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How can we recognize potentially Π 0 _ξ subsets of the plane?

Dominique Lecomte

Introduction.

The reader should see [K] for the descriptive set theoretic notation used in this paper. This work is the continuation of a study started in [L1]- [L5], and is announced in [L6]. The usual notion of comparison for Borel equivalence relations E ⊆ X 2 and E ′ ⊆ X ′ 2 on Polish spaces is the Borel reducibility quasi-order:

E ≤ B E ′ ⇔ ∃u : X → X ′ Borel with E = (u×u) -1 (E ′ )
(recall that a quasi-order is a reflexive and transitive relation). Note that this makes sense even if E, E ′ are not equivalence relations. It is known that if (B n ) is a sequence of Borel subsets of X, then there is a finer Polish topology on X making the B n 's clopen (see exercise 13.5 in [K]). So assume that E ≤ B E ′ , and let σ be a finer Polish topology on X making u continuous. If moreover E ′ is in some Baire class Γ, then E ∈ Γ([X, σ] 2 ). This motivates the following (see [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF]): Definition 1.1 (Louveau) Let X, Y be Polish spaces, A a Borel subset of X × Y , and Γ a Baire (or Wadge) class. We say that A is potentially in Γ (denoted A ∈ pot(Γ)) iff there is a finer Polish topology σ (resp., τ ) on X (resp., Y ) with A ∈ Γ([X, σ]× [Y, τ ]).

This notion is a natural invariant for ≤ B : if E ′ is pot(Γ) and E ≤ B E ′ , then E is pot(Γ). Using this notion, A. Louveau proved that the collection of Σ 0 ξ equivalence relations is not cofinal for ≤ B , and deduces from this the non existence of a maximum Borel equivalence relation for ≤ B (this non existence result is due to H. Friedman and L. Stanley). More recently, G. Hjorth, A. Kechris and A. Louveau determined the potential classes of the Borel equivalence relations induced by Borel actions of closed subgroups of the symmetric group (see [Hj-K-Lo]).

A standard way to see that a set is complicated is to note that it is more complicated than a well-known example. For instance, we have the following (see [SR]):

Theorem 1.2 (Hurewicz) Let P f := {α ∈ 2 ω | ∃n ∈ ω ∀m ≥ n α(m) = 0}, X be a Polish space, and A a Borel subset of X. Then exactly one of the following holds: (a) The set A is Π 0 2 (X). (b) There is u : 2 ω → X continuous and one-to-one with P f = u -1 (A).

This result has been generalized to all Baire classes (see [Lo-SR]). We state this generalization in two parts: Theorem 1.3 (Louveau-Saint Raymond) Let ξ < ω 1 , S ∈ Σ 0 1+ξ (2 ω ), X be a Polish space, and A, B disjoint analytic subsets of X. Then one of the following holds: (a) The set A is separable from B by a Π 0 1+ξ (X) set. (b) There is u : 2 ω → X continuous with S ⊆ u -1 (A) and 2 ω \S ⊆ u -1 (B).

If we moreover assume that S / ∈ Π 0 1+ξ , then this is a dichotomy.

Note that in this dichotomy, we can have u one-to-one if ξ ≥ 2. This is not possible if ξ < 2.

Theorem 1.4 There is a concrete example of a set S 1+ξ ∈ Σ 0 1+ξ (2 ω )\Π 0 1+ξ (2 ω ), for each ξ < ω 1 .

We try to adapt these results to the Borel subsets of the plane.

The following result is proved in [H- K-Lo]:

Theorem 1.5 (Harrington- Kechris-Louveau) Let X be a Polish space, E a Borel equivalence relation on X, and E 0 := {(α, β) ∈ 2 ω ×2 ω | ∃n ∈ ω ∀m ≥ n α(m) = β(m)}. Then exactly one of the following holds: (a) The relation E is pot(Π 0 1 ). (b) E 0 ≤ B E (with u continuous and one-to-one).

For the Borel subsets of the plane, we need some other notions of comparison. Let X, Y , X ′ , Y ′ be Polish spaces, and A (resp., A ′ ) a Borel subset of X ×Y (resp., X ′ ×Y ′ ). We set

A ≤ r B A ′ ⇔ ∃u : X → X ′ ∃v : Y → Y ′ Borel with A = (u×v) -1 (A ′ ).
The following result is proved in [L1]:

Theorem 1.6 Let ∆(2 ω ) := {(α, β) ∈ 2 ω ×2 ω | α = β}, L 0 := {(α, β) ∈ 2 ω ×2 ω | α < lex β}, X
, Y be Polish spaces, and A a pot( Ď2 (Σ 0 1 )) subset of X ×Y . Then exactly one of the following holds: (a) The set A is pot(Π 0 1 ). (b) ¬∆(2 ω ) ≤ r B A or L 0 ≤ r B A (with u, v continuous and one-to-one).

The class Ď2 (Σ 0 1 ) is the class of unions of a closed set and of an open set. Things become more complicated at the level D 2 (Σ 0 1 ) of differences of two open sets (see [L5]):

Theorem 1.7 (a) There is a perfect ≤ r B -antichain (A α ) α∈2 ω ⊆ D 2 (Σ 0 1 )(2 ω × 2 ω ) such that A α is ≤ r B -minimal among ∆ 1 1 \pot(Π 0 1 ) sets, for any α ∈ 2 ω . (b) There is a perfect ≤ B -antichain (R α ) α∈2 ω such that R α is ≤ B -minimal among ∆ 1 1 \pot(Π 0 1
) sets, for any α ∈ 2 ω . Moreover, (R α ) α∈2 ω can be taken to be a subclass of any of the following classes:

-Graphs (i.e., irreflexive and symmetric relations).

-Oriented graphs (i.e., irreflexive and antisymmetric relations).

- Quasi-orders. -Partial orders (i.e., reflexive, antisymmetric and transitive relations).

In other words, the case of equivalence relations, for which we have a unique (up to bi-reducibility) minimal non potentially closed element with Theorem 1.5, is very specific. Theorem 1.7.(b) says, among other things, that the mixture between symmetry and transitivity is very strong. Theorem 1.7.(a) shows that the classical notions of reduction (on the whole product) don't work, at least at the first level. So we must find another notion of comparison. The following result is proved in [L5]:

Theorem 1.8 There is S 1 ∈ ∆ 1 1 (2 ω × 2 ω
) such that for any Polish spaces X, Y , and for any Borel subset A of X ×Y , exactly one of the following holds:

(a) The set A is pot(Π 0 1 ). (b) There are u : 2 ω → X and v : 2 ω → Y continuous satisfying the inclusions S 1 ⊆ (u×v) -1 (A) and S 1 \S 1 ⊆ (u×v) -1 (¬A).
Moreover, we can neither replace S 1 \S 1 with ¬S 1 , nor ensure that u and v are one-to-one.

So we get a minimum non-potentially closed set if we do not ask for a reduction on the whole product. We will show that this dichotomy is true for each countable ordinal ξ ≥ 1. The result is actually stronger than that. First the A ξ 's are concrete examples. Secondly it is better to state that the reduction in condition (b) holds in the set ⌈T ⌉ of the branches of some tree T that does not depend on ξ, rather than A ξ . Finally, to get the full strength of the result, it is better to split it in two parts. We need some notation and a definition:

Notation. If F 0 , F 1 are finite sets and T ⊆ F 0 ×F 1 , we denote by G T the bipartite graph with set of vertices the sum F 0 ⊕F 1 , and with set of edges

{(f 0 , 0), (f 1 , 1)} ⊆ F 0 ⊕F 1 | (f 0 , f 1 ) ∈ T .
(see [B] for basic notions about graphs). In the sequel, we will denote f ε := (f ε , ε). Definition 1.9 We say that a tree T on 2×2 is a tree with acyclic levels if, for each integer p, the graph G Tp , associated with T p := T ∩ (2 p ×2 p ) ⊆ 2 p ×2 p , is acyclic. Now we can state the main results proved in this paper: Theorem 1.10 (Debs-Lecomte) Let T be a tree with acyclic levels, ξ < ω 1 , S ∈ Σ 0 1+ξ (⌈T ⌉), X, Y Polish spaces, and A, B disjoint analytic subsets of X ×Y . Then one of the following holds: (a) The set A is separable from B by a pot(Π 0 1+ξ ) set. (b) There are u : 2 ω → X and v : 2 ω → Y continuous with S ⊆ (u×v) -1 (A) and ⌈T ⌉\S ⊆ (u×v) -1 (B).

If we moreover assume that S / ∈ pot(Π 0 1+ξ ), then this is a dichotomy.

Note that we can deduce Theorem 1.3 from the proof of Theorem 1.10. Theorem 1.10 is the analogous of Theorem 1.3 in dimension two. The proofs of Theorem 1.3 in [Lo-SR], and also Theorem III-2.1 in [D-SR], use games. This is not the case here, so that we get a new proof of Theorem 1.3.

Theorem 1.11

We can find concrete examples of a tree T with acyclic levels, together with sets S 1+ξ ∈ Σ 0 1+ξ (⌈T ⌉)\pot(Π 0 1+ξ ), for each ξ < ω 1 .

The following corollary has initially been shown by D. Lecomte when 1+ξ is a successor ordinal. Then G. Debs showed it when 1+ξ is a limit ordinal.

Corollary 1.12 (Debs-Lecomte) Let ξ < ω 1 . There is S ∈ ∆ 1 1 (2 ω ×2 ω ) such that for any Polish spaces X, Y , and for any disjoint analytic subsets A, B of X ×Y , exactly one of the following holds: (a) The set A is separable from B by a pot(Π 0 1+ξ ) set. (b) There are u : 2 ω → X and v : 2 ω → Y continuous with S ⊆ (u×v) -1 (A) and S \S ⊆ (u×v) -1 (B).

Theorem 1.8 shows that we cannot replace S \S with ¬S in Corollary 1.12 when ξ = 0. G. Debs found a simpler proof, which moreover works in the general case: Theorem 1.13 (Debs) We cannot replace S \S with ¬S in Corollary 1.12.

Once again, some cycles are involved, so that the acyclicity is essentially necessary and sufficient in Corollary 1.12 (even if we have two different notions of acyclicity). G. Debs proved very recently that we can have u and v one-to-one in Corollary 1.12 if ξ ≥ 2. This is not possible if ξ < 2 (see Theorem 1.8 when ξ = 0, and Theorem 15 in [L4] when ξ = 1). This paper is organized as follows:

-In Section 2 we recall the material used to state the representation theorem of Borel sets proved in [D-SR]. We use it to prove Theorem 1.10, also in this section. To do this we assume some results proved in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF]. We also prove Theorem 1.13.

-In Section 3 we prove Theorem 1.11.

-We use some tools of effective descriptive set theory (the reader should see [M] for the basic notions about it). In Section 4 we give an alternative proof of the results in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF] that we assumed in Section 2. This leads to the following: Theorem 1.14 (Debs-Lecomte-Louveau) Let T given by Theorem 1.11, ξ < ω CK 1 , S given by Theorem 1.11, X, Y be recursively presented Polish spaces, and A, B disjoint Σ 1 1 subsets of X×Y . Then the following are equivalent: (a) The set A cannot be separated from B by a pot(Π 0 1+ξ ) set. (b) The set A cannot be separated from B by a ∆ 1 1 ∩ pot(Π 0 1+ξ ) set. (c) There are u : 2 ω → X and v : 2 ω → Y continuous with S ⊆ (u×v) -1 (A) and ⌈T ⌉\S ⊆ (u×v) -1 (B).

The equivalence between (a) and (b) is proved in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF]. We will actually prove more than Theorem 1.14, with some additional notation that will be introduced later. Among other things, we will use the fact that the set of codes for ∆ 1 1 and pot(Π 0 1+ξ ) sets is Π 1 1 .

2 Proof of Theorem 1.10.

Acyclicity.

In this subsection we prove a result that will be used later to show Theorem 1.10. This is the place where the essence of the notion of a tree with acyclic levels is really used. We will also prove that we cannot have a reduction on the whole product, using some cycles. Some of the arguments used in the initial proof of Corollary 1.12 by D. Lecomte (when 1+ξ is a successor ordinal) are replaced here by Lemma 2.1.2 below. Definition 2.1.1 (Debs) Let F 0 , F 1 , X 0 , X 1 be sets, T ⊆ F 0 ×F 1 and Ψ :

F 0 ×F 1 → 2 X 0 ×X 1 . We say that ψ = ψ 0 ×ψ 1 : F 0 ×F 1 → X 0 ×X 1 is a π-selector on T f or Ψ if: (a) ψ(f 0 , f 1 ) = [ψ 0 (f 0 ), ψ 1 (f 1 )], for each (f 0 , f 1 ) ∈ F 0 ×F 1 . (b) ψ(t) ∈ Ψ(t), for each t ∈ T .
Notation. Let X be a recursively presented Polish space. We denote by ∆ X the topology on X generated by ∆ 1 1 (X). This topology is Polish (see (iii)⇒(i) in the proof of Theorem 3.4 in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF]). We set τ 1 := ∆ X ×∆ Y if Y is also a recursively presented Polish space.

Lemma 2.1.2 (Debs) Let F 0 , F 1 be finite sets, T ⊆ F 0 × F 1 such that the graph G T associated with T is acyclic, X 0 , X 1 recursively presented Polish spaces, Ψ :

F 0 × F 1 → Σ 1 1 (X 0 × X 1 ), and 
Ψ : F 0 ×F 1 → Σ 1 1 (X 0 ×X 1 ) defined by Ψ(t) := Ψ(t) τ 1 . Then Ψ admits a π-selector on T if Ψ does.
Proof. (a) Let t 0 := (f 0 , f 1 ) ∈ T , and Φ : F 0 ×F 1 → Σ 1 1 (X 0 ×X 1 ). We assume that Φ(t) = Ψ(t) if t = t 0 , and that Φ(t 0 ) ⊆ Ψ(t 0 ) τ 1 . We first prove that Ψ admits a π-selector on T if Φ does.

• Fix a π-selector φ on T for Φ. We define Σ 1 1 sets U ε , for ε ∈ 2, by

U ε := { x ∈ X ε | ∃ϕ : F 0 ×F 1 → X 0 ×X 1 x = ϕ ε (f ε ) and ∀t ∈ T ϕ(t) ∈ Φ(t) }. As φ(t 0 ) = [ φ0 (f 0 ), φ1 (f 1 )] ∈ Φ(t 0 ) ∩ (U 0 ×U 1 ) we get ∅ = Φ(t 0 ) ∩ (U 0 ×U 1 ) ⊆ Ψ(t 0 ) τ 1 ∩ (U 0 ×U 1 ).
By the separation theorem this implies that Ψ(t 0 ) ∩ (U 0 ×U 1 ) is not empty and contains some point

(x 0 , x 1 ). Fix ε ∈ 2. As x ε ∈ U ε there is ψ ε : F 0 ×F 1 → X 0 ×X 1 such that x ε = ψ ε ε (f ε ) and ψ ε (t) ∈ Φ(t), for each t ∈ T . • If e 0 = e ′ 0 ∈ F 0 and [(ẽ i , j i )]
i≤l is a path in G T with (ẽ 0 , j 0 ) = e 0 and (ẽ l , j l ) = e ′ 0 , then it is unique by Theorem I.2.5 in [B]. We call it p e 0 ,e ′ 0 . We will define a partition of F 0 ×F 1 . We put

N := { (e 0 , e 1 ) ∈ F 0 ×F 1 \ {t 0 } | (e 0 , e 1 ) /
∈ T or [e 0 = f 0 and p e 0 ,f 0 does not exist] },

H := { (e 0 , e 1 ) ∈ T \ {t 0 } | e 0 = f 0 and p e 0 ,f 0 (|p e 0 ,f 0 |-2) = f 1 }, V := { (e 0 , e 1 ) ∈ T \ {t 0 } | e 0 = f 0 or [e 0 = f 0 and p e 0 ,f 0 (|p e 0 ,f 0 |-2) = f 1 ] }.
The definition of H means that if we view the graph G T as T itself in the product F 0 ×F 1 instead of seeing it in the sum F 0 ⊕ F 1 , then the last edge in the path from (e 0 , e 1 ) to t 0 is horizontal (and vertical in V ). So we defined a partition

({t 0 }, N, H, V ) of F 0 ×F 1 . • Let us show that Π Fε [H] ∩ Π Fε [V ] = ∅, for each ε ∈ 2.
We may assume that ε = 1. We argue by contradiction. This gives

e 1 ∈ Π F 1 [H] ∩ Π F 1 [V ],
and also e 0 (resp., e ′ 0 ) such that (e 0 , e 1 ) ∈ H (resp., (e ′ 0 , e 1 ) ∈ V ). Note that e 0 = f 0 , and also that e 1 = f 1 (by contradiction, we get e ′ 0 = f 0 since (e ′ 0 , e 1 ) = t 0 , and p e ′ 0 ,f 0 = (e ′ 0 , f 1 , f 0 ), which is absurd). If e ′ 0 = f 0 , then e 1 ⌢ p e 0 ,f 0 ⌢ e 1 gives a cycle, which is absurd. If e ′ 0 = f 0 , then e 1 ⌢ p e 0 ,f 0 and e 1 ⌢ p e ′ 0 ,f 0 give two different pathes from e 1 to f 0 , which is also absurd.

• Now we can define ψ ε :

F ε → X ε . We put ψ 0 (e 0 ) :=            x 0 if e 0 = f 0 , ψ 1 0 (e 0 ) if e 0 ∈ Π F 0 [H],
ψ 0 0 (e 0 ) otherwise,

ψ 1 (e 1 ) :=            x 1 if e 1 = f 1 , ψ 1 1 (e 1 ) if e 1 ∈ Π F 1 [H]\{f 1 }, ψ 0 
1 (e 1 ) otherwise. Then we set ψ(e 0 , e 1 ) := [ψ 0 (e 0 ), ψ 1 (e 1 )].

• It remains to see that ψ(t) ∈ Ψ(t), for each t ∈ T . Notice first that ψ(t 0 ) = (x 0 , x 1 ) ∈ Ψ(t 0 ). If t := (e 0 , e 1 ) ∈ V and e 0 = f 0 , then we get

ψ(t) = [ψ 0 (e 0 ), ψ 1 (e 1 )] = [ψ 0 0 (e 0 ), ψ 0 1 (e 1 )] = ψ 0 (t) ∈ Φ(t) = Ψ(t).
Now if t ∈ V and e 0 = f 0 , then we get

ψ(t) = [x 0 , ψ 0 1 (e 1 )] = [ψ 0 0 (f 0 ), ψ 0 1 (e 1 )] = [ψ 0 0 (e 0 ), ψ 0 1 (e 1 )] = ψ 0 (t) ∈ Φ(t) = Ψ(t).
We argue similarly if t ∈ H.

If t ∈ N ∩ T , then e 0 = f 0 . If moreover e 1 / ∈ ({f 1 } ∪ Π F 1 [H]
), then we get

ψ(t) = [ψ 0 (e 0 ), ψ 1 (e 1 )] = [ψ 0 0 (e 0 ), ψ 0 1 (e 1 )] = ψ 0 (t) ∈ Φ(t) = Ψ(t)
.

If e 1 = f 1 , then p e 0 ,f 0 = (e 0 , e 1 , f 0 ) exists, which is absurd. If e 1 ∈ Π F 1 [H]\ {f 1 }, let e ′ 0 ∈ F 0 with (e ′
0 , e 1 ) ∈ H. The sequence (e 0 , e 1 , e ′ 0 , . . . , f 1 , f 0 ) shows that p e 0 ,f 0 exists, which is absurd again.

(b) Write T := {t 1 , . . . , t n }, and set Φ 0 := Ψ. We define Φ j+1 : F 0 ×F 1 → Σ 1 1 (X 0 ×X 1 ) as follows. We put Φ j+1 (t) := Φ j (t) if t = t j+1 , and Φ j+1 (t j+1 ) := Ψ(t j+1 ), for j < n. The result now follows from an iterative application of (a).

Proof of Theorem 1.13. We argue by contradiction. This gives a Borel set S ′ . Consider first that A := S ′ and B := ¬S ′ . Then (b) holds with u = v = Id 2 ω . So (a) does not hold and S ′ is not pot(Π 0 1+ξ ).

Consider now that A := S and B := ⌈T ⌉\S, where T and S are given by Theorem 1.11. As (a) does not hold, (b) holds. This gives continuous maps u, v with

S ′ ⊆ (u×v) -1 (S) ⊆ (u×v) -1 (⌈T ⌉), ¬S ′ ⊆ (u×v) -1 (⌈T ⌉\S) ⊆ (u×v) -1 (⌈T ⌉).
Claim. There is a Borel subset A of 2 ω with S ′ = A×2 ω or S ′ = 2 ω ×A.

• We argue by contradiction to prove the claim. There are α ∈ 2 ω , and

β = β ′ ∈ 2 ω such that (α, β) ∈ S ′ and (α, β ′ ) / ∈ S ′ (otherwise A := (S ′ ) 0 ∞ ∈ ∆ 1 1 (2 ω ) and satisfies S ′ = A×2 ω ). Then (u(α), v(β)) ∈ S and (u(α), v(β ′ )) / ∈ S, thus v(β) = v(β ′ ).
• Note that (α ′ , β) ∈ S ′ , for each α ′ ∈ 2 ω . Indeed, we argue by contradiction. This gives

α ′ with (u(α ′ ), v(β)) / ∈ S. Thus u(α) = u(α ′ ), and (u(α), v(β)), (u(α ′ ), v(β)), (u(α), v(β ′ )), (u(α ′ ), v(β ′ )) are in ⌈T ⌉. Let p ∈ ω with e 0 := u(α)⌈p = e ′ 0 := u(α ′ )⌈p and e 1 := v(β)⌈p = e ′ 1 := v(β ′ )⌈p.
Then (e 0 , e 1 ), (e ′ 0 , e 1 ), (e 0 , e ′ 1 ), (e ′ 0 , e ′ 1 ) ∈ T p , and the sequence (e 0 , e 1 , e ′ 0 , e ′ 1 , e 0 ) is a cycle, which is absurd.

• Let γ ∈ S ′ α . We have (α ′ , γ) ∈ S ′ , for each α ′ ∈ 2 ω , as before. Conversely, assume that (α ′ , γ) ∈ S ′ . Then γ ∈ S ′ α , as before. Thus S ′ = 2 ω ×S ′ α , which is absurd. This proves the claim. ⋄

Now the claim contradicts the fact that S ′ is not pot(Π 0 1+ξ ).

The topologies.

In this subsection we prove another result that will be used to show Theorem 1.10. Some topologies are involved, and this is the place where we use some results in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF].

Notation. Let X, Y be recursively presented Polish spaces.

• Recall the existence of Π 1 1 sets W X ⊆ ω, C X ⊆ ω × X with ∆ 1 1 (X) = {C X n | n ∈ W X } and {(n, x) ∈ ω×X | n ∈ W X and x / ∈ C X n } ∈ Π 1 1 (ω×X) (see Theorem 3.3.1 in [H-K-Lo]). • Set pot(Π 0 0 ) := ∆ 1 1 (X)×∆ 1 1 (Y ) and, for ξ < ω CK 1 , W X×Y ξ := {p ∈ W X×Y | C X×Y p ∈ pot(Π 0 ξ )}.
We also set

W X×Y <ξ := η<ξ W X×Y η .
The following result is essentially proved in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF]. However, the statement is not in it, so we give a proof, which uses several statements in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF]. Recall that τ 1 is defined before Lemma 2.1.2.

Theorem 2.2.1 (Louveau) Let ξ < ω CK 1 , X, Y be recursively presented Polish spaces. Then W X×Y ξ and W X×Y <ξ are Π 1 1 . If moreover A, B are disjoint Σ 1 1 subsets of X × Y , then the following are equivalent: (a) The set A is separable from B by a pot(Π 0 1+ξ ) set. (b) The set A is separable from B by a ∆ 1 1 ∩ pot(Π 0 1+ξ ) set. (c) The set A is separable from B by a Π 0 1+ξ (τ 1 ) set.
Proof. By the second paragraph page 44 in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF], ∆ 1 1 (X) and ∆ 1 1 (Y ) are regular families (see Definition 2.7 in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF] for the definition of a regular family). By Theorem 2.12 in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF], the family Φ := pot(Π 0 0 ) is regular too. We define a sequence (Φ ξ ) ξ<ω CK 1 of families as follows (see Corollary 2.10.(v) in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF]):

Φ 0 := Φ, Φ ξ+1 := (Φ ξ ) σc , Φ λ := ξ<λ Φ ξ if 0 < λ < ω CK 1 is a limit ordinal.
By Corollary 2.10.(v) in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF], Φ ξ is a regular family for each ξ < ω CK 1 . In particular, the set

W Φ ξ := {p ∈ W X×Y | C X×Y p ∈ Φ ξ } is Π 1 1 (ω)
. By Theorem 2.8 in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF], the family Φ ξ+1 is a separating family (see Definition 2.1 in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF] for the definition of a separating family), for each ξ < ω CK

1 . An easy induction on ξ shows the following facts:

Φ ξ = pot(Π 0 ξ ) if ξ < ω, Φ ξ = η<ξ pot(Π 0 η ) if 0 < ξ < ω CK 1 is a limit ordinal, Φ ξ+1 = pot(Π 0 ξ ) if ω ≤ ξ < ω CK 1 .
This shows that

W X×Y ξ = W Φ ξ is Π 1 1 if ξ < ω, W X×Y ξ = W Φ ξ+1 is Π 1 1 if ω ≤ ξ < ω CK 1 . If 0 < ξ < ω CK 1 is a limit ordinal, then W X×Y <ξ = W Φ ξ is Π 1 1 .
(b) ⇒ (c) follows from Theorem 3.4 in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF].

(c) ⇒ (a) follows from the fact that ∆ X and ∆ Y are Polish.

(a) ⇒ (b) Assume first that ξ < ω. Then pot(Π 0 1+ξ ) = Φ 1+ξ = Φ ξ+1 is a separating family. So A and B are separable by a

∆ 1 1 ∩ Φ ξ+1 = ∆ 1 1 ∩ pot(Π 0 1+ξ ) set. If ω ≤ ξ < ω CK 1 , then we use the fact that pot(Π 0 1+ξ ) = pot(Π 0 ξ ) = Φ ξ+1 .
Notation. Let X, Y be recursively presented Polish spaces.

• We will use the Gandy-Harrington topology Σ X on X generated by Σ 1 1 (X). Recall that the set

Ω X := {x ∈ X | ω x 1 = ω CK 1 } is Borel and Σ 1 1 , that [Ω X , Σ X ] is a 0-dimensional Polish space (the intersection of Ω X with any nonempty Σ 1 1 set is a nonempty clopen subset of [Ω X , Σ X ]) (see [L1]). • Let 2 ≤ ξ < ω CK 1 . The topology τ ξ is generated by Σ 1 1 (X ×Y ) ∩ Π 0 <ξ (τ 1 ). We have the inclusion Σ 0 1 (τ ξ ) ⊆ Σ 0 ξ (τ 1 ), so that Π 0 1 (τ ξ ) ⊆ Π 0 ξ (τ 1
). These topologies are similar to the ones considered in [START_REF] Louveau | A separation theorem for Σ 1 1 sets[END_REF] (see Definition 1.5).

Lemma 2.2.2 Let X, Y be recursively presented Polish spaces, and

ξ < ω CK 1 . (a) Fix S ∈ Σ 1 1 (X ×Y ). Then S τ 1+ξ ∈ Σ 1 1 (X ×Y ). (b) Let n ≥ 1, 1 ≤ ξ 1 < ξ 2 < . . . < ξ n ≤ 1+ξ, and S 1 , . . ., S n be Σ 1 1 sets. Assume that S n ′ ⊆ S n ′ +1 τ ξ n ′ +1 for 1 ≤ n ′ < n. Then S n ∩ 1≤i<n S i τ ξ i is τ 1 -dense in S 1 τ 1 .
Proof. (a) This is essentially proved in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF] (see the proof of Theorem 2.8 in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF]). We emphasize the fact that the analogous version of (a) in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF] and the assertions of Theorem 2.2.1 are proved simultaneously by induction on ξ, and interact. Assume first that ξ = 0. Then

(x, y) / ∈ S τ 1 ⇔ ∃U ∈ ∆ 1 1 (X) ∃V ∈ ∆ 1 1 (Y ) (x, y) ∈ U ×V and (U ×V ) ∩ S = ∅ ⇔ ∃m ∈ W X ∃n ∈ W Y ( C X m (x) and C Y n (y) and ∀(x ′ , y ′ ) ∈ X ×Y [(m ∈ W X and x ′ / ∈ C X m ) or (n ∈ W Y and y ′ / ∈ C Y n ) or (x ′ , y ′ ) / ∈ S] ).
So S τ 1 ∈ Σ 1 1 (X ×Y ). Now assume that ξ ≥ 1. We have, by Theorem 2.2.1:

(x, y) / ∈ S τ 1+ξ ⇔ ∃T ∈ Σ 1 1 (X ×Y ) ∩ Π 0 <1+ξ (τ 1 ) (x, y) ∈ T and T ∩ S = ∅ ⇔ ∃E ∈ ∆ 1 1 (X ×Y ) ∩ pot(Π 0 <1+ξ ) (x, y) ∈ E and E ∩ S = ∅ ⇔ ∃m ∈ W X×Y <1+ξ ( C X×Y m (x, y) and ∀(x ′ , y ′ ) ∈ X ×Y [(m ∈ W X×Y and (x ′ , y ′ ) / ∈ C X×Y m ) or (x ′ , y ′ ) / ∈ S] ).
By Theorem 2.2.1, W X×Y <1+ξ ∈ Π 1 1 and we are done.

(b) Let U (resp., V ) a ∆ 1 1 (X) (resp., ∆ 1 1 (Y )) set with S 1 τ 1 ∩ (U ×V ) = ∅. Then S 1 ∩ (U ×V ) = ∅,
which proves the desired property for n = 1. Then we argue inductively on n. So assume that the property is proved for n. We have S n ⊆ S n+1 τ ξn+1 , and

S n ∩ 1≤i<n S i τ ξ i ∩(U×V ) = ∅, by induction assumption. Thus S n+1 τ ξn+1 ∩ 1≤i≤n S i τ ξ i ∩ (U×V ) = ∅. As 1≤i≤n S i τ ξ i ∩ (U×V ) is Σ 0 1 (τ ξn+1 ), we get S n+1 ∩ 1≤i≤n S i τ ξ i ∩ (U ×V ) = ∅.

Representation of Borel sets.

Now we come to the representation theorem of Borel sets by G. Debs and J. Saint Raymond (see [D-SR]). It specifies the classical result of Lusin asserting that any Borel set in a Polish space is the bijective continuous image of a closed subset of the Baire space. The following definitions can be found in [D-SR]: Definition 2.3.1 (Debs-Saint Raymond) Let a be a finite set. A partial order relation R on a <ω is a tree relation if, for t ∈ a <ω , (a) ∅ R t.

(b) The set P R (t) := {s ∈ a <ω | s R t} is finite and linearly ordered by R.

For instance, the non strict extension relation ≺ is a tree relation.

• Let R be a tree relation. An R-branch is an ⊆-maximal subset of a <ω linearly ordered by R. We denote by [R] the set of all infinite R-branches.

We equip (a <ω ) ω with the product of the discrete topology on a <ω . If R is a tree relation, the space [R] ⊆ (a <ω ) ω is equipped with the topology induced by that of (a <ω ) ω . The map θ :

a ω → [≺] defined by θ(γ) := [γ⌈j] j∈ω is an homeomorphism. • Let R, S be tree relations with R ⊆ S. The canonical map Π : [R] → [S] is defined by Π(A) := the unique S-branch containing A. • Let S be a tree relation. We say that R ⊆ S is distinguished in S if ∀s, t, u ∈ a <ω s S t S u s R u    ⇒ s R t.
For example, let C be a closed subset of a ω , and define:

s R t ⇔ s ≺ t and N t ∩ C = ∅.
Then R is distinguished in ≺. In this case, the distinction expresses the fact that "when we leave the closed set, it is for ever". ρ) , for all limit λ ≤ η.

• Let η < ω 1 . A family (R (ρ) ) ρ≤η of tree relations is a resolution f amily if: (a) R (ρ+1) is a distinguished subtree of R (ρ) , for all ρ < η. (b) R (λ) = ρ<λ R (
We will use the following extension of the property of distinction:

Lemma 2.3.2 Let η < ω 1 , (R (ρ)
) ρ≤η a resolution family with R (0) = ≺, and ρ < η. Assume that s ≺ s ′ R (ρ) s ′′ and s R (ρ+1) s ′′ . Then s R (ρ+1) s ′ .

Proof. We argue by induction on ρ. Assume that the property is proved for µ < ρ. As s ′ R (ρ) s ′′ and R (ρ+1) is distinguished in R (ρ) we have s R (ρ+1) s ′ .

Notation. Let η < ω 1 , (R (ρ) ) ρ≤η a resolution family with R (0) = ≺, ρ ≤ η and z ∈ a <ω \{∅}. We set

z ρ := z ⌈ max{r < |z| | z⌈r R (ρ) z}. We enumerate {z ρ | ρ ≤ η} by {z ξ i | 1 ≤ i ≤ n}, where 1 ≤ n ∈ ω and ξ 1 < . . . < ξ n = η. We can write z ξn ≺ = z ξ n-1 ≺ = . . . ≺ = z ξ 2 ≺ = z ξ 1 ≺ = z. By Lemma 2.3.2 we have z ξ i+1 R (ξ i +1) z ξ i for each 1 ≤ i < n. Lemma 2.3.3 Let η < ω 1 , (R (ρ) ) ρ≤η a resolution family with R (0) = ≺, z ∈ a <ω \{∅} and 1 ≤ i < n. (a) Set η i := {ρ ≤ η | z ξ i ≺ z ρ }. Then η i is a successor ordinal. (b) We may assume that z ξ i +1 ≺ = z ξ i .
Proof. (a) First notice that η i is an ordinal. Note that ξ i +1 ≤ η i ≤ η+1. We argue by contradiction, so that η i ≤ η. Let ξ i ≤ ρ < η i . Then we have

z ξ i = z ρ , z ξ i R (ρ) z, z ξ i R (η i ) z, and z ξ i ≺ z η i . As η i ≤ η, we get η i ∈ η i , which is absurd. (b) So we can write η i = ν i +1. Note that z ν i = z ξ i since ξ i ≤ ν i . If ν i +1 ≤ η we get z ν i +1 ≺ = z ν i , so we may assume that ξ i = ν i . If ν i +1 = η+1 we get ν i = η and z ξ i = z ν i = z η = z ξn , which is absurd.
The following is part of Theorem I-6.6 in [D-SR]. (η) ]. Now we come to the actual proof of Theorem 1.10.

Theorem 2.3.4 (Debs-Saint Raymond) Let η < ω 1 , E be a Π 0 η+1 subset of [≺]. Then there is a resolution family (R (ρ) ) ρ≤η with: (a) R (0) = ≺. (b) The canonical map Π : [R (η) ] → [≺] is a bijection. (c) The set Π -1 (E) is a closed subset of [R

Proof of Theorem 1.10.

Theorem 2.4.1 Let T be a tree with acyclic levels, ξ < ω CK 1 such that 1+ξ is a successor ordinal, S ∈ Σ 0 1+ξ (⌈T ⌉), X, Y recursively presented Polish spaces, and A, B disjoint Σ 1 1 subsets of X ×Y . Then one of the following holds: (a) A τ 1+ξ ∩ B = ∅.

(b) There are u : 2 ω → X and v : 2 ω → Y continuous with S ⊆ (u×v) -1 (A) and ⌈T ⌉\S ⊆ (u×v) -1 (B).

Proof. Fix η < ω CK 1 with 1+ξ = η+1. • We identify (2×2) Q with 2 Q ×2 Q , for Q ≤ ω.
With the notation of Definition 2.3.1 and a := 2×2, we get

E := θ[⌈T ⌉\S] ∈ Π 0 η+1 ([≺]
). Theorem 2.3.4 provides a resolution family. We put

D := {(s, t) ∈ T | ∃γ ∈ Π -1 (E) (s, t) ∈ γ}.
For example, we may assume that (∅, ∅) ∈ D.

• We set N := A τ 1+ξ ∩ B. Applying Lemma 2.2.2.(a), we see that N is Σ 1 1 . We assume that N is not empty. Recall that [Ω X×Y , Σ X×Y ] is a Polish space (see the notation before Lemma 2.2.2). We fix a complete metric d (resp., metrics δ X , δ Y ) on [Ω X×Y , Σ X×Y ] (resp., X, Y equipped with the initial topologies).

• We construct (x s ) s∈Π 0 [T ] ⊆ X, (y t ) t∈Π 1 [T ] ⊆ Y , (U (s,t) ) (s,t)∈T ⊆ Σ 1 1 (X ×Y ) with: (i) (x s , y t ) ∈ U (s,t) ⊆ Ω X×Y . (ii) diam d (U (s,t) ) ≤ 2 -|s| , δ X (x s , x sε ) ≤ 2 -|s| , δ Y (y t , y tε ) ≤ 2 -|t| . (iii) U (s,t) ⊆ N if (s, t) ∈ D. (iv) U (s,t) ⊆ A if (s, t) / ∈ D. (v) [1 ≤ ρ ≤ η and (s, t) R (ρ) (s ′ , t ′ )] ⇒ U (s ′ ,t ′ ) ⊆ U (s,t) τρ . (vi) [((s, t) ∈ D ⇔ (s ′ , t ′ ) ∈ D) and (s, t) R (η) (s ′ , t ′ )] ⇒ U (s ′ ,t ′ ) ⊆ U (s,t) .
• Let us show that this construction is sufficient to get the theorem. If (α, β) ∈ ⌈T ⌉, then we can define

(j i ) i∈ω := (j α,β i ) i∈ω by Π -1 ([(α, β)⌈j] j∈ω ) = [(α, β)⌈j i ] i∈ω
, where j i < j i+1 . In particular, we have (α, β)⌈j i R (η) (α, β)⌈j i+1 . We have the following: η) ]. Similarly, (α, β) ∈ ⌈T ⌉\S is equivalent to the existence of i 0 ∈ ω such that (α, β)⌈j i ∈ D for each i ≥ i 0 (with i 0 = 0).

(α, β) ∈ S ⇔ θ(α, β) = [(α, β)⌈j] j∈ω / ∈ E ⇔ [(α, β)⌈j i ] i∈ω / ∈ Π -1 (E) ⇔ ∃i 0 ∈ ω ∀i ≥ i 0 (α, β)⌈j i / ∈ D since Π -1 (E) is a closed subset of [R ( 
Therefore U (α,β)⌈j i+1 ⊆ U (α,β)⌈j i ⊆ Ω X×Y if i ≥ i 0 and (α, β) ∈ ⌈T ⌉. Thus (U (α,β)⌈j i ) i≥i 0 is a decreasing sequence of nonempty clopen subsets of [Ω X×Y , d] whose diameters tend to 0. Therefore {F (α, β)} = i≥i 0 U (α,β)⌈j i defines F (α, β) in Ω X×Y . Note that F (α, β) is the limit of the sequence ((x α⌈j i , y β⌈j i )) i∈ω .

Let α ∈ Π 0 (⌈T ⌉), and β α such that (α, β α ) ∈ ⌈T ⌉. We set u(α) := Π X (F (α, β α )). Note that u(α) is the limit of some subsequence of (x α⌈i ) i∈ω , by continuity of the projection. As δ X (x s , x sε ) ≤ 2 -|s| , u(α) is also the limit of (x α⌈i ) i∈ω . Thus u(α) does not depend on the choice of β α . This also shows that u is continuous on Π 0 (⌈T ⌉). As Π 0 (⌈T ⌉) is a closed subset of 2 ω , we can find a continuous retraction r 0 from 2 ω onto Π 0 (⌈T ⌉) (see Proposition 2.8 in [K]). We set u(α) := u(r 0 (α)), so that u is continuous on 2 ω .

Similarly, we define a continuous map

v : 2 ω → Y such that v(β) is the limit of (y β⌈i ) i∈ω if β is in Π 1 (⌈T ⌉). This implies that F (α, β) = (u(α), v(β)) if (α, β) ∈ ⌈T ⌉.
If (α, β) ∈ S (resp., ⌈T ⌉\S), then F (α, β) ∈ A (resp., N ). This shows that S ⊆ (u×v) -1 (A) and ⌈T ⌉\S ⊆ (u×v) -1 (B).

• So let us show that the construction is possible. Fix (x ∅ , y ∅ ) ∈ N ∩ Ω X×Y , which is not empty since N = ∅ is Σ 1 1 . Then we choose U (∅,∅) ∈ Σ 1 1 with diameter at most 1 with (x ∅ , y ∅ ) ∈ U (∅,∅) ⊆ N ∩ Ω X×Y . Assume that (x s ) |s|≤p , (y t ) |t|≤p , (U (s,t) ) |s|≤p satisfying conditions (i)-(vi) have been constructed, which is the case for p = 0.

-Let s ∈ Π 0 [T ] ∩ 2 p (resp., t ∈ Π 1 [T ] ∩ 2 p
), and X s (resp., Y t ) be a ∆ 1 1 neighborhood of x s (resp., y t ) with δ X -diameter (resp., δ Y -diameter) at most 2 -p .

-If we := (sε, tε ′ ) ∈ T ∩ (2×2) p+1 (w := (s, t) ∈ (2×2) p and e := (ε, ε ′ ) ∈ 2×2), then we set (we) η+1 := (we) η if there is r ≤ p with [ w⌈r ∈ D ⇔ we ∈ D ] and w⌈r R (η) we, we otherwise.

Note that (we) η ∈ D if we ∈ D, so that we / ∈ D if (we) η+1 = we. Note also the equivalence between the fact that we ∈ D, and the fact that (we) η+1 ∈ D. Indeed, we may assume that we / ∈ D and (we) η+1 = (we) η . So that there is r ≤ p with w⌈r / ∈ D and w⌈r R (η) we. By Lemma 2.3.2 we have w⌈r R (η) (we) η , so that (we) η+1 = (we) η / ∈ D. The conclusions in the assertions (a) and (b) in the following claim do not really depend on their respective assumptions, but we will use these assertions later in this form.

Claim. Assume that η > 0. (a) A ∩ 1≤ρ≤η U (we) ρ τρ ∩ (X s ×Y t ) is τ 1 -dense in U (we) 1 τ 1 ∩ (X s ×Y t ) if (we) η+1 = we. (b) U (we) η ∩ 1≤ρ<η U (we) ρ τρ ∩ (X s ×Y t ) is τ 1 -dense in U (we) 1 τ 1 ∩ (X s ×Y t ) if (we) η+1 = we.
Indeed, we use the notation before Lemma 2.3.3 with z := we. By Lemma 2.3.3 we may assume that

z ξ i +1 ≺ = z ξ i if 1 ≤ i < n. We set S i := U z ξ i , for 1 ≤ ξ i ≤ η. We have S i ⊆ S i+1 τ ξ i +1 , for 1 ≤ ξ i < η,
by induction assumption, since z ξ i+1 R (ξ i +1) z ξ i . Moreover, the inclusion S n ⊆ A τ η+1 holds. Thus

A ∩ 1≤ξ i ≤η U (we) ξ i τ ξ i ∩ (X s ×Y t ) (respectively, U (we) η ∩ 1≤ξ i <η U (we) ξ i τ ξ i ∩ (X s ×Y t )) is τ 1 - dense in the set U (we) 1 τ 1 ∩ (X s × Y t ) if ( 
we) η+1 = we (respectively, (we) η+1 = we), by Lemma 2.2.2.(b). But if 1 ≤ ρ ≤ η, then there is 1 ≤ i ≤ n with (we) ρ = (we) ξ i . And ρ ≤ ξ i since we have (we) ξ i +1 ≺ = (we) ξ i if 1 ≤ i < n. Thus we are done since 1≤ρ≤η U (we) ρ τρ = 1≤ξ i ≤η U (we) ξ i τ ξ i and

U (we) η ∩ 1≤ρ<η U (we) ρ τρ = U (we) η ∩ 1≤ξ i <η U (we) ξ i τ ξ i . ⋄ -Let F 0 := F 1 := 2 p+1 , T := T ∩ (F 0 ×F 1 ), Ψ : F 0 ×F 1 → Σ 1 1 (X ×Y ) defined on T by Ψ(we) := A ∩ 1≤ρ≤η U (we) ρ τρ ∩ (X s ×Y t ) ∩ Ω X×Y if (we) η+1 = we, U (we) η ∩ 1≤ρ<η U (we) ρ τρ ∩ (X s ×Y t ) if (we) η+1 = we. By the claim, Ψ(we) is τ 1 -dense in U (we) 1 τ 1 ∩ (X s × Y t ) if η > 0. As (we) 1 ≺ w ≺ we and R (1)
is distinguished in ≺ we get (we) 1 R (1) w and U w ⊆ U (we) 1 τ 1 , by induction assumption. Thus

U w τ 1 ∩ (X s ×Y t ) ⊆ U (we) 1 τ 1 ∩ (X s ×Y t ) ⊆ Ψ(we). Thus (x s , y t ) is in U w ∩ (X s ×Y t ) ⊆ Ψ(we) (even if η = 0).
Therefore Ψ admits a π-selector on T . By Lemma 2.1.2, Ψ admits a π-selector ψ on T . We set x sε := ψ 0 (sε), y tε ′ := ψ 1 (tε ′ ), and choose Σ 1 1 sets U we with d-diameter at most 2 -p-1 such that ψ(we) ∈ U we ⊆ Ψ(we). This finishes the proof since (s, t) R (ρ) we and (s, t) = we imply that (s, t) R (ρ) (we) ρ R (ρ) we, by Lemma 2.3.2. Now we come to the limit case. We need some more definitions that can be found in [D-SR].

Definition 2.4.2 (Debs-Saint Raymond) Let a be a finite set.

• Let R be a tree relation on a <ω . If t ∈ a <ω , then h R (t) is the number of strict R-predecessors of t. So we have h R (t) = Card(P R (t))-1.

• Let ξ < ω 1 be an infinite limit ordinal. We say that a resolution family (R

(ρ) ) ρ≤ξ is unif orm if ∀k ∈ ω ∃η k < ξ ∀s, t ∈ a <ω [min(h R (ξ) (s), h R (ξ) (t)) ≤ k and s R (η k ) t] ⇒ s R (ξ) t.
We may (and will) assume that η k ≥ 1.

The following is part of Theorem I-6.6 in [D-SR].

Theorem 2.4.3 (Debs-Saint Raymond) Let ξ < ω 1 be an infinite limit ordinal,

E a Π 0 ξ subset of [≺]. Then there is a uniform resolution family (R (ρ) ) ρ≤ξ with: (a) R (0) = ≺. (b) The canonical map Π : [R (ξ) ] → [≺] is a bijection. (c) The set Π -1 (E) is a closed subset of [R (ξ) ].
Theorem 2.4.4 (Debs-Lecomte) Let T be a tree with acyclic levels, ξ < ω CK 1 an infinite limit ordinal, S ∈ Σ 0 ξ (⌈T ⌉), X, Y recursively presented Polish spaces, and

A, B disjoint Σ 1 1 subsets of X × Y . Then one of the following holds: (a) A τ ξ ∩ B = ∅.
(b) There are u : 2 ω → X and v : 2 ω → Y continuous with S ⊆ (u×v) -1 (A) and ⌈T ⌉\S ⊆ (u×v) -1 (B).

Proof. Let us indicate the differences with the proof of Theorem 2.4.1.

• The set E := θ[⌈T ⌉\S] is Π 0 ξ ([≺]
). Theorem 2.4.3 provides a uniform resolution family.

• If w ∈ (2×2) <ω then we set

η(w) := max{η h R (ξ) (w ′ )+1 | w ′ ≺ w}.
Note that η(w ′ ) ≤ η(w) if w ′ ≺ w.

• Conditions (v) and (vi) become

(v ′ ) [1 ≤ ρ ≤ η(s, t) and (s, t) R (ρ) (s ′ , t ′ )] ⇒ U (s ′ ,t ′ ) ⊆ U (s,t) τρ . (vi ′ ) [((s, t) ∈ D ⇔ (s ′ , t ′ ) ∈ D) and (s, t) R (ξ) (s ′ , t ′ )] ⇒ U (s ′ ,t ′ ) ⊆ U (s,t) .
• If we := (sε, tε ′ ) ∈ T ∩ (2×2) p+1 , then we set

(we) ξ+1 :=    (we) ξ if there is r ≤ p with [ w⌈r ∈ D ⇔ we ∈ D ]
and w⌈r R (ξ) we, we otherwise.

Note that we / ∈ D if (we) ξ+1 = we. Note also the equivalence between the fact that we ∈ D and the fact that (we) ξ+1 ∈ D.

Claim 1. Assume that (we) ρ = (we) ξ . Then ρ+1 ≤ η((we) ρ+1 ).

We argue by contradiction. We get

ρ+1 > ρ ≥ η((we) ρ+1 ) ≥ η h R (ξ) ((we) ξ )+1 = η h R (ξ) (we) .
As (we) ρ R (ρ) we we get (we) ρ R (ξ) we and (we) ρ = (we) ξ , which is absurd. ⋄

Note that ξ n-1 < ξ n-1 +1 ≤ η((we) ξ n-1 +1 ) ≤ η(we). Thus (we) η(we) = (we) ξ .

Claim 2. (a) A∩ 1≤ρ≤η(we)

U (we) ρ τρ ∩(X s ×Y t ) is τ 1 -dense in U (we) 1 τ 1 ∩(X s ×Y t ) if (we) ξ+1 = we. (b) U (we) ξ ∩ 1≤ρ<η(we) U (we) ρ τρ ∩ (X s ×Y t ) is τ 1 -dense in U (we) 1 τ 1 ∩ (X s ×Y t ) if (we) ξ+1 = we.
Indeed, we set S i := U z ξ i , for 1 ≤ ξ i ≤ ξ. By Claim 1 we can apply Lemma 2.2.2.(b) and we are done. ⋄

• Let F 0 := F 1 := 2 p+1 , T := T ∩ (F 0 ×F 1 ), Ψ : F 0 ×F 1 → Σ 1 1 (X ×Y ) defined on T by Ψ(we) :=      A ∩ 1≤ρ≤η(we) U (we) ρ τρ ∩ (X s ×Y t ) ∩ Ω X×Y if (we) ξ+1 = we, U (we) ξ ∩ 1≤ρ<η(we) U (we) ρ τρ ∩ (X s ×Y t ) if (we) ξ+1 = we.
We conclude as in the proof of Theorem 2.4.1, using the facts that η k ≥ 1 and η(.) is increasing.

Proof of Theorem 1.10. We may assume that ξ < ω CK 1 , X, Y are recursively presented, and A, B are Σ 1 1 . We assume that A is not separable from B by a pot(Π 0 1+ξ ) set, and set 3 Proof of Theorem 1.11.

N := A τ 1+ξ ∩ B. Then N is not empty since Π 0 1 (τ 1+ξ ) ⊆ Π 0 1+ξ (τ 1 ) ⊆ pot(Π 0 1+ξ ).
We have seen that we cannot have a reduction on the whole product in Theorem 1.13. We have seen that it is possible to have it on the set of branches of some tree with acyclic levels. We now build an example of such a tree. This tree has to be small enough since we cannot have a reduction on the whole product. But as the same time it has to be big enough to ensure the existence of complicated sets, as in the statement of Theorem 1.11.

Notation. Let ϕ : ω → ω 2 be the natural bijection. More precisely, we set, for q ∈ ω,

M (q) := max{m ∈ ω | Σ k≤m k ≤ q}.
Then we define ϕ(q) = ((q) 0 , (q) 1 ) := (M (q)-q +(Σ k≤M (q) k), q -(Σ k≤M (q) k)). One can check that < n, p >:= ϕ -1 (n, p) = (Σ k≤n+p k)+p. More concretely, we get ϕ[ω] = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), . . .}. Definition 3.1 We say that E ⊆ q∈ω 2 q ×2 q is a test if:

(a) ∀q ∈ ω ∃!(s q , t q ) ∈ E ∩(2 q ×2 q ). (b) ∀m, p ∈ ω ∀u ∈ 2 <ω ∃v ∈ 2 <ω (s p 0uv, t p 1uv) ∈ E and (|t p 1uv|-1) 0 = m.

(c) ∀n > 0 ∃q < n ∃w ∈ 2 <ω s n = s q 0w and t n = t q 1w. We will call T the tree generated by a test E = {(s q , t q ) | q ∈ ω}:

T := {(s, t) ∈ 2 <ω ×2 <ω | s = t = ∅ or ∃q ∈ ω ∃w ∈ 2 <ω (s, t) = (s q 0w, t q 1w)}.
The uniqueness condition in (a) and condition (c) ensure that T is small enough, and also the acyclicity. The existence condition in (a) and condition (b) ensure that T is big enough. More specifically, if X is a Polish space and σ a finer Polish topology on X, then there is a dense G δ subset of X on which the two topologies coincide. The first part of condition (b) ensures the possibility to get inside the square of a dense G δ subset of 2 ω . The examples in Theorem 1.11 are build using the examples in [Lo-SR]. Conditions on verticals are involved, and the second part of condition (b) gives a control on the choice of verticals.

Proposition 3.2

The tree T associated with a test is a tree with acyclic levels.

Proof. Fix p ∈ ω. Let us show that G Tp is acyclic. We argue by contradiction. Let (ẽ i , j i ) i≤l be a cycle in G Tp , and n < p maximal such that the sequence

(ẽ i (n)) i≤l is not constant. There is i 1 minimal with ẽi 1 (n) = ẽi 1 +1 (n). We have ẽi 1 (n) = ẽ0 (n) = ẽl (n). There is i 2 > i 1 +1 minimal with ẽi 1 +1 (n) = ẽi 2 (n). Then ẽi 1 (n) = ẽi 2 (n)
, and in fact ẽi 1 = ẽi 2 because of the uniqueness condition in (a), and ẽi 1 +1 = ẽi 2 -1 . If j i 1 = j i 2 , then i 1 = 0 and i 2 = l. But j i 1 +1 = 1-j i 1 = 1-j i 2 = j i 2 -1 , which is absurd. If j i 1 = j i 2 , then for example j i 1 = 0 = 1-j i 2 . If p > 0, then ẽi 1 (0) = 0 = 1-ẽi 2 (0), which contradicts ẽi 1 = ẽi 2 . If p = 0, then ẽ0 = ∅ = ẽ2 , which is absurd.

Notation. Let ψ : ω → 2 <ω be the natural bijection (ψ(0) = ∅, ψ(1) = 0, ψ(2) = 1, ψ(3) = 0 2 , ψ(4) = 01, ψ(5) = 10, ψ(6) = 1 2 , . . .). Note that |ψ(q)| ≤ q.

Lemma 3.3 There exists a test.

Proof. We set s 0 = t 0 := ∅, and

s q+1 := s [(q) 1 ] 0 0 ψ([(q) 1 ] 1 ) 0 q-[(q) 1 ] 0 -|ψ([(q) 1 ] 1 )| , t q+1 := t [(q) 1 ] 0 1 ψ([(q) 1 ] 1 ) 0 q-[(q) 1 ] 0 -|ψ([(q) 1 ] 1 )| .
Note that (q) 0 +(q) 1 = M (q) ≤ Σ k≤M (q) k ≤ q, so that s q , t q are well defined and we have the equality |s q | = |t q | = q, by induction on q. It remains to check that condition (b) in the definition of a test is fullfilled. Set n := ψ -1 (u), r :=< p, n > and q :=< m, r >. It remains to put v := 0 q-p-|u| : (s p 0uv, t p 1uv) = (s q+1 , t q+1 ). Now we come to the lemma crucial for the proof of Theorem 1.11.

Notation. (a)

We define p : ω <ω \{∅} → ω. We define p(s) by induction on |s|:

p(s) :=    s(0) if |s| = 1, < p(s⌈(|s|-1)), s(|s|-1) > otherwise.
Note that p |ω n : ω n → ω is a bijection, for each n ≥ 1.

(b) The map ∆ : 2 ω ×2 ω → 2 ω is the symmetric difference. So, for m ∈ ω,

∆(α, β)(m) = (α∆β)(m) = 1 ⇔ α(m) = β(m).
Lemma 3.4 Let G be a dense G δ subset of 2 ω , and T the tree associated with a test. Then there are

α 0 ∈ G and f : 2 ω → G continuous such that, for each α ∈ 2 ω , (a) (α 0 , f (α)) ∈ ⌈T ⌉. (b) For each t ∈ ω <ω , and each m ∈ ω, (i) α(p(tm)) = 1 ⇒ ∃m ′ ∈ ω (α 0 ∆f (α))(p(tm ′ )+1) = 1. (ii) (α 0 ∆f (α))(p(tm)+1) = 1 ⇒ ∃m ′ ∈ ω α(p(tm ′ )) = 1.
Proof. Let (O q ) be a sequence of dense open subsets of 2 ω with G = q O q . By density we get: ∀q, l ∈ ω ∃u q,l ∈ 2 <ω ∀s ∈ 2 l N su q,l ⊆ O q .

• We construct finite approximations of α 0 and f . The idea is to linearize the binary tree 2 <ω . So we will use the bijection ψ defined before Lemma 3.3. To construct f (α) we have to imagine, for each length l, the different possibilities for α⌈l. More precisely, we construct subsequences of 2 <ω , namely (v w ) w∈2 <ω , (s w ) w∈2 <ω and (t w ) w∈2 <ω , satisfying the following conditions:

(1) (s w , t w ) ∈ E \{(∅, ∅)}, and (|t w |-1) 0 = (|w|) 0 , for each w ∈ 2 <ω .

(2)

   s ∅ = 0 u 0,1 v ∅ , s wε = s ψ(ψ -1 (wε)-1) 0 u ψ -1 (wε),|s ψ(ψ -1 (wε)-1) |+1 v wε .
(3)

   t ∅ = 1 u 0,1 v ∅ , t wε = t w ε [ ⌢ ψ -1 (w)<i<ψ -1 (wε) u i,|s ψ(i-1) |+1 v ψ(i) 0] u ψ -1 (wε),|s ψ(ψ -1 (wε)-1) |+1 v wε .
We show the existence of the three subsequences inductively on ψ -1 (w). We choose v ∅ ∈ 2 <ω with

(0 u 0,1 v ∅ , 1 u 0,1 v ∅ ) ∈ E and (|1 u 0,1 v ∅ | -1) 0 = 0. Assume that (v w ) ψ -1 (w)≤r , (s w ) ψ -1 (w)≤r , (t w ) ψ -1 ( 
w)≤r satisfying properties (1)-(3) have been constructed, which is the case for r = 0.

Fix w ∈ 2 <ω and ε ∈ 2 with ψ(r +1) = wε. We choose v wε ∈ 2 <ω such that (s wε , t wε ) ∈ E and (|t wε |-1) 0 = (|w|+1) 0 . Let us show that this is possible. We want that

(s ψ(ψ -1 (wε)-1) 0 u ψ -1 (wε),|s ψ(ψ -1 (wε)-1) |+1 v wε , t w ε u ψ -1 (w)+1,|sw|+1 v ψ(ψ -1 (w)+1) 0 . . . u ψ -1 (wε)-1,|s ψ(ψ -1 (wε)-2) |+1 v ψ(ψ -1 (wε)-1) 0 u ψ -1 (wε),|s ψ(ψ -1 (wε)-1) |+1 v wε ) ∈ E. It is enough to see that (s ψ(ψ -1 (wε)-1) 0, t w ε . . . v ψ(ψ -1 (wε)-1) 0) ∈ T . But s ψ(ψ -1 (wε)-1) 0 = s ψ(ψ -1 (wε)-2) 0 u ψ -1 (wε)-1,|s ψ(ψ -1 (wε)-2) |+1 v ψ(ψ -1 (wε)-1) 0 = . . . = s w 0 u ψ -1 (w)+1,|sw|+1 v ψ(ψ -1 (w)+1) 0 . . . u ψ -1 (wε)-1,|s ψ(ψ -1 (wε)-2) |+1 v ψ(ψ -1 (wε)-1) 0.
We are done since (s w , t w ) ∈ E.

• So this defines sequences (v w ) w∈2 <ω , (s w ) w∈2 <ω and (t w ) w∈2 <ω . As s ψ(q) ≺ = s ψ(q+1) we can define α 0 := sup q s ψ(q) . Similarly, we set f (α) := sup m t α⌈m , and f is continuous.

• Let us show that α 0 ∈ G. By definition of s wε we get s ψ(q) 0u q+1,|s ψ(q) |+1 ≺ s ψ(q+1) , for each q. This implies that α 0 ∈ q O q = G since 0u 0,1 ≺ α 0 .

• Now fix α ∈ 2 ω . Let us show that f (α) ∈ G. Fix q ∈ ω, and m ∈ ω such that

ψ -1 (α⌈m) < q+1 ≤ ψ -1 (α⌈(m+1)).
Again it is enough to show the existence of s ∈ 2 <ω with su q+1,|s| ≺ t α⌈(m+1) . Set

s := t α⌈m α(m) u ψ -1 (α⌈m)+1,|s α⌈m |+1 v ψ(ψ -1 (α⌈m)+1) 0 . . . u q,|s ψ(q-1) |+1 v ψ(q) 0.
By definition of t α⌈(m+1) we have su q+1,|s ψ(q) |+1 ≺ t α⌈(m+1) . But the construction of t wε shows that |s ψ(q) |+1 = |s|. So s is suitable.

(a) Moreover, (α 0 , f (α)) ∈ ⌈T ⌉. Indeed, fix r ∈ ω. There is m ∈ ω with l := |t α⌈m | ≥ r. We get (α 0 , f (α))⌈l = (s α⌈m , t α⌈m ) ∈ E ⊆ T . Thus (α 0 , f (α))⌈r ∈ T , and (α 0 , f (α)) is in ⌈T ⌉.

(b).(i) We set

w := α⌈p(tm), so that t w 1 ≺ t w1 = t α⌈[p(tm)+1] ≺ f (α). As (|t w |-1) 0 = p(t), there is m ′ with |t w | = p(tm ′ )+1. But s w 0 ≺ s ψ(ψ -1 (w)+1) , so that α 0 (|t w |) = f (α)(|t w |).
(b).(ii) First notice that the only coordinates where α 0 and f (α) can differ are 0 and the |t α⌈q |'s. Therefore there is an integer q with p(tm)+1 = |t α⌈q |. In particular (|t α⌈q |-1) 0 = p(t) and (q) 0 = p(t). Thus there is m ′ with q = p(tm ′ ). We have α

0 (|t α⌈q |) = 0 = f (α)(|t α⌈q |) = α(q). So α(p(tm ′ )) = 1.
Now we come to the existence of complicated sets, as in the statement of Theorem 1.11.

Notation.

In [Lo-SR], Lemma 3.3, the map ρ 0 : 2 ω → 2 ω defined as follows is introduced:

ρ 0 (ε)(i) :=    1 if ε(< i, j >) = 0, for each j ∈ ω, 0 otherwise.

Proof of Theorem 1.14.

As announced in the introduction, we show more than Theorem 1.14.

Notation. Let X, Y be recursively presented Polish spaces. We set

B X×Y 0 := {p ∈ W X×Y | ∃(m, n) ∈ W X ×W Y C X×Y p = C X m ×C Y n }.
Then we define an inductive operator Φ over ω (see [C]) as follows: • We argue by induction on ξ. So assume that the result has been shown for η < ξ.

• Let us show that W X×Y <1+ξ is Π 1 1 . We may assume that ξ = 1 + ξ is an infinite limit ordinal since W X×Y <η+1 = W X×Y η . By Lemma 4.8 in [C] the following relation is Π This finishes the proof.

Remark. As we saw with Theorem 2.2.1, the equivalence between (a), (b) and (c) is essentially shown in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF]. It is also essentially shown in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF] that (a), (b) and (c) are equivalent to (d) (see the proof of Theorem 2.8, (a) page 25, in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF]). An immediate consequence of Theorem 4.1 is the following, shown in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF]: 

  So (b) holds, by Theorems 2.4.1 and 2.4.3. So (a) or (b) holds. If D ∈ pot(Π 0 1+ξ ) separates A from B and (b) holds, then S ∈ pot(Π 0 1+ξ ), since S = (u×v) -1 (D) ∩ ⌈T ⌉, which is absurd.

  X×Y | ∃α ∈ ∆ 1 1 ∀n ∈ ω α(n) ∈ W X×Y ∩ A and ¬C X×Y p = n C X×Y α(n) }. Then Φ is clearly a Π 11 monotone inductive operator. We let, for any ordinal ξ, coherent with the definition of B X×Y0).Theorem 4.1(Debs-Lecomte-Louveau) Let T given by Theorem 1.11, ξ < ω CK 1 , S given by Theorem 1.11, and X, Y be recursively presented Polish spaces.• Let A, B be disjoint Σ 1 1 subsets of X ×Y . The following are equivalent: (a) The set A cannot be separated from B by a pot(Π 0 1+ξ ) set. (b) The set A cannot be separated from B by a ∆ 1 1 ∩ pot(Π 0 1+ξ ) set. (c) The set A cannot be separated from B by a Π 0 1+ξ (τ 1 ) set. (d) A τ 1+ξ ∩ B = ∅.(e) There are u : 2 ω → X and v : 2 ω → Y continuous with S ⊆ (u×v) -1 (A) and ⌈T ⌉\S ⊆ (u×v) -1 (B).

  δ) ⇔ δ ∈ WO and p ∈ Φ |δ| .The following argument can be found in[START_REF] Louveau | A separation theorem for Σ 1 1 sets[END_REF], Proposition 1.4. Let δ ξ ∈ WO ∩ ∆ 1 1 with |δ ξ | = ξ, and δ m ξ be the restriction of the ordering δ ξ to the δ ξ -predecessors of m. We get, by induction assumption,p ∈ W X×Y <1+ξ ⇔ ∃η < ξ p ∈ W X×Y η ⇔ ∃η < ξ p ∈ B X×Y η ⇔ ∃η < ξ p ∈ Φ η ⇔ ∃m ∈ ω R(p⇒ (b) and (a) ⇒ (c) are clear since ∆ X and ∆ Y are Polish.(c) ⇒ (d) This comes from the fact that Π 0 1 (τ 1+ξ ) ⊆ Π 0 1+ξ (τ 1 ).(d) ⇒ (e) This comes from Theorems 2.4.1 and 2.4.4 (Lemma 2.2.2 is at this moment true until the level 1+ξ).

•

  (e) ⇒ (a) If D ∈ pot(Π 0 1+ξ ) separates A from B, then S = (u×v) -1 (D) ∩ ⌈T ⌉ is pot(Π 0 1+ξ ), which contradicts Theorem 1.11. (b) ⇒ (d) We argue by contradiction, so that A τ 1+ξ separates A from B. By induction assumption and the first reflection theorem there isα ∈ ∆ 1 1 with α(n) ∈ W X×Y <1+ξ and C X×Y α(n) ⊆ ¬A, for each integer n, and B ⊆ E := n C X×Y α(n) . But E is ∆ 1 1 ∩ pot(Σ 0 1+ξ) and separates B from A, which is absurd.• The proof of the implication (b)⇒ (d) imply that W X×Y 1+ξ is Π 1 1 since W X×Y <1+ξ is Π 1 1 and W X×Y 1+ξ = {p ∈ W X×Y | ∃α ∈ ∆ 1 1 ∀n ∈ ω α(n) ∈ W X×Y <1+ξ and ¬C X×Y p It remains to see that W X×Y 1+ξ = B X×Y 1+ξ .But by induction assumption we getB X×Y 1+ξ = Φ( η<1+ξ Φ η ) = Φ( <1+ξ ∪ {p ∈ W X×Y | ∃α ∈ ∆ 1 1 ∀n ∈ ω α(n) ∈ W X×Y <1+ξ and ¬C X×Y p = n C X×Y α(n) } = W X×Y 1+ξ .

Corollary 4. 2 (

 2 Louveau) Let ξ < ω CK 1 , X, Y be recursively presented Polish spaces, and A a ∆ 1 1 subset of X ×Y . The following are equivalent: (a) The set A is pot(Π 0 1+ξ ). (b) The set A is Π 0 1+ξ (τ 1 ).

In this paper, ρ ξ 0 : 2 ω → 2 ω is also defined for ξ < ω 1 as follows, by induction on ξ (see the proof of Theorem 3.2). We put: -

We set ρ (0,k+1) 0

The set

• The map S : 2 ω → 2 ω is the shift map: S(α)(m) := α(m+1).

• Let T be the tree generated by a test. We put, for ξ < ω 1 ,

• Let G be a dense G δ subset of 2 ω . Lemma 3.4 provides α 0 ∈ G and f : 2 ω → G continuous.

• Let us show that ρ ξ 0 (α) = ρ ξ 0 (S[α 0 ∆f (α)]), for each 1 ≤ ξ < ω 1 and α ∈ 2 ω . For ξ = 1 we apply Lemma 3.4.(b) to t ∈ ω. Then we have, by induction:

From this we deduce, by induction again, that ρ (0,1) 0

Thus ρ (0,k+1) 0

(α) = ρ (0,k+1) 0

(S[α 0 ∆f (α)]), and

• We argue by contradiction to show that ⌈T ⌉\S 1+ξ (resp., S 1+ξ ) is not pot(Σ 0 1+ξ ) (resp., pot(Π 0 1+ξ )):

1+ξ ) subset of G 2 . But by the previous point we get H 1+ξ = f -1 ([(⌈T ⌉\S 1+ξ ) ∩ G 2 ] α 0 ) (resp., ¬H 1+ξ = f -1 ([S 1+ξ ∩ G 2 ] α 0 )), which is absurd.