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Regularization with Approximated L2 Maximum
Entropy Method

J-M. Loubes and P. Rochet

Abstract We tackle the inverse problem of reconstructing an unknomitefimea-
sureu from a noisy observation of a generalized moment defined as the integral
of a continuous and bounded opera@@mwith respect tqu. When only a quadratic
approximation®, of the operator is known, we introduce th&approximate max-
imum entropy solution as a minimizer of a convex functionddjsct to a sequence
of convex constraints. Under several assumptions on theegdanctional, the con-
vergence of the approximate solution is established ares @it convergence are
provided.

1 Introduction

A number of inverse problems may be stated in the form of rsitonting an un-
known measurg from observations of generalized momentguof.e., momenty
of the form

y= [, ®0odut.

where @ : 2~ — RK is a given map. Such problems are encountered in various
fields of sciences, like medical imaging, time-series asialyspeech processing,
image restoration from a blurred version of the image, spscbpy, geophysical
sciences, crytallography, and tomography; see for exaDetarreau et al (1992),
Gzyl (2002), Hermann and Noll (2000), and Skilling (1988gcRvering the un-
known measurg! is generally an ill-posed problem, which turns out to be clifft
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to solve in the presence of noise, i.e., one obsey¥REgiven by

¥ [ eaut+e. (1)

For inverse problems with known operat®r, regularization techniques allow the
solution to be stabilized by giving favor to those solutievisich minimize a regu-
larizing functionald, i.e., one minimizeg(u) over u subject to the constraint that
[ @(x)du(x) =y wheny is observed, oy‘%{- ®(x)du(x) € Ky in the presence of
noise, for some convex st containingy®’s. Several types of regularizing func-
tionals have been introduced in the literature. In this galngetting, the inversion
procedure is deterministic, i.e., the noise distribut®naot used in the definition of
the regularized solution. Bayesian approaches to inverddgm allow one to han-
dle the noise distribution, provided it is known, yet in gealga distribution like the
normal distribution is postulated (see Evans and Stark? 200a survey). However
in many real-world inverse problems, the noise distribui® unknown, and only
the outpuly is easily observable, contrary to the input to the oper&lonsequently
very few paired data is available to reliably estimate thisedistribution, thereby
causing robustness deficiencies on the retrieved parasnbiienetheless, even if the
noise distribution is unavailabe to the practitioner, sfieroknows thenoise level
i.e., the maximal magnitude of the disturbance term,@ay0, and this information
may be reflected by taking a constraint Ketof diameter 2.

As an alternative to standard regularizations such as Tiehor Galerkin, see
for instance Engl, Hanke and Neubauer (1996), we focus ogwaezation func-
tional with grounding in information theory, generally egpsed as a negative en-
tropy, leading tanaximum entropgolutions to the inverse problem. In a determinis-
tic framework, maximum entropy solutions have been stui®brwein and Lewis
(1993, 1996), while some others study exist in a BayesiagmgdiGamboa, 1999;
Gamboa and Gassiat, 1997), in seismic tomography (Fermimbés and Ludefia,
2006), in image analysis (Gzyl and Zeev, 2003; Skilling andl,2001). Regular-
ization with maximum entropy also provides one with a veme and natural
manner to incorporate constraints on the support and thgerahthe solution (see
e.g. the discussion in Gamboa and Gassiat, 1997).

In many actual situations, however, the nfps unknown and only an approxi-
mation to it is available, sagy,, which converges in quadratic normddas m goes
to infinity. In this paper, following lines devised in Gamb@®99) and Gamboa
and Gassiat (1999) and Loubes and Pelletier (2008), wednt®an approximate
maximum entropy on the mean (AMEM) estimgig, of the measuregix to be
reconstructed. This estimate is expressed in the form cd@ete measure concen-
trated onn points of 2". In our main result, we prove thainn converges to the
solution of the initial inverse problem as — « andn — o and provide a rate of
convergence for this estimate.
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The paper is organized as follows. Section 2 introduces suotegion and the
definition of the AMEM estimate. In Section 3, we state our magsult (Theo-
rem@). Section 4 is devoted to the proofs of our results.

2 Notation and definitions

2.1 Problem position

Let @ be a continuous and bounded map defined on a sub'sef RY and taking
values inR¥. The set of finite measures 6", 2(.2")) will be denoted by# (2"),
where#(%") denotes the Bored-field of 2. Let ux € .# (%) be an unknown
finite measure o?2” and consider the following equation:

y= [, @0odux(x) @
Suppose that we observe a perturbed verg?8hof the responsg:

v [ @ +e.

whereeg is an error term supposed bounded in norm from above by sosigvgo
constanty, representing the maximal noise level. Based on they?4tawe aim at
reconstructing the measurg with a maximum entropy procedure. As explained
in the introduction, the true ma@ is unknownand we assume knowledge of an
approximating sequencé,, to the map®, such that

P — |23 = /B Pm(X) — D(X)[[2) O,

at a ratepm,.

Let us first introduce some notation. For all probability sw@v on R", we
shall denote by%,, Ay, andA;; the Laplace, log-Laplace, and Cramer transforms
of v, respectively defined for ale R" by:

2u(9) = [ explsxdv(x).
Ay (s) = log %4 (s),
Ay (s) = sup{(s,u) —Av(u)}.

ueR"

Define the set
Ky = {y e R*: ly—y*™| < n},
i.e.,Ky is the closed ball centered at the observayi$fiand of radiug).
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Let 2" be a set, and let?(2") be the set of probability measures éh. For
v,u e Z(XZ), the relative entropy of with respect tqu is defined by

H(v|) = { S Iog(du) dv ifv <<.u
+-00 otherwise

Given a sett’ € Z(4") and a probability measuge € #(2"), an elemenu* of
% is called arl-projectionof y on% if

H(u|) = inf H(v|u).

Now we let 2" be a locally convex topological vector space of finite dimen-
sion. The dual of2” will be denoted by2™”. The following two Theorems, due to
Csiszar (1984), characterize the entropic projection afargprobability measure
on a convex set. For their proofs, see Theorem 3 and Lemma &8iszar (1984),
respectively.

Theorem 1.Let u be a probability measure of2". Let% be a convex subset ¢f’
whose interior has a non-empty intersection with the comaiof the support of
u. Let

NZ)={Pe2(2): /7 xdP(X) € £}
Then the I-projectionu* of 4 on I1(%) is given by the relation

expA*(x)

00 = expr

du(x),

whereA* € 27 is given by

A* =arg max|inf A(x)—lo /e A (x)d .

gAG%x[XIE%) (x) —log &P (%) u(X)]
Now let vz be a probability measure dg, . Let Px be a probability measure on

Z having full support, and define the convex functioha(u|Px) by:

TN, () dBcif i << Px

+00 otherwise

|vz(l-1|PX) = {

Within this framework, we consider as a solution of the itseeproblem|]2) a mini-
mizer of the functional, (t|Px) subject to the constraint

peSky) = {uea(2): [ edu( < kv
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2.1.1 The AMEM estimate

We introduce the approximate maximum entropy on the meanEMYestimate as
a sequenceimp of discrete measures off". In all of the following, the integem
indexes the approximating sequernigg to @, while the integen indexes a random
discretization of the spac@”. For the construction of the AMEM estimate, we pro-
ceed as follows.

Let (Xy,...,%n) be an i.i.d sample drawn froi. Thus the empirical measure
157" 1 0x converges weakly tB.

LetL, be the discrete measure with random weights defined by
1 n
Ln - ﬁ izizléxj )
where(Z); is a sequence of i.i.d. random variableskn

For.” a set we denote by ¢# its convex hull. LetQny,, be the probability event
defined by
Qmn = [Ky NcoSuppRvs" £ 0] (3)

where F : R" — RX is the linear operator associated with the mathix, =
%(‘%(Xj))(i,j)e[l,k]xu,r_\] and whereF,v;" denotes the image measureu%f”_ by
F. For ease of notation, the dependencd-afn m and n will not be explicitely
written throughout.

Denote byZ?(R") the set of probability measures &f. For any mapt : 2" —
RK define the set

My(¥,Ky) = {v € ZR"):Ey {/yW(x)dLn(x)] € Ky}.
Let vj, be the I-projection of;™" on My(®Pm, Ky).
Then, on the ever®n, 5, we define the AMEM estimatgmn by

I-Alm,n = Evﬁm [Ln] ; (4)

and we extend the definition @, to the whole probability space by setting it to
the null measure on the complemélf , of Q. In other words, lettingzy, ..., z)

be the expectation of the measwyg,, the AMEM estimate may be rewritten more
conveniently as '

fmn = %Iizuéx (5)
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with z = Ey: (Z) on Qmp, and asfimn = 0 on Qrcnn It is shown in Loubes and
Pelletier (2008) thalP(Qmn) — 1 asm— o andn — . Hence form andn large
enough, the AMEM estimatgm, may be expressed as ﬁ (5) with high probability,
and asymptotically with probability 1.

Remark 1The construction of the AMEM estimate relies on a discreitreof the
spaceZ” according to the probability. Therefore by varying the supporteg, the
practitioner may easily incorporate some a-priori knowkedoncerning the support
of the solution. Similarly, the AMEM estimate also dependstbe measuresz,
which determines the domain 4f;,, and so the range of the solution.

3 Convergence of the AMEM estimate

3.1 Main Result

Assumption 1 The minimization problem admits at least one solution, frere
exists a continuous functiam : 2~ — co Suppz such that

/ ®(X)go(X)dP (X) € Ky.
A

Assumption 2

(i) domA,, := {s: |Ay, ()| < w0} =R;
(il A, andA[,, are bounded.

Assumption 3 The approximating sequendgy, converges tab in L?(.2",P).
Its rate of convergence is given by

|Pm— @ll2 = O(¢n )
Assumption 4/, is a convex function

Assumption 5For allm, the components aby, are linearly independent

Assumption 6, andA/, are continuous functions.
We are now in a position to state our main result.

Theorem 2 (Convergence of the AMEM estimate)Suppose that Assumption 1,
Assumption 2, and Assumption 3 hold. uétbe the minimizer of the functional

o (uip0 = [ 5, (b ) @B

subject to the constraint € SKy) ={u e #Z(Z"): [, P(X)du(x) € Ky}.



Regularization with Approximatet? Maximum Entropy Method 7

e Thenthe AMEM estimatfem, is defined by
N 12 ., .
finn = 5 3 AL (mo, @n(X))5x
wheredm, minimizes orRK
n(®m,V) 21/\\,Z (v, D (X )— |nf (v y)

e Moreover, under Assumption 4, Assumption 2, and AssumBtidrconverges
weakly tou* as m— o« and n— oo. Its rate of convergence is given by

a7 = Op(0) +0n 72 ).

Remark 2 Assumption 2-(i) ensures that the functidii®, v) in Theorenﬂz attains
its minimum at a unique point* belonging to the interior of its domain. If this
assumption is not met, Borwein and Lewis (1993) and GambdaGassiat (1999)
have shown that the minimizers b, (1|Px) over S(Ky) may have a singular part
with respect td.

Proof. The rate of convergence of the AMEM estimate depends bottheris-
cretizationn and the convergence of the approximated operatdience we con-
sider

Vme = argminH (®m,v) = argmin{ /;V/\VZ(<CDm(x),v>)dF}< —yLn£Y<v,y)},

veRK VERK
N 12 .
Hmn = —_Zl/\\/;z(wm,na Prn(-)))
fimes = A, (®en(.), Imes)) P
We have the following upper bound
| ftmn — 1 [lvT < [ fmn — Bmeol VT + [ meo — 1[I,

where each term must be tackled separately.
First, let us considelffimn — fm,cl[vT-

o fialleT=I 3 5 Al (@, ) 5~ A (O, I P
<l i Zl(/\/ ({Pm, Ymn)) —/\\/,Z(<(Dm’\7m’m>)) S llvT

Zl/\ (Prm, me)) 0% — Ay, ({ P, Imeo) P [V T
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To bound the first ternﬂ Zl ({®m, Ymn)) = Av, ((Pm, Vme))) Ox [lvT, letg be

a bounded measurable function and write

500 (A% (9n(X) o)) = AL ((On(X).Ine))
< el A o iwm(m,vm,n—vm,@

< 9lleo 1A 1ol 9 — VmooH—EiII‘Dm

where we have used Cauchy-Schwarz inequality. Sidg@m converges ifi.2(Py ),
itis bounded ifi.?(Px)-norm, yelding thaﬁ S 11®m(Xi)| converges almost surely
to E||®m(X)|| < . Hence, there exists; > 0 such that

|izi(/\/ ({(@m, Ymn)) = Al ((@m, Vme))) O [IvT < Kal|[Vmn — Ime||-

For the second term, we obtain

Z/\ (B G ) B, — A, (<cpm,vm7m>)Px||VT=op(%).

Hence we get

1
| ftmn — fme[lvT < K1 [[Vmn — ¥meo || + Op (

)

The second step is to considfiime — 4*|lvt and to follow the same guidelines.
So, we get

| — 1 =] (A, ((Pm, Vmeo)) — AL, ((@,V5)) Px|lvT
< (A, ((Pm, Yme)) — Ay, ((@m, V) Pxlv
[ (AL, ((@m, V) = AL (@) Pl

Fo any bounded measurable functignwe can write still using Cauchy-Schwarz
inequality that

[, 900 (Al (@m0, Gve)) = Al (@), v"))) AP ()
/g WAL () (@) Tmes V') AP ()
1A%l wa X))?2 \/E(chm(x)l\z) ra—l
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Hence there exists, > 0 such that
(A, (P, Ymeo)) = A, ({ @, V7)) Prllvt < Kol [¥mes — V.

Finally, the last termj| (A}, ((@m, V")) — A}, ((®,v*))) P|lvT can be bounded. In-
deed, for any measurable boundgd

[, 809 (AL (@n(00.3) = AL (@(0.v'))) dR(¥
= |, G00AL (8 (@n(x) ~ @(9.v)dRx(x)

< | 900, (&0 19m( — @091V [dPx ()
< VAL o E(@(X))20 /B @m(X) — D(X)]2)

Hence there exist&s > 0 such that

1A, (P, V7)) = AL, ((@,V))) B [lv < K| @ — @2

We finally obtain the following bound

1
i~ Bl < Kall — |+ el ~ ]+ Kl = ]+ O 2

Using Lemmag]1 ang 2, we obtain that

N - 1
||Vm,n—Vm,ooH =0p (ﬁ)
V0 = V|| = Op(9n")
Finally, we get

1fimn — H*[lvT = Op(¢m ) +Op (%) :

which proves the result.O

3.2 Application to remote sensing

In remote sensing of aerosol vertical profiles, one wishestover the concentra-
tion of aerosol particules from noisy observations of théiaace field (i.e., a ra-
diometric quantity), in several spectral bands (see e.petaet al, 1997; Gabella,
Kisselev and Perona, 1999). More specifically, at a giveerlle¥ modeling, the

noisy observatiog°®smay be expressed as
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Vo= [ @0t + (6)
Z

where® : 2 x .7 — R¥ is a given operator, and whet®s is a vector of angu-
lar parameters observed simultaneously wiff. The aerosol vertical profile is a
function of the altitudex and is associated with the measyxe to be recovered,
i.e., the aerosol vertical profile is the Radon-Nykodimative of Lix with respect

to a given reference measure (e.g., the Lebesgue measiie dhe analytical ex-
pression of® is fairly complex as it sums up several models at the micrejlay
scale, so that basicall@ is available in the form of a computer code. So this prob-
lem motivates the introduction of an efficient numericalqgadure for recovering
the unknworpy from y°°S and arbitraryt®°s,

More generally, the remote sensing of the aerosol verticdilp is in the form of
an inverse problem where some of the inputs (nartf® are observed simultane-
ously with the noisy output®s. Suppose that random poirXs, ..., X, of 2" have
been generated. Then, applying the maximum entropy apipreaald require the
evaluations ofp(X;,t°PS) each time°®Sis observed. If one wishes to process a large
number of observations, s&y°®s,t°b9), for different valueg®®s, the computational
cost may become prohibitive. So we propose to repadrsy an approximatio®y,,
the evaluation of which is faster in execution. To this aiopose first that”” is a
subset ofRP. Let Ty, ..., Ty be random points of7, independent 0Ky, ..., X,, and
drawn from some probability measyng on.7 admitting a densityft with respect
to the Lebesgue measure BA such thatfr (t) > 0 for allt € 7. Next, consider the
operator

11

Pm(x,t) = O m

m

ZKhm(t _TI)(D(XvTI)v

1=

whereKp,,(.) is a symetric kernel ot of smoothing sequend®. It is a classical
result to prove tha®¥,, converges taP in quadratic norm providel, tends to 0 at a
suitable rate, which ensures that Assumption 3 of Theﬂesrsatisfied. Since the
Ti’s are independent from thg, one may see that Theoreﬂn 2 applies, and so the
solution to the approximate inverse problem

Y= | om(xt®ap () + .

will converge to the solution to the original inverse prahléen Eq.|§. In terms of
computational complexity, the advantage of this approsthat the construction of
the AMEM estimate requires, for each new observati@f® t°s), the evaluation of
themkernels at®®s, i.e., Ky, (t°°S— Ti), themx n ouputs®(X;, Tj) fori = 1,...,n
andj =1,...,mhaving evaluated once and for all.
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3.3 Application to deconvolution type problemsin optical
nanoscopy

Following the framework defined i7], the number of pha@mounted can be
expressed using a convolution pfx —y,y) the probability of recording a photon
emission at poiny when illuminating poink, with du(y) = f(y)dy the measure of

the fluorescent markers.
:/p(X—y,X>f(y)dy-

Herep(x—vy,y) = p(X,Y, ¢(x)). Reconstruction oft can be achieved using AMEM
technics.

4 Tecnical Lemmas

Recall the following definitions

Umeo = argminH (@, v) = argmin{ /;[/\VZ(@m(x),w)dPx —yieanY<v,y)} ,

veRK veRK

Vmn = argminHn(®m,v) = argmm{— Zl/\\,Z ((v, ®m(X))) — inf (v, y>}

VERK VERK yeky
v = argmirH (®,v) argmln{/ N, ({ v))dR (x) — inf <v,y)}
VERK veRk z yeKy

Lemma 1 (Uniform convergence at a given approximation levein). For all m,

mn m, P \/_

Proof. Vmn is defined as the minimizer of an empirical constrast fumdtg( @, .).
Indeed, set
hm(V,X) = Ay, ((@m(X),V)) — inf (vy),

yeKy

hence

H(®m, V) = Pchm(v,.).

Using classical theorem from the theory of M-estimation geethe convergence in
probability ofvin, towardsvim. provided that the contrast converges uniformly over
every compact set d&* towardsH (@, .) whenn — . More precisely Corollary
5.53 in van der Vaart (1998) states that if we consies hy(v,x) a measurable

function andhy, a function inLZ(P), such that for all; andv, in a neighbourhood
of v*
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Inm(V2,%) = hm(V2,X)] < Pm(X) [v1 = Ve

Moreover if v — Phy(v,.) has a Taylor expansion of order at least 2 around its
unique minimumv* and if the Hessian matrix at this point is positive, hence pro
V|ded Pnhm(\?n, ) < ]P)nhm(v*,)"' OP(nil) then

V(0 — V) = Op(1).

We want to apply this result to our problem. Lgtbe an un upper bound fdj||,

we sethm(V,X) = Ay, ((®m(X),V)) — (v,y°PS) — inf (V.Y —Yobs). Now note that
ly—y*bs<n
z— (V,2) reaches its minimum o#(0, n) at the point—n”—\\;H, S0

hm(V:X) = Au, ({@m(X), V) — (4Y*"S) + |V
For allvy, v» € R, we have

[hm(V1,X) — hm(v2, X)|
= A ({@m(3).2)) = I0F {v0.9) = Avy (@), 2)) + I (v2.)|
< 1w, (@m0, v8)) = Ay (@m(x).v2) |+ Inf (v.y) — inf (v1.y)]
vz (Prn(),v2)) = vy (Brn(),v2)) |+ [ {v2 = v,y = 1 (V2] = va )|
(1AL | PO+ 175+ 1) [Iva = vel

NN

Definehm : X — [|A}, [leo|| @m(X)[| + [[y°S]| + 1. Since(®m)m is bounded irL2(Px),
(hm)m is in L2(Px) uniformly with respect tan, which entails that

.2
EIK,Vm,/ b Py < K 7)

Hence the function'm satisifes the first condition

[nen(V1,%) = (V2 X)| < () [v1 — V|

Now, consideH (®n,.) Let Viny be the Hessian matrix df (@, .) at pointv. We
need to prove thatyy, ., is non negative. Led; be the derivative with respect to the

i"" component. Set # 0, we have
Vi (V) = 00 H (P, v) = / 8i0; hm(V, X)d Py
— [ BhXBAOAL (@n(x).v))dR -+ 0 BON(Y)

where letN beN : v [|v||.
Hence the Hessian matik, g, ., of H(®n,.) at pointvim. can be splitinto the sum
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ot the following matrices

i = [ O PRI (@), ) AP
( 2)ij = 0io;N (vm,m).

Under Assumptions (A3) and (A5)),,, is positive and belongs to; (Px) since it
is bounded. So we can defirfg- @} (x) tD%(x)A(,’Z((tDm(x),\?m’m))dB( as the scalar
product of®} and @k in the spacéﬁ(/\(,’z(<¢m(.),\7m,m)Px).

My is a Gram matrix, hence using (A6) it is a non negative matrix.

M, can be computed as follows. For @l R¥/{0}, we have

N(v) = y/ SE VP

ANW) = o

ViV .. .
‘H'ujs si#]
V2 v

TER

Gi0iN(v) =
SII =j

Hence for alla € R, we can write

a'M,a

Z 0|(9J (me)&aj
)]
I

< n

mm” —Vz \7mmi\7mmj

1<i
K meo,i _2
) e,
Z FmalF 3 2 ol 20
” <| m°°|| Zlal Z meoi rS‘lemIaJVn‘lmJ"’Z\ m0°I>
1<, )<k

1 . - -
=13 o %] 2 — @iVm.o,i 8} Vm.eo, |
[[Vimes|[2
m,co 1<hj<k
1 . . . .
- [E (IVme|[2]|a]|2 = (&, Ime)?) > 0 using Cauchy-Schwarz’s inequality.
,00

SoMg is clearly non negative, hendg,y,,., = M1+ nMz is also non negative. Fi-
nally we conclude thatl (@, .) undergoes the assumptions of Theorem 5[1.

Lemma 2.
[V — V|| = Op (")

Proof. First write,
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H(@my) = H@) = | [ Auy(0m(00.9)) ~ Auy (€009 dBe(4)
<AL o V][ B = ]2

which implies uniform convergence over every compact sdtl 0P, .) towards
H(®,.) whenm — o, yelding thatvm. — V* in probability. To compute the rate
of convergence, we use Lemrﬁla 3. As previously we can showthigaHessian
matrix of H(g,.) at pointv* is positive. We need to prove uniform convergence of
OH (¢, .) towardsOH (g, .). For this, write

0 [H(@n, ) — (w, (V)
= [, PhOOAL (Bn(0).3)) = @ 0AL (@) AP ()
= [, (9= @A (@n(.v) = @ DAL (E) (= ) (00, V) AR
<H¢"—<Dr'n||Lz||/\vZ||oo+||¢’iHLzII/\” l[oo]| @ — Prn| 2| V]|
using again Cauchy-Schwarz’'s inequality. Finally we abtai
I0(H(@n, ) =H(®@,.)) (V)| < (CL+C||VI]) | P — P2

for positive constant€; andC,. For any compact neighbourhood vf, ., the
function v — ||O(H(@n,.) —H(®,.)) (v)|| converges uniformly to 0. But fom
large enoughyme. € . almost surely. Using 2. in Lemnﬁ 3 with the function
v |[O(H(@n,.) —H(®,.)) (v)]| 1L (v) converging uniformly to 0, implies that

Ve — V|| = Op (1 ").0

Lemma 3. Let f be defined o ¢ RY — R, which reaches a unique minimum at
point6o. Let(fn)n be a sequence of continuous functions which converges omyfo
towards f. Leten argminfy. If f is twice differentiable on a neighbourhood @y
and provided its Hessian matrix)/is non negative, hence we get

1. there exists a positive constant C such that
16— 6oll < CV/[IT — fall

2. Moreover if6 — Vy is continuous in a neighbourhood 6§ and || O f,(.)|| uni-
formly converges towardg1f(.)||, hence there exists a constarit<tich that

160 — 6ol < C'[|O(F = )|
with [|g[| = sup|g(x)]|
xe.s
Proof. The proof of this classical result in optimization relieseasy convex anal-

ysis tricks. For sake of completeness, we recall here tha madelines.
1. There are non negative constaitset & such that
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V0<d< 5o,d(9inf f(8) — f(6p) > C162

60)>0
Set|| fn — |l = &n. For 0< & < &, letn be chosen such that2< C1612. Hence

inf () > inf _f(8)—&n> f(6o)+&n > fn(6o)
d(6.60)>01 d(6,60)>51

Finally fo(6p) < inf fy(8) = 6, € {6:d(8,60) < &}, which enables to
d(6,60)>0

conclude setting = /C%.

2. We prove the result fadl = 1, which can be easily extended for dllUsing
Taylor-Lagrange expansion, there exi@is= |6,, 6] such that

(80) = 0= f'(Br) + (80— &) " (Bn).

Remind thatf” (6y) — f”(60) > 0. So, forn large enough there exi& > 0 such

that .
N f/(6n) — /(6o
by = B <
n

which ends the proof. O
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