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Abstract

This article describes algorithms to solve Boolean and numerical con-
straints, and to randomly select values among the set of solutions. Those
algorithms were first designed to generate inputs for testing and simulat-
ing reactive real-time programs. As a consequence, the chose a solving
technology that allow a fine control in the way solutions are elected. In-
deed, a fair selection is sometimes required, while favoring limit cases is
often interesting for testing.

Moreover, simulating a single reactive execution means generating sev-
eral hundreds or even several thousands of atomic steps, and thus as many
solving steps. Hence, the emphasis is put on efficiency, sometimes sacri-
ficing precision or fairness.

Keywords: Constraint solving, Test sequences generation, Simulation, Re-
active programs.
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1 INTRODUCTION 3

1 Introduction

Reactive embedded programs are often critical, and therefore need to be verified.
The ideal is to verify programs exhaustively, using formal verification methods
such as model-checking, deductive reasoning, or abstract interpretation. These
methods face both theoretical problems like undecidability, and practical prob-
lems like state explosions. In practice, they are limited to relatively simple and
small systems. Test and simulation, that do not explore the whole state space,
remain the only tractable method for complex and huge systems.

Complex reactive systems are not supposed to behave correctly in a chaotic
environment, and thus a completely random test generation is likely to pro-
duce irrelevant executions. As a matter of fact, the environment, while non-
deterministic, is in general far from random: it satisfies known properties that
must be taken into account to generate realistic test sequences.

A testing framework has been defined which includes languages for describing
constrained random scenarios [16]. More precisely, an atomic step is described
by a constraint on the current values of the variables. Those steps are then
combined with control structures describing the possible dynamic behavior (se-
quence, loop, non-deterministic choice). This dynamic aspect is not presented
here (see [16, 8] for further detail). This article focuses on the basic problem of
solving a constraint and generating a single step.

In order to tackle realistic problems, we want to handle both logical and
numerical constraints. We also want the solver to be fully automatic, and thus
we restrict ourself to a decidable domain: the domain of linear constraints.

The proposed solving method requires the construction of a normalized rep-
resentation of constraints. This normal form is based on Binary Decision Dia-
grams for the logical part, and convex polyhedra for the numerical part.

The article is organized as follows. Section 2 first recalls the basic principles
of BDDs and convex polyhedra; then Section 3 presents the solving process;
Section 4 presents the solution selection; Section 5 presents associated tools;
Section 6 presents related work.

2 BDD and convex polyhedra

The constraints we want to solve are a mixture of Boolean and linear numeri-
cal constraints. Basically, the formers are handled with BDD (Binary Decision
Diagram), and the latter with convex polyhedra. We briefly review these rep-
resentations before explaining how we use them.

2.1 Binary Decision Diagram (BDD)

A Binary Decision Diagram is a concise representation of the Shannon decom-
position of a Boolean function [3]. More precisely, the BDD of a formula f is
a Directed Acyclic graph (DAG) where each node is labelled by a variable of
f- The top-level node is the only node that has no predecessor. The two only
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possible leaves are labeled by true and false. Each node has two successors: the
then branch, and the else branch. During a traversal from the top-level node
to a leaf, the variables always occur is the same order.

All solutions of a formula can be obtained by enumerating in its BDD all
paths from the top-level node to the true leaf. For such a path, when a node
is traversed using its then branch (resp. else branch), it means that the corre-
sponding variable is true (resp. false).

Figure 1 shows a graphical representation of a BDD; then (resp else) branches
are represented at the left-hand-side (resp right-hand-side) of the tree. This
BDD contains 3 paths to the true leaf: ade, abce, and abd. When we say that
the monomial (conjunction of literals) abce is a solution of the formula, it means
that variables a and e should be false, variables b and ¢ should be true, and vari-
able d can be either true or false. The monomial abce therefore represents two
solutions, whereas ade and @bd represents 4 solutions each, since 2 variables are
left unconstrained.

a
/\
d b
/\ /\
¢ false ¢ d
AN NN
true  false ¢ false  true  false

N

false true

Figure 1: A BDD containing 10 solutions (ade, abce, and abd).

In Figure 1 and in the following, for the sake of simplicity, we draw trees
instead of DAGs. The key reason why BDDs work well in practice is that in
their implementations, common sub-trees are shared. For example, only one
node “true” would be necessary in that graph. Anyway, the algorithms in the
sequel work on DAGS the same way as they work on trees.

2.2 Convex Polyhedra

The objective is to solve linear inequations, namely, to compute systems of the
form P = {X|AX < B}, where A is a n X m-matrix of constants, and B a
m-vector of constants. Such a system define a convex polyhedron.
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(epy — Vi |true |false | not (ep) | (en)*{en) | (en)xn(en) | ({en))

(en)  — Va [N Nden) | {en)xs(en) | if (ep) then (e,) else (e,) | ((en))
*p — V |A |xor | = |

*n - > |2 |< |§ |:

* 4 — + ‘ —

N, V4, and V,respectively stand for numeric constants, Boolean variables, and
numeric variables.

Figure 2: Constraint syntax rules

If all variables are bounded!, solving such systems requires to compute a set
of polyhedron generators, namely, to compute the vertices vy, ..., v, such that
P={>,_,,0iv|>,; 1,0 = 1}. Reasonably efficient algorithms exist for
that purposé7 and several convex polyhedron libraries are freely available on the
web [9, 1, 18]. They are all based on an algorithm due to Chernikova [4].

3 The resolution algorithm

3.1 The constraints domain

The input constraint language combines Boolean and numeric linear variables,
constants, and operators. The syntax rules are given in Figure 2. The top-level
constraint is a Boolean expression ((e3)).

3.2 Get rid of if-then-else

The first step is to transform constraints to remove if-then-else constructs. In-
deed, together with the comparison operators, the “if-then-else” construct lets
one combine numeric and Boolean arbitrarily deeply. And this does not fit
in the resolution scheme we propose later in Section 3.3. The key idea of the
transformation is to put the formula into the normalized form:

if c1 then ey else if co then es else ... else if ¢, then e,

where the Boolean expressions ci,...,c, do not contain “if-then-else”. This
transformation can be done recursively on the constraint syntax structure, as
described in Figure 3. This transformation have the property to produce a set
of conditions {ci,...,c,} that forms a partition (i # j = ¢; A¢; = false,
and V;=1,¢; = true). Therefore, for the sake of conciseness, we note such
expressions as a set of couples made of a condition and a numeric expression:
{(Ci7 numﬁxp?"i)h:l,n-

During this transformation, one can simplify the resulting set by merging
conditions corresponding to the same numeric expressions, and by removing

I Existing libraries are not restricted to bounded polyhedron, but for software testing pur-
poses, we are only interested in bounded ones.
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If t(er) = {(c%, €i) bic1m and t(ez) = {(c}, €})}j=1.m, then we have:

o tley +ey) ={ci N, el +el M= (ditto for “—7, “¥”, etc.)

i=1,n
o t(if cthen e; else ez) = {(tn(c) Aci,el) bimin U{(tr(c) A c%, 6%)}j=1am
o tp(er <ez) =tp(er — ez <0)

o tp(er <0)=Vicia(el <OAC) (ditto for «>7, «<?, «x7 «=r wLr)

Figure 3: Remove “if-then-else” from constraints. ¢ transforms numeric expres-
sions, and tp transforms Boolean expressions.

couples where the condition is false. However, the transformation into BDD
performed later will automatically do that.

3.3 A two-layered resolution scheme

Solving Booleans. We first replace numeric constraints by new intermediary
Boolean variables: «; = mni *, ns. The resulting expression contains only
Boolean variables and operators, and can therefore be translated into a BDD.
This BDD provides the set all the Boolean solutions of the constraint.

Solving Numerics. For each of the Boolean solution, namely, for each path in
the BDD, we obtain a set of linear numeric constraints {«;};. Those constraints
are sent to a numeric constraint solver that is based on a convex polyhedra
library. On demand, the solver can return the set of generators corresponding
to the convex polyhedron defined by the sent constraints. Of course, among the
Boolean solutions, some of them are associated to an empty set of solutions.

In the end, each constraint is translated into a BDD that represents a union
of (possibly empty) convex polyhedra.

4 Choosing solutions

In order to generate test sequences, once the set of solutions is computed, one
of those has to be chosen. Using convex polyhedron, this set of solutions is
represented by a set of generators, which makes it very easy to favor limit cases.
A little bit more complex task is to perform a fair choice efficiently. However, as
we discuss later, being fair sometimes costs too much. We present in the sequel
some heuristics leading to reasonable trade-offs.
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4.1 Random choice of Boolean values

The first step consists in selecting a Boolean solution. Once the constraint has
been translated into a BDD, we have a (hopefully compact) representation of
the set of solutions. We first need to randomly choose a path into the BDD that
leads to a true leaf. But if we naively perform a fair toss at each branch of the
BDD during this traversal, we would be very unfair. Indeed, consider the BDD
of Figure 1; the monomial ade has 50% of chances to be tried, whereas abce,
and @bd have 25% each. One can easily imagine situation where the situation is
even worse. This is the reason why counting the solutions before drawing them
is necessary.

Note that in order to count the number of solutions, we cannot use integers,
or even doubles. Indeed, we would be restricted to 32 or 1024 variables®. One
possibility would be to use unbounded integers. However, for performance rea-
sons, we have preferred to implement a kind of big float data structure, where
the mantissa and the exponent are represented by unsigned integers. Indeed,
we just need to add and to multiply positive integers, and such a representation
makes it very cheap. The slight loss of precision is also insignificant for our
purposes.

Once each branch of the BDD is decorated with its solution number, per-
forming a fair choice among Boolean solutions is straightforward.

4.2 Random choice of numeric values
4.2.1 Taking numerics into account during the BDD traversal

From the BDD point of view, numeric constraints are just Boolean variables.
This means that a solution from the logical variables point of view may lead to
an empty set of solutions for numeric variables.

A naive method would be to select at random a path in the BDD, and then
to check if that selection corresponds to a satisfiable problem for the numeric
constraints. If it is not the case, then we should start again from the last
choice point, namely, from the last node in the BDD path that corresponds to
a numeric variable. Indeed, if we do not start from that last choice point but
from the BDD top-level node, we change the probability because we give more
chances to the BDD part that have less unsatisfiable paths for numeric reasons.
The problem with this method is that it could lead to a big number of such
backtracking steps before finding a valid numeric solution.

An alternative method that would avoid such useless backtracking consists
in solving the numeric constraints during the traversal, in order to be able to cut
zero-solution branches earlier. But then we are faced to the following efficiency
issue: consider the following constraint : a+b+c<1 A a+b=2 AN b—c=3,
and suppose that the constraint a + b + ¢ < 1 appears first during the BDD
traversal; this means that a polyhedron of dimension 3 will be created although

2Keep in mind that every atomic numeric constraint is encoded into a Boolean variable
during the transformation, therefore 1024 is not that big.



4 CHOOSING SOLUTIONS 8

the problem is of dimension 1. Maybe for dimension 3 it is not a major problem,
but for higher dimensions it can be. Indeed, solving such linear constraints using
convex polyhedron libraries is exponential in the dimension of the polyhedron.

Hence, we choose to implement an intermediary solution: take into account
constraints of dimension 1 during the random selection®, and delay constraints
of higher dimensions until the a leaf is reached. If the set of solutions becomes
empty during the draw, we backtrack to the previous choice point as in the
first method. Whenever an equality is traversed during the draw, we apply the
corresponding substitution to the set of delayed constraints, and check whether
some of them become of dimension 1. If it is the case, such awaken constraints
are sent to the solver. At the end of the BDD traversal, when a leaf is reached,
delayed constraints are sent to the solver; and again, if the set of solutions is
empty, we backtrack.

4.2.2 Favoring limit cases

In order to generate value sequences for feeding a program under test, it is
often useful to try limit values at domain boundaries. Since convex polyhedron
libraries return the set of polyhedron generators, choosing randomly among
vertices, or edges, or faces is easy.

One heuristic we use that is computationally cheap and that appears to be
quite effective is the following. Consider a set of n generators {7;}i=1,, of a
polyhedron of dimension k.

1. Draw one generator p.

2. Draw another generator 7, in {7;}i=1n.

3. Draw a point p’ between p and ;.

4. Go back to step 2 with p = p’, k — 1 times.

The advantage of this heuristic is that, since at step 2 the same v; can be
chosen several times, vertices are favored, and then edges, and then faces, and
so on, whatever the dimension of the polyhedron is.

4.2.3 Drawing numerics uniformly

At the end of the process, we have a valuation for each of the Boolean variables,
plus a set of generators representing several possible valuations for the numeric
variables. In order to complete the random selection process, one needs to
randomly choose such a numeric valuation using the generators.

The only method we are aware of to perform this choice uniformly is to
draw inside the smallest parallelepiped parallel to the origin axes containing the
polyhedron until a point inside the polyhedron is found. That parallelepiped can
be obtained by computing the minimum and the maximum values of generators
for each of their components.

3solving linear constraint on intervals does not require any convex polyhedron library.
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4.3 Fairness versus efficiency
4.3.1 Fairly choosing numerics is expensive

The algorithm proposed in 4.2.3 suffers from a major performance problem.
Indeed, drawing into the smallest parallelepiped parallel to the axes is not that
expensive: O(n.d), where d is the polyhedron dimension (d), and n the number
of generators (the draw is O(d) by itself, but obtaining the parallelepiped is
O(n.d)). But the number of necessary draws depend on the ratio between the
volume of the polyhedron and the volume of the parallelepiped. And this ratio
can be very small.

For example, when the dimension of the polyhedron is smaller than the one
of the parallelepiped, the theoretic ratio is 0. It is not always true for the
numeric values effectively representable on a machine, but still, the ratio is very
small. By changing the base using a Gauss method, one can augment this ratio.
But as the dimension increases (> 10), doing that is not sufficient.

A solution would be to compute the smallest surrounding parallelepiped (via
rotations), but this ought to be very costly. We have also considered performing
a random walk in the polyhedron: but in order to know when to stop the walk,
we need to know the volume of polyhedron, which is also very expensive [12].

A rather efficient algorithm to draw inside a convex polyhedron is to use
a variant of the algorithm of Section 4.2.2, choosing a different generator each
time at step 2. But this leads to a distribution that is not uniform: points tend
to concentrate close to vertices. To our knowledge, there is no computationally
simple way to perform such a uniform draw. However, for high dimensions, this
seems to be a reasonable trade-off, especially for testing purposes.

Even if it means to lose completely the control over the distribution, another
thing that could be done would be to use enumerative techniques based on
Simplex.

4.3.2 Combining Booleans and numerics

In some cases, the algorithms we have presented so far may lead to counter-
intuitive distribution. Consider for example the constraint over the integer
variable x: “0 < z < 100 A x # 2”. In the corresponding BDD, one path
will lead to a polyhedron made of the point x = 1, and the other one to the
polyhedron made of points between 3 and 99. And each of those paths will have
the same probability to be chosen (if we count the Boolean solution numbers).

In order to be fair, we need to compute the polyhedron volume for each
path, and take it into account when counting the number of solutions. But this
computation is very expensive for high dimensions. Moreover, since different
polyhedra correspond to different paths in the BDD, we need to change a little
bit our BDD representation as follows: a BDD node is not only associated to
a Boolean variable or an atomic numeric constraint (noted «; in 3.3); it is also
associated the set of atomic numeric constraints that are between the node and
the top-level node. Doing that, we loose some the shareness in the BDD: the one
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that concerned numeric constraints. Therefore, taking into account the volume
of polyhedron definitely needs to be an option.

5 Available Tools

All the tools presented in the sequel are freely available on the web at the URL:
http://www-verimag.imag.fr/ synchron/index.php?page=tools

LuckyDraw. The solving and drawing algorithms presented here are provided
under the form of an Ocaml and a C API %. Both the underlying BDD and
polyhedra library have been developed at Verimag and are available separately.

This library is used in Rennes by the STG tool (Symbolic Test Generation).
STG aims at generating and executing test cases using symbolic techniques [10].
LuckyDraw is used at the final stage in order to generate a concrete trace se-
quence from a symbolic automaton describing several scenarii.

Lucky, Lutin, Lurette. The LuckyDraw library is one of the main building-
block of Lutin and Lucky®, languages dedicated to the programming of stochas-
tic reactive systems. Basically, the constraint language presented here is ex-
tended with (1) an explicit control structure, (2) a mechanism to instantiate
input and memory variables, (3) and external function calls (to be applied on
input and memory variables only). Those languages were originally designed to
model reactive program environments in the Lurette testing tool [8].

Some issues with the current version of those tools. In our implemen-
tation, numeric values are represented by rationals, because the polyhedron
library we use uses rationals. However, Using the same representation as the
program under test (typically, floats or doubles) would certainly be better, in
particular for testing.

Integers are also approximated by rationals: we draw a rational, and then we
truncate it to obtain an integer. If the obtained solution is not valid, we draw
another one. This process is problematic when the number of integer solutions
is small, and pathologic for non-empty rational polyhedra that do not contain
any integer solution. When no valid solution is found after a certain number
of tries, our current implementation (maybe wrongly) pretends that there is no
solution at all. It would be better to use a finite domain solver in that case,
which should do quite well in such cases where the domain is small.

We could use such finite domains solvers from the beginning, but constraint
solving for linear systems is very hard, in particular when the domain is big.

4Many thanks to B. Jeannet for the C-Ocaml interfacing work
5www-verimag.imag.fr/~synchron /tools.html
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6 Related work

A lot of authors describe how to generate random-based test sequences us-
ing Constraint Logic Programming (CLP) or other external constraint solvers.
Constraint-based techniques tackle quite general constraints, whereas we focus
on linear constraints. Moreover, most authors uses enumerative techniques such
as SAT for booleans and simplex for numerics, whereas we use more constructive
techniques (BDD and convex polyhedron). The main advantage of constructive
techniques is to provide a finer-grained control over the distribution of the val-
ues to be generated. Besides, very few author describe precisely the drawing
heuristics they use, in particular with respect to numeric values.

Glass-box testing. Some authors [7, 2, 13] aim at generating input values in
order to reach the maximal level of coverage with respect to a given criterion.
The program under test is encoded into a CLP program, in such a way that
generating inputs to cover a given path in the control flow graph consists in
writing suitable CLP requests. Constraint filtering (constraint propagation)
phases are combined with labelling phases, using several heuristics, such as:
selecting the variable with the smallest domain; selecting the more constrainted
variable; or splitting domains. Somehow, using heuristics that way during the
labelling leads to different ways of generating test data as in our work, but it is
not clear which heuristics lead to what distribution for output variables in their
framework (it was not their objective).

Drawing in a graph. Several works describe constraints-based methods [5]
and heuristics [15] to generated random test values using graphs. But as already
mentioned above and in Section 5, we also have an explicit control structure in
order to control finely the distribution [16] (although we hardly describe this in
this article).

Other work uses constraint solvers to generate test sequences for B and Z
specifications [11]. Their test objective is to generate values that exercise their
boundaries. A Finite State Automation (FSA) that represents a set of abstract
executions is obtained via a reachability analysis. Then, they try to find a
concrete path in the abstract FSA to reach desired states. The way they con-
cretize a trace from a FSA is comparable to what we do with Lucky [10], the
difference being that their FSA are automatically generated, whereas we provide
a language to program them. In other words, we focus on the stochastic con-
cretization whereas they focus on the generation of the FSA. In [6], we described
how Lucky FSA can be generated using the Nbac abstract interpretation based
tool in order to reach desired set of states. Those FSA were actually Lucky
programs, that are simulated (concretized) using the algorithms presented here.

Generating floating-point numbers values. Another difference with most
works using constraint solvers to generate test is that they use finite domain
solvers, whereas we more specifically deal with floating-point numbers or ratio-
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nals. The domain of floating-point numbers is also finite, but it is much bigger
and finite domain solvers are quite inefficient with floats.

Solvers dedicated to floating-point numbers exist, although they are not al-
ways well-suited for program analysis in general, and test sequence generation
in particular. [14] proposes specific constraint solving algorithms that pay par-
ticular attention to mismatch between reals and floats, as well as to rounding
errors performed by usual solvers. The test generation performed using those
algorithms is similar to previously mentioned article: they try to reach specific
program points using verification techniques.

A language-oriented approach. Another difference with other works on
constraint based program testing is that we adopt a language-oriented approach.
Basically, when one wants to test a program using formal techniques, it is be-
cause the state space is too big to perform an exhaustive exploration. Instead
of providing methods and algorithms to prune out some of the branches of the
exploration graph, we provide random based programming languages (Lucky,
Lutin) to explore the state space [10].

7 Conclusion

We have presented algorithms to solve linear constraints combining Boolean
and numeric variables, as well as several heuristics to choose data values among
the constraint solutions. Albeit they sometimes handle non-linear constraints,
other constraint based techniques for generating test sequences generally tar-
gets finite domain variables (integers). Moreover, they are based on enumerative
techniques (SAT, Simplex) that make it difficult to provide a fine-grained control
over the distribution of the generated values. The algorithms and the associ-
ated library presented in this article are used as one of the main component of
automatic test generation tools [17, 8].
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