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Local time and Tanaka formula for a Volterra-type multifractional Gaussian process

The stochastic calculus for Gaussian processes is applied to obtain a Tanaka formula for a Volterra-type multifractional Gaussian process. The existence and the regularity properties of the local time of this process is obtained by means of Berman's Fourier analytic approach.

Introduction

Several types of multifractional Gaussian processes have been studied, including the processes introduced by Lévy-Véhel and Peltier [START_REF] Véhel | Multifractional Brownian motion: definition and preliminary results[END_REF] and by Benassi, Jaffard and Roux [START_REF] Benassi | Elliptic Gaussian random processes[END_REF], known as the moving average and the harmonisable versions of multifractional Brownian motion, and the processes introduced by Benassi, Cohen and Istas [START_REF] Benassi | Identifying the multifractional function of a Gaussian process[END_REF] and, based on the calculus of (multi-)fractional differentiation and integration, by Surgailis [17]. These processes are usually defined by replacing, in certain representations of fractional Brownian motion (fbm), the Hurst parameter H by a Hurst function h, i.e. a real function of the time parameter with values in (0,1). Generalisations to stable processes have been studied too [START_REF] Lacaux | Real harmonizable multifractional Lévy motions[END_REF][START_REF] Stoev | Path properties of the linear multifractional stable motion[END_REF][START_REF] Stoev | Stochastic properties of the linear multifractional stable motion[END_REF]. The stochastic properties and the regularity of the trajectories of these processes can be characterised in the same terms as for fbm, in particular by the property of local asymptotic self-similarity or by the pointwise Hölder exponent, which is constant and equal to H for fbm, but varies in time following h in the multifractional case.

The aim of this article is to study a Volterra type multifractional Gaussian process B h which fits into the framework of stochastic calculus, and its local time. In fact, the stochastic calculus, including the Itô formula and stochastic differential equations, is now well established for fbm, where stochastic integrals have been defined in the Malliavin sense or by means of Wick products. The stochastic calculus for multifractional Gaussian processes has not yet been developed explicitely, but important elements, including a divergence integral and an Itô formula, have been proven in [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF] for a class of Gaussian processes admitting a kernel representation with respect to Brownian motion. The process B h we study in this article is defined by allowing for a Hurst function in the kernel representation of fbm, and it belongs to the class of Gaussian processes studied in [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF]. The Itô formula in [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF] is applied to get a representation of the local time for which, as it is usually the case in Tanaka-like formulas, the occupation measure is not the Lebesgue measure, but the quadratic variation process. However, contrary to fbm, the interpretation in our case is more delicate because the quadratic variation process is not necessarily increasing (but of bounded variation). We compare this local time to the local time with respect to the Lebesgue measure, which we obtain, together with the regularity properties of its trajectories, by the Fourier analytic approach initiated by S. Berman [START_REF] Berman | Local times and sample function properties of stationary Gaussian process[END_REF] and which is based on the notion of local nondeterminism (LND). Sufficient conditions for the LND property to hold are given in [START_REF] Boufoussi | Path properties of a class of locally asymptotically self similar processes[END_REF], and we show that these conditions are implied by the stochastic properties, in particular the lass property, of B h .

It is well known that the cases where the Hurst parameter or the Hurst function is < 1/2 resp. > 1/2 have to be treated separately (see [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF] and [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]). We are interested in the case where the Hurst function h takes values in (1/2,1). In fact, the Volterra-type process we study here is defined only for this case, which is appropriate for long memory applications [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF]. The article is organised as follows : In Section 2 stochastic properties and the regularity of the trajectories of B h are proven. The form of the covariance function (Proposition 2) shows in particular that B h differs from the harmonisable and moving average multifractional Brownian motions. The continuity of the trajectories of B h is obtained by classical criteria from estimates for the second order moments of the increments (Proposition 3). The lass property is proven in Proposition 5; it implies that the pointwise Hölder exponent of B h is equal to h (Proposition 6). In Section 3 B h is shown to satisfy the property named (K4) in [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF] and that the quadratic variation of B h is of bounded variation. Therefore the divergence integral and the Itô formula developed in [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF] (recalled briefly in this section) hold for B h . Section 4 is devoted to the local time of B h . Its existence and square integrability with respect to the space variable follows from a classical criterion due to S. Berman ([3]) (Proposition 11). Then a Tanaka-type formula with the divergence integral of Section 3 is given (Theorem 12), where the occupation measure of the local time is the quadratic variation of B h . Finally the local time with respect to the Lebesgue measure and its regularity in the space and time variables are given in Theorem 16. The proofs are based on the LND property, which is shown to hold for B h in Proposition 14. The sufficient conditions, named A and A m are in fact closely related to the lass property, which is the main ingredient for the proof of Proposition 14. Proposition 15 shows that the condition A holds in fact for a much larger class of Gaussian processes than B h .

A Volterra-type multifractional Gaussian process

It is well-known that the fractional Brownian motion B H with (fixed) Hurst parameter H ∈ (1/2, 1) can be represented for any t ≥ 0 as

B H (t) = t 0 K H (t, u)W (du),
where

K H (t, u) = c H u 1/2-H t u (y -u) H-3/2 y H-1/2 dy, with c H = πH(2H -1) Γ(2 -2H)Γ(H + 1/2) 2 sin(π(H -1/2)) 1/2 (H -1/2)
and W (dy) is a Gaussian measure.

Let a and b be two real numbers satisfying 1/2 < a < b < 1. Throughout the paper we consider a function h : R → [a, b]. We assume that this function is β-Hölder with sup h < β. Define the centered Gaussian process

B h = {B h (t), t ≥ 0} by B h (t) = B h(t) (t) = t 0 K h(t) (t, u)W (du),
where

K h(t) (t, u) = u 1/2-h(t) t u (y -u) h(t)-3/2 y h(t)-1/2 dy. (1) 
If h(•) = H is a constant, B H is a fractional Brownian motion up to the multiplicative constant c H . Before establishing properties of B h we give a lemma regarding an estimate on K H that we use throughout the paper.

Lemma 1 For every T > 0 there exists a function

Φ T ∈ L 2 ((0, T ], R + ) such that for every s ∈ (0, T ] sup λ∈[a,b],t∈(0,T ] ∂ ∂λ K λ (t, s) ≤ Φ T (s).
Proof. We have

∂ ∂λ K λ (t, s) = (-log s)s 1/2-λ t s (y -s) λ-3/2 y λ-1/2 dy +s 1/2-λ t s (y -s) λ-3/2 y λ-1/2 (log(y -s) + log y)dy.
Then for every T > 0 there exists a constant C a,b,T such that for every λ ∈ [a, b] and s ∈ (0, T ]

∂ ∂λ K λ (t, s) ≤ C a,b (1 ∨ | log s|)s 1/2-b =: Φ T (s)
that concludes the proof.

The following proposition gives the covariance of this process.

Proposition 2 Let X = {X(t, λ), t ≥ 0, λ ∈ (1/2, 1)} be the two-parameter process given by X(t, λ)

= t 0 K λ (t, u)W (du). Then E[X(t, λ)X(s, λ ′ )] = t 0 dy s 0 dz β(y, z, λ, λ ′ )|y -z| λ+λ ′ -2 y z λ-λ ′ where β(y, z, λ, λ ′ ) = β(2 -λ -λ ′ , λ ′ -1/2)1 {y>z} + β(2 -λ -λ ′ , λ -1/2)1 {y<z} and β(a, b) (a, b > 0) is the Beta function. In particular, E[X(t, λ) 2 ] = t 0 dy t 0 dz β(2 -2λ, λ -1/2)|y -z| 2λ-2 = β(2 -2λ, λ -1/2) λ(2λ -1) t 2λ .
Proof. We have

E[X(t, λ)X(s, λ ′ )] = t∧s 0 K λ (t, u)K λ ′ (s, u)du = t∧s 0 u 1-λ-λ ′ t u (y -u) λ-3/2 y λ-1/2 dy × s u (z -u) λ ′ -3/2 z λ ′ -1/2 dz du = t 0 dy s 0 dz y λ-1/2 z λ ′ -1/2 × y∧z 0 u 1-λ-λ ′ (y -u) λ-3/2 (z -u) λ ′ -3/2 du.
We fix y > z and calculate the following integral by making the successive substitutions u = vz, w = (y -vz)/(1 -v), t = w/y and s = 1/t:

z 0 u 1-λ-λ ′ (y -u) λ-3/2 (z -u) λ ′ -3/2 du = z 1/2-λ 1 0 λ ′ (y -vz) λ-3/2 (1 -v) λ ′ -3/2 dv = z 1/2-λ (y -z) λ+λ ′ -2 +∞ y (w -y) 1-λ-λ ′ w λ-3/2 (y -z) λ+λ ′ -2 dw = z 1/2-λ y 1/2-λ ′ (y -z) λ+λ ′ -2 +∞ 1 (t -1) 1-λ-λ ′ t λ-3/2 dt = z 1/2-λ y 1/2-λ ′ (y -z) λ+λ ′ -2 β(2 -λ -λ ′ , λ ′ -1/2).
In the same way we get for y < z :

y 0 u 1-λ-λ ′ (y -u) λ-3/2 (z -u) λ ′ -3/2 du = z 1/2-λ y 1 2 -λ ′ (z -y) λ+λ ′ -2 β(2 -λ -λ ′ , λ -1/2).
This concludes the proof.

In the sequel we need the estimates we establish in the following proposition.

Proposition 3

The process X satisfies the following estimates. a) For all s and t ≥ 0

E[(X(t, λ) -X(s, λ)) 2 ] = c -2 λ |t -s| 2λ (2) 
b) For every T > 0, there exists a constant C T > 0 such that for every t ∈ [0, T ] and every λ and

λ ′ ∈ [a, b] E[(X(t, λ) -X(t, λ ′ )) 2 ] ≤ C T |λ -λ ′ | 2 (3) 
Proof.

Proof of a). For every λ ∈ [a, b] the process X(•, λ) : t → X(t, λ) is a fractional Brownian motion with variance c -2 λ so we deduce (2). Proof of b). We have

E[(X(t, λ) -X(t, λ ′ )) 2 ] = t 0 (K λ (t, u) -K λ ′ (t, u)) 2 du. There exists ξ = ξ(λ, λ ′ ) ∈ [min{λ, λ ′ }, max{λ, λ ′ }] such that K λ (t, u) -K λ ′ (t, u) = (λ -λ ′ ) ∂ ∂λ K λ (t, u) λ=ξ=ξ(λ,λ ′ )
.

Then, thanks to Lemma 1 we get for every t, λ and λ

′ E[(X(t, λ) -X(t, λ ′ )) 2 ] ≤ |λ -λ ′ | 2 T 0 (Φ T (u)) 2 du
that ends the proof.

From the last proposition we can deduce the continuity of B h .

Corollary 4

The process B h defined above has continuous trajectories.

Proof. We deduce from Proposition 3 that for every s and

t in a compact interval [0, T ] such that |t -s| < 1 E[(B h (t) -B h (s)) 2 ] = E[(X(t, h(t)) -X(s, h(s))) 2 ] ≤ 2E[(X(t, h(t)) -X(t, h(s))) 2 ] +2E[(X(t, h(s)) -X(s, h(s))) 2 ] ≤ 2C T |h(t) -h(s)| 2 + 2c -2 h(s) |t -s| 2h(s) ≤ 2C T |t -s| 2β + 2 sup λ∈[a,b] (c -2 λ )|t -s| 2a . Then E[(B h (t) -B h (s)) 2 ]/|t -s| 2a
is bounded and since B h is Gaussian we can deduce from [START_REF] Billingsley | Convergence of Probability Measures[END_REF] its continuity. Now we deal with the local self-similarity property of B h .

Proposition 5

The process B h is locally self-similar. More precisely, for every t, we have the following convergence in distribution:

lim ε→0 B h (t + εu) -B h (t) ε h(t) u≥0 = c -1 h(t) B h(t) (u) u≥0
where lim ε→0 stands for the limit in distribution in the space of continuous functions endowed with the uniform norm on every compact set.

Proof. Let us start by proving the convergence of the finite dimensional distribution. Because B h is Gaussian, it suffices to show the convergence of the second-order moments.

We then can write for every u and v:

1 ε 2h(t) E [(B h (t + εu) -B h (t)) (B h (t + εv) -B h (t))] = 1 ε 2h(t) (I 1 (ε) + I 2 (ε) + I 3 (ε) + I 4 (ε))
where

I 1 (ε) = E[(X(t + εu, h(t)) -X(t, h(t))) × (X(t + εv, h(t)) -X(t, h(t)))], I 2 (ε) = E[(X(t + εu, h(t + εu)) -X(t + εu, h(t))) × (X(t + εv, h(t)) -X(t, h(t)))], I 3 (ε) = E[(X(t + εu, h(t)) -X(t, h(t))) × (X(t + εv, h(t + εv)) -X(t + εv, h(t)))], I 4 (ε) = E[(X(t + εu, h(t + εu)) -X(t + εu, h(t))) × (X(t + εv, h(t + εv)) -X(t + εv, h(t)))].
Thanks to the selfsimilarity of the fractional Brownian motion and by stationarity of its increments we get

lim ε→0 1 ε 2h(t) I 1 (ε) = 1 2c 2 h(t) (|u| 2h(t) + |v| 2h(t) -|u -v| 2h(t) ). (4) 
Then, because of Cauchy-Schwartz inequality, it is enough to prove

lim ε→0 1 ε 2h(t) E (X(t + εu, h(t + εu)) -X(t + εu, h(t))) 2 = 0 (5) to get lim ε→0 1 ε 2h(t) (I 2 (ε) + I 3 (ε) + I 4 (ε)) = 0. (6) 
So, using Lemma 1 we get

1 ε 2h(t) E (X(t + εu, h(t + εu)) -X(t + εu, h(t))) 2 = 1 ε 2h(t) t+εu 0 K h(t+εu) (t + εu, s) -K h(t) (t + εu, s) 2 ds ≤ (h(t + εu) -h(t)) 2 ε 2h(t) t+εu 0 sup H ∂ ∂H K H (t + εu, s) 2 ds ≤ Cε 2β-2h(t) t+u 0 |Φ t+u (s)| 2 ds -→ ε→0 0.
Now it remains to prove the tightness in the space of continuous functions endowed by the uniform norm. We also consider T > 0 such that t, t + εu and t + εv ∈ [0, T ] for all ε. Making similar calculations as in the proof of Corollary 4 we get that there exist

C T > 0 such that E B h (t + εu) -B h (t) ε h(t) - B h (t + εv) -B h (t) ε h(t) 2 = 1 ε 2h(t) E (B h (t + εu) -B h (t + εv)) 2 ≤ C T ε 2h(t) |εu -εv| 2h(t+εv) = C T ε 2(h(t+εv)-h(t)) |u -v| 2h(t+εv) Since h is β-Hölder then ε 2(h(t+εv)-h(t)) is uniformly bounded. Moreover h(t + εv) ≥ a, thus E B h (t + εu) -B h (t) ε h(t) - B h (t + εv) -B h (t) ε h(t) 2 ≤ C T |u -v| 2a
that ends the proof.

It is classical to deduce pointwise Hölder continuity from local self-similarity [START_REF] Benassi | Identifying the multifractional function of a Gaussian process[END_REF]. We recall that the pointwise Hölder continuity of a function f is characterized by the pointwise Hölder exponent α f (t 0 ) defined at each point t 0 as

α f (t 0 ) = sup α > 0 : lim t→t 0 |f (t) -(t 0 )| |t -t 0 | α = 0 . Proposition 6 For every t 0 ∈ R + the pointwise Hölder exponent α B h (t 0 ) of B h is almost surely equal to h(t 0 ).
Proof. We deduce from Proposition 5 that α B h (t 0 ) ≤ h(t 0 ). Now we prove that α B h (t 0 ) ≥ h(t 0 ). Let ε > 0. For every s and t ∈ [t 0 -ε, t 0 + ε] such that |t -s| < 1, from Proposition 3 we have

E[(B h (t) -B h (s)) 2 ] ≤ C|t -s| 2 inf [t 0 -ε,t 0 +ε] h .
By the fact that B h is Gaussian and applying Kolmogorov theorem [START_REF] Billingsley | Convergence of Probability Measures[END_REF], we get that

lim t→t 0 |f (t) -f (t 0 )|/|t -t 0 | α = 0 for every α < inf [t 0 -ε,t 0 +ε] h.
This holds for every ε > 0, so by continuity of h we get lim

t→t 0 |f (t) -f (t 0 )|/|t -t 0 | α = 0 for every α < h(t 0 ).
We can deduce that α B h (t 0 ) ≥ h(t 0 ), and hence α B h (t 0 ) = h(t 0 )

Stochastic calculus for B h

The aim of this section is to apply the stochastic calculus developed by Alòs, Mazet and Nualart in [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF] to get a stochastic integral for B h and an Itô formula. We recall that in [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF] the following hypothesis, called (K4), appears for regular kernels:

• Hypothesis (K4). For all s ∈ [0, T ), K(•, s) has bounded variation on the interval (s, T ], and

T 0 |K|((s, T ], s) 2 ds < ∞.
Lemma 7 Suppose that h is of bounded variation on (s, T ] for all s ∈ [0, T ). Then (K4) holds for (t, s) → K h(t) (t, s) defined by [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF].

Proof. Let Var n (s,T ] (•, s) = sup t 0 =s<t 1 <...<tn=T n i=1 |K h(t i ) (t i , s) -K h(t i-1 ) (t i-1 , s)|,
and suppose without restriction of generality that T = 1. Then

|K h(t i ) (t i , s) -K h(t i-1 ) (t i-1 , s)| ≤ I 1 (i) + I 2 (i),
where

I 1 (i) = |K h(t i ) (t i , s) -K h(t i ) (t i-1 , s)| and I 2 (i) = |K h(t i ) (t i-1 , s) -K h(t i-1 ) (t i-1 , s)|
We have

I 1 (i) = s 1/2-h(t i ) t i t i-1 (y -s) h(t i )-3/2 y h(t i )-1/2 dy ≤ s 1/2-b t i t i-1
(y -s) a-3/2 y a-1/2 dy.

Therefore

n i=1 |K h(t i ) (t i , s) -K h(t i ) (t i-1 , s)| ≤ s 1/2-b 1 s (y -s) a-3/2 y a-1/2 dy ≤ C(a)s 1/2-b . (7) 
Regarding I 2 we have

n i=1 K h(t i ) (t i-1 , s) -K h(t i-1 ) (t i-1 , s) ≤ n i=1 |h(t i ) -h(t i-1 )| sup s≤t≤1,a≤λ≤b ∂ ∂λ K λ (t, s) . The proof of Lemma 1 implies that Var n (s,T ] (•, s) ≤ C(1∨ | log s |)s 1/2-b
, where the constant C > 0 depends on h (but not on n). This implies that (K4) holds for K h .

Remark 8 Since h is also supposed β-Hölder continuous for some β ≤ 1, we will suppose from now on that h is Lipschitz-continuous. Notice that lim tցu K h(t) (t, u) = 0 for all u > 0.

For simplicity we write K instead of K h but keep in mind that (t, s) → K(t, s) means (t, s) → K h(t) (t, s) and that differentials with respect to t act also via h.

In the sequel we need the following proposition regarding the variance of B h .

Proposition 9 The variance s → R s = E[B h (s) 2
] is of bounded variation on (0, T ].

Proof. We have This concludes the proof.

n i=1 R s i+1 -R s i = n i=1 s i+1 0 K(s i+1 , r) 2 dr - s i 0 K(s i , r) 2 dr ≤ n i=1 s i+1 0 K(s i+1 , r) 2 dr + n i=1 s i 0 [K(s i+1 , r) 2 -K(s i , r) 2 ]dr .
For any f ∈ L 2 ([0, T ]) let Kf be defined by (Kf )(t) = t 0 K(t, s)f (s)ds. Let E be the set of step functions on [0, T ], and let the operator K * be defined on E by (K * ϕ)(s) = T s ϕ(t)K(dt, s). Then K * is the adjoint of K. In fact, for a i ∈ R, 0 = s 1 < s 2 < ... < s n+1 = T , ϕ = n i=1 a i 1 (s i ,s i+1 ] (s) and f ∈ L 2 ([0, T ]), we write

(K * ϕ)(s) = n i=1 1 (s i ,s i+1 ] (s) n j=i a j (K(s j+1 , s) -K(s j , s))
and

T 0 (K * ϕ)(s)f (s)ds = n j=1 a j T 0 j i=1 1 (s i ,s i+1 ] (s)(K(s j+1 , s) -K(s j , s))f (s)ds = n j=1 a j [(Kf )(s j+1 ) -(Kf )(s j )] = T 0 ϕ(t)(Kf )(dt). ( 8 
)
As usual the Reproducing Kernel Hilbert Space (RKHS) H is defined as the closure of the linear span of the indicator functions {1 [0,t] , t ∈ [0, T ]} with respect to the scalar product 1

[0,t] , 1 [0,s] H = E[B h(t) (t)B h(s) (s)] ≡ R(t, s)
. By replacing f (s)ds in (8) by W (ds), we have by ( 1)

B h (ϕ) ≡ T 0 ϕ(t)B h (dt) = T 0 (K * ϕ)(s)W (ds).
Therefore

ϕ 2 H = E[B h (ϕ) 2 ] = K * ϕ 2 L 2 ([0,T ]) ≤ T 0 T 0 |ϕ(t)||K|(dt, s) 2 ds =: ϕ 2 K .
Let us denote by H K the completion of E with respect to the • K -norm. Then H K is continuously embedded in H.

In order to define the stochastic integral with respect to B h , let us denote by S the set of smooth cylindrical random variables of the form

F = f (B h (ϕ 1 ), B h (ϕ 2 ), ..., B h (ϕ n )), where n ≧ 1, f ∈ C ∞ b (R n ) (f
and all its derivatives are bounded) and ϕ 1 , ϕ 2 , ..., ϕ n ∈ H. Let us also denote by

D 1,2 (H K ) the closure of {F ∈ S : F ∈ L 2 (Ω, H K ), DF ∈ L 2 (Ω × H K , H K )}. Then D 1,2 (H K ) is included in the domain Dom(δ B h ) of the divergence operator of B h , and the integral of u ∈ Dom(δ B h ) with respect to B h is given by δ B h (u) ≡ T 0 u δB h = T 0 (K * u) δW ≡ T 0 T s u(r)K(dr, s) δW (s),
where the last two integrals are the divergence integrals with respect to Brownian motion. Let us recall that the integral δ B h (u) is defined, for any u ∈ L 2 (Ω, H), as the unique element in L 2 (Ω) which satisfies the duality relationship E(δ B h (u)F ) = E DF, u H for all F ∈ S.

The following Itô formula, due to Alòs, Mazet and Nualart [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF], will be applied in the next section. Let F be a function of class C 2 (R) satisfying the condition

max{|F (x)|, |F ′ (x)|, |F ′′ (x)|} ≤ ce λ|x| 2 ,
where c and λ are positive constants such that λ < 1 4 sup 0≦t≤T R t -1

. This implies that the process F ′ (B t ) belongs to D 1,2 (H K ). The integral t 0 F ′ (B h (s))δB h (s) is therefore well defined for all t ∈ [0, T ], and the following Itô-type formula holds ([1], Theorem 2): This definition implies that the local time of B h satisfies the following occupation density formula C g(t, B h (t))dt = C×R g(t, x)L(dt, x)dx [START_REF] Lacaux | Real harmonizable multifractional Lévy motions[END_REF] for all continuous functions with compact support g : C × R → R. If g does not depend explicitely on t, we get the more classical occupation density formula where the right side of ( 10) is replaced by C g(x)L(C, x)dx.

F (B h (t)) = F (0) + t 0 F ′ (B h (s))δB h (s) + 1 2 t 0 F ′′ (B h (s))dR(s). ( 9 

Proposition 11

The local time of B h exists P -a.s. on any interval [0, T ] and is a square integrable function of x.

Proof. By [START_REF] Berman | Local times and sample function properties of stationary Gaussian process[END_REF], for any continuous and zero mean Gaussian process {X t , t ∈ [0, T ]} with bounded covariance function, the condition

T 0 T 0 ds dt E[|X t -X s | 2 ] < +∞ (11) 
is sufficient for the local time of X to exist and to be a square integrable function of x. If (s, t) is away from the diagonal we write for s < t

E[|B h (t) -B h (s)| 2 ] = s 0 (K h(t) (t, u) -K h(s) (s, u)) 2 du + t s K h(t) (t, u) 2 du
and deduce from (1) that the second term stays strictly positive as (s, t)

varies in [0, t - ε] × [0, T ]. If (s, t) is close to the diagonal, say 0 ≤ t -s < ε, by Proposition 5, E[|B h (t) -B h (s)| 2 ] ∼ c -2 h(t) (t -s) 2h(t)
as s ր t, and a direct calculation shows that (11) is satisfied.

Let us now derive a Tanaka-type formula for B h . Since the last term in the Itô formula ( 9) is an integral with respect to the variance function R and since R is not in general increasing, but only of finite variation, the trajectorial representation of the local time is more delicate than for Brownian motion or for fractional Brownian motion. On the time intervals where R is (strictly) inceasing or decreasing, this formula gives in fact an occupation density L related to L.

Theorem 12 Suppose that h is continuously differentiable. Then, for all a ∈ R, a) and L is the local time with respect to the Lebesgue measure of B h . On the time intervals [s, t] where R is strictly inceasing (resp. strictly decreasing), L (resp. -L) is the (positive) occupation density of B h with respect to the measure induced by R.

|B h (t) -a| -|B h (s) -a| = t s sign(B h (u) -a)dB h (u) + L([s, t], a) P -a.s., where L([s, t], a) = t s R ′ (u)L(du,
Remark 13 a) No information on the local time of B h can be drawn from the above formula if

R ′ (u) = 0 on the interval [s, t]. In fact, R ′ (u) = d du E[B 2 h(u) (u)] = d du (u 2h(u) ) = 2 h ′ (u) log u + h(u) u u 2h(u) ,
and R ′ (u) = 0 if h(u) = 1/ log u ∈ (1/2, 1) on an interval (s, t). In this case L([s, t], a) = 0 for all a. b) Tanaka formulas for fractional Brownian motion have been shown by several authors. We refer to the survey [START_REF] Coutin | An introduction to (stochastic) calculus with respect to fractional Brownian motion[END_REF] for references.

Proof. For ε > 0 let p ε (x) = (2πε) -1/2 exp(-x 2 /(2ε)). We apply the Itô formula of the previous section to the process

F ε (x) = t 0 F ′ ε (y)dy where F ′ ε (x) = 2 x -∞ p ε (y)dy -1.
Then F ′ ε (x) converges to sign(x) and F ε (x) converges to |x| as ε → 0. By [START_REF] Coutin | Tanaka formula for the fractional Brownian motion[END_REF], for ε > 0 fixed,

F ε (B h (t) -a) = F ε (-a) + t 0 t s F ′ ε (B h (r) -a)K(dr, s)δW s + t 0 p ǫ (B h (s) -a)dR(s). (12) 
Notice that by (K4) the process {F ′ ε (B h (r) -a), r ∈ [0, t]} belongs to L 2 (Ω, H K ) and belongs therefore to Dom(δ B h ). Or, equivalently, the process

{ t s F ′ ε (B h (r)-a)K h (dr, s), s ∈ [0, t]} belongs to Dom(δ W ). Clearly F ε (B h (t) -a) converges to |B h (t) -a| in L 2 (Ω) and F ǫ (-a) converges to |a| if ε → 0. Moreover, the process {F ′ ε (B h (r) -a), r ∈ [0, t]} converges, as ε → 0, to {sign(B h (r) -a), r ∈ [0, t]} in L 2 (Ω, H K ). In fact, by (K4), E t 0 t s |F ′ ε (B h (r) -a) -sign(B h (r) -a)||K h |(dr, s) 2 ds
is upper bounded independently of ε, and we may apply the dominated convergence theorem (Lemma 1 of [START_REF] Coutin | Tanaka formula for the fractional Brownian motion[END_REF]). Therefore the last term in [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] converges in L 2 (Ω). Let us denote the limit by Λ a t . Therefore, for any continous function f with compact support in R, t 0 p ε (B h (s)) -a)dR(s) f (a)da [START_REF] Pitt | Local time of Gaussian vector fields[END_REF] converges in L 1 (Ω) to Λ a t f (a)da. In fact, the dominated convergence theorem applies, because

t 0 E[p ε (B h (s)) -a)]dR(s) = t 0 p R(s)+ε (a)dR(s) ≦ t 0 s -b R ′ (s)ds < ∞.
But (13) converges also to

t 0 f (B h (s))dR(s) = t 0 f (B h (s))R ′ (s)ds, where we use the fact that R is differentiable if h is differentiable. Hence t 0 f (B h (s))R ′ (s)ds = Λ a t f (a)da.
By the occupation density formula [START_REF] Lacaux | Real harmonizable multifractional Lévy motions[END_REF] applied to g(s, x) = f (x)R ′ (s) we get Λ a t = t 0 R ′ (s)L(ds, a) = L(t, a) for λ-a.e. a, P -a.s. We can extend to all a ∈ R since there exists a jointly continous version of L and therefore of L, as will be shown next by Berman's methods which are independent of the Tanaka formula.

We state now regularity properties in time and space of the trajectories of L. The regularity properties of L follow easily since L(t, x) = t 0 R ′ (s)L(ds, x). In order to show the existence of a jointly continuous version of L, we recall the hypotheses introduced in [START_REF] Boufoussi | Path properties of a class of locally asymptotically self similar processes[END_REF] and show that they are satisfied for B h . We recall them in terms of any real valued separable random process {X(t), t ∈ [0, T ]} with Borel sample functions.

• Hypothesis (A). There exist numbers ρ 0 > 0 and H ∈ (0, 1) and a positive function ψ ∈ L 1 (R) such that for all λ ∈ R and t, s ∈ [0, T ], 0 < |t -s| < ρ 0 we have

E exp iλ X(t) -X(s) |t -s| H ≤ ψ(λ).
• Hypothesis (A m ). There exist positive constants δ and c (both eventually depending on m ≥ 2) such that for all t 1 , t 2 , • • • , t m with 0 =:

t 0 < t 1 < • • • < t m ≤ T and |t m -t 1 | < δ we have E   exp   i m j=1 u j (X(t j ) -X(t j-1 ))     ≤ m j=1 |E[exp(icu j (X(t j ) -X(t j-1 )))]| for all u 1 , u 2 , • • • , u m ∈ R.
Hypothesis (A) is evidently satisfied for selfsimilar processes with stationary increments: here ψ(λ) = |E[e iλX (1) ]|. Hypothesis (A) is also closely related to asymptotic selfsimilarity, and it holds in fact for a fairly large class of processes (see Proposition 15). If X has independent increments, (A m ) is trivially true for all m ≥ 2. When the left and the right side of the inequality is applied to the characteristic function of a Gaussian process X, we get the condition which is known in the litterature under the name of local nondeterminism (LND). Loosely speaking, LND says how much dependence is allowed for the increments of the process if the local time should have certain regularity properties. As a general rule, the trajectories of local time get more regular if the trajectories of the process get less regular.

Proposition 14 For all T > 0, the process {B h (t), t ∈ [0, T ]} satisfies Hypotheses (A) and (A m ) for all m ≥ 2 with H = max 0≤t≤T h(t).

Proof. Let us start by showing (A). By similar calculations as in the proof of Proposition 5, for every t ∈ [0, T ]

E[ε -2h(t) (B h (t + ε) -B h (t)) 2 ] - 1 c 2 h(t) ≤ ε β-sup [0,T ] h T +1 0 (Φ T +1 (s)) 2 ds.
We can now conclude by applying Proposition 15. Now we prove (A m ) for all m ≥ 2. We show that B h satisfies the LND property as it has been introduced by S. Berman for Gaussian processes. For simplicity we write B instead of B h in this proof. Let t 1 < t 2 < • • • < t m , and let V m be the relative conditioning error given by

V m = Var[B(t m ) -B(t m-1 )|B(t 1 ), • • • , B(t m-1 )] Var[B(t m ) -B(t m-1 )] .
The Gaussian process is said to be LND if

lim inf cց0 + 0<tm-t 1 ≤c V m > 0. (14) 
This condition means that a small increment of the process is not completely predictable on the basis of a finite number of observations from the immediate past. For Gaussian processes S. Berman [START_REF] Berman | Local nondeterminism and local times of Gaussian processes[END_REF] has proved that ( 14) implies (A m ). More precisely he has shown that if X satisfies ( 14) for all m ≥ 2, then there exist constants C m > 0 and δ m > 0 such that, for all

u 1 , u 2 , • • • , u m ∈ R, Var   m j=1 u j [B(t j ) -B(t j-1 )]   ≥ C m m j=1 u 2 j Var [B(t j ) -B(t j-1 )] ,
where t 0 = 0 and t 1 < • • • < t m are different and lie in an interval of length at most δ m . This implies (A m ). In order to prove that B verifies [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF], fix m ≥ 2 and let t < t 1 < t where the last inequality follows from Lemma 7.1 of [START_REF] Pitt | Local time of Gaussian vector fields[END_REF]. The last term is strictly positive since the 0 < u 1 < • • • < u m < t.

The beginning of the proof of Proposition 14 shows that the hypothesis (A) holds for a much larger class of processes. In fact we have only used the assumption of the following proposition.

Proposition 15 Let {X t , t ∈ [0, T ]}be a centered Gaussian process. Suppose that for some positive continuous functions f : [0, T ] → (0, 1) and g : [0, T ] → (0, ∞)

E[ε -2f (t) (X(t + ε) -X(t)) 2 ] -→ ε→0 g(t) (15) 
uniformly in t. Then Hypothesis (A) holds.

Proof. Let us fix H > sup f =: f * . Because X is Gaussian and centered, we have

E exp iλ X(t + ε) -X(t) ε H = exp - λ 2 2 E X(t + ε) -X(t) ε H 2 . ( 16 
)
Because of ( 15), there exists ε 0 such that for every ε satisfying |ε| < ε 0 and for every t we have

E X(t + ε) -X(t) ε f (t) 2 ≥ c 2 (17) 
where c = inf [0,T ] g. Besides,

ε 2f (t)-2H ≥ ε 2f * -2H ≥ 1, (18) 
and thus

E X(t + ε) -X(t) ε H 2 = ε 2f (t)-2H E X(t + ε) -X(t) ε f (t) 2 ≥ c 2 . ( 19 
)
Then, combining ( 16) and (19) we get for every λ, and t and s satisfying |t -s| < ε 0 ,

E exp iλ X(t + ε) -X(t) ε H ≤ exp - λ 2 c 4 .
Then we choose ψ(λ) = exp -λ 2 c/4 to conclude the proof.

Let us now state a regularity result for the trajectories of L. The following theorem says that L(t, x) is Hölder continuous in t of order 1 -H and Hölder continuous in x of order 1-H 2H , where H is the constant appearing in (A). For the proofs we refer to [START_REF] Boufoussi | Path properties of a class of locally asymptotically self similar processes[END_REF], where it is shown that these regularities hold for any process starting at zero and satisfying (A) and (A m ) for all m ≥ 2.

Theorem 16 Suppose that ψ in (A) satisfies |u|≥1 |u| (1-H)/H ψ(u)du < ∞.

Then {B h (t), t ∈ [0, T ]} has a jointly continuous local time {L(t, x), (t, x) ∈ [0, T ] × R}. Moreover, for any compact set K ⊂ R and any interval I ⊂ [0, T ] with length less than ρ 0 (the constant appearing in (A)), (i) if 0 < ξ < (1 -H)/2H, then |L(I, x) -L(I, y)| ≤ η|x -y| ξ for all x, y ∈ K (ii) if 0 < δ < 1 -H, then sup x∈K L(I, x) ≤ η|I| δ , where η is a random variable, almost surely positive and finite and |I| is the length of I.

2 T 0 k

 20 The functions |K(s, r)1 [0,s] (r)| are bounded by the square integrable function k(r) = |K(T, r)| + |K|((r, T ], r). Hence the first term above is upper bounded by T 0 k(r) 2 dr. The second term is upper bounded by s i , s i+1 ], r) |K(s i+1 , r) + K(s i , r)| dr ≤ (r)|K|((r, T ], r)dr < ∞.
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 4 Local time and Tanaka formula for B hFirst we prove by means of a criterion for Gaussian processes due to S. Berman that B h has a local time with respect to the Lebesgue measure. Then we derive a Tanaka-type formula from the Itô formula of Section 3 and show that B h satisfies the LND property. This implies continuity and Hölder regularities in space and in time of the trajectories of the local time.

Definition 10 For any Borel set

C ⊂ R + the occupation measure m C of B h on C is defined, for all Borel sets A ⊂ R, by m C (A) = λ{t ∈ C, B h(t) (t) ∈ A},

where λ is the Lebesgue measure on R + . If m C is absolutely continous with respect to the Lebesgue measure on R, the local time (or occupation density) of B h on C is defined as the Radon-Nikodym derivative of m C and will be denoted by {L(C, x), x ∈ R}. Sometimes we write L(t, x) instead of L([0, t], x).

where C h(t) is a constant depending on t. Therefore lim δ→0

Var[B(t m ) -B(t m-1 )|B(t 1 ), • • • , B(t m-1 )]

Var[B(t m ) -B(t m-1 )]

Moreover, by adding B(t) to the conditional set,

Then 0 < u i < t, and when δ → 0 the t i = t δ i are chosen in such a way that the u i do not change. Therefore

.

By