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Abstract

The stochastic calculus for Gaussian processes is applied to obtain a Tanaka
formula for a Volterra-type multifractional Gaussian process. The existence and
the regularity properties of the local time of this process is obtained by means of
Berman’s Fourier analytic approach.

1 Introduction

Several types of multifractional Gaussian processes have been studied, including the pro-
cesses introduced by Lévy-Véhel and Peltier [11] and by Benassi, Jaffard and Roux [6],
known as the moving average and the harmonisable versions of multifractional Brownian
motion, and the processes introduced by Benassi, Cohen and Istas [2] and, based on the
calculus of (multi-)fractional differentiation and integration, by Surgailis [17]. These
processes are usually defined by replacing, in certain representations of fractional Brow-
nian motion (fbm), the Hurst parameter H by a Hurst function h, i.e. a real function of
the time parameter with values in (0,1). Generalisations to stable processes have been
studied too [10, 15, 16]. The stochastic properties and the regularity of the trajectories
of these processes can be characterised in the same terms as for fbm, in particular by the
property of local asymptotic self-similarity or by the pointwise Hölder exponent, which
is constant and equal to H for fbm, but varies in time following h in the multifractional
case.

The aim of this article is to study a Volterra type multifractional Gaussian process
Bh which fits into the framework of stochastic calculus, and its local time. In fact, the
stochastic calculus, including the Itô formula and stochastic differential equations, is now
well established for fbm, where stochastic integrals have been defined in the Malliavin
sense or by means of Wick products. The stochastic calculus for multifractional Gaussian
processes has not yet been developed explicitely, but important elements, including a
divergence integral and an Itô formula, have been proven in [1] for a class of Gaussian
processes admitting a kernel representation with respect to Brownian motion. The
process Bh we study in this article is defined by allowing for a Hurst function in the
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kernel representation of fbm, and it belongs to the class of Gaussian processes studied
in [1]. The Itô formula in [1] is applied to get a representation of the local time for
which, as it is usually the case in Tanaka-like formulas, the occupation measure is not
the Lebesgue measure, but the quadratic variation process. However, contrary to fbm,
the interpretation in our case is more delicate because the quadratic variation process
is not necessarily increasing (but of bounded variation). We compare this local time to
the local time with respect to the Lebesgue measure, which we obtain, together with
the regularity properties of its trajectories, by the Fourier analytic approach initiated
by S. Berman [3] and which is based on the notion of local nondeterminism (LND).
Sufficient conditions for the LND property to hold are given in [7], and we show that
these conditions are implied by the stochastic properties, in particular the lass property,
of Bh.

It is well known that the cases where the Hurst parameter or the Hurst function is
< 1/2 resp. > 1/2 have to be treated separately (see [1] and [12]). We are interested in
the case where the Hurst function h takes values in (1/2,1). In fact, the Volterra-type
process we study here is defined only for this case, which is appropriate for long memory
applications [14]. The article is organised as follows : In Section 2 stochastic properties
and the regularity of the trajectories of Bh are proven. The form of the covariance
function (Proposition 2) shows in particular that Bh differs from the harmonisable and
moving average multifractional Brownian motions. The continuity of the trajectories
of Bh is obtained by classical criteria from estimates for the second order moments of
the increments (Proposition 3). The lass property is proven in Proposition 5; it implies
that the pointwise Hölder exponent of Bh is equal to h (Proposition 6). In Section 3
Bh is shown to satisfy the property named (K4) in [1] and that the quadratic variation
of Bh is of bounded variation. Therefore the divergence integral and the Itô formula
developed in [1] (recalled briefly in this section) hold for Bh. Section 4 is devoted to
the local time of Bh. Its existence and square integrability with respect to the space
variable follows from a classical criterion due to S. Berman ([3]) (Proposition 11). Then
a Tanaka-type formula with the divergence integral of Section 3 is given (Theorem 12),
where the occupation measure of the local time is the quadratic variation of Bh. Finally
the local time with respect to the Lebesgue measure and its regularity in the space and
time variables are given in Theorem 16. The proofs are based on the LND property,
which is shown to hold for Bh in Proposition 14. The sufficient conditions, named A
and Am are in fact closely related to the lass property, which is the main ingredient for
the proof of Proposition 14. Proposition 15 shows that the condition A holds in fact for
a much larger class of Gaussian processes than Bh.

2 A Volterra-type multifractional Gaussian process

It is well-known that the fractional Brownian motion BH with (fixed) Hurst parameter
H ∈ (1/2, 1) can be represented for any t ≥ 0 as

BH(t) =

∫ t

0
KH(t, u)W (du),

where

KH(t, u) = cHu
1/2−H

∫ t

u
(y − u)H−3/2yH−1/2dy,
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with

cH =

(
πH(2H − 1)

Γ(2 − 2H)Γ(H + 1/2)2 sin(π(H − 1/2))

)1/2

(H − 1/2)

and W (dy) is a Gaussian measure.
Let a and b be two real numbers satisfying 1/2 < a < b < 1. Throughout the paper

we consider a function h : R → [a, b]. We assume that this function is β−Hölder with
suph < β. Define the centered Gaussian process Bh = {Bh(t), t ≥ 0} by

Bh(t) = Bh(t)(t) =

∫ t

0
Kh(t)(t, u)W (du),

where

Kh(t)(t, u) = u1/2−h(t)

∫ t

u
(y − u)h(t)−3/2yh(t)−1/2dy. (1)

If h(·) = H is a constant, BH is a fractional Brownian motion up to the multiplicative
constant cH . Before establishing properties of Bh we give a lemma regarding an estimate
on KH that we use throughout the paper.

Lemma 1 For every T > 0 there exists a function ΦT ∈ L2((0, T ],R+) such that for
every s ∈ (0, T ]

sup
λ∈[a,b],t∈(0,T ]

∣∣∣∣
∂

∂λ
Kλ(t, s)

∣∣∣∣ ≤ ΦT (s).

Proof. We have

∂

∂λ
Kλ(t, s) = (− log s)s1/2−λ

∫ t

s
(y − s)λ−3/2yλ−1/2dy

+s1/2−λ

∫ t

s
(y − s)λ−3/2yλ−1/2(log(y − s) + log y)dy.

Then for every T > 0 there exists a constant Ca,b,T such that for every λ ∈ [a, b] and
s ∈ (0, T ]

∣∣∣∣
∂

∂λ
Kλ(t, s)

∣∣∣∣ ≤ Ca,b(1 ∨ | log s|)s1/2−b =: ΦT (s)

that concludes the proof.
The following proposition gives the covariance of this process.

Proposition 2 Let X = {X(t, λ), t ≥ 0, λ ∈ (1/2, 1)} be the two-parameter process
given by X(t, λ) =

∫ t
0 Kλ(t, u)W (du). Then

E[X(t, λ)X(s, λ′)] =

∫ t

0
dy

∫ s

0
dzβ̃(y, z, λ, λ′)|y − z|λ+λ′−2

(y
z

)λ−λ′

where

β̃(y, z, λ, λ′) = β(2 − λ− λ′, λ′ − 1/2)1{y>z} + β(2 − λ− λ′, λ− 1/2)1{y<z}
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and β(a, b) (a, b > 0) is the Beta function. In particular,

E[X(t, λ)2] =

∫ t

0
dy

∫ t

0
dz β(2 − 2λ, λ− 1/2)|y − z|2λ−2

=
β(2 − 2λ, λ− 1/2)

λ(2λ− 1)
t2λ.

Proof. We have

E[X(t, λ)X(s, λ′)] =

∫ t∧s

0
Kλ(t, u)Kλ′(s, u)du

=

∫ t∧s

0
u1−λ−λ′

(∫ t

u
(y − u)λ−3/2yλ−1/2dy

)

×

(∫ s

u
(z − u)λ′−3/2zλ′−1/2dz

)
du

=

∫ t

0
dy

∫ s

0
dz yλ−1/2zλ′−1/2

×

∫ y∧z

0
u1−λ−λ′

(y − u)λ−3/2(z − u)λ′−3/2du.

We fix y > z and calculate the following integral by making the successive substitutions
u = vz, w = (y − vz)/(1 − v), t = w/y and s = 1/t:

∫ z

0
u1−λ−λ′

(y − u)λ−3/2(z − u)λ′−3/2du

= z1/2−λ

∫ 1

0
λ′(y − vz)λ−3/2(1 − v)λ′−3/2dv

= z1/2−λ(y − z)λ+λ′−2

∫ +∞

y
(w − y)1−λ−λ′

wλ−3/2(y − z)λ+λ′−2dw

= z1/2−λy1/2−λ′

(y − z)λ+λ′−2

∫ +∞

1
(t− 1)1−λ−λ′

tλ−3/2dt

= z1/2−λy1/2−λ′

(y − z)λ+λ′−2β(2 − λ− λ′, λ′ − 1/2).

In the same way we get for y < z :
∫ y

0
u1−λ−λ′

(y − u)λ−3/2(z − u)λ′−3/2du

= z1/2−λy
1
2
−λ′

(z − y)λ+λ′−2β(2 − λ− λ′, λ− 1/2).

This concludes the proof.
In the sequel we need the estimates we establish in the following proposition.

Proposition 3 The process X satisfies the following estimates.
a) For all s and t ≥ 0

E[(X(t, λ) −X(s, λ))2] = c−2
λ |t− s|2λ (2)

b) For every T > 0, there exists a constant CT > 0 such that for every t ∈ [0, T ] and
every λ and λ′ ∈ [a, b]

E[(X(t, λ) −X(t, λ′))2] ≤ CT |λ− λ′|2 (3)
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Proof.

Proof of a). For every λ ∈ [a, b] the process X(·, λ) : t 7→ X(t, λ) is a fractional Brownian
motion with variance c−2

λ so we deduce (2).
Proof of b). We have

E[(X(t, λ) −X(t, λ′))2] =

∫ t

0
(Kλ(t, u) −Kλ′(t, u))2du.

There exists ξ = ξ(λ, λ′) ∈ [min{λ, λ′},max{λ, λ′}] such that

Kλ(t, u) −Kλ′(t, u) = (λ− λ′)

∣∣∣∣
∂

∂λ
Kλ(t, u)

∣∣∣∣
λ=ξ=ξ(λ,λ′)

.

Then, thanks to Lemma 1 we get for every t, λ and λ′

E[(X(t, λ) −X(t, λ′))2] ≤ |λ− λ′|2
∫ T

0
(ΦT (u))2du

that ends the proof.
From the last proposition we can deduce the continuity of Bh.

Corollary 4 The process Bh defined above has continuous trajectories.

Proof. We deduce from Proposition 3 that for every s and t in a compact interval [0, T ]
such that |t− s| < 1

E[(Bh(t) −Bh(s))2] = E[(X(t, h(t)) −X(s, h(s)))2]

≤ 2E[(X(t, h(t)) −X(t, h(s)))2]

+2E[(X(t, h(s)) −X(s, h(s)))2]

≤ 2CT |h(t) − h(s)|2 + 2c−2
h(s)|t− s|2h(s)

≤ 2CT |t− s|2β + 2 sup
λ∈[a,b]

(c−2
λ )|t− s|2a.

Then E[(Bh(t) −Bh(s))2]/|t− s|2a is bounded and since Bh is Gaussian we can deduce
from [5] its continuity.

Now we deal with the local self-similarity property of Bh.

Proposition 5 The process Bh is locally self-similar. More precisely, for every t, we
have the following convergence in distribution:

lim
ε→0

(
Bh(t+ εu) −Bh(t)

εh(t)

)

u≥0

=
(
c−1
h(t)Bh(t)(u)

)

u≥0

where limε→0 stands for the limit in distribution in the space of continuous functions
endowed with the uniform norm on every compact set.

Proof. Let us start by proving the convergence of the finite dimensional distribution.
Because Bh is Gaussian, it suffices to show the convergence of the second-order moments.
We then can write for every u and v:

1

ε2h(t)
E [(Bh(t+ εu) −Bh(t)) (Bh(t+ εv) −Bh(t))]

=
1

ε2h(t)
(I1(ε) + I2(ε) + I3(ε) + I4(ε))
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where

I1(ε) = E[(X(t+ εu, h(t)) −X(t, h(t)))

× (X(t+ εv, h(t)) −X(t, h(t)))],

I2(ε) = E[(X(t+ εu, h(t+ εu)) −X(t+ εu, h(t)))

× (X(t+ εv, h(t)) −X(t, h(t)))],

I3(ε) = E[(X(t+ εu, h(t)) −X(t, h(t)))

× (X(t+ εv, h(t+ εv)) −X(t+ εv, h(t)))],

I4(ε) = E[(X(t+ εu, h(t+ εu)) −X(t+ εu, h(t)))

× (X(t+ εv, h(t+ εv)) −X(t+ εv, h(t)))].

Thanks to the selfsimilarity of the fractional Brownian motion and by stationarity of its
increments we get

lim
ε→0

1

ε2h(t)
I1(ε) =

1

2c2h(t)

(|u|2h(t) + |v|2h(t) − |u− v|2h(t)). (4)

Then, because of Cauchy-Schwartz inequality, it is enough to prove

lim
ε→0

1

ε2h(t)
E

[
(X(t+ εu, h(t+ εu)) −X(t+ εu, h(t)))2

]
= 0 (5)

to get

lim
ε→0

1

ε2h(t)
(I2(ε) + I3(ε) + I4(ε)) = 0. (6)

So, using Lemma 1 we get

1

ε2h(t)
E

[
(X(t+ εu, h(t+ εu)) −X(t+ εu, h(t)))2

]

=
1

ε2h(t)

∫ t+εu

0

(
Kh(t+εu)(t+ εu, s) −Kh(t)(t+ εu, s)

)2
ds

≤
(h(t+ εu) − h(t))2

ε2h(t)

∫ t+εu

0
sup
H

∣∣∣∣
∂

∂H
KH(t+ εu, s)

∣∣∣∣
2

ds

≤ Cε2β−2h(t)

∫ t+u

0
|Φt+u(s)|2 ds −→

ε→0
0.

Now it remains to prove the tightness in the space of continuous functions endowed by
the uniform norm. We also consider T > 0 such that t, t + εu and t + εv ∈ [0, T ] for
all ε. Making similar calculations as in the proof of Corollary 4 we get that there exist
CT > 0 such that

E

[(
Bh(t+ εu) −Bh(t)

εh(t)
−
Bh(t+ εv) −Bh(t)

εh(t)

)2
]

=
1

ε2h(t)
E

[
(Bh(t+ εu) −Bh(t+ εv))2

]

≤
CT

ε2h(t)
|εu− εv|2h(t+εv)

= CT ε
2(h(t+εv)−h(t)) |u− v|2h(t+εv)
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Since h is β−Hölder then ε2(h(t+εv)−h(t)) is uniformly bounded. Moreover h(t+ εv) ≥ a,
thus

E

[(
Bh(t+ εu) −Bh(t)

εh(t)
−
Bh(t+ εv) −Bh(t)

εh(t)

)2
]
≤ CT |u− v|2a

that ends the proof.
It is classical to deduce pointwise Hölder continuity from local self-similarity [2].

We recall that the pointwise Hölder continuity of a function f is characterized by the
pointwise Hölder exponent αf (t0) defined at each point t0 as

αf (t0) = sup

{
α > 0 : lim

t→t0

|f(t) − f(t0)|

|t− t0|α
= 0

}
.

Proposition 6 For every t0 ∈ R+ the pointwise Hölder exponent αBh
(t0) of Bh is

almost surely equal to h(t0).

Proof. We deduce from Proposition 5 that αBh
(t0) ≤ h(t0). Now we prove that

αBh
(t0) ≥ h(t0). Let ε > 0. For every s and t ∈ [t0 − ε, t0 + ε] such that |t − s| < 1,

from Proposition 3 we have

E[(Bh(t) −Bh(s))2] ≤ C|t− s|2 inf [t0−ε,t0+ε] h.

By the fact that Bh is Gaussian and applying Kolmogorov theorem [5], we get that
limt→t0 |f(t) − f(t0)|/|t− t0|

α = 0 for every α < inf [t0−ε,t0+ε] h. This holds for every
ε > 0, so by continuity of h we get limt→t0 |f(t) − f(t0)|/|t− t0|

α = 0 for every α < h(t0).
We can deduce that αBh

(t0) ≥ h(t0), and hence αBh
(t0) = h(t0)

3 Stochastic calculus for Bh

The aim of this section is to apply the stochastic calculus developed by Alòs, Mazet and
Nualart in [1] to get a stochastic integral for Bh and an Itô formula. We recall that in
[1] the following hypothesis, called (K4), appears for regular kernels:

• Hypothesis (K4). For all s ∈ [0, T ), K(·, s) has bounded variation on the interval

(s, T ], and
∫ T
0 |K|((s, T ], s)2ds <∞.

Lemma 7 Suppose that h is of bounded variation on (s, T ] for all s ∈ [0, T ). Then
(K4) holds for (t, s) 7→ Kh(t)(t, s) defined by (1).

Proof. Let

Varn
(s,T ](·, s) = sup

t0=s<t1<...<tn=T

n∑

i=1

|Kh(ti)(ti, s) −Kh(ti−1)(ti−1, s)|,

and suppose without restriction of generality that T = 1. Then

|Kh(ti)(ti, s) −Kh(ti−1)(ti−1, s)| ≤ I1(i) + I2(i),

where

I1(i) = |Kh(ti)(ti, s) −Kh(ti)(ti−1, s)|
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and

I2(i) = |Kh(ti)(ti−1, s) −Kh(ti−1)(ti−1, s)|

We have

I1(i) = s1/2−h(ti)

∫ ti

ti−1

(y − s)h(ti)−3/2yh(ti)−1/2dy

≤ s1/2−b

∫ ti

ti−1

(y − s)a−3/2ya−1/2dy.

Therefore
n∑

i=1

|Kh(ti)(ti, s) −Kh(ti)(ti−1, s)| ≤ s1/2−b

∫ 1

s
(y − s)a−3/2ya−1/2dy

≤ C(a)s1/2−b. (7)

Regarding I2 we have

n∑

i=1

∣∣Kh(ti)(ti−1, s) −Kh(ti−1)(ti−1, s)
∣∣

≤
n∑

i=1

|h(ti) − h(ti−1)| sup
s≤t≤1,a≤λ≤b

∣∣∣∣
∂

∂λ
Kλ(t, s)

∣∣∣∣ .

The proof of Lemma 1 implies that Varn
(s,T ](·, s) ≤ C(1∨ | log s |)s1/2−b, where the

constant C > 0 depends on h (but not on n). This implies that (K4) holds for Kh.

Remark 8 Since h is also supposed β−Hölder continuous for some β ≤ 1, we will
suppose from now on that h is Lipschitz-continuous. Notice that lim

tցu
Kh(t)(t, u) = 0 for

all u > 0.

For simplicity we write K instead of Kh but keep in mind that (t, s) → K(t, s) means
(t, s) → Kh(t)(t, s) and that differentials with respect to t act also via h.

In the sequel we need the following proposition regarding the variance of Bh.

Proposition 9 The variance s 7→ Rs = E[Bh(s)2] is of bounded variation on (0, T ].

Proof. We have
n∑

i=1

∣∣Rsi+1 −Rsi

∣∣ =

n∑

i=1

∣∣∣∣
∫ si+1

0
K(si+1, r)

2dr −

∫ si

0
K(si, r)

2dr

∣∣∣∣

≤

n∑

i=1

∫ si+1

0
K(si+1, r)

2dr +

n∑

i=1

∣∣∣∣
∫ si

0
[K(si+1, r)

2 −K(si, r)
2]dr

∣∣∣∣ .

The functions |K(s, r)1[0,s](r)| are bounded by the square integrable function k(r) =

|K(T, r)| + |K|((r, T ], r). Hence the first term above is upper bounded by
∫ T
0 k(r)2dr.

The second term is upper bounded by

n∑

i=1

∫ si

0
|K|((si, si+1], r) |K(si+1, r) +K(si, r)| dr

≤ 2

∫ T

0
k(r)|K|((r, T ], r)dr <∞.
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This concludes the proof.
For any f ∈ L2([0, T ]) let Kf be defined by (Kf)(t) =

∫ t
0 K(t, s)f(s)ds. Let E

be the set of step functions on [0, T ], and let the operator K∗ be defined on E by

(K∗ϕ)(s) =
∫ T
s ϕ(t)K(dt, s). Then K∗ is the adjoint of K. In fact, for ai ∈ R, 0 = s1 <

s2 < ... < sn+1 = T , ϕ =
∑n

i=1 ai1(si,si+1](s) and f ∈ L2([0, T ]), we write

(K∗ϕ)(s) =

n∑

i=1

1(si,si+1](s)

n∑

j=i

aj(K(sj+1, s) −K(sj , s))

and

∫ T

0
(K∗ϕ)(s)f(s)ds =

n∑

j=1

aj

∫ T

0

j∑

i=1

1(si,si+1](s)(K(sj+1, s) −K(sj , s))f(s)ds

=

n∑

j=1

aj [(Kf)(sj+1) − (Kf)(sj)] =

∫ T

0
ϕ(t)(Kf)(dt). (8)

As usual the Reproducing Kernel Hilbert Space (RKHS) H is defined as the closure of
the linear span of the indicator functions {1[0,t], t ∈ [0, T ]} with respect to the scalar
product 〈1[0,t], 1[0,s]〉H = E[Bh(t)(t)Bh(s)(s)] ≡ R(t, s). By replacing f(s)ds in (8) by
W (ds), we have by (1)

Bh(ϕ) ≡

∫ T

0
ϕ(t)Bh(dt) =

∫ T

0
(K∗ϕ)(s)W (ds).

Therefore

‖ϕ‖2
H = E[Bh(ϕ)2] = ‖K∗ϕ‖2

L2([0,T ]) ≤

∫ T

0

[∫ T

0
|ϕ(t)||K|(dt, s)

]2

ds =: ‖ϕ‖2
K .

Let us denote by HK the completion of E with respect to the ‖ · ‖K-norm. Then HK

is continuously embedded in H.
In order to define the stochastic integral with respect to Bh, let us denote by S the set

of smooth cylindrical random variables of the form F = f(Bh(ϕ1), Bh(ϕ2), ..., Bh(ϕn)),
where n ≧ 1, f ∈ C∞

b (Rn) (f and all its derivatives are bounded) and ϕ1, ϕ2, ..., ϕn ∈ H.
Let us also denote by D

1,2(HK) the closure of {F ∈ S : F ∈ L2(Ω,HK), DF ∈ L2(Ω ×
HK ,HK)}. Then D

1,2(HK) is included in the domain Dom(δBh) of the divergence
operator of Bh, and the integral of u ∈ Dom(δBh) with respect to Bh is given by

δBh(u) ≡

∫ T

0
u δBh =

∫ T

0
(K∗u) δW ≡

∫ T

0

[∫ T

s
u(r)K(dr, s)

]
δW (s),

where the last two integrals are the divergence integrals with respect to Brownian mo-
tion. Let us recall that the integral δBh(u) is defined, for any u ∈ L2(Ω,H), as the unique
element in L2(Ω) which satisfies the duality relationship E(δBh(u)F ) = E〈DF, u〉H for
all F ∈ S.

The following Itô formula, due to Alòs, Mazet and Nualart [1], will be applied in the
next section. Let F be a function of class C2(R) satisfying the condition

max{|F (x)|, |F ′(x)|, |F ′′(x)|} ≤ ceλ|x|
2
,

9



where c and λ are positive constants such that λ < 1
4

(
sup0≦t≤TRt

)−1
. This implies that

the process F ′(Bt) belongs to D
1,2(HK). The integral

∫ t
0 F

′(Bh(s))δBh(s) is therefore
well defined for all t ∈ [0, T ], and the following Itô-type formula holds ([1], Theorem 2):

F (Bh(t)) = F (0) +

∫ t

0
F ′(Bh(s))δBh(s) +

1

2

∫ t

0
F ′′(Bh(s))dR(s). (9)

4 Local time and Tanaka formula for Bh

First we prove by means of a criterion for Gaussian processes due to S. Berman that Bh

has a local time with respect to the Lebesgue measure. Then we derive a Tanaka-type
formula from the Itô formula of Section 3 and show that Bh satisfies the LND property.
This implies continuity and Hölder regularities in space and in time of the trajectories
of the local time.

Definition 10 For any Borel set C ⊂ R+ the occupation measure mC of Bhon C is
defined, for all Borel sets A ⊂ R, by mC(A) = λ{t ∈ C, Bh(t)(t) ∈ A}, where λ is the
Lebesgue measure on R+. If mC is absolutely continous with respect to the Lebesgue
measure on R, the local time (or occupation density) of Bh on C is defined as the
Radon-Nikodym derivative of mC and will be denoted by {L(C, x), x ∈ R}. Sometimes
we write L(t, x) instead of L([0, t], x).

This definition implies that the local time of Bh satisfies the following occupation
density formula

∫

C
g(t, Bh(t))dt =

∫

C×R

g(t, x)L(dt, x)dx (10)

for all continuous functions with compact support g : C ×R → R. If g does not depend
explicitely on t, we get the more classical occupation density formula where the right
side of (10) is replaced by

∫
C g(x)L(C, x)dx.

Proposition 11 The local time of Bh exists P -a.s. on any interval [0, T ] and is a
square integrable function of x.

Proof. By [3], for any continuous and zero mean Gaussian process {Xt, t ∈ [0, T ]} with
bounded covariance function, the condition

∫ T

0

∫ T

0

ds dt√
E[|Xt −Xs|2]

< +∞ (11)

is sufficient for the local time of X to exist and to be a square integrable function of x.
If (s, t) is away from the diagonal we write for s < t

E[|Bh(t) −Bh(s)|2] =

∫ s

0
(Kh(t)(t, u) −Kh(s)(s, u))

2du+

∫ t

s
Kh(t)(t, u)

2du

and deduce from (1) that the second term stays strictly positive as (s, t) varies in [0, t−
ε] × [0, T ]. If (s, t) is close to the diagonal, say 0 ≤ t− s < ε, by Proposition 5,

E[|Bh(t) −Bh(s)|2] ∼ c−2
h(t)(t− s)2h(t)

10



as sր t, and a direct calculation shows that (11) is satisfied.
Let us now derive a Tanaka-type formula for Bh. Since the last term in the Itô

formula (9) is an integral with respect to the variance function R and since R is not
in general increasing, but only of finite variation, the trajectorial representation of the
local time is more delicate than for Brownian motion or for fractional Brownian motion.
On the time intervals where R is (strictly) inceasing or decreasing, this formula gives in
fact an occupation density L̂ related to L.

Theorem 12 Suppose that h is continuously differentiable. Then, for all a ∈ R,

|Bh(t) − a| − |Bh(s) − a| =

∫ t

s
sign(Bh(u) − a)dBh(u) + L̂([s, t], a)

P−a.s., where L̂([s, t], a) =
∫ t
s R

′(u)L(du, a) and L is the local time with respect to the
Lebesgue measure of Bh. On the time intervals [s, t] where R is strictly inceasing (resp.
strictly decreasing), L̂ (resp. −L̂) is the (positive) occupation density of Bh with respect
to the measure induced by R.

Remark 13

a) No information on the local time of Bh can be drawn from the above formula if
R′(u) = 0 on the interval [s, t]. In fact,

R′(u) =
d

du
E[B2

h(u)(u)] =
d

du
(u2h(u)) = 2

(
h′(u) log u+

h(u)

u

)
u2h(u),

and R′(u) = 0 if h(u) = 1/ log u ∈ (1/2, 1) on an interval (s, t). In this case L̂([s, t], a) =
0 for all a.
b) Tanaka formulas for fractional Brownian motion have been shown by several authors.
We refer to the survey [8] for references.

Proof. For ε > 0 let pε(x) = (2πε)−1/2 exp(−x2/(2ε)). We apply the Itô formula of the
previous section to the process

Fε(x) =

∫ t

0
F ′

ε(y)dy

where

F ′
ε(x) = 2

∫ x

−∞
pε(y)dy − 1.

Then F ′
ε(x) converges to sign(x) and Fε(x) converges to |x| as ε → 0. By (9), for ε > 0

fixed,

Fε(Bh(t) − a) = Fε(−a) +

∫ t

0

∫ t

s
F ′

ε(Bh(r) − a)K(dr, s)δWs

+

∫ t

0
pǫ(Bh(s) − a)dR(s). (12)

Notice that by (K4) the process {F ′
ε(Bh(r)−a), r ∈ [0, t]} belongs to L2(Ω,HK) and be-

longs therefore to Dom(δBh). Or, equivalently, the process {
∫ t
s F

′
ε(Bh(r)−a)Kh(dr, s), s ∈

[0, t]} belongs to Dom(δW ). Clearly Fε(Bh(t)−a) converges to |Bh(t)−a| in L2(Ω) and

11



Fǫ(−a) converges to |a| if ε → 0. Moreover, the process {F ′
ε(Bh(r) − a), r ∈ [0, t]}

converges, as ε→ 0, to {sign(Bh(r) − a), r ∈ [0, t]} in L2(Ω,HK). In fact, by (K4),

E

[∫ t

0

(∫ t

s
|F ′

ε(Bh(r) − a) − sign(Bh(r) − a)||Kh|(dr, s)

)2

ds

]

is upper bounded independently of ε, and we may apply the dominated convergence
theorem (Lemma 1 of [9]). Therefore the last term in (12) converges in L2(Ω). Let us
denote the limit by Λa

t . Therefore, for any continous function f with compact support
in R,

∫ (∫ t

0
pε(Bh(s)) − a)dR(s)

)
f(a)da (13)

converges in L1(Ω) to
∫

Λa
t f(a)da. In fact, the dominated convergence theorem applies,

because

∫ t

0
E[pε(Bh(s)) − a)]dR(s) =

∫ t

0
pR(s)+ε(a)dR(s) ≦

∫ t

0
s−bR′(s)ds <∞.

But (13) converges also to
∫ t
0 f(Bh(s))dR(s) =

∫ t
0 f(Bh(s))R′(s)ds, where we use the

fact that R is differentiable if h is differentiable. Hence

∫ t

0
f(Bh(s))R′(s)ds =

∫
Λa

t f(a)da.

By the occupation density formula (10) applied to g(s, x) = f(x)R′(s) we get Λa
t =∫ t

0 R
′(s)L(ds, a) = L̂(t, a) for λ−a.e. a, P−a.s. We can extend to all a ∈ R since there

exists a jointly continous version of L and therefore of L̂, as will be shown next by
Berman’s methods which are independent of the Tanaka formula.

We state now regularity properties in time and space of the trajectories of L. The
regularity properties of L̂ follow easily since L̂(t, x) =

∫ t
0 R

′(s)L(ds, x). In order to show
the existence of a jointly continuous version of L, we recall the hypotheses introduced in
[7] and show that they are satisfied for Bh. We recall them in terms of any real valued
separable random process {X(t), t ∈ [0, T ]} with Borel sample functions.

• Hypothesis (A). There exist numbers ρ0 > 0 and H ∈ (0, 1) and a positive
function ψ ∈ L1(R) such that for all λ ∈ R and t, s ∈ [0, T ], 0 < |t − s| < ρ0 we
have ∣∣∣∣E

[
exp

(
iλ
X(t) −X(s)

|t− s|H

)]∣∣∣∣ ≤ ψ(λ).

• Hypothesis (Am). There exist positive constants δ and c (both eventually de-
pending on m ≥ 2) such that for all t1, t2, · · · , tm with 0 =: t0 < t1 < · · · < tm ≤ T
and |tm − t1| < δ we have

∣∣∣∣∣∣
E


exp


i

m∑

j=1

uj(X(tj) −X(tj−1))






∣∣∣∣∣∣
≤

m∏

j=1

|E[exp(icuj(X(tj) −X(tj−1)))]|

for all u1, u2, · · · , um ∈ R.

12



Hypothesis (A) is evidently satisfied for selfsimilar processes with stationary increments:
here ψ(λ) = |E[eiλX(1)]|. Hypothesis (A) is also closely related to asymptotic selfsimi-
larity, and it holds in fact for a fairly large class of processes (see Proposition 15).

If X has independent increments, (Am) is trivially true for all m ≥ 2. When the left
and the right side of the inequality is applied to the characteristic function of a Gaussian
process X, we get the condition which is known in the litterature under the name of
local nondeterminism (LND). Loosely speaking, LND says how much dependence is
allowed for the increments of the process if the local time should have certain regularity
properties. As a general rule, the trajectories of local time get more regular if the
trajectories of the process get less regular.

Proposition 14 For all T > 0, the process {Bh(t), t ∈ [0, T ]} satisfies Hypotheses (A)
and (Am) for all m ≥ 2 with H = max0≤t≤T h(t).

Proof. Let us start by showing (A). By similar calculations as in the proof of Proposi-
tion 5, for every t ∈ [0, T ]

∣∣∣∣∣E[ε−2h(t)(Bh(t+ ε) −Bh(t))2] −
1

c2h(t)

∣∣∣∣∣ ≤ εβ−sup[0,T ] h

∫ T+1

0
(ΦT+1(s))

2ds.

We can now conclude by applying Proposition 15.
Now we prove (Am) for all m ≥ 2. We show that Bh satisfies the LND property as

it has been introduced by S. Berman for Gaussian processes. For simplicity we write
B instead of Bh in this proof. Let t1 < t2 < · · · < tm, and let Vm be the relative
conditioning error given by

Vm =
Var[B(tm) −B(tm−1)|B(t1), · · · , B(tm−1)]

Var[B(tm) −B(tm−1)]
.

The Gaussian process is said to be LND if

lim inf
cց0+

0<tm−t1≤c

Vm > 0. (14)

This condition means that a small increment of the process is not completely predictable
on the basis of a finite number of observations from the immediate past. For Gaussian
processes S. Berman [4] has proved that (14) implies (Am). More precisely he has shown
that if X satisfies (14) for all m ≥ 2, then there exist constants Cm > 0 and δm > 0
such that, for all u1, u2, · · · , um ∈ R,

Var




m∑

j=1

uj [B(tj) −B(tj−1)]


 ≥ Cm

m∑

j=1

u2
jVar [B(tj) −B(tj−1)] ,

where t0 = 0 and t1 < · · · < tm are different and lie in an interval of length at most
δm. This implies (Am). In order to prove that B verifies (14), fix m ≥ 2 and let
t < t1 < t2 < · · · < tm < t+ δt. By Proposition 2

Var[B(tm) −B(tm−1)] ≤ 2Var[B(tm) −B(t)] + 2Var[B(tm−1) −B(t)] ≤ Ch(t)δ
2h(t),
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where Ch(t) is a constant depending on t. Therefore

lim
δ→0

Var[B(tm) −B(tm−1)|B(t1), · · · , B(tm−1)]

Var[B(tm) −B(tm−1)]

≥ lim
δ→0

Var[B(tm)|B(t1), · · · , B(tm−1)]

Ch(t)δ2h(t)
.

Moreover, by adding B(t) to the conditional set,

Var[B(tm)|B(t1), · · · , B(tm−1)]

δ2h(t)

≥
Var[B(tm)|B(t), B(t1), · · · , B(tm−1)]

δ2h(t)

= Var

[
B(tm) −B(t)

δh(t)

∣∣∣∣∣B(t),
B(t1) −B(t)

δh(t)
, · · · ,

B(tm−1) −B(t)

δh(t)

]

since

σ{B(t), B(t1) −B(t), · · · , B(tm−1) −B(t)}

= σ

{
B(t),

B(t1) −B(t)

δh(t)
, · · · ,

B(tm−1) −B(t)

δh(t)

}
.

Let now u1, · · · , um be defined by ti − t = uiδ, i = 1, 2, · · · ,m. Then 0 < ui < t, and
when δ → 0 the ti = tδi are chosen in such a way that the ui do not change. Therefore

lim
δ→0

Var

[
B(t+ δum) −B(t)

δh(t)

∣∣∣∣∣B(t),
B(t+ δu1) −B(t)

δh(t)
, · · · ,

B(t+ δum−1) −B(t)

δh(t)

]

= lim
δ→0

Var

[
Yt,δ(um)

∣∣∣∣∣B(t), Yt,δ(u1), · · · , Yt,δ(um−1)

]
,

where Yt,δ(ui) = (B(t+ δui) −B(t))/ δh(t). Moreover,

Var[Yt,δ(um)|B(t), Yt,δ(u1), · · · , Yt,δ(um−1)] =
det Cov[B(t), Yt,δ(u1), · · · , Yt,δ(um)]

det Cov[B(t), Yt,δ(u1), · · · , Yt,δ(um−1)]
.

By the local selfsimilarity of B (Proposition 5) Yt,δ converges weakly to a fractional
Brownian motion B̃h(t) with Hurst parameter h(t) (recall that t is fixed). Consequently
the fraction above converges to

det Cov[B(t), B̃h(t)(u1), · · · , B̃h(t)(um)]

det Cov[B(t), B̃h(t)(u1), · · · , B̃h(t)(um−1)]
.

Therefore

lim
δ→0

Var[Yt,δ(um)|B(t), Yt,δ(u1), · · · , Yt,δ(um−1))

= Var[B̃h(t)(um)|B̃h(t)(t), B̃h(t)(u1), · · · , B̃h(t)(um−1))

≥ Ch(t)[(um − um−1) ∧ (t− um)]2h(t),
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where the last inequality follows from Lemma 7.1 of [13]. The last term is strictly
positive since the 0 < u1 < · · · < um < t.

The beginning of the proof of Proposition 14 shows that the hypothesis (A) holds
for a much larger class of processes. In fact we have only used the assumption of the
following proposition.

Proposition 15 Let {Xt, t ∈ [0, T ]}be a centered Gaussian process. Suppose that for
some positive continuous functions f : [0, T ] → (0, 1) and g : [0, T ] → (0,∞)

E[ε−2f(t)(X(t+ ε) −X(t))2] −→
ε→0

g(t) (15)

uniformly in t. Then Hypothesis (A) holds.

Proof. Let us fix H > sup f =: f∗. Because X is Gaussian and centered, we have

E

[
exp

(
iλ
X(t+ ε) −X(t)

εH

)]
= exp

(
−
λ2

2
E

[(
X(t+ ε) −X(t)

εH

)2
])

. (16)

Because of (15), there exists ε0 such that for every ε satisfying |ε| < ε0 and for every t
we have

E

[(
X(t+ ε) −X(t)

εf(t)

)2
]
≥
c

2
(17)

where c = inf [0,T ] g. Besides,

ε2f(t)−2H ≥ ε2f∗−2H ≥ 1, (18)

and thus

E

[(
X(t+ ε) −X(t)

εH

)2
]

= ε2f(t)−2H
E

[(
X(t+ ε) −X(t)

εf(t)

)2
]
≥
c

2
. (19)

Then, combining (16) and (19) we get for every λ, and t and s satisfying |t− s| < ε0,
∣∣∣∣E
[
exp

(
iλ
X(t+ ε) −X(t)

εH

)]∣∣∣∣ ≤ exp

(
−
λ2c

4

)
.

Then we choose ψ(λ) = exp
(
−λ2c/4

)
to conclude the proof.

Let us now state a regularity result for the trajectories of L. The following theorem
says that L(t, x) is Hölder continuous in t of order 1 − H and Hölder continuous in x
of order 1−H

2H , where H is the constant appearing in (A). For the proofs we refer to
[7], where it is shown that these regularities hold for any process starting at zero and
satisfying (A) and (Am) for all m ≥ 2.

Theorem 16 Suppose that ψ in (A) satisfies
∫

|u|≥1
|u|(1−H)/Hψ(u)du <∞.

Then {Bh(t), t ∈ [0, T ]} has a jointly continuous local time {L(t, x), (t, x) ∈ [0, T ] × R}.
Moreover, for any compact set K ⊂ R and any interval I ⊂ [0, T ] with length less than
ρ0 (the constant appearing in (A)),
(i) if 0 < ξ < (1 −H)/2H, then |L(I, x) − L(I, y)| ≤ η|x− y|ξ for all x, y ∈ K
(ii) if 0 < δ < 1−H, then supx∈K L(I, x) ≤ η|I|δ, where η is a random variable, almost
surely positive and finite and |I| is the length of I.
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