous orz*.

Similarly, we define a continuous map2* — Y such that(3) is the limit of (yg[;)icw if Bis in
I, ([T]). This implies thatt'(«, 8) = (u(«), v(B)) if (o, B) € [T].

If (ar, 3) €S (resp.,[T]\S), thenF(«, 3) € A (resp.,IN). This shows that C (uxv)~1(A) and
[TT\S C (uxv)~"1(B).
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e So let us show that the construction is possible. (Eix yp) € N N Qx xy, which is not empty since
N #0is L. Then we choos# g ) € £ with diameter at most with (zy, yp) € Ujp gy SN N Qxxy
Assume thal(zs) s <ps (Ut)1<ps (Usr)))s|<p SatiSfying conditions (i)-(vi) have been constructed,
which is the case fop=0.

- LetseTlp[T] N 2P (resp.t € I1;[T] N 2P), and X, (resp.,Y;) be aAl neighborhood of:, (resp.,y;)
with dx-diameter (respdy-diameter) at mos2—7.

-If we:=(se,te’) €T N (2% 2)PTL (w:=(s,t) € (2x2)P ande:=(¢,&') €2 x2), then we set

(we)™+! '_{ (we)" ifthereis r<p with [w[reD < wec D] and w[r R™ we
" | we otherwise.

Note that(we)" € D if we € D, so thatwe ¢ D if (we)"! =we. Note also the equivalence between
the fact thatwe € D, and the fact thafwe)”™! € D. Indeed, we may assume that ¢ D and
(we)™ ! = (we)". So that there is < p with w[r ¢ D andw[r R™ we. By Lemma 2.3.2 we have

wlr R™ (we)", so that(we)"™! = (we)" ¢ D. The conclusions in the assertions (a) and (b) in the
following claim do not really depend on their respectiveuasgtions, but we will use these assertions
later in this form.

Claim. Assume that) > 0.
@ AN i< p<y Tiwey " N (XsxYr) is7i-dense i,qn ' N (X, xYy) if (we)"t! =we.
(0) Utwweyr N Mi<pey Ugweye " N (X5 x Y) is 7i-dense i, N (X x V) if (we)™™ #we.

Indeed, we use the notation before Lemma 2.3.3 withwe. By Lemma 2.3.3 we may assume
thatz%it1 < 2% if 1<i<n. We setS;:=U.e,, for 1 <& <n. We haveS; C S 1 S for1<¢ <,
by induction assumption, sincgi+t R(&+1) 2&  Moreover, the inclusiors,, CAT”’+1 holds. Thus
AN Mi<ei<n Doy ﬁ (X5 xY;) (respectivelyUweyn N (Ni<g,<ny Tweyss N (Xsx Y1) is 71-

dense in the sell .1 N (X, xY;) if (we)™™ =we (respectively,(we)”! # we), by Lemma
2.2.2.(b). Butifl < p <, then there id <i < n with (we)? = (we)@ And p <¢; since we have
(we)5i Tt < (we)s if 1<z<n Thus we are done sing®, <, Uweyr " =Ni<e,<n Uweres - @nd
Utweyr N h<pen Uweyr = Utweyr N Mi<eicn Tiwepsi ©

-Let Fo:=Fp:=2TL, T :=T N (Fy x F1), ¥: Fox F1 — X (X xY') defined onT by

U(we):= AN m1<p<77 U(we) N (X xYy) N Qxxy if (we) ™ =we,
e U(we n M ﬂl§p<n U(we) N (Xs XY;g) if (we)n-i-l L we.

By the claim, U (we) is 7i-dense inU . N (X xYy) if n>0. As (we)! < w < we and R
is distinguished in< we get(we)! R w and U, C U,y ', by induction assumption. Thus
Uy N (XsxY3) CUpen ' N (X xY;) CW(we). Thus(zs, ) is in Uy N (X5 x Y;) €T (we) (even
if n=0). Therefore? admits ar-selector ori/. By Lemma 2.1.2J¥ admits ar-selectory) on 7.
We setr,. := g (se), yier := 11 (te'), and choose] setsU,,. with d-diameter at mos2—?~! such
that v (we) € Uye € W(we). This finishes the proof sinog, t) R we and (s, t) # we imply that
(s,t) R (we)? R®) we, by Lemma 2.3.2. O
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Now we come to the limit case. We need some more definitioni#rabe found in [D-SR].

Definition 2.4.2 (Debs-Saint Raymond) Letbe a finite set.

e Let R be a tree relation om<“. If t € a<¥, thenhp(t) is the number of stricR-predecessors af
So we havé i (t) =Card(Pr(t)) —1.

e Let¢é <wy be an infinite limit ordinal. We say that a resolution famif(?)) ,<¢ is uni form if
Vkcw Inp <& Vs, t€a™® [min(hpe (s), hpe (1) <k ands R ¢] = s R©) ¢.
We may (and will) assume that > 1.
The following is part of Theorem 1-6.6 in [D-SR].

Theorem 2.4.3 (Debs-Saint Raymond) Lék w; be an infinite limit ordinal & al'Ig subset of<].
Then there is a uniform resolution famil(*)) ,<¢ with:

(@) RO = <.

(b) The canonical majl: [R¢)] —[<] is a bijection.

(c) The sell~!(E) is a closed subset 6R()].

Theorem 2.4.4 (Debs-Lecomte) L&F be a tree with acyclic levels,< w?K an infinite limit ordinal,

S e ZY([T1), X, Y recursively presented Polish spaces, ahdB disjoint ' subsets of{ x Y.
Then one of the following holds:

(@) A" N B=0.
(b) There areu: 2% — X andv:2* — Y continuous withs C (uxv)~1(A) and [T]\S C (uxv)~(B).

Proof. Let us indicate the differences with the proof of Theorem2.4
e The setE:=0[[T]\S] is HQ(H]). Theorem 2.4.3 provides a uniform resolution family.
o If we (2x2)<“ then we set
n(w)=max{ng w41 | W' <w}.
Note thatn(w’) <n(w) if w’ <w.

e Conditions (v) and (vi) become

Tp

(V,) [1 Sps 77(57 t) and (57 t) R(P) (8/7 t/)] = U(s’,t’) - U(s,t)

(Vi') [((s,t)eD « (s',¢')eD) and (s,t) R (s, )] = Uy CUs -
o If we:=(se,te’) €T N (2x2)PHL, then we set

(we)é ifthereis r<p with [w[reD < wee D] and w[r R we,
(we)*Tt:=

we otherwise.

Note thatwe ¢ D if (we)$*! =we. Note also the equivalence between the fact that D and the
fact that(we)s ! € D.
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Claim 1. Assume thatwe)” # (we)$. Thenp+1 <n((we)?*t1).
We argue by contradiction. We get
p+1>p>n((we)’™) 2T o) (we)$)+1 = TTh ¢ (we)-
As (we)? R) we we get(we)? RE) we and(we)? = (we), which is absurd. o
Note thatt,, 1 <&,_14+1<n((we)é»—1+1) <n(we). Thus(we)"™e) = (we)t.
Claim 2. () AN p<niwe) Uweye " N(XsxYr) is Ti-dense if,epn N (XsxY;) if (we) ! =we.
(0) Utwere MNi<pnue) Uweyr © N (X xY;) is y-dense iﬂmT1 N (X5 xYy) if (we)st! £we.

Indeed, we seb; :=U.¢,, for 1 <& <&. By Claim 1 we can apply Lemma 2.2.2.(b) and we are
done. o

eletFo:=F: =201, T:=T N (FoxF1), ¥: Fox F1 — YH(X xY) defined onT by

AN Nicpnwe) Tweye N (X X ¥3) N Qxxy if (we)sH =we,
U(we):= T _
Utweys N Mi<pen(we) Uweye N (XsxYy) if (we)$T! £we.

We conclude as in the proof of Theorem 2.4.1, using the faetis), > 1 andr(.) is increasing. O

Proof of Theorem 1.10. We may assume thgt< wPK, X, Y are recursively presented, ardd B

areX}. We assume that is not separable fron by a potIIY ) set, and se’ =A"" N B. Then
N is not empty sincdl{(r14¢) CIIY, (1) Cpot(ILY, ;). So (b) holds, by Theorems 2.4.1 and 2.4.3.

So (a) or (b) holds. ID € pot(l‘[?+5) separatesA from B and (b) holds, therb € pot(l‘[?+5),
sinceS = (uxwv)~(D) N [T], which is absurd. O

3 Proof of Theorem 1.11.

We have seen that we cannot have a reduction on the wholegtriodliheorem 1.13. We have seen
that it is possible to have it on the set of branches of somewith acyclic levels. We now build
an example of such a tree. This tree has to be small enoughwsimcannot have a reduction on the
whole product. But as the same time it has to be big enoughgorerihe existence of complicated
sets, as in the statement of Theorem 1.11.

Notation. Let v :w— w? be the natural bijection. More precisely, we set,f@w,
M(q):==max{mew | Xp<pm k<q}.

Then we definep(q) = ((9)o, (9)1) == (M(q) — g+ (Zx<nr(g) k), 4— (Ex<nr(q) k). One can check
that<n, p>:=¢~1(n,p) = (Sk<nip k)+p. More concretely, we get

lw]={(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),...}.
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Definition 3.1 We say thalEquEM 29x 29 is atest if:

(@) Vgew J!(sq,tq) € EN(29x29).

(b) Vm, pew Yue2<¥ Jve 2<% (s5,0uv, t,luv) € E and (|t, luv|—1)g =m.
(€)¥n>03g<n Iwe2<¥ s,=s,0w andt, =t,lw.

We will call T the tree generated by a teBt={(s,,t,) | gcw}:
T:={(s,t)€2“x2<¥ | s=t=0 or Igew FJwe2<¥ (s,t)=(s,0w,t,1w)}.

The uniqueness condition in (a) and condition (c) ensure’this small enough, and also the
acyclicity. The existence condition in (a) and conditioh €hsure thaf’ is big enough. More specif-
ically, if X is a Polish space and a finer Polish topology orX, then there is a densg; subset
of X on which the two topologies coincide. The first part of coiodit(b) ensures the possibility to
get inside the square of a denSg subset oR“. The examples in Theorem 1.11 are build using the
examples in [Lo-SR]. Conditions on verticals are involvadd the second part of condition (b) gives
a control on the choice of verticals.

Proposition 3.2 The tre€l” associated with a test is a tree with acyclic levels.

Proof. Fix p € w. Let us show thatiz, is acyclic. We argue by contradiction. L&%;,7;)i<; be
a cycle inGr,, andn < p maximal such that the sequen@g(n));<; is not constant. There ig
minimal with é;, (n) # é;,+1(n). We havee;, (n)=¢ég(n)=¢;(n). There isis > i;+1 minimal with
€i,+1(n)#é;,(n). Thené;, (n)=¢€,,(n), and in facté;, = é;, because of the uniqueness condition in
(a), andéi1+1 = éiz—l' If jil :in, theni; =0 andiy =1. BUtjil—l—l = l_ji1 = l_jig :jig—h which
is absurd. Ifj;, # ji,, then for examplg;, =0=1—j;,. If p>0, theneé;, (0)=0=1—¢;,(0), which
contradictse;, =¢;,. If p=0, thenéey =0 =¢é,, which is absurd. O

Notation. Let ¢ : w — 2<% be the natural bijectiony((0) = 0, ¢(1) = 0, ¥(2) = 1, ¥(3) = 07,
P(4)=01, ¥(5)=10, ¥(6)=12, ...). Note thatjy(q)| <q.

Lemma 3.3 There exists a test.
Proof. We sets,=t,:=0, and

Set1'= Slanlo 04([(q)1]1) 04~ [(@1lo=l (@],

t 19([(q)]1) 0~ [@1lo=lw(l@n]nl,

a+1°= Y(g)o

Note that(q)o+(q)1 =M (q) < Xp<nr(q) k< g, so thats , t, are well defined and we have the equality
sl = |t,| = ¢, by induction ong. It remains to check that condition (b) in the definition ofeatt

is fullfilled. Setn :=¢~!(u), r :==< p,n > andq :=< m,r >. It remains to put := 09>~ I;
(s,0uv, tyluv) = (5,4 1, t,01)- O

Now we come to the lemma crucial for the proof of Theorem 1.11.
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Notation. (a) We defing:w<“\ {0} —w. We definep(s) by induction on/s|:

s(0) if |s|=1,
p(S):{

<p(s[(|s|]—1)),s(]s|-1)> otherwise.
Note thatp|,» :w" —w is a bijection, for each > 1.

(b) The mapA :2¢ x 2% — 2% is the symmetric difference. So, fot cw,
Ao, B)(m)=(aAB)(m)=1 & a(m)+#B(m).

Lemma 3.4 LetG be a densé&rs subset oR¥, andT the tree associated with a test. Then there are
oo € G and f:2¥ — G continuous such that, for eaehe 2+,
(@) (o, f(a)) € [TT.
(b) For eacht ew<v, and eachn e w,
() a(p(tm))=1 = Im'€w (awAf(a))(p(tm')+1)=1.
(i) (awAf(a)(p(tm)+1)=1 = Im'cw a(pitm'))=1.

Proof. Let (O,) be a sequence of dense open subse®’afiith G = ﬂq O,. By density we get:
Vg, l€w Jug €25 Vse2! Nsu,, €Oy

e We construct finite approximations of, and f. The idea is to linearize the binary tréé*. So
we will use the bijection) defined before Lemma 3.3. To constryciv) we have to imagine, for
each length, the different possibilities for:[I. More precisely, we construct subsequences<f,
namely(vy )yeo<w, (Sw)wea<w and(ty)eo<w, satisfying the following conditions:

(1) (Sw,tw)€E\{(0,0)}, and(|tw|—1)o = (Jw|)o, for eachw € 2<v.

sg =0wo,1 vy,
(2)

Swe = Sy(yp=1 (we)—1) 0 Ugp=1 (we)

tg =1 w1 vy,
(3)

twe=tw € [A P H(w)<i<yp 1 (we) uiv|5w(i71)|+1 V(i) O] uw”(w€),\sw<w—1<m),1)|+1 Vwe-

18 (p=1 (e -1 1+1 Ve

We show the existence of the three subsequences inductively ! (w). We choosey; € 2<¢ with
(0 up,1 Vg, 1 u,1 ’U@) ek and(!l u,1 ’U@‘ — 1)0 = 0. Assume tha(vw)wfl(w)g,,, (Sw)wfl(w)gr-
(tw)y—1(w)<r Satisfying properties (1)-(3) have been constructed, isithe case for =0.

Fix w € 2<¥ ande € 2 with ¢(r+1) = we. We choose,,. € 2<¥ such that(s,., t,.) € £ and
([twe|—1)o=(Jw|+1)o. Let us show that this is possible. We want that

(Sy(y—1 (we)-1) 0 U= (wE), |5,y =1 ey 1 [+ Ve > P € Uy ()1 s | +1 Vb= (w)+1) O - - -

u1/’71(we)—17|5¢(w71(w5),2)H‘l U¢(¢71(W5)—1) 0 u@b*l(W€)7‘3,/,(,¢,71(w5),1)|+1 'Uws) cE.

It is enough to see thabw(wfl(we)—l) 0,tw €. .. Vg (4p=1 (we)—1) 0) eT.
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But
S (1 (we)—1) 0

= Syt (we)~2) O U=t (we) 1[5, —1(e) oy I+1 Vb~ (we)—1) O

= 8w 0 U1 (w) 41,041 V(g1 (w)4+1) O+ U=t (we) 1[5, (-1 ey oy [ +1 V(e (we) 1) O-
We are done sincEs,,, ty,) € E.

e So this defines sequences, ),co<w, (Sw)wea<e aNd (ty)wea<w. AS Syg) <# Sy(g+1) WE €an
defineaq :=sup, sy ). Similarly, we setf(«):=sup,, t,,, andf is continuous.

e Let us show thatyy € G. By definition of s,,. we getsw(q)quHJSw(q)Hl < Sy(q+1), fOr eachq.
This implies thaty, € ﬂq O, =G sincelug 1 < oy.

e Now fix « €2*. Let us show thaf (a) € G. Fix ¢ cw, andm € w such that
v alm) <g+1<y~ e[ (m+1)).
Again it is enough to show the existencesaf 2<“ with su, 1 |s| <tar(m+1). Set

§:=tafm QM) Uy=1(afm)+1,s01ml+1 V=1 (afm)+1) O -+ Ug,[sy,1]+1 Vi(q) O-

By definition oft,(,+1) we havesuqﬂ,‘%
|5y(q) | +1=1s|. Sos is suitable.

(@l+1 = ta(m+1)- But the construction of,,. shows that

(@) Moreover,(ao, f(a)) € [T]. Indeed, fixr € w. There ism € w with [:=[t,,,|>r. We get
(ao,f(a))(l:(sa(m,ta(m)eEgT. Thus(a, f(a))[reT, and(ag, f(a))isin [T].

(b).(i) We setw :=afp(tm), So thatt, 1 <tw1 =ta[pem)+1] <[ (). As(|tw|—1)o=p(t), there ism/
with [t,,| =p(tm’)+1. BUts,0 < 8y(y-1(w)+1), SO thatog ([tw]) # f (@) ([tw])-

(b).(ii) First notice that the only coordinates wherg and f(«) can differ are0 and thelt,,|'s.
Therefore there is an integewith p(tm)+1=|t,,|. In particular(|t,r,|—1)o=p(t) and(q)o =p(t).
Thus there isn’ with g=p(tm'). We haveny (|t,rq]) =07 f (@) (tarq]) =a(q)- Soa(p(tm’))=1.0
Now we come to the existence of complicated sets, as in thenstaat of Theorem 1.11.
Notation. In [Lo-SR], Lemma 3.3, the map, : 2¥ — 2“ defined as follows is introduced:
1 if e(<i,j>)=0, foreachjcw,
po(e)(i):=

0 otherwise.
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In this paper,og :2¥ — 2% is also defined fo€ < w; as follows, by induction og (see the proof
of Theorem 3.2). We put:
- 3 :=Idgw.
- p8+1 =P © Po-
- 1f A > 0is limit, fix (£) C A\ {0} with 35 £} = . Fore € 2¥ andk € w we define(e)* € 2« by

(€)% (i):=e(i+k). We also defing{"" ) : 22 —, 2 py
e(q) if i<k,
i () ()=

EX (0 Nk o
o (2 k) if i > .
We setp, =0y o Py o...opy " andpy(e)(k):=p, (e)(k).

The setH ¢ :=(p5) 1 ({0°°}) is also introduced, and the authors show tHat ¢ is 9, \X0
(see Theorem 3.2).

e The mapS:2¥ — 2% is the shift mapsS(a)(m):=a(m+1).
e Let T be the tree generated by a test. We put{farw,,
Sive = {(,8)€2°x2° | (. )€ [T] andS(aAB) ¢ Hise}.
Theorem 3.5 Let{ <w;. The sefT]\S1 ¢ isTIY, ((2“x2¥)\pot(X], ), and S, ¢ is not potILy ).

Proof. As Hy ¢ isTI{, . andA, S are continuous|[T]\ Sy ¢ is II7

(29 % 2¥).
e Let G be a densé’s subset oR“. Lemma 3.4 provides € G and f: 2 — G continuous.

e Let us show thapg(a) = pg(S[aoAf(a)]), for eachl <¢ <w; anda € 2¥. Foré =1 we apply
Lemma 3.4.(b) t@d € w. Then we have, by induction:

A8 (@)= po(p(0)) = po (A (SlooAf (@) ) = ol (Slao A f(@))).
From this we deduce, by induction again, that
PO (0) = () = 8 (S[ao A f(0)]) =Y (SlavA f(a)]).
Thuspy ™ (@) = p* ) (S[aoA f (@), and

P (@) (k) = pF ) (@) (k) = o (S[an A f(@)]) (k) = pd (SlaoA F()]) ().

e This implies thaive H, ¢ is equivalent taS[aA f(«)] € Hy4¢ (for =0 we apply Lemma 3.4.(b)
tot:=0).

¢ We argue by contradiction to show th&t|\S;¢ (resp.,S1¢) is not po(E?H) (resp., po(tH(erg)):
there is a dens€'s subseiG of 2¢ such tha([T]\S14¢) N G* (resp.,S14¢ N G?) is axy . (resp.,
107, ) subset ofG*. But by the previous point we géf1¢ = f~'([([T\ S11¢) N Gla,) (resp.,
—Hite=f71([S14¢ N G?a,)), which is absurd. O
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4 Proof of Theorem 1.14.

As announced in the introduction, we show more than Theoréh 1

Notation. Let X, Y be recursively presented Polish spaces. We set

By = {peWX Y | A(m,n) e WX x WY C;Y =CX xCY'}.
Then we define an inductive operatbroverw (see [C]) as follows:
®(A):=By*Y UAU

{(peWXY | JacAl Vnew an)eW*¥ N4 and ~C;Y ={J, CX<)}.

a(n)
Then® is clearly all{ monotone inductive operator. We let, for any ordiaal
B =at:=a(( ] @)
n<g

(which is coherent with the definition d8;" *Y).

Theorem 4.1 (Debs-Lecomte-Louveau) LEtgiven by Theorem 1.1§ < wICK, S given by Theorem
1.11, andX, Y be recursively presented Polish spaces.

e Let A, B be disjointX} subsets of{ x Y. The following are equivalent:

(a) The setd cannot be separated frodd by a po{IT} +£) set.

(b) The setA cannot be separated frofi by aA; N pot(I1Y ) set.

(c) The setA cannot be separated frodd by aII! +5(71) set.

(d) A" N B£0.

(e) There areu: 2% — X andwv:2¥ — Y continuous withs C (uxv)~(A) and [T7\S C (uxv)~1(B).

o The setdVgt " = B, Wi e = B¢ and W2k are [T}

Proof. The setB; *Y is clearly IT' and a subset of/;**¥. Conversely, ifp is in WY, then
CX*Y is a X} rectangle, and a\} rectangle by reflection. Sec B Y =W <Y

¢ We argue by induction of. So assume that the result has been shown fof.

e Let us show thanlffg is IT}. We may assume thgt= 1+¢ is an infinite limit ordinal since

WX =W, XY, By Lemma 4.8 in [C] the following relation i#':
R(p,8) < 6eWO andpe®!l,

The following argument can be found in [Lo1], Propositiod.lets; € WO N A} with |d¢|=¢, and
5%” be the restriction of the ordering to thej.-predecessors of.. We get, by induction assumption,

pGWfli’g & In<g peW;Y & In<g peBY
& dnp<€ ped’ & dmew R(p,&?).

This shows thatV 2 is I1}.
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(8) = (b) and (a)= (c) are clear sincel x and Ay are Polish.
(c) = (d) This comes from the fact th&l{ (1,¢) CII7, (7).

(d) = (e) This comes from Theorems 2.4.1 and 2.4.4 (Lemma 2.2 Ptissamoment true until the
level 1+¢).

(e)= (a) If D e poy(IL}, ) separates from B, thenS = (uxv)~*(D) N [T is po(I1{, ), which
contradicts Theorem 1.11.

(b) = (d) We argue by contradiction, so thdf'™ separatesA from B. By induction assumption

and the first reflection theorem therenis A1 with a(n) e W2} andC; )" C -4, for each integer

n,andBC E:={J, C". ButEis A{ N pot(SY, ;) and separates from A, which is absurd.

e The proof of the implication (b} (d) imply thatwfigy is 17} sincveli’g is 17} and

Wl)féy:{pGWXXY | Jac Al Vnew a(n)GWflfg and —CI‘,XXY:U C’O)f(:)y .

e It remains to see thveféY :Bfixgy. But by induction assumption we get

XXY
Bl+£

= 2(Upcrye @) = 2(Uyperye BYY)

= Un<1+£ Bgfo U {pGWXXY | ElaeA% Ynew a(n)eun<1+g Bé{xy and
_|0X><Y_U CXXY
p —Un a(n)

= Wffj}g U{peW**Y | Jac Al Vnew a(n)velfg and =C;"Y =, Co)f(:)Y}

o XxY
- Wl-i—f :

This finishes the proof. d

Remark. As we saw with Theorem 2.2.1, the equivalence between (gdn@(c) is essentially shown
in [Lo2]. It is also essentially shown in [Lo2] that (a), (ndi(c) are equivalent to (d) (see the proof
of Theorem 2.8, (a) page 25, in [Lo2]). An immediate consegaeof Theorem 4.1 is the following,
shown in [Lo2]:

Corollary 4.2 (Louveau) Let < w?K, X, Y be recursively presented Polish spaces, ahd Al
subset ofX x Y. The following are equivalent:

(a) The setd is pot(T1{, . ).

(b) The setd is 1‘[?+5(71).
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