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Abstract

It is natural to think that the conceptual frame of electronic asynchronous
DI-systems (Delay-Insensitive) is well adapted to the description of distributed
systems constituted with mobile components because when components move,
distances change and then also delays of propagation. But a closer look at this
question shows that it would be interesting to place this study in the frame of
relativity theory, even for non-moving components. The main reason is: time-

like intervals of this theory have an objective character and introduce a partial
time-order which also is objective. It means that this time-order relation can
be measured the same by all observers, whatever the propagation speed of
signals and whatever the movements of the events emitters and receivers.

Moreover these intervals are well adapted to the discussion of the meaning
of Udding’s rules in term of causality, these rules being one way to define
DI-systems.

We propose a new formalism based on trace theory in order to deal with
this partial order for intervals issued from relativity.

Keywords: Asynchronous circuits and systems, Delay-Insensitive, Rela-
tivity, Mobile components, Trace theory, Partial time-order

1 Introduction

The notion of DI-systems (Delay-Insensitive) [1–7], in which delays are lapses of time
during events propagations, leads us to consider that a partial order can be sufficient
to specify a computation.

This way of thinking emerged after a research initiated by the will to remove the
clock from digital electronic systems (clockless systems). In this frame, we have to
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understand that electronic components of a distributed system can synchronize their
actions, not by refering to a common unique time coordinate, but by the own nature
of their logical functions and their communications.

It is remarkable that these considerations are very similar to those which lead A.
Einstein to formulate his special theory of relativity [8, 9], which one can see as the
search for a method to synchronize local times of distant physical systems. In this
theory, propagation distances and durations are measured differently by different
observers. But it’s not the case for intervals which are their generalization to rela-
tivistic space-time. As they are measured the same by all observers, we can say they
have an objective character, they are physical facts. Among these intervals, time-like

intervals of propagations define an objective partial time-order for events [10,11].
A DI computation, as defined by a partial order for propagations, is seen the

same by all observers distributed in space-time, whatever their movements. In this
frame, a DI computation also has an objective character. This is not the case for si-

multaneity in different places needed for isochronic forks of SI computations (Speed-
Independent), for the implementation of which we have to add constraints on dis-
tances and speeds.

Then, it can seem natural to place the study of clockless systems implementation
from the beginning in the frame of relativistic space-time, even if the components of
the distributed system have no relative movements. There is no additionnal complex-
ity in doing so, and it has the advantage of an easy extension to moving components,
which is required for mobile embedded systems.

A way to define DI-systems is to use Udding’s rules [2, 3], which are written in
the formalism of trace theory. But they can seem not adapted to relativistic frame
because these traces describe, not a partial order, but a total time-order. In fact, a
closer look at these rules shows that they make clear the cases in which events have
to be non-ordered, although this non-ordering is written in a language which admit
only total ordering.

We have to distinguish the case where a and b are non-ordered, from the case
where the two orders ab and ba are possible. For doing this, we propose to define
a new syntax for traces, adapted to the partial order of relativity, named R-traces.
And we propose a new writing for relativistic Udding’s rules.

Before this, we propose a reminder of important results of special relativity theory,
selected for their interest in introducing the objective partial time-order of time-like

intervals.
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2 Relativity and objectivity

We represent the propagating movement of an edge of a digital Boolean signal by
a trajectory in a cartesian coordinates system (O, x, t). In order to simplify, we
consider only uniform rectilinear movements and then only one dimension for space
(x variable). The t coordinate represents the instant in the time dimension. x and t
are real numbers.

Position and instant are relative to a coordinates system which is a material
body constituted with measuring apparatus (rulers and clocks). We will name it
“observer”.

Let us suppose that we have two coordinates systems: K associated to (O, x, t),
and K ′ associated to (O′, x′, t′). K ′ is moving, refered to K, in such a way that its
origin O′ has the speed v refered to K. At the origin of times (t = t′ = 0), O and O′

are in the same place. Then the absciss of O′ refered to K is vt.
In the classical (newtonian) mechanics, the formulas for changing the coordinates

system are:

x′ = x − vt (1)

t′ = t (2)

The formula (2) express that the time is the same for all coordinates systems,
in other words for all observers, whatever their movements. Time is unique and
independent of space. We name it the global time of the classical mechanics. It
allows us to define a simultaneity in different places which has an objective character,
because there is a consensus between all observers about this simultaneity.

In the theory of special relativity [8, 10], the formulas for changing coordinates
system are (if c is the velocity of light in vacuum):

x′ =
x − vt

√

1 − v2

c2

(3)

t′ =
t − v

c2
x

√

1 − v2

c2

(4)

These formulas are known under the name Lorentz transformation. (We can extend
them to 3 dimensions in space by adding y′ = y and z′ = z.)

It’s easy to verify that if we inverse these formulas in order to obtain x and t as
functions of x′ and t′, we find formulas with the same form as (3) and (4) except that
v is replaced by −v. Then, neither K nor K ′ is privileged (this is named reciprocity).
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It can be showed that, at the difference of what is well known in classical me-
chanics, lengths and durations are not independent of the movement of the observer:

• A body which is measured of length l when measured by an observer with no
relative movement, is measured of length l/a when it is measured by a moving

observer, with 1/a =
√

1 − v2

c2
< 1. One say that there is contraction of length.

This contraction is reciprocal, i.e. it is indifferently a contraction whenever we
measure from K to K ′ or from K ′ to K.

• A lapse of time which is measured as a duration d when measured by an observer
with no relative movement, is measured as a duration da when measured by a
moving observer. It is dilatation of time and is also reciprocal.

Lengths and durations no more have an objective character, because they cannot
be the object of a consensus among all observers.

Let us consider two events A and B in two distinct places, which are simultaneous
in K, for example with these coordinates:

A

{

x = 0
t = 0

B

{

x = 1
t = 0

Let us compute their coordinates in K ′, we obtain:

A

{

x′ = 0
t′ = 0

B











x′ = 1
q

1−
v2

c2

t′ =
−

v

c2
q

1−
v2

c2

This shows that these two events are not simultaneous in K ′. But K has nothing
special, it is in nothing privileged, it is not at rest. As a consequence, there is no
special interest in the fact that two distant events are simultaneous in one coordinates
system. This simultaneity in different places has no objective character, is not a

physical fact.
A sentence like “the distance separating the two points A and B at time t = 0” has

no meaning, because it supposes that all observers can measure the same distance.
The difficulty doesn’t come from the contraction of length, but from the impossibility
to attribute a meaning to the words “the same instant” in this case.

If we define “object” and “objectivity” by the possibility of a consensus among
the observers, then we have to look for things which are conserved in a Lorentz
transformation. An object is something which is “Lorentz-invariant”.
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3 Objectivity of intervals

In classical physics, space is independent of time and is euclidean with 3 dimensions.
The words “the distance separating the two points A and B at time t = 0” have a
meaning and the value of this distance is the same for all observers. This is proved
in considering the two points:

A







xA

yA

zA

B







xB

yB

zB

We can compute the distance D with the aid of the theorem of Pythagoras:

D2 = (xA − xB)2 + (yA − yB)2 + (zA − zB)2

We can easily verify that this distance is the same in K and in K ′ if we use
formulas (1) et (2).

We saw that it’s not the case in relativistic physics. Would it be possible to
find another expression that could look like such a distance, but which is Lorentz-
invariant?

Let us consider, not two points in space, but two events in space-time:

A















xA

yA

zA

tA

B















xB

yB

zB

tB

and let us define the interval I in this way:

I2 = (xA − xB)2 + (yA − yB)2 + (zA − zB)2 − c2 (tA − tB)2

If we write the expression for I2 with coordinates in K ′, and if we replace them
by their value from (3) and (4), we find that the expression obtained for I2 is the
same than the one written with coordinates in K. As a consequence, the interval is
Lorentz-invariant, and has an objective character.

Then the sign of I2 has an objective character. Let us consider 3 types of intervals
(which we will discuss in the case of only one spatial dimension):

• Interval zero:
I2 = 0 ⇒ (xA − xB) = ± c (tA − tB)

This is the case of the propagation of light from A to B or from B to A, at a
velocity c or −c. The interval is zero whatever the distance from A to B.
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• Time-like interval:

I2 < 0 ⇒ (xA − xB)2 < c2 (tA − tB)2

A body can go from A to B (or the converse) at a speed lower than c. There
is an objective time-order for the pair (A, B), compatible with the propagation
of the body between A and B in the space-time.

• Space-like interval:

I2 > 0 ⇒ (xA − xB)2 > c2 (tA − tB)2

No body, not even light, can travel from A to B (nor the converse). In this
case, it’s easy to verify that we can always find an observer (i.e. a speed v) for
which A and B are simultaneous. We can also find a second observer which
sees A before B and a third which sees B before A. These 3 observers can
always be found for each pair of events linked by such a space-like interval.
There is no objective time-order for these pairs of events. Nevertheless, in this
case there is an objective spatial-order.

These 3 types of intervals are defining on space-time an objective partial order for
events, a time-order for time-like intervals, and a spatial order for space-like intervals.

4 Space-time diagrams

It is still possible to graphically represent the movements of bodies or of edges of
signals on a cartesian map (O, x, t) associated to the coordinates system K, or also on
another one associated to K ′. But this is less interesting than in classical mechanics,
because lengths and durations are not objects.

But, we just saw that intervals are “objects”, and that they define a partial order
on space-time. Then, it’s interesting to graphically represent it. The corresponding
representation is named space-time diagram (Figure 1).

In order to show that it’s not a cartesian map, but only the representation of a
partial order with 2 dimensions, we draw two axes labeled x and t which are not
crossing each-other. The two slanted lines which are crossing each-other on the A
point are representing two light rays, travelling at the velocity c in the two opposite
directions of the space. They delimitate two regions named past of A and future of

A. These regions are said inside the light cones of A.
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x

D

B

C

A

past of A

future of A

with A

contemporary

t

Figure 1: A space-time diagram

A point like D is at an interval zero to A because a light ray can travel from A
to D. It is said that D is on the cone. A point like B is inside the cone of future of
A because a body can travel from A to B with a speed lower than c. B is said after

A. A point like C is said “contemporary with A”. The interval (A, C) is space-like.
C is at right of A (spatial order) but there is no time-order for (A, C).

5 Computers, causality and space-time

When we define the specifications for a communication protocol between components
in a distributed system in order to define a computation, we have to write logical
causality relations of two types: 1) actions of changing the state of some component,
2) actions of communicating from some component to another.

When we make an electronic implementation of this computation and of these
actions, we have to deal with time-orders. It is essential that logical causal relations
can be implemented by physical facts, i.e. by objective relations in space-time. Time-
like intervals, defining an objective time-order, can implement logical causality.

Then, time-like intervals will intervene in two ways for implementing causality in
a distributed system:

• Successive states of one component are linked each-other by time-like intervals
because the component travels at a speed lower than the light speed,

• Communications are implemented by propagations of signals which are time-
like intervals.
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In Figure 1, B is after A in an objective way, and this can be linked to the
causality. But the duration of propagation from A to B is not measured the same
by all observers. This duration is similar to what is named delay in the context
of electronic circuits. Causality can be assured even if delays are not known, either
because they are not objective or because components are moving. What is needed for
implementing DI-circuits is very similar to what is possible in the frame of relativity
with time-like intervals.

On the other hand, the notion of isochronic fork has no equivalent in the rela-
tivistic space-time. It’s a simultaneity in different places, and it cannot be linked
with something objective related to time. Nevertheless, it can be possible to imple-
ment it, but only if we limit relative distances and speeds between components, in
order to limit the max value for delays. This is a very different context from the
present one where we are considering only partial orders and not values of distances
or durations.

6 Time-order and causal-order relations

In Figure 2, which is a space-time diagram, we represented two propagation events

a and b, which are for example edges of signals implementing changes of Boolean
variables. Here, we are using the word “event” in the same way as Bertrand Russell
[11, 12], i.e. for denoting an interval and not a point in space-time. Oa and Ob are
the origins of events a and b, Ea and Eb are their extremities.

x

t

Oa

Ea

Ob

b

a

Eb

c

Oc

Ec

Figure 2: Time-order for propagation events

Definition: b is entirely inside the cone of future of Ea. All points of b are after
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all points of a. We say that it defines the time order for a and b and we write this
relation with the three symbols:

a ⊳ b

This relation is irreflexive, anti-symmetric and transitive. We say that a is before

b or b is after a.
Définition: Let us consider now the situation between events a and c when we

have neither a ⊳ c, nor c ⊳ a. There are points of c which are with some points of a
in a space-like interval. We say that a is contemporary with c and we write:

a ⊲⊳ c

This relation is symmetric. Let us note that it is non-transitive for we can have
a ⊲⊳ c and c ⊲⊳ b but not a ⊲⊳ b (it’s the case in our Figure).

The relations ⊳ and ⊲⊳ are physical and objective. For this reason, we can repre-
sent them on space-time diagrams.

In order to deal with causal partial order, which differs from time-order, let us
consider the Figure 3, in which E and R are components each with no spatial width,
and a, b and c are communication events between E and R. Let us note that it can
be possible to have b ⊳ c even if b is not the cause of c.

c

E R

t

b

a

Figure 3: Partial causal order

With this Figure, we tried (in vain) to represent the case where a is the cause of
b and of c, but with no relation of causality between b and c. The causal order is a
logical order, distinct of the time-order. We have to choose other denotations for the
causal order.
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Definition: In order to express “a is the cause of b”, we write:

a → b

Définition: In order to express that we have neither
a → b nor b → a, we write:

a = b

Figure 3 is a try to represent the case where
(b ⊳ c) ∧ (b = c), but the causal relation cannot be drawn on a Figure.

We will consider that:
(a → b) ⇒ (a ⊳ b)

which express that if a is the cause of b, then the a event has to be arrived at its
destination (has to be received by R) before the b event begins its propagation (be
emitted by R). In fact, this is postulated in order to describe the link which we wish
to have between causality and time in implementing logical machines. It is linked
with another postulate:

(a ⊲⊳ b) ⇒ (a = b)

These two implications have no converse, but we have:

(a ⊳ b) ⇒ (a → b) ∨ (a = b)
(a = b) ⇒ (a ⊳ b) ∨ (b ⊳ a) ∨ (a ⊲⊳ b)

On Figure 3, if the environment E is placed more at left, it would be possible to
have a ⊳ (b ⊲⊳ c), even with the same timing for R. Because when R is emitting c,
it cannot know if E already received b or not (if there is no acknowledge).

Delay-Insensitivity is a way to express that several timing configurations are
compatible with the causal order of the computation. A change in delays can cause
a change in time-orders. We have here an example where the wanted causal order
is a → (b = c), but where possible time-orders are: (a ⊳ b ⊳ c), (a ⊳ c ⊳ b) or
(a ⊳ (b ⊲⊳ c)).

7 Structures of relativistic traces

In this section, we propose a formalism for relativistic traces (which we name R-
traces) for electronic circuits, imitated from [3–6].

Lower-case letters of the beginning of the alphabet (a, b, c, ...) denote propagation

events, i.e. not localized points in space-time but propagation of signals. Then, a
letter (or symbol) as a denotes a space-time interval.
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We replace the concatenation operator “;” (concatenation of symbols or of strings
of symbols) by new operators for partial time-order. We choose “⊳” and “⊲⊳” sym-
bols, and we add parentheses “(” and “)”.

Let us note that R-traces don’t represent the partial order of causality (which we
will denote with “→” and “=”). The partial causal order will be found later, for
structures of R-traces.

R-trace structures are defined as triples
S = < iS,oS, tS >, where:

• iS is a finite set of symbols which denotes propagations from the environment
to the component (inputs),

• oS is a finite set of symbols which denotes propagations from the component
to the environment (outputs),

• tS denotes a set (finite or not) of finite-length sequences (named R-traces)
written with symbols in the set aS ∪ {⊳, ⊲⊳, (, )}, where aS (alphabet of S) is
iS ∪ oS, and with the following syntax.

R-trace structures are denoted by the capitals (R, S, T , ...) and R-traces are
denoted by the lower-case letters (s, t, u, ...) of the end of the alphabet.

• The empty R-trace, denoted “ε”, is a R-trace of the structure S: ε ∈ tS.

• A symbol alone can be a R-trace, for example: a ∈ tS.

• A R-trace s can be extended with a new symbol a in this way: s ⊳ a ∈ tS,
where the triangle denotes that s is entirely in the cone of past of the origin of
a.

• A symbol-event in a R-trace can be replaced by two symbols with no time-order
between them. We will write this: (a ⊲⊳ b).

• When such a parenthesis is preceded by an order-triangle “⊳”, each symbol
in the parenthesis denotes an event which is inside the cone of future of the
extremity of the preceding sequence. For example, s ⊳ (a ⊲⊳ b) denotes that,
both and independently, s is before a and before b.

• When such a parenthesis is followed by an order-triangle “⊳”, the symbols in
the parenthesis all denote events preceding in time the symbol following the
parenthesis. For example, (a ⊲⊳ b) ⊳ t denotes that t is both after a and after
b.
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• In a R-trace, a symbol-event can be replaced by a R-trace, put inside paren-
theses. For example,
s ⊳ ((a ⊳ b) ⊲⊳ c) ⊳ t is a R-trace. This R-trace denotes that s is before a and
before c, and that t is after b and after c.

• As a consequence, we have the assiociativity:
(a ⊲⊳ (b ⊲⊳ c)) ≡ ((a ⊲⊳ b) ⊲⊳ c), even if the relation “⊲⊳” is non-transitive,
because this parenthesis with 3 symbols denotes that each of the 3 symbols is
in a time-order relation only with what is outside the largest parenthesis.

• If a R-trace t is in conformity with the preceding rules, we will write t ∝ aS,
and we will say: “t is a valid R-trace formed on the alphabet aS”. It’s a string
written with symbols in aS ∪ {⊳, ⊲⊳, (, )}.

Example of a R-trace: the following R-trace can be a part of the history of a
Muller C-element:

(a ⊲⊳ b) ⊳ c ⊳ a ⊳ b ⊳ c ⊳ b ⊳ a ⊳ c ⊳ (a ⊲⊳ b) ⊳ c (5)

7.1 Operations on R-traces

We define the concatenation of two R-traces t and u as t ⊳ u. This operation will
be extended to concatenation of sets of R-traces. For example, tR ⊳ tS denotes the
set of R-traces formed by concatenating one R-trace from tR and one R-trace from
tS.

We define the operation star of the R-trace t, which is written [t]∗, as the set
constituted with traces obtained after a finite number of concatenations of t:

[t]∗ = {ε, t, t ⊳ t, t ⊳ t ⊳ t, t ⊳ t ⊳ t ⊳ t, ...}

Applied to a set of R-traces, the star operator will produce the set of all traces
obtained after a finite number of concatenations of R-traces of the set.

We define the prefix operator on a R-trace: let t be a R-trace such that we have
t ∝ aS, the string u is a prefix of t if u ∝ aS and if there exists v ∝ aS such that
t = u ⊳ v. We will also consider that ε and t are prefixes of t.

The pref operator applied to t will produce the set of all prefixes of t. Applied
to a set of traces, it will produce the set of the prefixes of all the R-traces of the set.

Let t be a R-trace, and A a set of symbols. We will define t ↓ A, the operation
of projection of t on A like this:

• If t = ε, then t ↓ A = ε
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• If t = a and a ∈ A, then t ↓ A = a

• If t = a and a /∈ A, then t ↓ A = ε

• If t = (u) and u ↓ A 6= ε, then t ↓ A = (u ↓ A)

• If t = (u) and u ↓ A = ε, then t ↓ A = ε

• If t = u ⊳ v and u ↓ A 6= ε and v ↓ A 6= ε,
then t ↓ A = u ↓ A ⊳ v ↓ A

• If t = u ⊳ v and u ↓ A 6= ε and v ↓ A = ε,
then t ↓ A = u ↓ A

• If t = u ⊳ v and u ↓ A = ε and v ↓ A 6= ε,
then t ↓ A = v ↓ A

• If t = u ⊳ v and u ↓ A = ε and v ↓ A = ε,
then t ↓ A = ε

• If t = u ⊲⊳ v and u ↓ A 6= ε and v ↓ A 6= ε,
then t ↓ A = u ↓ A ⊲⊳ v ↓ A

• If t = u ⊲⊳ v and u ↓ A 6= ε and v ↓ A = ε,
then t ↓ A = u ↓ A

• If t = u ⊲⊳ v and u ↓ A = ε and v ↓ A 6= ε,
then t ↓ A = v ↓ A

• If t = u ⊲⊳ v and u ↓ A = ε and v ↓ A = ε,
then t ↓ A = ε

Example of such a projection: the R-trace (5), projected on {a, c} will produce
the R-trace:

a ⊳ c ⊳ a ⊳ c ⊳ a ⊳ c ⊳ a ⊳ c

which is a repeat of a ⊳ c, and we can also write:

[a ⊳ c]4
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7.2 Operations on R-trace structures

Concatenation of R-trace structures:

R; S =< iR ∪ iS,oR ∪ oS, tR ⊳ tS >

Union of R-trace structures:

R|S =< iR ∪ iS,oR ∪ oS, tR ∪ tS >

Star of a R-trace structure:

∗[R] =< iR,oR, [tR]∗ >

Prefix of a R-trace structure:

prefR =< iR,oR,pref [tR] >

(If prefR = R, we will say that R is “prefix-closed”.)
Projection of a R-trace structure (on the set A):

R ↓ A =< iR ∩ A,oR ∩ A, {t ↓ A | t ∈ tR} >

Weave of R-trace structures:

R‖S = < iR ∪ iS,oR ∪ oS, {t ∝ (aR ∪ aS) |
t ↓ aR ∈ tR ∧ t ↓ aS ∈ tS} >

Example: if R = < {a}, {c}, {a ⊳ c} >, and
S = < {b}, {c}, {b ⊳ c} >, then:

R‖S = < {a, b}, {c},
{(a ⊲⊳ b) ⊳ c, a ⊳ b ⊳ c, b ⊳ a ⊳ c} >

7.3 Component and environment

A R-trace structure S is said to be non-empty if tS 6= ∅.
The dialog between a component and its environment is specified by a R-trace

structure S (named command), which is non-empty, and such that iS ∩ oS = ∅.
Symbols in iS denote signals emitted by the environment and received by the com-
ponent. Symbols in oS denote signals emitted by the component and received by
the environment.
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We make no distinction between the specification of the component on one hand
and the specification of the environment on the other hand. We only specify the
pair component-environment, defined by a dialog, described by only one R-trace
structure.

Example: the dialog between a Muller C-element and its environment is defined
by:

pref∗ < {a, b}, {c},

{(a ⊲⊳ b) ⊳ c, a ⊳ b ⊳ c, b ⊳ a ⊳ c} > (6)

If we define the following atomic commands as particular R-trace structures:

a? = < {a}, ∅, {a} >
b? = < {b}, ∅, {b} >
c! = < ∅, {c}, {c} >

Then, we can rewrite (6):

pref ∗ [(a?‖b?); c!]

Note that, as a consequence of the definition of the projection of R-traces, the
operation a?‖b? denotes the 3 possible time relations a ⊲⊳ b, a ⊳ b, and b ⊳ a, and
then is the same as the relation a? = b?. The writing of R-trace structures with “‖”
and “;” corresponds to the partial causal order that we previously wrote with “=”
and “→”. We can also write, for a Muller C-element:

pref ∗ [(a? = b?) → c!]

The notation with “‖” and “;”, for the DI-component, has the advantage to be
compatible with the classical notation (as for example in [6]), but we have to note
that it now has a different meaning : R-trace structures are a description of a partial

order, the order relation of causality for events which are propagations in relativistic
space-time.

Remark: propagation delays are already included in this description. It was not
the case in the classical description.

8 Relativistic Udding’s rules

The “Udding’s rules” [3] are a formalization of the intuitive idea of DI-systems, which
was previously introduced by the metaphor of FRW (Foam Rubber Wrapper) [1].
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The FRW metaphor shows how the change of propagation delays can change the
time-order of signals, and suggest how component specifications can be invariant
under these changes in time-ordering.

Udding translated this intuitive notion of FRW and write it as logical constraints
imposed on the syntax of trace-structures which specify components, so that these
specifications be invariant under the changes of time-ordering caused by the changes
of propagation delays.

In the classical frame of traces [4], each trace denote a total time-order. When
there is a change of time-order due to the change of propagation delays, it is said
that: “the order at the environment frontier is not the same as the order at the
component frontier”.

But this way of thinking is no more possible in the relativistic frame, because
there is no “simultaneity in different places”, and this prevents us to find a meaning
to the words “the time-order at the frontier”. We cannot define a time-order at
the frontier if this frontier has a width, in other words if the frontier is not a single
point in space. And it is not possible to continue to use traces if traces denote a
total order. For this reason, we introduced R-traces which denote a partial order.
Another important semantic change introduced with R-traces is that they denote,
not an order in a single place in space, but an order for propagations. This semantic
change is linked with the change of meaning of the word event which is now an
interval (time-like).

If we adapt Udding’s rules to R-traces, they still continue to be constraints on the
syntax of the specifications of components. But now R-traces are for the specification
of a single object, that is a pair component-environment. And R-traces are the
expression of the dialog inside this pair, more precisely the causality relations for
propagations. Because these causality relations will be compatible with the time-
order in relativistic space-time, this will make DI-systems compatible, not only with
a change in place&route on a chip at the design stage, but also with movement of

components during a computation.
In this section, we propose a new writing for Udding’s rules and we use space-

time diagrams to illustrate the discussion. In these diagrams, the component and
the environment will be each a point in space represented by a near vertical line.
Propagation events will be represented by more slanted arrows because their speed
is higher (as in Figure 3).

We choose E and R for the names of respectively the environment and the com-
ponent. R will also be the name of the R-trace structure which describes the spec-
ification of the dialog in the pair. We will discuss R0 rule after R1 rule because we
consider R0 as a special case of R1. (We refer to the names of the rules in [3].)
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8.1 R1 rule

This rule is for 2 successive symbols of the same type (2 inputs or 2 outputs). Clas-
sically, in a context of total ordering, the 2 relative orders have to be present and
with the same consequences:

∀s, t ∈ tR, (a, b ∈ iR) ∨ (a, b ∈ oR) ;
sabt ∈ tR ⇔ sbat ∈ tR

.
Let us try to discuss this rule on Figure 4. On the left, we draw the case of an

a signal which has a lower speed than b signal. On the right, we tried to draw the
case of a b signal which is so late that it is inside the cone of future of a (time order
a ⊳ b). In the classical writing, at left the order is not the same for E and R, at right
the order is the same. In the relativistic writing, there is no causal order between a
and b.

b

E RE R

t

a

b

a

Figure 4: About R1 rule (two inputs case)

For the new writing of R1 rule, we propose:

∀s, t ∈ tR, (a, b ∈ iR) ∨ (a, b ∈ oR) ;
( s ⊳ a ⊳ b ⊳ t ∈ tR ∨ s ⊳ (a ⊲⊳ b) ⊳ t ∈ tR )

⇒ s ⊳ (a = b) ⊳ t ∈ tR

where (a = b) is a condensed writing for denoting the presence of all the 3 time-orders
a ⊳ b, (a ⊲⊳ b) and b ⊳ a.

It is the case we discussed in section 6. If there is no signal in order to inform E
that a is arrived before the departure of b (acknowledge), then there is no possibility
for a consensus between E and R on the order of a and b. But it’s acceptable if the
order has no consequence on the subsequent computation.
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8.2 R0 rule

It’s not possible to transmit on a same channel (same symbol) 2 events with no
signal between them (on another channel, of the same type or of the opposite type).
Because there could be a confusion on the number of events or the possibility of
loosing events. Classically:

∀s ∈ tR, a ∈ aR ; saa 6∈ tR

R1 rule forces us to consider saa as s ⊳ (a = a). What is the meaning of this,
in terms of causality?

If the two a are with no causal relation between them, then they are independently
caused by the preceding s. May be repeating a can have a meaning, but in this case
the second a has to come after an acknowledge of the first, if there is a possibility of
physical confusion.

For the new writing of R0 rule, we propose:

∀s ∈ tR, a ∈ aR ; s ⊳ (a = a) 6∈ tR

(None of the 3 time-orders can be present.)

8.3 R2 rule

This rule is for 2 symbols of opposite type (one input and one output). The two
events can be causally ordered, and generally the order has a meaning. There is no
ambiguity. In our writing, it’s the case of a → b implemented by a ⊳ b.

But if the two events are not ordered, or if they are ordered but with the possibility
of the two opposite orders, then the two orders have to cause the same consequences,
because the order can be changed by the propagations. Classically:

∀s, t ∈ tR, (a ∈ iR ∧ b ∈ oR) ∨ (a ∈ oR ∧ b ∈ iR) ;
(sab ∈ tR ∧ sba ∈ tR) ⇒ (sabt ∈ tR ⇔ sbat ∈ tR)

We will discuss this rule with the help of Figure 5. On the right, a and b signals
are clearly not ordered (we have a ⊲⊳ b), but on the left part of the Figure which
represents a ⊳ b we cannot see if there is a causal order (a → b) or if it is a special
case of the non-ordered case (a = b).

The goal of this R2 rule is to force us, if we want to implement (a = b), to make
the case a ⊳ b have the same consequences than b ⊳ a or a ⊲⊳ b. For the new writing
of R2 rule, we propose:

∀s, t ∈ tR, (a ∈ iR ∧ b ∈ oR) ∨ (a ∈ oR ∧ b ∈ iR) ;
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a

b

E R

a

t

Figure 5: About R2 rule

[

( s ⊳ a ⊳ b ∈ tR ∧ s ⊳ b ⊳ a ∈ tR )

∨ s ⊳ (a ⊲⊳ b) ∈ tR
]

⇒
[

( s ⊳ a ⊳ b ⊳ t ∈ tR ∨ s ⊳ (a ⊲⊳ b) ⊳ t ∈ tR )

⇒ s ⊳ (a = b) ⊳ t ∈ tR
]

8.4 R′
2 rule

In some cases, R2 rule is too constraining. In order to explain this, we go back to
Figure 5 (which is about R2). Let us suppose that the two drawings in this Figure
represent the same non-ordered case s ⊳ (a = b). In the left, we can see that R has
more information than E about the time-ordering of a and b, and also R knows that
E sees the same order than R. But E cannot make such an inference for presuming
the time-order seen by R. For example, E can believe that it is (a ⊲⊳ b) because it
cannot know the propagation delays.

In this case, we can authorize only R to take a specific decision. For example
(Figure 6) R can emit d in the case where a and b are not causally ordered but where
we have a ⊳ b.

In the case of c which is of the same type of a, we have to impose c exists whatever
the order seen by R, because c is emitted by E which has less information than R.
This is done by R′

2
rule, classically:

∀s, t ∈ tR, (a, c ∈ iR ∧ b ∈ oR)
∨ (a, c ∈ oR ∧ b ∈ iR) ;

(sabtc ∈ tR ∧ sbat ∈ tR) ⇒ sbatc ∈ tR
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Figure 6: About R′

2
rule

For a new writing, we propose:

∀s, t ∈ tR, (a, c ∈ iR ∧ b ∈ oR)
∨ (a, c ∈ oR ∧ b ∈ iR) ;

[

( s ⊳ a ⊳ b ⊳ t ⊳ c ∈ tR ∧ s ⊳ b ⊳ a ⊳ t ∈ tR )

∨ s ⊳ (a ⊲⊳ b) ⊳ t ⊳ c ∈ tR
]

⇒ s ⊳ (a = b) ⊳ t ⊳ c ∈ tR

8.5 Group of R3 rules

If a is an input an b an output, and if there is no causal order between them (a = b),
is it possible for the arrival of a to prevent the departure of b in the case (a ⊳ b)? If
we don’t want this possibility to exist, we have to exclude it by a rule. Classically,
this rule is:

sa ∈ tR ∧ sb ∈ tR ⇒ sab ∈ tR (7)

If we extend this to the combinations with symbols of the same type, these
rules can serve to a classification of components: 1) Two input symbols can be
mutually exclusive if the environment has to make a choice (case of inputs of memory
components), 2) Two output symbols can be mutually exclusive if the component
has to make a choice (case of arbitration devices).
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We have to write a rule of the R3 group if we want to forbid a choice. For example,
if we want to exclude memories, we can write: ∀s ∈ tR, a ∈ iR ∧ b ∈ iR ; then (7).

In the relativistic frame, we have to replace the second part of (7) by: s ⊳ (a =

b) ∈ tR. For a new writing of (7), we propose:

[

s ⊳ (a ⊲⊳ b) ∈ tR ∨ (s ⊳ a ∈ tR ∧ s ⊳ b ∈ tR)
]

⇒ s ⊳ (a = b) ∈ tR (8)

The 3 following rules differ only by the combination of types of symbols, after
which we add (8).

R′

3
rule. This first rule defines the more constrained class of components. Neither

the environment, nor the component can make a choice (Muller-C and Fork are in
this class).

∀s ∈ tR, a 6= b ∈ aR ; then (8).

R′′

3
rule. This second rule accepts memories. a and b are not two inputs.

∀s ∈ tR, a 6= b ∈ aR a /∈ iR ∨ b /∈ iR ; then (8).

R′′′

3
rule. Not only 2 inputs can be mutually exclusive but also 2 outputs (ar-

biters).
∀s ∈ tR, (a ∈ iR ∧ b ∈ oR) ∨ (a ∈ oR ∧ b ∈ iR) ; then (8).

Definition of relativistic DI-components. Imitating Udding, we can now
define the class of relativistic DI-components as the specifications which obey to R0,
R1, R′

2
and R′′′

3
.

9 Generalization of classical rules

We have to show how the new symbols a, b, ⊳, ⊲⊳ can be transformed when we restrict
them to the classical space-time. We need a type of “projection” which transforms
R-traces in traces. A R-trace denotes a partial time-order for propagations, but a
classical trace denotes a total time-order for points of space-time (input or output
port of a component). The same symbol a is not denoting the same object in a
R-trace as in a trace. However, we can define such a “projection”:

• a ⊳ b ∈ tR will be projected to: ab ∈ tR.

• (a ⊲⊳ b) ∈ tR will be projected to:
ab ∈ tR ∧ ba ∈ tR.
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• a = b ∈ tR will be projected to: ab ∈ tR ∧ ba ∈ tR.

In making this, we project the absence of order and replace it by the presence of
the two opposite orders, but it’s imposed by the syntax of classical traces. Graph-
ically, on space-time diagrams, we transform one R-trace in two classical traces by
intersecting slanted arrows separatly with the two vertical lines (one intersection at
the component and one at the environment). We obtain two traces which have to be
present together in the specification of the component.

We can note that all the relativistic Udding’s rules have at their end something
of the form:

⇒ (a = b) ∈ tR

which is projected to something of the form:

⇒ ab ∈ tR ∧ ba ∈ tR

In other words, all these rules impose the absence of causal order, and their restric-
tions to classical space-time impose the presence of the two opposite orders.

We can easily verify that the new rules are projected to classical rules.
In fact, we can note that it’s pecisely because the Udding rules have the property

to impose the presence of the two opposite orders that their restriction from rela-
tivistic case to classical case is possible. And this is the reason why the notion of
DI-systems can be generalized to relativistic space-time with its partial time-order.

10 Conclusion

We proposed a new formalism for traces (named R-traces) allowing to describe the
dialog between a DI component and its environment in the relativistic space-time,
and also of course in its restriction to the classical space and time. There is no
additionnal complexity in doing so, and it is also adapted to moving components. A
R-trace structure is a writing of the specification of a component-environment pair
as the list of partial time-orders allowed for the communication events in this dialog.

In the frame of this formalism, we proposed a new writing for Udding’s rules,
which is not complex and which can make clearer the meaning of these rules in
terms of causality.

With the example of the specification of the Muller-C element, which is (with the
Fork) the sole primitive component of [5, 6] implicated in a concurrency, we showed
that this new formalism can be written with the same form as the classical one for
the specifications of DI components. But in this frame, the previous writing has
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a new meaning: R-trace structures are the order relations of causality for events,
including propagation delays.

In this frame, a distributed system is no more a composition of components which
communicate, but it becomes a composition of component-environment pairs, no one
of the two members of a pair being describable for its own. It’s a composition of
interfaces, if we name interface the dialog between the two members of a pair. This
leads to exciting new questions about the way to deal with such systems...
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