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1 Introduction.

The reader should see [K] for the descriptive set theoretic notation used in this paper. This work
is the continuation of a study started in [L1]-[L5], and is announced in [L6]. The usual notion of
comparison for Borel equivalence relationsE ⊆ X2 andE′⊆X ′2 on Polish spaces is the Borel
reducibility quasi-order:

E ≤B E′ ⇔ ∃u :X→X ′ Borel withE=(u×u)−1(E′)

(recall that a quasi-order is a reflexive and transitive relation). Note that this makes sense even ifE,
E′ are not equivalence relations. It is known that if(Bn) is a sequence of Borel subsets ofX, then
there is a finer Polish topology onX making theBn’s clopen (see exercise 13.5 in [K]). So assume
thatE ≤B E′, and letσ be a finer Polish topology onX makingu continuous. If moreoverE′ is in
some Baire classΓ, thenE∈Γ([X,σ]2). This motivates the following (see [Lo2]):

Definition 1.1 (Louveau) LetX, Y be Polish spaces,A a Borel subset ofX×Y , and Γ a Baire
(or Wadge) class. We say thatA is potentially in Γ (denotedA∈pot(Γ)) iff there is a finer Polish
topologyσ (resp.,τ) onX (resp.,Y ) withA∈Γ([X,σ]×[Y, τ ]).

This notion is a natural invariant for≤B: if E′ is pot(Γ) andE ≤B E′, thenE is pot(Γ). Using
this notion, A. Louveau proved that the collection ofΣ

0
ξ equivalence relations is not cofinal for≤B ,

and deduces from this the non existence of a maximum Borel equivalence relation for≤B (this non
existence result is due to H. Friedman and L. Stanley). More recently, G. Hjorth, A. Kechris and A.
Louveau determined the potential classes of the Borel equivalence relations induced by Borel actions
of closed subgroups of the symmetric group (see [Hj-K-Lo]).

A standard way to see that a set is complicated is to note that it is more complicated than a
well-known example. For instance, we have the following (see [SR]):

Theorem 1.2 (Hurewicz) LetPf :={α∈2ω | ∃n∈ω ∀m ≥ n α(m)=0}, X be a Polish space, and
A a Borel subset ofX. Then exactly one of the following holds:
(a) The setA is Π

0
2(X).

(b) There isu :2ω→X continuous and one-to-one withPf =u−1(A).

This result has been generalized to all Baire classes (see [Lo-SR]). We state this generalization in
two parts:

Theorem 1.3 (Louveau-Saint Raymond) Letξ <ω1, S ∈Σ
0
1+ξ(2

ω), X be a Polish space, andA, B
disjoint analytic subsets ofX. Then one of the following holds:
(a) The setA is separable fromB by aΠ

0
1+ξ(X) set.

(b) There isu :2ω→X continuous withS⊆u−1(A) and2ω\S⊆u−1(B).
If we moreover assume thatS /∈Π

0
1+ξ, then this is a dichotomy.

Note that in this dichotomy, we can haveu one-to-one ifξ≥2. This is not possible ifξ<2.

Theorem 1.4 There is a concrete example of a setS1+ξ∈Σ
0
1+ξ(2

ω)\Π0
1+ξ(2

ω), for eachξ<ω1.

We try to adapt these results to the Borel subsets of the plane.
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The following result is proved in [H-K-Lo]:

Theorem 1.5 (Harrington-Kechris-Louveau) LetX be a Polish space,E a Borel equivalence rela-
tion onX, andE0 := {(α, β)∈ 2ω×2ω | ∃n∈ω ∀m≥n α(m) = β(m)}. Then exactly one of the
following holds:
(a) The relationE is pot(Π0

1).
(b)E0 ≤B E (with u continuous and one-to-one).

For the Borel subsets of the plane, we need some other notionsof comparison. LetX, Y ,X ′, Y ′

be Polish spaces, andA (resp.,A′) a Borel subset ofX×Y (resp.,X ′×Y ′). We set

A ≤r
B A′ ⇔ ∃u :X→X ′ ∃v :Y →Y ′ Borel withA=(u×v)−1(A′).

The following result is proved in [L1]:

Theorem 1.6 Let∆(2ω) :={(α, β)∈2ω×2ω | α=β}, L0 :={(α, β)∈2ω×2ω | α<lexβ},X, Y be
Polish spaces, andA a pot(Ď2(Σ

0
1)) subset ofX×Y . Then exactly one of the following holds:

(a) The setA is pot(Π0
1).

(b) ¬∆(2ω) ≤r
B A or L0 ≤r

B A (with u, v continuous and one-to-one).

The classĎ2(Σ
0
1) is the class of unions of a closed set and of an open set. Thingsbecome more

complicated at the levelD2(Σ
0
1) of differences of two open sets (see [L5]):

Theorem 1.7 (a) There is a perfect≤r
B-antichain (Aα)α∈2ω ⊆ D2(Σ

0
1)(2

ω×2ω) such thatAα is
≤r
B-minimal among∆1

1\pot(Π0
1) sets, for anyα∈2ω.

(b) There is a perfect≤B-antichain(Rα)α∈2ω such thatRα is≤B-minimal among∆1
1\pot(Π0

1) sets,
for anyα∈2ω. Moreover,(Rα)α∈2ω can be taken to be a subclass of any of the following classes:

- Graphs (i.e., irreflexive and symmetric relations).
- Oriented graphs (i.e., irreflexive and antisymmetric relations).
- Quasi-orders.
- Partial orders (i.e., reflexive, antisymmetric and transitive relations).

In other words, the case of equivalence relations, for whichwe have a unique (up to bi-reducibili-
ty) minimal non potentially closed element with Theorem 1.5, is very specific. Theorem 1.7.(b) says,
among other things, that the mixture between symmetry and transitivity is very strong. Theorem
1.7.(a) shows that the classical notions of reduction (on the whole product) don’t work, at least at the
first level. So we must find another notion of comparison. The following result is proved in [L5]:

Theorem 1.8 There isS1 ∈ ∆
1
1(2

ω×2ω) such that for any Polish spacesX, Y , and for any Borel
subsetA ofX×Y , exactly one of the following holds:
(a) The setA is pot(Π0

1).
(b) There areu : 2ω→X andv : 2ω→Y continuous satisfying the inclusionsS1 ⊆ (u×v)−1(A) and
S1\S1⊆(u×v)−1(¬A).

Moreover, we can neither replaceS1\S1 with¬S1, nor ensure thatu andv are one-to-one.
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So we get a minimum non-potentially closed set if we do not askfor a reduction on the whole
product. We will show that this dichotomy is true for each countable ordinalξ ≥ 1. The result is
actually stronger than that. First theAξ ’s are concrete examples. Secondly it is better to state thatthe
reduction in condition (b) holds in the set⌈T ⌉ of the branches of some treeT that does not depend on
ξ, rather thanAξ. Finally, to get the full strength of the result, it is betterto split it in two parts. We
need some notation and a definition:

Notation. If F0, F1 are finite sets andT ⊆F0×F1, we denote byGT the bipartite graph with set of
vertices the sumF0⊕F1, and with set of edges

{

{(f0, 0), (f1, 1)}⊆ F0⊕F1 | (f0, f1)∈T
}

.

(see [B] for basic notions about graphs). In the sequel, we will denotefε :=(fε, ε).

Definition 1.9 We say that a treeT on 2×2 is a tree with acyclic levels if, for each integerp, the
graphGTp , associated withTp :=T ∩ (2p×2p)⊆2p×2p, is acyclic.

Now we can state the main results proved in this paper:

Theorem 1.10 (Debs-Lecomte) LetT be a tree with acyclic levels,ξ < ω1, S ∈ Σ
0
1+ξ(⌈T ⌉), X, Y

Polish spaces, andA, B disjoint analytic subsets ofX×Y . Then one of the following holds:
(a) The setA is separable fromB by a pot(Π0

1+ξ) set.
(b) There areu :2ω→X andv :2ω→Y continuous withS⊆(u×v)−1(A) and⌈T ⌉\S⊆(u×v)−1(B).

If we moreover assume thatS /∈pot(Π0
1+ξ), then this is a dichotomy.

Note that we can deduce Theorem 1.3 from the proof of Theorem 1.10. Theorem 1.10 is the ana-
logous of Theorem 1.3 in dimension two. The proofs of Theorem1.3 in [Lo-SR], and also Theorem
III-2.1 in [D-SR], use games. This is not the case here, so that we get a new proof of Theorem 1.3.

Theorem 1.11 We can find concrete examples of a treeT with acyclic levels, together with sets
S1+ξ∈Σ

0
1+ξ(⌈T ⌉)\pot(Π0

1+ξ), for eachξ<ω1.

The following corollary has initially been shown by D. Lecomte when1+ξ is a successor ordinal.
Then G. Debs showed it when1+ξ is a limit ordinal.

Corollary 1.12 (Debs-Lecomte) Letξ<ω1. There isS∈∆
1
1(2

ω×2ω) such that for any Polish spaces
X, Y , and for any disjoint analytic subsetsA, B ofX×Y , exactly one of the following holds:
(a) The setA is separable fromB by a pot(Π0

1+ξ) set.

(b) There areu :2ω→X andv :2ω→Y continuous withS⊆(u×v)−1(A) andS\S⊆(u×v)−1(B).

Theorem 1.8 shows that we cannot replaceS\S with ¬S in Corollary 1.12 whenξ=0. G. Debs
found a simpler proof, which moreover works in the general case:

Theorem 1.13 (Debs) We cannot replaceS\S with ¬S in Corollary 1.12.

Once again, some cycles are involved, so that the acyclicityis essentially necessary and sufficient
in Corollary 1.12 (even if we have two different notions of acyclicity). G. Debs proved very recently
that we can haveu andv one-to-one in Corollary 1.12 ifξ ≥ 2. This is not possible ifξ < 2 (see
Theorem 1.8 whenξ=0, and Theorem 15 in [L4] whenξ=1).
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This paper is organized as follows:

- In Section 2 we recall the material used to state the representation theorem of Borel sets proved in
[D-SR]. We use it to prove Theorem 1.10, also in this section.To do this we assume some results
proved in [Lo2]. We also prove Theorem 1.13.

- In Section 3 we prove Theorem 1.11.

- We use some tools of effective descriptive set theory (the reader should see [M] for the basic notions
about it). In Section 4 we give an alternative proof of the results in [Lo2] that we assumed in Section
2. This leads to the following:

Theorem 1.14 (Debs-Lecomte-Louveau) LetT given by Theorem 1.11,ξ <ωCK
1 , S given by Theo-

rem 1.11,X, Y be recursively presented Polish spaces, andA,B disjoint Σ 1
1 subsets ofX×Y . Then

the following are equivalent:
(a) The setA cannot be separated fromB by a pot(Π0

1+ξ) set.
(b) The setA cannot be separated fromB by a∆

1
1 ∩ pot(Π0

1+ξ) set.
(c) There areu :2ω→X andv :2ω→Y continuous withS⊆(u×v)−1(A) and⌈T ⌉\S⊆(u×v)−1(B).

The equivalence between (a) and (b) is proved in [Lo2]. We will actually prove more than Theo-
rem 1.14, with some additional notation that will be introduced later. Among other things, we will
use the fact that the set of codes for∆

1
1 and pot(Π0

1+ξ) sets isΠ 1
1 .

2 Proof of Theorem 1.10.

2.1 Acyclicity.

In this subsection we prove a result that will be used later toshow Theorem 1.10. This is the place
where the essence of the notion of a tree with acyclic levels is really used. We will also prove that we
cannot have a reduction on the whole product, using some cycles. Some of the arguments used in the
initial proof of Corollary 1.12 by D. Lecomte (when1+ξ is a successor ordinal) are replaced here by
Lemma 2.1.2 below.

Definition 2.1.1 (Debs) LetF0, F1,X0,X1 be sets,T ⊆F0×F1 andΨ:F0×F1→2X0×X1 . We say
thatψ=ψ0×ψ1 :F0×F1→X0×X1 is aπ−selector on T for Ψ if:
(a) ψ(f0, f1)=[ψ0(f0), ψ1(f1)], for each(f0, f1)∈F0×F1.
(b) ψ(t)∈Ψ(t), for eacht∈T .

Notation. Let X be a recursively presented Polish space. We denote by∆X the topology onX
generated by∆1

1(X). This topology is Polish (see (iii)⇒(i) in the proof of Theorem 3.4 in [Lo2]).
We setτ1 :=∆X×∆Y if Y is also a recursively presented Polish space.

Lemma 2.1.2 (Debs) LetF0, F1 be finite sets,T ⊆ F0 ×F1 such that the graphGT associated
with T is acyclic,X0, X1 recursively presented Polish spaces,Ψ : F0×F1 → Σ

1
1 (X0×X1), and

Ψ:F0×F1→Σ
1
1 (X0×X1) defined byΨ(t) :=Ψ(t)

τ1
. ThenΨ admits aπ-selector onT if Ψ does.
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Proof. (a) Let t0 := (f0, f1)∈ T , andΦ :F0×F1 →Σ
1
1 (X0×X1). We assume thatΦ(t) = Ψ(t) if

t 6= t0, and thatΦ(t0)⊆Ψ(t0)
τ1

. We first prove thatΨ admits aπ-selector onT if Φ does.

• Fix aπ-selectorϕ̃ onT for Φ. We defineΣ 1
1 setsUε, for ε∈2, by

Uε := { x∈Xε | ∃ϕ :F0×F1→X0×X1 x=ϕε(fε) and ∀t∈T ϕ(t)∈Φ(t) }.

As ϕ̃(t0)=[ϕ̃0(f0), ϕ̃1(f1)]∈Φ(t0)∩ (U0×U1) we get∅ 6=Φ(t0)∩ (U0×U1)⊆Ψ(t0)
τ1
∩ (U0×U1).

By the separation theorem this implies thatΨ(t0) ∩ (U0×U1) is not empty and contains some point
(x0, x1). Fix ε∈2. Asxε∈Uε there isψε :F0×F1→X0×X1 such thatxε=ψεε(fε) andψε(t)∈Φ(t),
for eacht∈T .

• If e0 6= e′0∈F0 and[(ẽi, ji)]i≤l is a path inGT with (ẽ0, j0)= e0 and(ẽl, jl)= e′0, then it is unique
by Theorem I.2.5 in [B]. We call itpe0,e′0. We will define a partition ofF0×F1. We put

N := { (e0, e1)∈F0×F1\ {t0} | (e0, e1) /∈T or [e0 6=f0 andpe0,f0 does not exist] },

H := { (e0, e1)∈T \ {t0} | e0 6=f0 andpe0,f0(|pe0,f0|−2)=f1 },

V := { (e0, e1)∈T \ {t0} | e0 =f0 or [e0 6=f0 andpe0,f0(|pe0,f0|−2) 6=f1] }.

The definition ofH means that if we view the graphGT asT itself in the productF0×F1 instead
of seeing it in the sumF0⊕F1, then the last edge in the path from(e0, e1) to t0 is horizontal (and
vertical inV ). So we defined a partition({t0}, N,H, V ) of F0×F1.

• Let us show thatΠFε [H] ∩ ΠFε [V ]=∅, for eachε∈2.

We may assume thatε= 1. We argue by contradiction. This givese1 ∈ΠF1 [H] ∩ ΠF1 [V ], and
alsoe0 (resp.,e′0) such that(e0, e1)∈H (resp.,(e′0, e1)∈V ). Note thate0 6=f0, and also thate1 6=f1

(by contradiction, we gete′0 6= f0 since(e′0, e1) 6= t0, andpe′0,f0 = (e′0, f1, f0), which is absurd). If
e′0 =f0, thene1⌢pe0,f0

⌢e1 gives a cycle, which is absurd. Ife′0 6=f0, thene1⌢pe0,f0 ande1⌢pe′0,f0
give two different pathes frome1 to f0, which is also absurd.

• Now we can defineψε :Fε→Xε. We put

ψ0(e0) :=























x0 if e0 =f0,

ψ1
0(e0) if e0∈ΠF0 [H],

ψ0
0(e0) otherwise,

ψ1(e1) :=























x1 if e1 =f1,

ψ1
1(e1) if e1∈ΠF1 [H]\{f1},

ψ0
1(e1) otherwise.

Then we setψ(e0, e1) :=[ψ0(e0), ψ1(e1)].
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• It remains to see thatψ(t) ∈ Ψ(t), for eacht ∈ T . Notice first thatψ(t0) = (x0, x1) ∈ Ψ(t0). If
t :=(e0, e1)∈V ande0 6=f0, then we get

ψ(t)=[ψ0(e0), ψ1(e1)]=[ψ0
0(e0), ψ

0
1(e1)]=ψ

0(t)∈Φ(t)=Ψ(t).

Now if t∈V ande0 =f0, then we get

ψ(t)=[x0, ψ
0
1(e1)]=[ψ0

0(f0), ψ
0
1(e1)]=[ψ0

0(e0), ψ
0
1(e1)]=ψ

0(t)∈Φ(t)=Ψ(t).

We argue similarly ift∈H.

If t∈N ∩ T , thene0 6=f0. If moreovere1 /∈({f1} ∪ ΠF1 [H]), then we get

ψ(t)=[ψ0(e0), ψ1(e1)]=[ψ0
0(e0), ψ

0
1(e1)]=ψ

0(t)∈Φ(t)=Ψ(t).

If e1 = f1, thenpe0,f0 = (e0, e1, f0) exists, which is absurd. Ife1 ∈ΠF1 [H]\ {f1}, let e′0 ∈F0 with
(e′0, e1)∈H. The sequence(e0, e1, e′0, . . . , f1, f0) shows thatpe0,f0 exists, which is absurd again.

(b) Write T := {t1, . . . , tn}, and setΦ0 := Ψ. We defineΦj+1 :F0×F1→Σ
1
1 (X0×X1) as follows.

We putΦj+1(t) := Φj(t) if t 6= tj+1, andΦj+1(tj+1) :=Ψ(tj+1), for j <n. The result now follows
from an iterative application of (a). �

Proof of Theorem 1.13.We argue by contradiction. This gives a Borel setS′. Consider first that
A := S′ andB := ¬S′. Then (b) holds withu = v = Id2ω . So (a) does not hold andS′ is not
pot(Π0

1+ξ).

Consider now thatA :=S andB := ⌈T ⌉\S, whereT andS are given by Theorem 1.11. As (a)
does not hold, (b) holds. This gives continuous mapsu, v with

S′⊆(u×v)−1(S)⊆(u×v)−1(⌈T ⌉),

¬S′⊆(u×v)−1(⌈T ⌉\S)⊆(u×v)−1(⌈T ⌉).

Claim. There is a Borel subsetA of 2ω with S′=A×2ω or S′=2ω×A.

• We argue by contradiction to prove the claim. There areα∈2ω, andβ 6=β′∈2ω such that(α, β)∈S′

and(α, β′) /∈S′ (otherwiseA := (S′)0
∞
∈∆

1
1(2

ω) and satisfiesS′ =A×2ω). Then(u(α), v(β))∈S
and(u(α), v(β′)) /∈S, thusv(β) 6=v(β′).

• Note that(α′, β) ∈ S′, for eachα′ ∈ 2ω. Indeed, we argue by contradiction. This givesα′ with
(u(α′), v(β)) /∈S. Thusu(α) 6=u(α′), and(u(α), v(β)), (u(α′), v(β)), (u(α), v(β′)), (u(α′), v(β′))
are in⌈T ⌉. Let p ∈ ω with e0 := u(α)⌈p 6= e′0 := u(α′)⌈p and e1 := v(β)⌈p 6= e′1 := v(β′)⌈p.
Then(e0, e1), (e′0, e1), (e0, e

′
1), (e′0, e

′
1)∈Tp, and the sequence(e0, e1, e′0, e

′
1, e0) is a cycle, which is

absurd.

• Let γ∈S′
α. We have(α′, γ)∈S′, for eachα′∈2ω, as before. Conversely, assume that(α′, γ)∈S′.

Thenγ∈S′
α, as before. ThusS′=2ω×S′

α, which is absurd. This proves the claim. ⋄

Now the claim contradicts the fact thatS′ is not pot(Π0
1+ξ). �
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2.2 The topologies.

In this subsection we prove another result that will be used to show Theorem 1.10. Some topolo-
gies are involved, and this is the place where we use some results in [Lo2].

Notation. LetX, Y be recursively presented Polish spaces.

• Recall the existence ofΠ 1
1 setsWX ⊆ ω, CX ⊆ ω×X with ∆

1
1(X)={CXn | n∈WX} and

{(n, x)∈ω×X | n∈WXandx /∈CXn }∈Π
1
1 (ω×X) (see Theorem 3.3.1 in [H-K-Lo]).

• Set pot(Π0
0) :=∆

1
1(X)×∆

1
1(Y ) and, forξ<ωCK

1 ,

WX×Y
ξ :={p∈WX×Y | CX×Y

p ∈pot(Π0
ξ)}.

We also setWX×Y
<ξ :=

⋃

η<ξ W
X×Y
η .

The following result is essentially proved in [Lo2]. However, the statement is not in it, so we give
a proof, which uses several statements in [Lo2]. Recall thatτ1 is defined before Lemma 2.1.2.

Theorem 2.2.1 (Louveau) Letξ<ωCK
1 ,X, Y be recursively presented Polish spaces. ThenWX×Y

ξ

andWX×Y
<ξ are Π

1
1 . If moreoverA, B are disjointΣ 1

1 subsets ofX×Y , then the following are
equivalent:
(a) The setA is separable fromB by a pot(Π0

1+ξ) set.
(b) The setA is separable fromB by a∆

1
1 ∩ pot(Π0

1+ξ) set.
(c) The setA is separable fromB by aΠ

0
1+ξ(τ1) set.

Proof. By the second paragraph page 44 in [Lo2],∆
1
1(X) and ∆

1
1(Y ) are regular families (see

Definition 2.7 in [Lo2] for the definition of a regular family). By Theorem 2.12 in [Lo2], the family
Φ := pot(Π0

0) is regular too. We define a sequence(Φξ)ξ<ωCK
1

of families as follows (see Corollary
2.10.(v) in [Lo2]):

Φ0 :=Φ,
Φξ+1 :=(Φξ)σc,

Φλ :=
⋃

ξ<λ Φξ if 0<λ<ωCK
1 is a limit ordinal.

By Corollary 2.10.(v) in [Lo2],Φξ is a regular family for eachξ < ωCK
1 . In particular, the set

WΦξ := {p ∈ WX×Y | CX×Y
p ∈ Φξ} is Π

1
1 (ω). By Theorem 2.8 in [Lo2], the familyΦξ+1 is

a separating family (see Definition 2.1 in [Lo2] for the definition of a separating family), for each
ξ<ωCK

1 . An easy induction onξ shows the following facts:

Φξ =pot(Π0
ξ) if ξ<ω,

Φξ =
⋃

η<ξ pot(Π0
η) if 0<ξ<ωCK

1 is a limit ordinal,

Φξ+1=pot(Π0
ξ) if ω≤ξ<ωCK

1 .

This shows thatWX×Y
ξ =WΦξ isΠ

1
1 if ξ<ω,WX×Y

ξ =WΦξ+1
isΠ

1
1 if ω≤ξ<ωCK

1 . If 0<ξ<ωCK
1

is a limit ordinal, thenWX×Y
<ξ =WΦξ is Π

1
1 .
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(b) ⇒ (c) follows from Theorem 3.4 in [Lo2].

(c) ⇒ (a) follows from the fact that∆X and∆Y are Polish.

(a)⇒ (b) Assume first thatξ <ω. Then pot(Π0
1+ξ)=Φ1+ξ =Φξ+1 is a separating family. SoA and

B are separable by a∆1
1 ∩ Φξ+1 = ∆

1
1 ∩ pot(Π0

1+ξ) set. Ifω≤ ξ < ωCK
1 , then we use the fact that

pot(Π0
1+ξ)=pot(Π0

ξ)=Φξ+1. �

Notation. LetX, Y be recursively presented Polish spaces.

• We will use the Gandy-Harrington topologyΣX onX generated byΣ 1
1 (X). Recall that the set

ΩX := {x ∈X | ωx1 = ωCK
1 } is Borel andΣ 1

1 , that [ΩX ,ΣX ] is a0-dimensional Polish space (the
intersection ofΩX with any nonemptyΣ 1

1 set is a nonempty clopen subset of[ΩX ,ΣX ]) (see [L1]).

• Let 2≤ ξ <ωCK
1 . The topologyτξ is generated byΣ 1

1 (X×Y ) ∩ Π
0
<ξ(τ1). We have the inclusion

Σ
0
1(τξ)⊆Σ

0
ξ(τ1), so thatΠ0

1(τξ)⊆Π
0
ξ(τ1). These topologies are similar to the ones considered in

[Lo1] (see Definition 1.5).

Lemma 2.2.2 LetX, Y be recursively presented Polish spaces, andξ<ωCK
1 .

(a) Fix S∈Σ
1
1 (X×Y ). ThenS

τ1+ξ ∈Σ
1
1 (X×Y ).

(b) Letn≥1, 1≤ξ1<ξ2<. . .<ξn≤1+ξ, andS1, . . ., Sn beΣ
1
1 sets. Assume thatSn′ ⊆Sn′+1

τξ
n′+1

for 1≤n′<n. ThenSn ∩
⋂

1≤i<n Si
τξi is τ1-dense inS1

τ1 .

Proof. (a) This is essentially proved in [Lo2] (see the proof of Theorem 2.8 in [Lo2]). We emphasize
the fact that the analogous version of (a) in [Lo2] and the assertions of Theorem 2.2.1 are proved
simultaneously by induction onξ, and interact. Assume first thatξ=0. Then

(x, y) /∈S
τ1 ⇔ ∃U ∈∆

1
1(X) ∃V ∈∆

1
1(Y ) (x, y)∈U×V and(U×V ) ∩ S=∅

⇔ ∃m∈WX ∃n∈W Y ( CXm (x) and CYn (y) and ∀(x′, y′)∈X×Y
[(m∈WX andx′ /∈CXm ) or (n∈W Y andy′ /∈CYn ) or (x′, y′) /∈S] ).

SoS
τ1 ∈Σ

1
1 (X×Y ). Now assume thatξ≥1. We have, by Theorem 2.2.1:

(x, y) /∈S
τ1+ξ ⇔ ∃T ∈Σ

1
1 (X×Y ) ∩ Π

0
<1+ξ(τ1) (x, y)∈T andT ∩ S=∅

⇔ ∃E∈∆
1
1(X×Y ) ∩ pot(Π0

<1+ξ) (x, y)∈E andE ∩ S=∅

⇔ ∃m∈WX×Y
<1+ξ ( CX×Y

m (x, y) and ∀(x′, y′)∈X×Y

[(m∈WX×Y and(x′, y′) /∈CX×Y
m ) or (x′, y′) /∈S] ).

By Theorem 2.2.1,WX×Y
<1+ξ ∈Π

1
1 and we are done.

(b) LetU (resp.,V ) a ∆
1
1(X) (resp.,∆1

1(Y )) set withS1
τ1 ∩ (U×V ) 6= ∅. ThenS1 ∩ (U×V ) 6= ∅,

which proves the desired property forn = 1. Then we argue inductively onn. So assume that the
property is proved forn. We haveSn⊆Sn+1

τξn+1, andSn∩
⋂

1≤i<n Si
τξi ∩(U×V ) 6=∅, by induction

assumption. ThusSn+1
τξn+1 ∩

⋂

1≤i≤n Si
τξi ∩(U×V ) 6=∅. As

⋂

1≤i≤n Si
τξi ∩(U×V ) isΣ

0
1(τξn+1),

we getSn+1 ∩
⋂

1≤i≤n Si
τξi ∩ (U×V ) 6=∅. �
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2.3 Representation of Borel sets.

Now we come to the representation theorem of Borel sets by G. Debs and J. Saint Raymond (see
[D-SR]). It specifies the classical result of Lusin asserting that any Borel set in a Polish space is the
bijective continuous image of a closed subset of the Baire space. The following definitions can be
found in [D-SR]:

Definition 2.3.1 (Debs-Saint Raymond) Leta be a finite set. A partial order relationR on a<ω is a
tree relation if, for t∈a<ω,

(a) ∅ R t.

(b) The setPR(t) :={s∈a<ω | s R t} is finite and linearly ordered byR.

For instance, the non strict extension relation≺ is a tree relation.

• LetR be a tree relation. AnR−branch is an⊆-maximal subset ofa<ω linearly ordered byR. We
denote by[R] the set of all infiniteR-branches.

We equip(a<ω)ω with the product of the discrete topology ona<ω. If R is a tree relation, the
space[R]⊆ (a<ω)ω is equipped with the topology induced by that of(a<ω)ω. The mapθ : aω→ [≺]
defined byθ(γ) :=[γ⌈j]j∈ω is an homeomorphism.

• LetR, S be tree relations withR⊆S. Thecanonical map Π:[R]→ [S] is defined by

Π(A) := the uniqueS-branch containingA.

• LetS be a tree relation. We say thatR⊆S is distinguished in S if

∀s, t, u∈a<ω
s S t S u

s R u







⇒ s R t.

For example, letC be a closed subset ofaω, and define:

s R t ⇔ s≺ t andNt ∩ C 6=∅.

ThenR is distinguished in≺. In this case, the distinction expresses the fact that “whenwe leave the
closed set, it is for ever”.

• Letη<ω1. A family(R(ρ))ρ≤η of tree relations is aresolution family if:

(a)R(ρ+1) is a distinguished subtree ofR(ρ), for all ρ<η.

(b)R(λ) =
⋂

ρ<λ R
(ρ), for all limit λ≤η.

We will use the following extension of the property of distinction:

Lemma 2.3.2 Let η < ω1, (R(ρ))ρ≤η a resolution family withR(0) = ≺, andρ < η. Assume that
s≺s′ R(ρ) s′′ ands R(ρ+1) s′′. Thens R(ρ+1) s′.

Proof. We argue by induction onρ. Assume that the property is proved forµ<ρ. As s′ R(ρ) s′′ and
R(ρ+1) is distinguished inR(ρ) we haves R(ρ+1) s′. �
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Notation. Let η<ω1, (R(ρ))ρ≤η a resolution family withR(0) = ≺, ρ≤η andz∈a<ω\{∅}. We set

zρ :=z ⌈ max{r< |z| | z⌈r R(ρ) z}.

We enumerate{zρ | ρ ≤ η} by {zξi | 1 ≤ i ≤ n}, where1 ≤ n ∈ ω andξ1<. . .<ξn=η. We can
write zξn ≺ 6= z

ξn−1 ≺ 6= . . .≺ 6= z
ξ2 ≺ 6= z

ξ1 ≺ 6= z. By Lemma 2.3.2 we havezξi+1 R(ξi+1) zξi for each
1≤ i<n.

Lemma 2.3.3 Letη<ω1, (R(ρ))ρ≤η a resolution family withR(0) = ≺, z∈a<ω\{∅} and1≤ i<n.

(a) Setηi :={ρ≤η | zξi≺zρ}. Thenηi is a successor ordinal.

(b) We may assume thatzξi+1≺ 6= z
ξi .

Proof. (a) First notice thatηi is an ordinal. Note thatξi+1≤ηi≤η+1. We argue by contradiction, so
thatηi≤ η. Let ξi≤ ρ<ηi. Then we havezξi = zρ, zξi R(ρ) z, zξi R(ηi) z, andzξi ≺ zηi . As ηi≤ η,
we getηi∈ηi, which is absurd.

(b) So we can writeηi=νi+1. Note thatzνi =zξi sinceξi≤νi. If νi+1≤η we getzνi+1≺ 6= z
νi , so

we may assume thatξi=νi. If νi+1=η+1 we getνi=η andzξi =zνi =zη=zξn , which is absurd.�

The following is part of Theorem I-6.6 in [D-SR].

Theorem 2.3.4 (Debs-Saint Raymond) Letη < ω1, E be aΠ
0
η+1 subset of[≺]. Then there is a

resolution family(R(ρ))ρ≤η with:

(a)R(0) = ≺.

(b) The canonical mapΠ:[R(η)]→ [≺] is a bijection.

(c) The setΠ−1(E) is a closed subset of[R(η)].

Now we come to the actual proof of Theorem 1.10.

2.4 Proof of Theorem 1.10.

Theorem 2.4.1 Let T be a tree with acyclic levels,ξ < ωCK
1 such that1+ξ is a successor ordinal,

S ∈Σ
0
1+ξ(⌈T ⌉), X, Y recursively presented Polish spaces, andA, B disjoint Σ 1

1 subsets ofX×Y .
Then one of the following holds:

(a)A
τ1+ξ ∩B=∅.

(b) There areu :2ω→X andv :2ω→Y continuous withS⊆(u×v)−1(A) and⌈T ⌉\S⊆(u×v)−1(B).

Proof. Fix η<ωCK
1 with 1+ξ=η+1.

• We identify (2×2)Q with 2Q×2Q, for Q≤ω. With the notation of Definition 2.3.1 anda :=2×2,
we getE :=θ[⌈T ⌉\S]∈Π

0
η+1([≺]). Theorem 2.3.4 provides a resolution family. We put

D :={(s, t)∈T | ∃γ∈Π−1(E) (s, t)∈γ}.

For example, we may assume that(∅, ∅)∈D.
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• We setN :=A
τ1+ξ ∩B. Applying Lemma 2.2.2.(a), we see thatN is Σ

1
1 . We assume thatN is not

empty. Recall that[ΩX×Y ,ΣX×Y ] is a Polish space (see the notation before Lemma 2.2.2). We fixa
complete metricd (resp., metricsδX , δY ) on [ΩX×Y ,ΣX×Y ] (resp.,X, Y equipped with the initial
topologies).

• We construct(xs)s∈Π0[T ]⊆X, (yt)t∈Π1[T ]⊆Y , (U(s,t))(s,t)∈T ⊆Σ
1
1 (X×Y ) with:

(i) (xs, yt)∈U(s,t)⊆ΩX×Y .

(ii ) diamd(U(s,t))≤2−|s|, δX(xs, xsε)≤2−|s|, δY (yt, ytε)≤2−|t|.

(iii ) U(s,t)⊆N if (s, t)∈D.

(iv) U(s,t)⊆A if (s, t) /∈D.

(v) [1≤ρ≤η and (s, t) R(ρ) (s′, t′)] ⇒ U(s′,t′)⊆U(s,t)
τρ
.

(vi) [((s, t)∈D ⇔ (s′, t′)∈D) and (s, t) R(η) (s′, t′)] ⇒ U(s′,t′)⊆U(s,t).

• Let us show that this construction is sufficient to get the theorem. If (α, β) ∈ ⌈T ⌉, then we can
define(ji)i∈ω :=(jα,βi )i∈ω by Π−1([(α, β)⌈j]j∈ω)=[(α, β)⌈ji]i∈ω, whereji<ji+1. In particular, we
have(α, β)⌈ji R

(η) (α, β)⌈ji+1. We have the following:

(α, β)∈S ⇔ θ(α, β)=[(α, β)⌈j]j∈ω /∈E ⇔ [(α, β)⌈ji]i∈ω /∈Π−1(E)

⇔ ∃i0∈ω ∀i≥ i0 (α, β)⌈ji /∈D

sinceΠ−1(E) is a closed subset of[R(η)]. Similarly, (α, β)∈⌈T ⌉\S is equivalent to the existence of
i0∈ω such that(α, β)⌈ji∈D for eachi≥ i0 (with i0 =0).

ThereforeU(α,β)⌈ji+1
⊆U(α,β)⌈ji⊆ΩX×Y if i ≥ i0 and (α, β) ∈ ⌈T ⌉. Thus(U(α,β)⌈ji)i≥i0 is a

decreasing sequence of nonempty clopen subsets of[ΩX×Y , d] whose diameters tend to0. Therefore
{F (α, β)}=

⋂

i≥i0
U(α,β)⌈ji definesF (α, β) in ΩX×Y . Note thatF (α, β) is the limit of the sequence

((xα⌈ji , yβ⌈ji))i∈ω.

Letα∈Π0(⌈T ⌉), andβα such that(α, βα)∈⌈T ⌉. We setu(α) :=ΠX (F (α, βα)). Note thatu(α)
is the limit of some subsequence of(xα⌈i)i∈ω, by continuity of the projection. AsδX(xs, xsε)≤2−|s|,
u(α) is also the limit of(xα⌈i)i∈ω. Thusu(α) does not depend on the choice ofβα. This also shows
that u is continuous onΠ0(⌈T ⌉). As Π0(⌈T ⌉) is a closed subset of2ω, we can find a continuous
retractionr0 from 2ω ontoΠ0(⌈T ⌉) (see Proposition 2.8 in [K]). We setu(α) :=u(r0(α)), so thatu
is continuous on2ω.

Similarly, we define a continuous mapv :2ω→Y such thatv(β) is the limit of (yβ⌈i)i∈ω if β is in
Π1(⌈T ⌉). This implies thatF (α, β)=(u(α), v(β)) if (α, β)∈⌈T ⌉.

If (α, β)∈S (resp.,⌈T ⌉\S), thenF (α, β)∈A (resp.,N ). This shows thatS⊆(u×v)−1(A) and
⌈T ⌉\S⊆(u×v)−1(B).
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• So let us show that the construction is possible. Fix(x∅, y∅)∈N ∩ΩX×Y , which is not empty since
N 6=∅ isΣ

1
1 . Then we chooseU(∅,∅)∈Σ

1
1 with diameter at most1 with (x∅, y∅)∈U(∅,∅)⊆N ∩ ΩX×Y .

Assume that(xs)|s|≤p, (yt)|t|≤p, (U(s,t))|s|≤p satisfying conditions (i)-(vi) have been constructed,
which is the case forp=0.

- Let s∈Π0[T ] ∩ 2p (resp.,t∈Π1[T ] ∩ 2p), andXs (resp.,Yt) be a∆1
1 neighborhood ofxs (resp.,yt)

with δX -diameter (resp.,δY -diameter) at most2−p.

- If we :=(sε, tε′)∈T ∩ (2×2)p+1 (w :=(s, t)∈(2×2)p ande :=(ε, ε′)∈2×2), then we set

(we)η+1 :=

{

(we)η if there is r≤p with [ w⌈r∈D ⇔ we∈D ] and w⌈r R(η) we,
we otherwise.

Note that(we)η ∈D if we∈D, so thatwe /∈D if (we)η+1 =we. Note also the equivalence between
the fact thatwe ∈ D, and the fact that(we)η+1 ∈ D. Indeed, we may assume thatwe /∈ D and
(we)η+1 = (we)η . So that there isr≤ p with w⌈r /∈D andw⌈r R(η) we. By Lemma 2.3.2 we have
w⌈r R(η) (we)η , so that(we)η+1 = (we)η /∈D. The conclusions in the assertions (a) and (b) in the
following claim do not really depend on their respective assumptions, but we will use these assertions
later in this form.

Claim. Assume thatη>0.
(a)A ∩

⋂

1≤ρ≤η U(we)ρ
τρ ∩ (Xs×Yt) is τ1-dense inU(we)1

τ1 ∩ (Xs×Yt) if (we)η+1 =we.

(b)U(we)η ∩
⋂

1≤ρ<η U(we)ρ
τρ ∩ (Xs×Yt) is τ1-dense inU(we)1

τ1 ∩ (Xs×Yt) if (we)η+1 6=we.

Indeed, we use the notation before Lemma 2.3.3 withz :=we. By Lemma 2.3.3 we may assume
thatzξi+1≺ 6= z

ξi if 1≤ i<n. We setSi :=Uzξi , for 1≤ξi≤η. We haveSi⊆Si+1
τξi+1, for 1≤ξi<η,

by induction assumption, sincezξi+1 R(ξi+1) zξi . Moreover, the inclusionSn ⊆A
τη+1 holds. Thus

A ∩
⋂

1≤ξi≤η
U(we)ξi

τξi ∩ (Xs×Yt) (respectively,U(we)η ∩
⋂

1≤ξi<η
U(we)ξi

τξi ∩ (Xs×Yt)) is τ1-

dense in the setU(we)1
τ1 ∩ (Xs×Yt) if (we)η+1 =we (respectively,(we)η+1 6= we), by Lemma

2.2.2.(b). But if1 ≤ ρ≤ η, then there is1≤ i≤ n with (we)ρ = (we)ξi . And ρ≤ ξi since we have
(we)ξi+1≺ 6= (we)ξi if 1≤ i<n. Thus we are done since

⋂

1≤ρ≤η U(we)ρ
τρ

=
⋂

1≤ξi≤η
U(we)ξi

τξi and

U(we)η ∩
⋂

1≤ρ<η U(we)ρ
τρ

=U(we)η ∩
⋂

1≤ξi<η
U(we)ξi

τξi . ⋄

- LetF0 :=F1 :=2p+1, T :=T ∩ (F0×F1), Ψ:F0×F1→Σ
1
1 (X×Y ) defined onT by

Ψ(we) :=

{

A ∩
⋂

1≤ρ≤η U(we)ρ
τρ ∩ (Xs×Yt) ∩ ΩX×Y if (we)η+1 =we,

U(we)η ∩
⋂

1≤ρ<η U(we)ρ
τρ ∩ (Xs×Yt) if (we)η+1 6=we.

By the claim,Ψ(we) is τ1-dense inU(we)1
τ1 ∩ (Xs×Yt) if η > 0. As (we)1 ≺ w ≺ we andR(1)

is distinguished in≺ we get (we)1 R(1) w andUw ⊆ U(we)1
τ1 , by induction assumption. Thus

Uw
τ1 ∩ (Xs×Yt)⊆U(we)1

τ1 ∩ (Xs×Yt)⊆Ψ(we). Thus(xs, yt) is inUw ∩ (Xs×Yt)⊆Ψ(we) (even
if η = 0). ThereforeΨ admits aπ-selector onT . By Lemma 2.1.2,Ψ admits aπ-selectorψ on T .
We setxsε := ψ0(sε), ytε′ :=ψ1(tε

′), and chooseΣ 1
1 setsUwe with d-diameter at most2−p−1 such

thatψ(we) ∈Uwe ⊆ Ψ(we). This finishes the proof since(s, t) R(ρ) we and(s, t) 6=we imply that
(s, t) R(ρ) (we)ρ R(ρ) we, by Lemma 2.3.2. �
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Now we come to the limit case. We need some more definitions that can be found in [D-SR].

Definition 2.4.2 (Debs-Saint Raymond) Leta be a finite set.

• LetR be a tree relation ona<ω. If t∈a<ω, thenhR(t) is the number of strictR-predecessors oft.
So we havehR(t)=Card(PR(t))−1.

• Let ξ<ω1 be an infinite limit ordinal. We say that a resolution family(R(ρ))ρ≤ξ is uniform if

∀k∈ω ∃ηk<ξ ∀s, t∈a
<ω [min(hR(ξ)(s), hR(ξ) (t))≤k ands R(ηk) t] ⇒ s R(ξ) t.

We may (and will) assume thatηk≥1.

The following is part of Theorem I-6.6 in [D-SR].

Theorem 2.4.3 (Debs-Saint Raymond) Letξ <ω1 be an infinite limit ordinal,E a Π
0
ξ subset of[≺].

Then there is a uniform resolution family(R(ρ))ρ≤ξ with:

(a)R(0) = ≺.

(b) The canonical mapΠ:[R(ξ)]→ [≺] is a bijection.

(c) The setΠ−1(E) is a closed subset of[R(ξ)].

Theorem 2.4.4 (Debs-Lecomte) LetT be a tree with acyclic levels,ξ<ωCK
1 an infinite limit ordinal,

S ∈ Σ
0
ξ(⌈T ⌉), X, Y recursively presented Polish spaces, andA, B disjoint Σ

1
1 subsets ofX×Y .

Then one of the following holds:

(a)A
τξ ∩B=∅.

(b) There areu :2ω→X andv :2ω→Y continuous withS⊆(u×v)−1(A) and⌈T ⌉\S⊆(u×v)−1(B).

Proof. Let us indicate the differences with the proof of Theorem 2.4.1.

• The setE :=θ[⌈T ⌉\S] is Π
0
ξ([≺]). Theorem 2.4.3 provides a uniform resolution family.

• If w∈(2×2)<ω then we set

η(w) :=max{ηh
R(ξ) (w′)+1 | w′≺w}.

Note thatη(w′)≤η(w) if w′≺w.

• Conditions (v) and (vi) become

(v′) [1≤ρ≤η(s, t) and (s, t) R(ρ) (s′, t′)] ⇒ U(s′,t′)⊆U(s,t)
τρ
.

(vi ′) [((s, t)∈D ⇔ (s′, t′)∈D) and (s, t) R(ξ) (s′, t′)] ⇒ U(s′,t′)⊆U(s,t).

• If we :=(sε, tε′)∈T ∩ (2×2)p+1, then we set

(we)ξ+1 :=







(we)ξ if there is r≤p with [ w⌈r∈D ⇔ we∈D ] and w⌈r R(ξ) we,

we otherwise.

Note thatwe /∈D if (we)ξ+1 =we. Note also the equivalence between the fact thatwe∈D and the
fact that(we)ξ+1∈D.
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Claim 1. Assume that(we)ρ 6=(we)ξ . Thenρ+1≤η((we)ρ+1).

We argue by contradiction. We get

ρ+1>ρ≥η((we)ρ+1)≥ηh
R(ξ) ((we)ξ)+1 =ηh

R(ξ)(we).

As (we)ρ R(ρ) we we get(we)ρ R(ξ) we and(we)ρ=(we)ξ , which is absurd. ⋄

Note thatξn−1<ξn−1+1≤η((we)ξn−1+1)≤η(we). Thus(we)η(we) =(we)ξ .

Claim 2. (a)A∩
⋂

1≤ρ≤η(we) U(we)ρ
τρ∩(Xs×Yt) is τ1-dense inU(we)1

τ1 ∩(Xs×Yt) if (we)ξ+1 =we.

(b)U(we)ξ ∩
⋂

1≤ρ<η(we) U(we)ρ
τρ ∩ (Xs×Yt) is τ1-dense inU(we)1

τ1 ∩ (Xs×Yt) if (we)ξ+1 6=we.

Indeed, we setSi :=Uzξi , for 1≤ ξi≤ ξ. By Claim 1 we can apply Lemma 2.2.2.(b) and we are
done. ⋄

• LetF0 :=F1 :=2p+1, T :=T ∩ (F0×F1), Ψ:F0×F1→Σ
1
1 (X×Y ) defined onT by

Ψ(we) :=











A ∩
⋂

1≤ρ≤η(we) U(we)ρ
τρ ∩ (Xs×Yt) ∩ ΩX×Y if (we)ξ+1 =we,

U(we)ξ ∩
⋂

1≤ρ<η(we) U(we)ρ
τρ ∩ (Xs×Yt) if (we)ξ+1 6=we.

We conclude as in the proof of Theorem 2.4.1, using the facts thatηk≥1 andη(.) is increasing. �

Proof of Theorem 1.10. We may assume thatξ <ωCK
1 , X, Y are recursively presented, andA,B

areΣ
1
1 . We assume thatA is not separable fromB by a pot(Π0

1+ξ) set, and setN :=A
τ1+ξ ∩B. Then

N is not empty sinceΠ0
1(τ1+ξ)⊆Π

0
1+ξ(τ1)⊆pot(Π0

1+ξ). So (b) holds, by Theorems 2.4.1 and 2.4.3.

So (a) or (b) holds. IfD ∈ pot(Π0
1+ξ) separatesA from B and (b) holds, thenS ∈ pot(Π0

1+ξ),
sinceS=(u×v)−1(D) ∩ ⌈T ⌉, which is absurd. �

3 Proof of Theorem 1.11.

We have seen that we cannot have a reduction on the whole product in Theorem 1.13. We have seen
that it is possible to have it on the set of branches of some tree with acyclic levels. We now build
an example of such a tree. This tree has to be small enough since we cannot have a reduction on the
whole product. But as the same time it has to be big enough to ensure the existence of complicated
sets, as in the statement of Theorem 1.11.

Notation. Letϕ :ω→ω2 be the natural bijection. More precisely, we set, forq∈ω,

M(q) :=max{m∈ω | Σk≤m k≤q}.

Then we defineϕ(q) = ((q)0, (q)1) := (M(q)−q+(Σk≤M(q) k), q−(Σk≤M(q) k)). One can check
that<n, p>:=ϕ−1(n, p)=(Σk≤n+p k)+p. More concretely, we get

ϕ[ω]={(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), . . .}.
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Definition 3.1 We say thatE⊆
⋃

q∈ω 2q×2q is a test if:

(a) ∀q∈ω ∃!(sq, tq)∈E∩(2q×2q).

(b) ∀m, p∈ω ∀u∈2<ω ∃v∈2<ω (sp0uv, tp1uv)∈E and(|tp1uv|−1)0 =m.

(c) ∀n>0 ∃q<n ∃w∈2<ω sn=sq0w andtn= tq1w.

We will callT the tree generated by a testE={(sq, tq) | q∈ω}:

T :={(s, t)∈2<ω×2<ω | s= t=∅ or ∃q∈ω ∃w∈2<ω (s, t)=(sq0w, tq1w)}.

The uniqueness condition in (a) and condition (c) ensure that T is small enough, and also the
acyclicity. The existence condition in (a) and condition (b) ensure thatT is big enough. More specif-
ically, if X is a Polish space andσ a finer Polish topology onX, then there is a denseGδ subset
of X on which the two topologies coincide. The first part of condition (b) ensures the possibility to
get inside the square of a denseGδ subset of2ω. The examples in Theorem 1.11 are build using the
examples in [Lo-SR]. Conditions on verticals are involved,and the second part of condition (b) gives
a control on the choice of verticals.

Proposition 3.2 The treeT associated with a test is a tree with acyclic levels.

Proof. Fix p ∈ ω. Let us show thatGTp is acyclic. We argue by contradiction. Let(ẽi, ji)i≤l be
a cycle inGTp , andn < p maximal such that the sequence(ẽi(n))i≤l is not constant. There isi1
minimal with ẽi1(n) 6= ẽi1+1(n). We haveẽi1(n)= ẽ0(n)= ẽl(n). There isi2 > i1+1 minimal with
ẽi1+1(n) 6= ẽi2(n). Thenẽi1(n)= ẽi2(n), and in fact̃ei1 = ẽi2 because of the uniqueness condition in
(a), andẽi1+1 = ẽi2−1. If ji1 = ji2 , theni1 =0 andi2 = l. But ji1+1 =1−ji1 =1−ji2 = ji2−1, which
is absurd. Ifji1 6= ji2 , then for exampleji1 =0=1−ji2 . If p>0, thenẽi1(0)=0=1−ẽi2 (0), which
contradicts̃ei1 = ẽi2 . If p=0, thenẽ0 =∅= ẽ2, which is absurd. �

Notation. Let ψ : ω → 2<ω be the natural bijection (ψ(0) = ∅, ψ(1) = 0, ψ(2) = 1, ψ(3) = 02,
ψ(4)=01, ψ(5)=10, ψ(6)=12, . . .). Note that|ψ(q)|≤q.

Lemma 3.3 There exists a test.

Proof. We sets0 = t0 :=∅, and

sq+1 := s[(q)1]0
0 ψ([(q)1]1) 0q−[(q)1]0−|ψ([(q)1]1)|,

tq+1 := t[(q)1]0
1 ψ([(q)1]1) 0q−[(q)1]0−|ψ([(q)1]1)|.

Note that(q)0+(q)1 =M(q)≤Σk≤M(q) k≤q, so thatsq, tq are well defined and we have the equality
|sq| = |tq| = q, by induction onq. It remains to check that condition (b) in the definition of a test
is fullfilled. Setn := ψ−1(u), r :=< p, n > andq :=< m, r >. It remains to putv := 0q−p−|u|:
(sp0uv, tp1uv)=(sq+1, tq+1). �

Now we come to the lemma crucial for the proof of Theorem 1.11.
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Notation. (a) We definep :ω<ω\{∅}→ω. We definep(s) by induction on|s|:

p(s) :=







s(0) if |s|=1,

<p(s⌈(|s|−1)), s(|s|−1)> otherwise.

Note thatp|ωn :ωn→ω is a bijection, for eachn≥1.

(b) The map∆:2ω×2ω→2ω is the symmetric difference. So, form∈ω,

∆(α, β)(m)=(α∆β)(m)=1 ⇔ α(m) 6=β(m).

Lemma 3.4 LetG be a denseGδ subset of2ω, andT the tree associated with a test. Then there are
α0∈G andf :2ω→G continuous such that, for eachα∈2ω ,
(a) (α0, f(α))∈⌈T ⌉.
(b) For eacht∈ω<ω, and eachm∈ω,

(i) α(p(tm))=1 ⇒ ∃m′∈ω (α0∆f(α))(p(tm′)+1)=1.
(ii) (α0∆f(α))(p(tm)+1)=1 ⇒ ∃m′∈ω α(p(tm′))=1.

Proof. Let (Oq) be a sequence of dense open subsets of2ω with G =
⋂

q Oq. By density we get:

∀q, l∈ω ∃uq,l∈2<ω ∀s∈2l Nsuq,l⊆Oq.

• We construct finite approximations ofα0 andf . The idea is to linearize the binary tree2<ω. So
we will use the bijectionψ defined before Lemma 3.3. To constructf(α) we have to imagine, for
each lengthl, the different possibilities forα⌈l. More precisely, we construct subsequences of2<ω,
namely(vw)w∈2<ω , (sw)w∈2<ω and(tw)w∈2<ω , satisfying the following conditions:

(1) (sw, tw)∈E\{(∅, ∅)}, and(|tw|−1)0 =(|w|)0, for eachw∈2<ω.

(2)







s∅ =0 u0,1 v∅,

swε=sψ(ψ−1(wε)−1) 0 uψ−1(wε),|s
ψ(ψ−1(wε)−1)|+1 vwε.

(3)







t∅ =1 u0,1 v∅,

twε= tw ε [⌢ ψ−1(w)<i<ψ−1(wε) ui,|sψ(i−1)|+1 vψ(i) 0] uψ−1(wε),|s
ψ(ψ−1(wε)−1)|+1 vwε.

We show the existence of the three subsequences inductivelyonψ−1(w). We choosev∅ ∈ 2<ω with
(0 u0,1 v∅, 1 u0,1 v∅) ∈ E and (|1 u0,1 v∅|−1)0 = 0. Assume that(vw)ψ−1(w)≤r, (sw)ψ−1(w)≤r,
(tw)ψ−1(w)≤r satisfying properties (1)-(3) have been constructed, which is the case forr=0.

Fix w ∈ 2<ω andε ∈ 2 with ψ(r+1) =wε. We choosevwε ∈ 2<ω such that(swε, twε)∈E and
(|twε|−1)0 =(|w|+1)0. Let us show that this is possible. We want that

(sψ(ψ−1(wε)−1) 0 uψ−1(wε),|s
ψ(ψ−1(wε)−1)|+1 vwε , tw ε uψ−1(w)+1,|sw|+1 vψ(ψ−1(w)+1) 0 . . .

uψ−1(wε)−1,|s
ψ(ψ−1(wε)−2)|+1 vψ(ψ−1(wε)−1) 0 uψ−1(wε),|s

ψ(ψ−1(wε)−1) |+1 vwε)∈E.

It is enough to see that(sψ(ψ−1(wε)−1) 0, tw ε . . . vψ(ψ−1(wε)−1) 0)∈T .
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But

sψ(ψ−1(wε)−1) 0

= sψ(ψ−1(wε)−2) 0 uψ−1(wε)−1,|s
ψ(ψ−1(wε)−2) |+1 vψ(ψ−1(wε)−1) 0

= . . .

= sw 0 uψ−1(w)+1,|sw|+1 vψ(ψ−1(w)+1) 0 . . . uψ−1(wε)−1,|s
ψ(ψ−1(wε)−2)|+1 vψ(ψ−1(wε)−1) 0.

We are done since(sw, tw)∈E.

• So this defines sequences(vw)w∈2<ω , (sw)w∈2<ω and (tw)w∈2<ω . As sψ(q) ≺ 6= sψ(q+1) we can
defineα0 :=supq sψ(q). Similarly, we setf(α) :=supm tα⌈m, andf is continuous.

• Let us show thatα0 ∈ G. By definition ofswε we getsψ(q)0uq+1,|sψ(q)|+1≺sψ(q+1), for eachq.
This implies thatα0∈

⋂

q Oq=G since0u0,1≺α0.

• Now fix α∈2ω. Let us show thatf(α)∈G. Fix q∈ω, andm∈ω such that

ψ−1(α⌈m)<q+1≤ψ−1(α⌈(m+1)).

Again it is enough to show the existence ofs∈2<ω with suq+1,|s|≺ tα⌈(m+1). Set

s := tα⌈m α(m) uψ−1(α⌈m)+1,|sα⌈m|+1 vψ(ψ−1(α⌈m)+1) 0 . . . uq,|sψ(q−1)|+1 vψ(q) 0.

By definition oftα⌈(m+1) we havesuq+1,|sψ(q)|+1≺ tα⌈(m+1). But the construction oftwε shows that
|sψ(q)|+1= |s|. Sos is suitable.

(a) Moreover,(α0, f(α)) ∈ ⌈T ⌉. Indeed, fixr ∈ ω. There ism ∈ ω with l := |tα⌈m|≥r. We get
(α0, f(α))⌈l=(sα⌈m, tα⌈m)∈E⊆T . Thus(α0, f(α))⌈r∈T , and(α0, f(α)) is in ⌈T ⌉.

(b).(i) We setw :=α⌈p(tm), so thattw1≺ tw1 = tα⌈[p(tm)+1]≺f(α). As (|tw|−1)0 =p(t), there ism′

with |tw|=p(tm
′)+1. But sw0≺sψ(ψ−1(w)+1), so thatα0(|tw|) 6=f(α)(|tw|).

(b).(ii) First notice that the only coordinates whereα0 andf(α) can differ are0 and the|tα⌈q|’s.
Therefore there is an integerq with p(tm)+1= |tα⌈q|. In particular(|tα⌈q|−1)0 =p(t) and(q)0 =p(t).
Thus there ism′ with q=p(tm′). We haveα0(|tα⌈q|)=0 6=f(α)(|tα⌈q |)=α(q). Soα(p(tm′))=1.�

Now we come to the existence of complicated sets, as in the statement of Theorem 1.11.

Notation. In [Lo-SR], Lemma 3.3, the mapρ0 :2ω→2ω defined as follows is introduced:

ρ0(ε)(i) :=







1 if ε(<i, j >)=0, for eachj∈ω,

0 otherwise.

18



In this paper,ρξ0 : 2ω→ 2ω is also defined forξ <ω1 as follows, by induction onξ (see the proof
of Theorem 3.2). We put:
- ρ0

0 := Id2ω .
- ρη+1

0 :=ρ0 ◦ ρ
η
0.

- If λ > 0 is limit, fix (ξλk )⊆ λ\{0} with Σk ξ
λ
k = λ. For ε ∈ 2ω andk ∈ ω we define(ε)k ∈ 2ω by

(ε)k(i) :=ε(i+k). We also defineρ(k,k+1)
0 :2ω→2ω by

ρ
(k,k+1)
0 (ε)(i) :=











ε(i) if i<k,

ρ
ξλ
k

0 ((ε)k)(i−k) if i≥k.

We setρ(0,k+1)
0 :=ρ

(k,k+1)
0 ◦ ρ

(k−1,k)
0 ◦ . . . ◦ ρ

(0,1)
0 andρλ0(ε)(k) :=ρ

(0,k+1)
0 (ε)(k).

The setH1+ξ :=(ρξ0)
−1({0∞}) is also introduced, and the authors show thatH1+ξ is Π

0
1+ξ\Σ

0
1+ξ

(see Theorem 3.2).

• The mapS :2ω→2ω is the shift map:S(α)(m) :=α(m+1).

• Let T be the tree generated by a test. We put, forξ<ω1,

S1+ξ := {(α, β)∈2ω×2ω | (α, β)∈⌈T ⌉ andS(α∆β) /∈H1+ξ}.

Theorem 3.5 Letξ<ω1. The set⌈T ⌉\S1+ξ isΠ
0
1+ξ(2

ω×2ω)\pot(Σ0
1+ξ), andS1+ξ is not pot(Π0

1+ξ).

Proof. AsH1+ξ is Π
0
1+ξ and∆, S are continuous,⌈T ⌉\S1+ξ is Π

0
1+ξ(2

ω×2ω).

• LetG be a denseGδ subset of2ω. Lemma 3.4 providesα0∈G andf :2ω→G continuous.

• Let us show thatρξ0(α) = ρξ0(S[α0∆f(α)]), for each1 ≤ ξ < ω1 andα ∈ 2ω. For ξ = 1 we apply
Lemma 3.4.(b) tot∈ω. Then we have, by induction:

ρη+1
0 (α)=ρ0(ρ

η
0(α))=ρ0

(

ρη0(S[α0∆f(α)])
)

=ρη+1
0 (S[α0∆f(α)]).

From this we deduce, by induction again, that

ρ
(0,1)
0 (α)=ρ

ξλ0
0 (α)=ρ

ξλ0
0 (S[α0∆f(α)])=ρ

(0,1)
0 (S[α0∆f(α)]).

Thusρ(0,k+1)
0 (α)=ρ

(0,k+1)
0 (S[α0∆f(α)]), and

ρλ0(α)(k)=ρ
(0,k+1)
0 (α)(k)=ρ

(0,k+1)
0 (S[α0∆f(α)])(k)=ρλ0 (S[α0∆f(α)])(k).

• This implies thatα∈H1+ξ is equivalent toS[α0∆f(α)]∈H1+ξ (for ξ=0 we apply Lemma 3.4.(b)
to t :=∅).

• We argue by contradiction to show that⌈T ⌉\S1+ξ (resp.,S1+ξ) is not pot(Σ0
1+ξ) (resp., pot(Π0

1+ξ)):
there is a denseGδ subsetG of 2ω such that(⌈T ⌉\S1+ξ) ∩ G

2 (resp.,S1+ξ ∩G
2) is aΣ

0
1+ξ (resp.,

Π
0
1+ξ) subset ofG2. But by the previous point we getH1+ξ = f−1([(⌈T ⌉\S1+ξ) ∩ G

2]α0) (resp.,
¬H1+ξ=f

−1([S1+ξ ∩G
2]α0)), which is absurd. �
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4 Proof of Theorem 1.14.

As announced in the introduction, we show more than Theorem 1.14.

Notation. LetX, Y be recursively presented Polish spaces. We set

BX×Y
0 :={p∈WX×Y | ∃(m,n)∈WX×W Y CX×Y

p =CXm×CYn }.

Then we define an inductive operatorΦ overω (see [C]) as follows:

Φ(A) :=BX×Y
0 ∪A ∪

{p∈WX×Y | ∃α∈∆
1
1 ∀n∈ω α(n)∈WX×Y ∩A and ¬CX×Y

p =
⋃

n C
X×Y
α(n) }.

ThenΦ is clearly aΠ 1
1 monotone inductive operator. We let, for any ordinalξ,

BX×Y
ξ =Φξ :=Φ(

⋃

η<ξ

Φη)

(which is coherent with the definition ofBX×Y
0 ).

Theorem 4.1 (Debs-Lecomte-Louveau) LetT given by Theorem 1.11,ξ<ωCK
1 , S given by Theorem

1.11, andX, Y be recursively presented Polish spaces.

• LetA,B be disjointΣ 1
1 subsets ofX×Y . The following are equivalent:

(a) The setA cannot be separated fromB by a pot(Π0
1+ξ) set.

(b) The setA cannot be separated fromB by a∆
1
1 ∩ pot(Π0

1+ξ) set.
(c) The setA cannot be separated fromB by aΠ

0
1+ξ(τ1) set.

(d)A
τ1+ξ ∩B 6=∅.

(e) There areu :2ω→X andv :2ω→Y continuous withS⊆(u×v)−1(A) and⌈T ⌉\S⊆(u×v)−1(B).

• The setsWX×Y
0 =BX×Y

0 ,WX×Y
1+ξ =BX×Y

1+ξ andWX×Y
<1+ξ areΠ

1
1 .

Proof. The setBX×Y
0 is clearlyΠ

1
1 and a subset ofWX×Y

0 . Conversely, ifp is in WX×Y
0 , then

CX×Y
p is aΣ

1
1 rectangle, and a∆1

1 rectangle by reflection. Sop∈BX×Y
0 =WX×Y

0 .

• We argue by induction onξ. So assume that the result has been shown forη<ξ.

• Let us show thatWX×Y
<1+ξ is Π

1
1 . We may assume thatξ = 1+ξ is an infinite limit ordinal since

WX×Y
<η+1 =WX×Y

η . By Lemma 4.8 in [C] the following relation isΠ 1
1 :

R(p, δ) ⇔ δ∈WO andp∈Φ|δ|.

The following argument can be found in [Lo1], Proposition 1.4. Letδξ∈WO∩∆
1
1 with |δξ |=ξ, and

δmξ be the restriction of the orderingδξ to theδξ-predecessors ofm. We get, by induction assumption,

p∈WX×Y
<1+ξ ⇔ ∃η<ξ p∈WX×Y

η ⇔ ∃η<ξ p∈BX×Y
η

⇔ ∃η<ξ p∈Φη ⇔ ∃m∈ω R(p, δmξ ).

This shows thatWX×Y
<1+ξ is Π

1
1 .
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(a)⇒ (b) and (a)⇒ (c) are clear since∆X and∆Y are Polish.

(c) ⇒ (d) This comes from the fact thatΠ0
1(τ1+ξ)⊆Π

0
1+ξ(τ1).

(d) ⇒ (e) This comes from Theorems 2.4.1 and 2.4.4 (Lemma 2.2.2 is at this moment true until the
level1+ξ).

(e)⇒ (a) If D∈pot(Π0
1+ξ) separatesA fromB, thenS=(u×v)−1(D) ∩ ⌈T ⌉ is pot(Π0

1+ξ), which
contradicts Theorem 1.11.

(b) ⇒ (d) We argue by contradiction, so thatA
τ1+ξ separatesA from B. By induction assumption

and the first reflection theorem there isα∈∆
1
1 with α(n)∈WX×Y

<1+ξ andCX×Y
α(n) ⊆¬A, for each integer

n, andB⊆E :=
⋃

n C
X×Y
α(n) . ButE is ∆

1
1 ∩ pot(Σ0

1+ξ) and separatesB fromA, which is absurd.

• The proof of the implication (b)⇒ (d) imply thatWX×Y
1+ξ is Π

1
1 sinceWX×Y

<1+ξ is Π
1
1 and

WX×Y
1+ξ ={p∈WX×Y | ∃α∈∆

1
1 ∀n∈ω α(n)∈WX×Y

<1+ξ and ¬CX×Y
p =

⋃

n

CX×Y
α(n) }.

• It remains to see thatWX×Y
1+ξ =BX×Y

1+ξ . But by induction assumption we get

BX×Y
1+ξ

= Φ(
⋃

η<1+ξ Φη) = Φ(
⋃

η<1+ξ B
X×Y
η )

=
⋃

η<1+ξ B
X×Y
η ∪ {p∈WX×Y | ∃α∈∆

1
1 ∀n∈ω α(n)∈

⋃

η<1+ξ B
X×Y
η and
¬CX×Y

p =
⋃

n C
X×Y
α(n) }

=WX×Y
<1+ξ ∪ {p∈WX×Y | ∃α∈∆

1
1 ∀n∈ω α(n)∈WX×Y

<1+ξ and ¬CX×Y
p =

⋃

n C
X×Y
α(n) }

=WX×Y
1+ξ .

This finishes the proof. �

Remark. As we saw with Theorem 2.2.1, the equivalence between (a), (b) and (c) is essentially shown
in [Lo2]. It is also essentially shown in [Lo2] that (a), (b) and (c) are equivalent to (d) (see the proof
of Theorem 2.8, (a) page 25, in [Lo2]). An immediate consequence of Theorem 4.1 is the following,
shown in [Lo2]:

Corollary 4.2 (Louveau) Letξ < ωCK
1 , X, Y be recursively presented Polish spaces, andA a ∆

1
1

subset ofX×Y . The following are equivalent:
(a) The setA is pot(Π0

1+ξ).
(b) The setA is Π

0
1+ξ(τ1).
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