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Second-order dynamic transition in a p = 2 spin-glass model
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We consider the dynamics of a disordered p-spin model with p = 2, analyzing the dynamics within
Ruelle’s thermodynamic formalism, We use an indicator of the dynamical activity to construct the
relevant dynamical Gibbs ensemble. We prove that the dynamics in the low-temperature (spin
glass) phase of the model take place at a second-order phase transition between dynamically active
and inactive trajectories. We also show that the same behaviour is found in a related model of a
three-dimensional ferromagnet.

PACS numbers: 75.10.Nr,05.40.-a,64.70.qj

I. INTRODUCTION

Glassy systems are characterised by their dynamical
properties: at their glass transitions, they fall out of equi-
librium on experimental time-scales, and exhibit aging
phenomena. As the glass transition is approached, their
relaxation times increase in a super-Arrhenius fashion
and the decay of their equilibrium dynamical correlation
functions is slower than exponential [1]. In the last fifteen
years, several approaches have been developed to recover
theoretically the experimental, out-of-equilibrium results
(see, for example, [2]).

One of the most striking experimental features of a
glass-forming liquid is that the increase in relaxation time
near the glass transition does not seem to be accompanied
by any significant changes in the liquid structure. How-
ever, experiments and computer simulations [3, 4, 5, 6]
both indicate that a dynamical length scale is growing
as the glass transition is approached. That is, glassy
materials are made up of active and inactive regions
of space-time, namely dynamical heterogeneities. Based
upon these results, the idea that the glassy properties of
a system arise directly from their dynamical heterogene-
ity was developed in [7, 8], stimulating further theoretical
understandings of glassy dynamics.

Spin glasses are magnetic spin systems which exhibit
several features in common with glass-forming liquids.
They are modelled by spins with quenched random inter-
actions between them, and have been extensively inves-
tigated both experimentally and theoretically (see [9] for
a review). The purpose of this paper is to show that the
glassy dynamics of a particular spin glass model can be
understood in terms of the histories it follows in configu-
ration space. To this end, we employ the thermodynamic
formalism of histories, developed by Ruelle and coworkers
[10] within the framework of dynamical systems theory,
and summarized in [11] in the context of Markov dynam-
ics. While equilibrium statistical mechanics is concerned
with fluctuations in the configuration space of the sys-
tem, Ruelle’s formalism focuses on the trajectories (his-
tories) by which the system evolves through configuration
space. The method has been applied recently to kinet-

ically constrained models of glass-formers [12] and to a
Lennard Jones binary mixture [13]. Both these studies
distinguish active and inactive histories of the systems,
according to the range of configuration space visited dur-
ing the history. In the kinetically constrained models, it
was proven that the active and inactive histories form dis-
tinct populations. In the language of the thermodynamic
formalism, they are separated by a first-order phase tran-
sition in trajectory space. In Refs. [12, 13], it was argued
that the heterogeneous dynamics of those models is in-
trinsically linked to this transition.

In this article, we focus on a soft p-spin model with
p = 2, whose static and dynamic properties can be stud-
ied analytically. The p → ∞ limit of the p-spin model,
namely the disordered Random Energy Model, was re-
cently shown to possess a connection between the ac-
tivity of the histories it follows and the dynamical het-
erogeneities in its glassy phase [14]. (Of course, in p-
spin models with infinite-ranged interactions, the dy-
namical correlation lengths associated with dynamical
heterogeneity are ill-defined. However, the presence of
large dynamical fluctuations in these mean-field models
is naturally linked to dynamical heterogeneity in their
finite-dimensional counterparts. We show that the p = 2
spin-glass model is closely related to a three-dimensional
ferromagnet in which such length scales can be calcu-
lated.) In both the spin glass and ferromagnetic models,
we demonstrate the existence of a phase transition in tra-
jectory space, offering further evidence that these phase
transitions are very generally associated with glassy sys-
tems.

The outline of the paper is as follows: in Section II
we describe the models we will consider and the meth-
ods that we will use. In section III we construct a ‘dy-
namic phase diagram’ that describes the behaviour of the
system in trajectory space. We interpret our results in
Sec. IV, discussing the links between the large deviations
that we have derived and the more familiar features of
the soft spin models, and identifying directions for fur-
ther study.
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II. MODEL AND FORMALISM

A. Spin glass model

We consider a system of N continuous spins σi whose
Hamiltonian H is given by:

βH = − β

2N

∑

i,j

Jijσiσj +
u

N

∑

i,j

σ2
i σ

2
j . (1)

Here, β = 1/T as usual, where T is the temperature and
we have set Boltzmann’s constant to unity, we take u > 0,
and the random couplings are Gaussian distributed

p(Jij) =
1√
2π

exp

(

−
J2

ij

2

)

. (2)

The role of the term proportional to u > 0 is to sup-
press configurations with extreme values of the spins.
The model is similar to the p-spin models discussed
in [15, 16]. Like the spherical p-spin model of [15] and
in contrast to that of [16], the model under considera-
tion here can be solved exactly. However, we use the u-
term instead of a spherical constraint since it facilitates
studies of large-deviations of the activity. (In particu-
lar, we note that fluctuations of extensive quantities re-
quire careful treatment in spherical models [17], in which
fluctuations of the Lagrange multiplier for the constraint
must be considered.) In any case, all of these soft p-spin
models exhibit finite-temperature ‘glass transitions’ at
which ergodicity is broken [16, 18, 19, 20]. Connections
with the structural glass problem have been discussed
in [16, 21, 22]. The case of p = 2 differs from that of
p ≥ 3 in that correlation functions can be obtained ex-
actly from the properties of large random matrices [18].

In this article, we will employ the functional-integral
formalism of [23]. To this end, we endow the spin system
with a relaxational dynamics,

∂tσi = − δβH
δσi(t)

+ ηi(t) (3)

where the ηi’s are independent white Gaussian noises
with variance 2. Following [18, 20], it will prove use-
ful to resort to the basis which diagonalizes the matrix of
exchange couplings. The eigenvalues {Jµ}µ=1,...,N of the
N ×N matrix (Jij)i,j=1,...,N are distributed according to
Wigner semi-circle law,

ρ(Jµ) =
1

2π

√

4 − J2
µ (4)

Denoting by φµ the spin coordinates in the basis that in
which (Jij) is diagonal, the Hamiltonian simplifies into

βH = − β

2N

∑

µ

Jµφ
2
µ +

u

N

(

∑

µ

φ2
µ

)2

(5)

and the equation of motion now reads

∂

∂t
φµ = βJµφµ + 4uφµ

1

N

∑

ν

φ2
ν + ηµ(t) (6)

where the ηµ’s are independent white Gaussian noises
with variance 2.

B. Ferromagnetic model

It been remarked that the p = 2 spin glass resembles a
ferromagnet ‘in disguise’ [24]. To illustrate this, we also
consider a ferromagnetic model whose Hamiltonian HFM

is given by

βHFM = −β
∑

〈ij〉
σiσj +

u

N

∑

i,j

σ2
i σ

2
j . (7)

where the first sum runs over nearest neighbours on a d-
dimensional (hyper)-cubic lattice, but the u-term retains
interactions between all sites. (Thus, the model contains
infinite-ranged couplings, as in the spherical ferromag-
net.) The analogues of the co-ordinates φµ in this model
are the Fourier transformed spin co-ordinates φk where
k = (k1, . . . , kd) is the wave vector. The eigenvalues of

the matrix coupling the spins are Ek =
∑d

r=1 cos kr. The
resulting equation of motion is then

∂

∂t
φk = βEkφk + 4uφk

1

N

∑

k

|φk|2 + ηk(t) (8)

where the ηk are independent Gaussian noises as before.
In d = 3 the distribution of the eigenvalues Ek is

ρ(Ek) ≈ (2π2)−1
√
d− Ek when |k| is small. Similarly,

in the spin glass of (1), the density of eigenvalues scales

as ρ(Jµ) ≈ π−1
√

(2 − Jµ) for Jµ close to 2. We will find
that the phase transitions in the models depend on the
scaling of the eigenvalue density near these points, and
hence that phase transitions in the d = 3 ferromagnet
and the p = 2 spin glass are related to each other, and
have the same scaling exponents.

C. Symmetry-breaking fields

Below its transition temperature, the ferromagnetic
model spontaneously breaks the global symmetry σi →
−σi. To clarify the behaviour in the ordered phase,
it is convenient to introduce a magnetic field: we take
HFM → HFM − h

∑

i σi in (7). The equation of motion
becomes

∂

∂t
φk = β(Ekφk + hδk,0

√
N) + 4uφk

1

N

∑

k

|φk|2 + ηk(t)

(9)
In the presence of this field, the magnetisation M(t) =
N−1

∑

i σi = N−1/2φk=0 acquires a finite expectation
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value: in the ordered phase, the magnetisation remains
finite even in the limit of small h, with a first-order phase
transition at h = 0.

In the spin glass model, the low temperature phase
breaks the same global symmetry, but the order parame-
ter is not the magnetisation. Instead, the co-ordinate φµ

corresponding to the largest eigenvalue of Jij becomes
macroscopically occupied. We assign the label µ = 0
to this eigenvector. Then, by analogy with the ferromag-
netic case, we can introduce an analogous ‘staggered field’
to the model of (1). The equation of motion becomes

∂

∂t
φµ = β(Jµφµ + hsδµ,0

√
N) + 4uφµ

1

N

∑

ν

φ2
ν + ηµ(t)

(10)
The analogue of the magnetisation M(t) is the staggered
magnetisation Ms(t) = N−1/2φµ=0. In the low temper-
ature phase of the p = 2 spin glass, the expectation of
Ms(t) tends to a finite value as hs tends to zero, with a
first-order phase transition at hs = 0.

D. Thermodynamic formalism

Ruelle’s thermodynamic formalism involves a statisti-
cal mechanical analysis of the trajectories that a system
follows through configuration space. Let a history be
a particular time-realization that the system has visited
over a given time interval. Consider an ensemble of histo-
ries constructed by fixing their dynamical activity K(t).
Here, the dynamical activity is a history-dependent ob-
servable, extensive both in space and time, expressing
the amount of activity within the history. In a typical
inactive history, the spins remain frozen in a locally or-
dered state; in an active history, spins fluctuate randomly
between up and down states. For both spin-glass and fer-
romagnetic models, a simple local observable consistent
with this definition of activity is

K(t) = −1

2

∑

j

∫ t

0

dt σ2
j (t) = −1

2

∑

µ

∫ t

0

dt φ2
µ(t) (11)

Histories with K close to 0 are the most active ones and
are typically associated with disordered states; histories
with large negative K are inactive and are associated
either with local or global ordering.

While an ensemble of trajectories with fixed K is nat-
ural from a physical point of view, our theoretical meth-
ods require a change of ensemble, to one in which the
average activity is fixed. (To draw an analogy with equi-
librium statistical mechanics, we are transforming from
a microcanonical to a canonical ensemble.) To fix the
average activity, we apply a field s that is conjugate to
K(t). While we are as yet unable to endow s with an
experimentally-realizable physical meaning, ensembles of
histories with finite s provide a valuable theoretical tool,
which allow us to probe the histories that the system fol-
lows. The ensemble with s = 0 is simply the (unbiased)

ensemble of trajectories for the system: ensembles with
s > 0 are less active than the unbiased ensemble while
those with s < 0 are more active.

In the following, we will evaluate the partition function

Z(s, t) = 〈e−sK〉0 (12)

which is simply the generating function for the activity.
Here and throughout, we use 〈·〉0 to denote an average
of the (unbiased) relaxational dynamics over all possible
time realizations, which means an average over the noises
ηi. We also consider averages of a generic observable A in
the biased ensemble parameterised by s, which we write
as 〈A〉s ≡ limt→∞ Z−1(s, t)〈Ae−sK〉0

We also define a dynamical free energy

ψ(s) = lim
t→∞

lnZ(s, t)

t
. (13)

It follows that

〈K〉s = −Ntdψ
ds

(14)

With these definitions, singularities in ψ(s) are the dy-
namical phase transitions of the system. Discontinuities
in the derivatives of ψ(s) will correspond to phase tran-
sitions between active and inactive phases. By analogy
with equilibrium statistical mechanics, transitions with a
jump in 〈K〉s are termed ‘first-order’ or ‘discontinuous’;
otherwise the transition is termed ‘continuous’. More
specifically, if 〈K〉s is continuous and the second deriva-
tive is discontinuous then we refer to the transition as
‘second-order’.

E. Functional integral formulation

To evaluate dynamical observables such as 〈K〉s, we
use the Janssen-De Dominicis functional-integral formu-
lation [23], as in earlier studies such as Ref. [16]. The
relaxational dynamics for the spin φµ(t) is given by (6).
Using a functional integral representation the dynam-
ical, s-dependent partition function introduced in (12)
becomes

Z(s, t) =

∫

DφDφ̄ exp

[

−
∫ t

0

dt′L(t′)

]

(15)

where, omitting time-dependence for brevity,

L =
∑

µ

φ̄µ

(

∂t′φµ − βJµφµ +
4u

N

∑

ν

φ2
νφµ

)

− φ̄2
µ−

s

2
φ2

µ.

(16)
(We consider the spin-glass model of (1) and we have set
the staggered field hs = 0; other cases will be discussed
below.)

Due to the infinite-ranged interactions in the term pro-
portional to u, this model may be reduced to a quadratic
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form. Details are given in appendix A. The result is that
the partition function becomes

Z(s, t) =

∫

DφDφ̄ exp

[

8uχ̄χNt−
∫ t

0

dt′Laux(t
′)

]

(17)
with

Laux =
∑

µ

φ̄µ(∂t′ + 4uχ− βJµ)φµ − φ̄2
µ −

(s

2
− 4uχ̄

)

φ2
µ

(18)
where the parameters χ and χ̄ must be determined self-
consistently, through

χ =

∫

dJµ ρ(Jµ)
1

√

(4uχ− βJµ)2 − 2(s− 8uχ̄)
(19)

and

2χ̄+ 1 =

∫

dJµ ρ(Jµ)
4uχ− βJµ

√

(4uχ− βJµ)2 − 2(s− 8uχ̄)
(20)

In addition, it follows from the definition of χ that

χ = −2〈K〉s (21)

so that solving the self-consistency equations (19) and
(20) leads directly to the activities of the relevant phases.
Finally, we note that the derivative

dχ

ds
= 〈(K − 〈K〉s)2〉s (22)

gives the fluctuations of the activity.
Physically, we have shown that the dynamical correla-

tion functions of the original model (1) are the same as
those of the auxiliary quadratic system (17). Noting that
ρ(Jµ) is finite only for −2 < Jµ < 2, the integrals in (19)
and (20) are well-defined as long as

(4uχ− 2β)2 − 2(s− 8uχ̄) > 0 (23)

As long as this condition is fulfilled, then the system is
in a paramagnetic disordered phase. On the other hand,
if the denominator of (19) vanishes at Jµ = 2 then the
mode associated with this eigenvalue may become macro-
scopically populated.

F. Symmetry-breaking fields

As discussed in Sec. II C, it is also useful to consider the
effects of symmetry-breaking fields hs and h on these sys-
tems. Following the analysis of the previous section, the
symmetry-breaking fields lead to linear terms in Laux. In
general, the fluctuating magnetisation Ms = N−1/2φµ=0

and its response field M̄s = N−1/2φ̄µ=0 both have fi-
nite expectation values which we denote by ms and m̄s

(Anomalous)

c

s

T

Disordered
(Normal)

Disordered Ordered

T

FIG. 1: ‘Phase diagram’ associated with the dynamic free en-
ergy ψ(s) of the spin glass model. The critical point of the
model is at s = 0 and T = Tc. The heavy solid line is a sec-
ond order phase boundary between ordered and disordered
phases. The dashed line is a crossover within the disordered
phase. In the high temperature (normal) regime then the re-
sponse to a staggered field hs is positive; the low temperature
(anomalous) regime is characterised by a negative response to
this field.

respectively. Evaluating these expectation values in the
auxiliary model, we arrive at

ms = βh
4uχ− 2β

(4uχ− 2β)2 − 2(s− 8uχ̄)
(24)

m̄s = βh
s− 8uχ̄

(4uχ− 2β)2 − 2(s− 8uχ̄)
. (25)

Self-consistency in the presence of the field leads to mod-
ified saddle point equations for χ and χ̄:

χ = m2
s +

∫

dJµ ρ(Jµ)
√

(4uχ− βJµ)2 − 2(s− 8uχ̄)
(26)

2χ̄+ 1 = 2msm̄s +

∫

dJµ ρ(Jµ)(4uχ− βJµ)
√

(4uχ− βJµ)2 − 2(s− 8uχ̄)
.

(27)

Finally we note that while we have considered the spin-
glass model of (1) throughout Secs. II E and II F, the
equations for the ferromagnetic model can be obtained
by applying the simple replacement (µ, Jµ,ms, m̄s) →
(k, Ek,m, m̄) throughout these sections, where m̄ =
N−1/2φ̄k=0.

III. DESCRIPTION OF THE PHASE DIAGRAM

A. Overview

The dynamical phase diagram for the p = 2 spin glass
of (1) is shown in Fig. 1, for hs = 0. The phase diagram
of the ferromagnetic model of (7) at h = 0 has the same
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form. The axis s = 0 corresponds to the unbiased re-
laxational dynamics of (3). On this axis, the spin-glass
system has a second-order phase transition at

Tc =
1√
2u
. (28)

Below Tc, the mode with lowest eigenvalue is macroscop-
ically populated, and the system is ordered: the (stag-
gered) magnetisation remains finite as the (staggered)
field is reduced to zero.

We will show that the effect of positive s is to pro-
mote ordering in the system, consistent with the expec-
tation that ordered phases are less active that disordered
ones. As s increased from zero, the second-order transi-
tion between active and inactive phases moves to a higher
temperature: we have an increasing function Tc(s), with
Tc(0) = Tc being the thermodynamic transition temper-
ature at s = 0.

The effect of negative s is to reduce ordering in the sys-
tem, thus increasing the activity: at temperatures above
Tc, the dynamical free energy ψ(s) has no singularities
for s ≤ 0 andK increases smoothly as s is decreased from
zero. We also find that no ordered phases are possible for
s < 0: the condition (23) is always satisfied when and ms

vanishes in the limit of small hs. Thus, for 0 < T < Tc,
behaviour of the model as s→ 0+ coincides with the or-
dered phase that is found at s = 0, but the behaviour
is different for all s < 0. This signals the presence of a
phase boundary at s = 0. The same effect is observed in
the ferromagnetic model of (7).

We now show how this phase diagram is obtained
from the solutions to the self-consistency equations (19)
and (20). We calculate the saddle point average χ as a
function of s and the other parameters of the model: this
gives the activity of the phases of the model through (21).
In addition, we also calculate the (s-dependent) stag-
gered magnetisation ms which gives additional insight
into the phases of interest.

B. Unbiased dynamics (s = 0)

We begin with the unbiased (s = 0) behavior of the
model, the derivation of which is identical to that of
Kosterlitz et al [18] for the spherical version of this model.
Equations (19) and (20) can be solved at s = 0 with the
result that χ̄ = 0, as required by causality, and that

χ =
1

N

∑

µ

1

4uχ− βJµ
(29)

If χ > β
2u then we can approximate the sum over the

eigenvalues Jµ by an integral over the distribution ρ(Jµ),
with the result

χ =
1

β2

(

2uχ−
√

4u2χ2 − β2
)

(30)

the solution of which is given by

χ =
1

√

4u− β2
, β < βc, (31)

where βc = 1/Tc =
√

2u consistent with (28).
However, for β > βc, the mode with Jµ = 2 becomes

macroscopically occupied, as described above. We there-
fore have

χ =
β

2u
, β > βc. (32)

While the integral in (19) is formally undefined, the or-
dered phase can be studied either by introducing a finite
staggered field hs as discussed in Sec. II F, or by solv-
ing (19) to O(1/N). In either case, the staggered mag-
netisation ms at zero field is

ms = m0 ≡
√

T 2
c − T 2

T
(33)

We also note a property of the ordered phase that is
peculiar to exactly soluble soft spins models such as the
spherical model [15]. The susceptibility associated with
the magnetisation,

m(2) = 〈(M(t) −ms)
2〉s (34)

diverges as hs → 0 for the unbiased dynamics (s = 0)
and all T < Tc. (This can be verified by evaluating 〈φ2

0〉
in the auxiliary model.) This is in contrast to the usual
situation in critical phenomena where m(2) is finite for
zero field and T < Tc, diverging only at the critical point.

C. Ordered phase, s > 0

We now turn to the ordered phase for positive s. To
simplify the analysis, we introduce reduced variables:

X(s) = 4uTχ(s) (35)

Y (s) = 2T 2[s− 8uχ̄(s)] , (36)

where we explicitly indicate the s-dependence of χ and
χ̄. We see that X(s) = λ∗: physically, we identify the
quantity (−λ∗φµ) in (A3) as the constraint force on mode
µ that arises from the u-term in (1) and suppresses con-
figurations with extreme values of φµ. We also identify
Y (s) as a renormalised field s for the auxiliary system.
It is easily verified that while the dynamical free energy
ψ depends on four parameters (s, β, u, hs), the properties
of the auxiliary model depends only on (Y, β,X, hs). Our
strategy will be to determine properties of the auxiliary
model in terms of X and Y and then to find the relations
between (X,Y ) and the bare parameters of the model.

In the presence of a staggered field hs, we have
from (26) that

ms = hs
X − 2

(X − 2)2 − Y
(37)
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For Y > 0, spontaneous symmetry breaking occurs if the
denominator vanishes as hs → 0, as

X = 2 +
√
Y +O(hs). (38)

Working at small hs, we then take the zeroth order terms
in (26), arriving at

2 +
√
Y

4uT
= m2

s+T

∫

dJρ(J)
1

[

2(2 − J)
√
Y + (2 − J)2

]1/2

(39)

This allows us to obtain m2
s = m2

0+ 2
√

2T
π Y 1/4+O(Y 1/2).

Finally, we must relate the renormalised field Y to the
bare field s. Again working at zeroth order in hs, (27)
becomes:

2s− Y β2

8u
= βm2

s

√
Y − 1+

∫

dJρ(J)
2 − J +

√
Y

[

2(2 − J)
√
Y + (2 − J)2

]1/2
(40)

Taking s small and positive, the solution has small pos-
itive Y . More specifically, the first term on the right
hand side of (40) dominates as Y → 0, leading to√
Y = s

2(β2−2u) . [The same result can be obtained by

working at hs = 0 and considering carefully the limit of
large-N . The analogue of (38) is X = 2 +

√
Y +O(1/N)

and we allow for a finite values of ms and m̄s when solv-
ing (26) and (27). The remainder of the analysis follows.]

Taking everything together, in the limit hs → 0+ and
for 0 < s≪ (T − Tc), the leading behaviour is

χ ≈ β

2u
+

sβ

8u(β2 − 2u)
(41)

m2
s ≈ m2

0 +
2

πβ

√

s

β2 − 2u
(42)

Physically, we can see that the s = 0 axis in the phase
diagram of Fig. 1 is singular, but that both χ and dχ/ds
are finite, so that fluctuations of the activity K(t) remain
finite as h → 0. However, as for the case s = 0, the
fluctuation m(2) diverges as h → 0, for all cases where
the spin-reversal symmetry is spontaneously broken.

D. High temperature regime

We now turn to temperatures above the critical tem-
perature, β < βc. We treat s perturbatively in (19) and
(20), arriving at

χ =
1

√

4u− β2
+ s

1

8(2u− β2)
√

4u− β2
(43)

noting also that

Y = 2s
2u− β2

β2(4u− β2)
. (44)

We also notice that these solutions satisfy (X−2)2−Y >
0 at small s.

As the temperature is lowered towards Tc, we see that
dχ/ds diverges. This again signals the second-order tran-
sition to the ordered phase. Indeed, it can be shown that
this transition to the ordered phase moves to a higher
temperature for s > 0. At the critical point, we have
(X − 2)2 = Y and ms = m̄s = 0. With these conditions,
we can use (39) and (40) to derive the phase boundary
for positive s. In the limit β → β−

c , the system is ordered
for s > sc, where

sc(β) ≃ 2π2

3βc
(βc − β)3 (45)

which holds to leading order in βc − β. This function
gives the phase boundary in Fig. 1, and its inverse gives
the function Tc(s) discussed above.

This completes our analysis of the phase diagram for
s ≥ 0. There is an ordered phase separated from a para-
magnet by a second-order phase transition. Loosely, the
effect of positive s is simply to stabilise the ordered phase,
so that spontaneous symmetry breaking takes place at a
higher temperature.

E. Anomalous paramagnetic regimes

We now take s < 0 but we remain in the low tem-
perature regime with β > βc. Working in terms of the
reduced variables X,Y , we take Y < 0 so that we have

(X − 2)2 − Y > 0 , (46)

and the integrand of (20) is finite for −2 < Jµ < 2. To
make progress with the integrals in (19,20): we define

I1(X,Y ) =

∫

dJµρ(Jµ)
1

√

(X − Jµ)2 − Y
. (47)

I2(X,Y ) =

∫

dJµρ(Jµ)
(X − Jµ)

√

(X − Jµ)2 − Y
. (48)

We will consider the limit Y → 0−, in which the solution
to (20) is X → 2−. The relevant limit is 0 < (−Y ) ≪
(2 − X)2 ≪ 1. Writing y′ = −Y and x′ = 2 − X , and
after some manipulations presented in appendix B, we
obtain:

I1 = π−1
√
x′ ln (4x′2/y′) + 1 +

y′

2x′3/2
+O(x′1/2) (49)

I2 = 1 − 4(x′)3/2

3π
+O(y′x′−1/2) +O(x′5/2) (50)

The self-consistent equation (19) takes the form

β2

4u
(2 − x′) = 1 +

√
x′

π
ln

4x′2

y′
+ o(1) , (51)
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where we define o(1) terms as quantities which vanish for
y ≪ x′2 ≪ 1 . Recalling that X = 2 − x′ = 4uTχ, we
have to leading order

χ ≈ β

4u

(

2 − π2

4u2

(β2 − 2u)2

ln2 (−1/Y )

)

. (52)

Then, substituting for x′ in (50) and recalling (20), we
have

χ̄ ≈ − π2

12u3

(β2 − 2u)3

ln3 (−1/Y )
. (53)

Noting that y′ = −2T 2(s−8uχ̄) we see that when s→ 0,
χ̄ ≫ y′, so that s ≃ 8uχ̄ + o(1). This simplifies the
expressions for χ and χ̄ which become:

χ ≈ β

2u

[

1 −
(

3π

16u

)
2

3

(−s) 2

3

]

(54)

χ̄ ≈ s

8u
(55)

which hold at leading order in s < 0 and for β > βc.
We refer to the phase with s < 0 and T < Tc as an

anomalous disordered phase. To understand this ter-
minology, it is useful to consider the linear response
to the field hs, which is given by (24). Since we have
0 ≪ −Y ≪ (2 −X)2 with X > 2, this reduces to

ms =
−hs

2 −X
(56)

We can see that the response to the staggered field is a
staggered magnetisation in the opposite direction (a dia-
magnetic response). In addition, it follows from (54) that
dms/dhs ∼ −|s|−2/3 for s → 0−. That is, the diamag-
netic response diverges. Clearly such a response would
be impossible in the unbiased (s = 0) ensemble due to
thermodynamic convexity arguments, but when consid-
ering ensembles with finite s then such arguments do not
apply.

Finally, we consider the nature of the phase transi-
tion between ordered and anomalous disordered phases.
Comparing (41) and (54), we note that χ is continuous
at s = 0, and hence that the activity 〈K〉s is continuous
also. Thus, we identify a continuous phase transition at
s = 0, consistent with Fig. 1. Often, at continuous phase
transitions, one may identify a path between the phases
along which the free energy is analytic and which remains
always near the critical point. (For example, in a ferro-
magnet one can move between ordered and disordered
phases by applying a small field h, decreasing the tem-
perature and then removing the field.) However, in the
transition considered here, the (staggered) magnetisation
ms is zero for s < 0 but has a finite limit as s→ 0+. This
seems to preclude such a route around the critical point.
Further, evaluating (dχ/ds) indicates that the fluctua-
tions of the activity diverge as s → 0− but remain finite
as s → 0. This also indicates the absence of a path be-
tween the phases that is continuous near the transition.

We turn to this issue in the next section, where we also
discuss the possibility of diverging length scales near this
transition.

F. Effect of the staggered field hs on disordered
phases

To understand the behaviour near this phase transition
in more detail, we introduce a finite staggered field hs > 0
and note that the crossover between normal (ms > 0) and
anomalous (ms < 0) behaviour takes place at χ = β/2u.
If we insist that χ take this value, the self-consistency
equation (26) becomes

∫

dJµρ(Jµ)
1

√

(2 − J)2 − Y
= (β/βc)

2 (57)

For β < βc (high temperatures), this equation has a
unique solution for Y < 0, which signals a crossover from
normal to anomalous behaviour, at a value of Y that is
independent of the field hs. On the other hand, in the
low temperature regime β > βc, (57) has no solutions.

One may verify that for large positive s, the solution
of (26) has X → 0, while for small positive s we have
from (41) that X > 2. Since (57) establishes that, for low
temperatures, there there are no values of Y for which
X = 2, it follows that the s-dependent value of X has a
jump from a value greater than 2 to a value smaller than
2. This is a discontinuous phase transition from normal
to anomalous states. (The field hs is finite, so the concept
of a spontaneously ordered state is not useful. However,
the sign of the staggered magnetisation is positive in the
normal state and negative in the anomalous one.) These
arguments lead us to propose the qualitative phase dia-
gram shown in Fig. 2. The presence of first-order tran-
sitions at finite hs explains the unusual features of the
order-disorder transition at s = hs = 0: there are indeed
no continuous paths between the ordered and disordered
states due to the first order transition at finite hs.

The nature of the scaling behaviour near Tc in this
model is clearly complicated, depending qualitatively on
the order in which s, hs and T −Tc are taken to zero, and
also on the signs of s and T−Tc. A detailed investigation
of these finite-hs transitions is beyond the scope of this
paper. However, we can conclude that the order-disorder
transition at hs = s = 0 is second-order in that χ(s) is
continuous, but that the spontaneous staggered magneti-
sation ms goes discontinously to zero at this transition.
We again emphasise that all of this phenomenology is
also present in the ferromagnetic model of (7), at least
for d = 3. We expect the qualitative features to also be
present in higher dimensions.

In the ferromagnetic model, we can also consider the
correlation lengths of the various phases. These appear
through the k-dependence of the fluctuations:

S(k, s) ≡ 〈|φk|2〉s =
T

√

(X − Ek)2 − Y
(58)
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(a)

s

T

Anomalous

Normal

Tc

sh > 0 (b) hs

s

c

Anomalous

T > T

Normal (+)

Normal (−)
cs

(c) hs

Anomalous s

Normal (+)

Normal (−)

T < Tc

FIG. 2: (a) Proposed phase diagram for hs > 0. The solid line is a first-order phase transition at which the staggered
magnetisation and the activity X are discontinuous. It ends at a critical point at T = Tc and s = 0, but we note that hs is finite
at this critical point. The dashed line is a crossover at which the linear response to a staggered field hs vanishes. The dashed
line is independent of hs while the solid line approaches the s = 0 axis as hs → 0. (b) Behaviour as a function of the field hs in
the high temperature regime. For negative s, there is a crossover from normal to anomalous response: at the crossover X = 2
and Y satisfies (57). For positive s, there is a critical point at sc, with spontaneous symmetry breaking for s > sc. Close to
Tc, the critical value of sc is given by (45). (c) Behaviour as a function of hs in the low temperature regime. The solid line for
s < 0 is a first-order phase transition between states with positive and negative response to the staggered field, while the line
for s > 0 is the usual first-order transition between spontaneously-ordered states.

Recall that Ek ≤ d with equality if k = 0.

Two cases are of interest. Firstly, if the denominator
vanishes at k = 0 as in the ordered states, the fluctu-
ations of the spontaneous magnetisation diverge, as de-
scribed above. Secondly, if X < d as in the anomalous
phase then S(k) has a peak at a finite wave-vector k

∗ for
which Ek∗ = X . We interpret 1/|k∗| as a characteristic
length scale for structures within this phase. It is inter-
esting to note that this length scale diverges as s → 0−

in the anomalous phase, and that this is accompanied by
a divergence in the fluctuations of the spontaneous mag-
netisation [it may be easily verified that S(0, s→ 0−) is
divergent since X → d− and Y → 0− in this limit, by
analogy with the p = 2 spin glass].

IV. INTERPRETATION

We have considered in some detail the large deviations
of the dynamical activity in two soft-spin models. We end
with a comparison with previous studies and with some
comments on the relation between the large deviations
that we studied and the phase behaviour of the models.

Based on the close relationship between the ferromag-
netic and spin glass models, the form of the phase dia-
gram in Fig. 1 is perhaps not too surprising: a similar re-
sult was found in Ref. [11] for the infinite-ranged (mean-
field) Ising model. The equilibrium critical point leads to
a dynamical phase transition at s = 0 below the critical
temperature. However, instead of being first order as in
the fully-connected model, the phase transition we have
found is second order. Unlike the fully-connected mod-
els, the ferromagnetic model of (7) has several diverging
length scales, although the presence of a diverging length
scale throughout the ordered phase may be a peculiarity
of our particular model. In any case, the diverging length

scale as s→ 0− within the anomalous phase seems to be
a new feature that merits further investigation.

In particular, the existence of the anomalous phase
seems to be linked to the existence of aging/coarsening
solutions to the relaxational dynamics of these models.
These solutions are characterised by ms = 0 as in the
anomalous phase and exhibit a length scale that grows
with the time that has elapsed since a quench from above
Tc. It can be readily shown that if multiple solutions
to the equations of motion exist with different activity,
then the field s acts to select the solutions with the larger
(s > 0) or smaller (s < 0) activity, leading to a transition
at s = 0. However, while the aging dynamics of the p = 2
spin-glass of (1) can be solved [25] by a similar method
to that of Cugliandolo and Dean [20], we have not yet
established any clear connection between these dynam-
ics and the anomalous disordered phases discussed here.
This too remains an area for future study.

We also compare the results shown here with those
obtained for kinetically constrained models [12]. In both
cases, active and inactive phases coexist at the s = 0 axis.
However, there are two important differences. Firstly,
in the kinetically constrained models considered in [12],
the transition is first-order, signalling the coexistence of
active and inactive solutions to the equations of motion.
These have been interpreted as “ergodic fluid” and “non-
ergodic glass” states [7, 8, 12, 13]. On the other hand,
the continuous transition in the soft spin models is second
order: the anomalous phase is characterised by a diverg-
ing correlation length that we have tentatively attributed
to the growing length scale associated with the aging be-
haviour of the system. Taking the large-time limit of the
aging solution, the activity of the system approaches that
of the ordered state: the active (aging) and inactive (or-
dered) phase are not separated by a gap in the activity,
unlike the kinetically constrained models.

Secondly, we emphasise that in the kinetically con-
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strained models, the s = 0 axis of the phase diagram
belongs to the active phase. Introducing any s > 0 leads
immediately to an inactive phase that is qualitatively dif-
ferent from the unbiased state at s = 0. On the other
hand, in the models considered here, the s = 0 axis be-
longs to the inactive (ordered phase): it is the introduc-
tion of any s < 0 that leads to an active phase that differs
from the unbiased steady state.

Finally we note that contrary to its p ≥ 3 coun-
terparts, the thermodynamic properties of the p = 2
spin glass have only a single transition temperature and
do not display any kind of replica symmetry breaking.
Here, we have analysed this problem by diagonalising
the quadratic dynamical action: a method that applies
only for p = 2. However, the same results can be verified
using the replica trick and integrating out the disorder.
The application of such methods to models with p ≥ 3
would provide further insight into the behaviour of large
deviations of the activity in ‘glassy’ models.
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APPENDIX A: SADDLE-POINT INTEGRATION
OF THE DYNAMICAL ACTION

Here, we show how the functional integral (15) can be
cast in the form (17). We define

X (t) =
1

N

∑

µ

φ2
µ(t) , (A1)

which is proportional to the growth rate of the activity
K defined in (11), and the related quantity:

X̄ (t) =
1

N

∑

µ

φ̄µ(t)φµ(t) . (A2)

Both X and X̄ are self-averaging quantities in the ther-
modynamic limit of large N . It is therefore convenient
to constrain these quantities with Lagrange multipliers
and then to integrate over these constrained quantities
by a saddle-point method. Writing the (time-dependent)
Lagrange multipliers as λ, λ̄, Eq. (15) becomes:

Z(s, t) =

∫

DXDX̄ NDλ̄
2πi

NDλ
2πi

DφDφ̄
[

e−NS0(t)−S1(t)
]

(A3)

with

S0(t) =

∫ t

0

dt′
[

λ̄(t′)X (t′) + λ(t′)X̄ (t′) + 4uX (t′)X̄ (t′)
]

(A4)

and

S1(t) =

∫ t

0

dt′
∑

µ

{

φ̄µ

[

∂

∂t′
+ λ(t′) − βJµ

]

φµ

−
[ s

2
+ λ̄(t′)

]

φ2
µ − φ̄2

µ

}

(A5)

where we again omit the dependence of the fields φ and
φ̄ on the time t′, for brevity.

In the N → ∞ limit, the integrals over X , X̄ , λ and λ̄
can be carried out through a saddle point approximation.
We replace X (t), X̄ (t), λ(t) and λ̄(t) by their saddle-point
values χ, χ̄, λ∗ and λ∗. In particular, differentiating the
action (NS0 +S1) with respect to X and X̄ , we arrive at

λ̄∗ = −4uχ̄ (A6)

λ∗ = −4uχ . (A7)

Thus, performing the saddle-point integrals in (A3) leads
to (17) in the main text. Similarly, differentiating with
respect to λ and λ̄ leads to the self-consistency equations
(19) and (20).

APPENDIX B: COMPUTATION OF χ IN THE
LOW-TEMPERATURE DISORDERED PHASE

Here we discuss the solutions of the self-consistency
equations (19) and (20) for s < 0 and T < Tc. Using
the notation of Sec. III E, we can write the integrals of
Equs. (47) and (48) as

I1 =

∫ x′

−4+x′

dz

2π

√

4(x′ − z) − (x′ − z)2
√

z2 + y′
(B1)

I2 =

∫ x′

−4+x′

dz

2π

−z
√

4(x′ − z) − (x′ − z)2
√

z2 + y′
(B2)

Since we are at β > βc and s < 0, we have x′, y′ > 0.
The small s limit becomes the limit y′ → 0 but if we
take the limit for y′ → 0 keeping x′ > 0 we have
I1(x

′, y′ → 0) → ∞, and the self-consistency condition
cannot be satisfied. We therefore take both x′ and y′ to
zero together: we assume that y′ ≪ x′2 which can be ver-
ified a posteriori through the solution to (51). The result
is x′ ∼ [ln(1/y′)]−2, consistent with our assumptions.

We start by splitting the integral in (B1) into three
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parts:

I1 =

∫ x′

−x′

dz

2π

√

x′(4 − x′)
√

y′ + z2

+

∫ x′

−x′

dz

2π

√

4(x′ − z) − (x′ − z)2 −
√

x′(4 − x′)
√

z2 + y′

+

∫ −x′

x′−4

dz

2π

√

4(x′ − z) − (x′ − z)2
√

z2 + y′
. (B3)

In the limit of y′ ≪ x′2, the first integral has a diver-

gent contribution (
√
x′/π) ln (4x′2/y′). In the second and

third parts we can take the limit y′ → 0 directly in the
integrand. If we then take the limit of small x′ then we
find that the second integral vanishes as O(

√
x′) while

the third approaches unity. Thus we arrive at (49).

We now evaluate the (y′/x′2) → 0 limit of the expres-
sion (B2). We use a similar method, spliting the integral
into two terms:

I2 = 1+
∫ x′

−x′

dz

2π

√

4(x′ − z) − (x′ − z)2

(

−z
√

z2 + y′
− 1

)

+

∫ −x′

x′−4

dz

2π

√

4(x′ − z) − (x′ − z)2

(

−z
√

z2 + y′
− 1

)

.

(B4)

In the first integral we introduce w = z/x′ and σ =

y′/x′2, thus arriving at

(x′)3/2

∫ 1

−1

dw

2π
(

−w
σ + w2

− 1)
√

4(1 − w) − x′(1 − w)2) .

(B5)
The leading behaviour of this quantity can be evaluated
by setting directly σ = x′ = 0 into the integral, so that
this contribution to I2 is −4(x′)3/2/(3π)[1 + o(1)].

For the second integral in Eq. (B4), we have z2 ≥ x′2

so we expand the integrand in powers of σ = y′/z2. The

leading term vanishes and the second term is O(y′/
√
x′).

Writing (y′/
√
x) = (x′)3/2(y′/x′2), this term is smaller

first term in (B4) which is O((x′)3/2). Thus we arrive at

I2 ≈ 1 − 4(x′)3/2

3π
. (B6)

as given in Equ. (50) of the main text.
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