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Regularization with Approximated L2 Maximum
Entropy Method

J-M. Loubes and P. Rochet

Abstract We tackle the inverse problem of reconstructing an unknown finite mea-
sureµ from a noisy observation of a generalized moment ofµ defined as the integral
of a continuous and bounded operatorΦ with respect toµ . When only a quadratic
approximationΦm of the operator is known, we introduce theL2 approximate max-
imum entropy solution as a minimizer of a convex functional subject to a sequence
of convex constraints. Under several assumptions on the convex functional, the con-
vergence of the approximate solution is established and rates of convergence are
provided.

1 Introduction

A number of inverse problems may be stated in the form of reconstructing an un-
known measureµ from observations of generalized moments ofµ , i.e., momentsy
of the form

y =
∫

X

Φ(x)dµ(x),

whereΦ : X → R
k is a given map. Such problems are encountered in various

fields of sciences, like medical imaging, time-series analysis, speech processing,
image restoration from a blurred version of the image, spectroscopy, geophysical
sciences, crytallography, and tomography; see for exampleDecarreau et al (1992),
Gzyl (2002), Hermann and Noll (2000), and Skilling (1988). Recovering the un-
known measureµ is generally an ill-posed problem, which turns out to be difficult
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to solve in the presence of noise, i.e., one observesyobs given by

yobs=
∫

X

Φ(x)dµ(x)+ ε. (1)

For inverse problems with known operatorΦ, regularization techniques allow the
solution to be stabilized by giving favor to those solutionswhich minimize a regu-
larizing functionalJ, i.e., one minimizesJ(µ) overµ subject to the constraint that
∫

X
Φ(x)dµ(x) = y wheny is observed, or

∫

X
Φ(x)dµ(x) ∈ KY in the presence of

noise, for some convex setKY containingyobs. Several types of regularizing func-
tionals have been introduced in the literature. In this general setting, the inversion
procedure is deterministic, i.e., the noise distribution is not used in the definition of
the regularized solution. Bayesian approaches to inverse problem allow one to han-
dle the noise distribution, provided it is known, yet in general, a distribution like the
normal distribution is postulated (see Evans and Stark, 2002 for a survey). However
in many real-world inverse problems, the noise distribution is unknown, and only
the outputy is easily observable, contrary to the input to the operator.Consequently
very few paired data is available to reliably estimate the noise distribution, thereby
causing robustness deficiencies on the retrieved parameters. Nonetheless, even if the
noise distribution is unavailabe to the practitioner, she often knows thenoise level,
i.e., the maximal magnitude of the disturbance term, sayρ > 0, and this information
may be reflected by taking a constraint setKY of diameter 2ρ .

As an alternative to standard regularizations such as Tikhonov or Galerkin, see
for instance Engl, Hanke and Neubauer (1996), we focus on a regularization func-
tional with grounding in information theory, generally expressed as a negative en-
tropy, leading tomaximum entropysolutions to the inverse problem. In a determinis-
tic framework, maximum entropy solutions have been studiedin Borwein and Lewis
(1993, 1996), while some others study exist in a Bayesian setting (Gamboa, 1999;
Gamboa and Gassiat, 1997), in seismic tomography (Fermin, Loubes and Ludeña,
2006), in image analysis (Gzyl and Zeev, 2003; Skilling and Gull, 2001). Regular-
ization with maximum entropy also provides one with a very simple and natural
manner to incorporate constraints on the support and the range of the solution (see
e.g. the discussion in Gamboa and Gassiat, 1997).

In many actual situations, however, the mapΦ is unknown and only an approxi-
mation to it is available, sayΦm, which converges in quadratic norm toΦ as m goes
to infinity. In this paper, following lines devised in Gamboa(1999) and Gamboa
and Gassiat (1999) and Loubes and Pelletier (2008), we introduce an approximate
maximum entropy on the mean (AMEM) estimateµ̂m,n of the measureµX to be
reconstructed. This estimate is expressed in the form of a discrete measure concen-
trated onn points ofX . In our main result, we prove that̂µm,n converges to the
solution of the initial inverse problem asm→ ∞ andn → ∞ and provide a rate of
convergence for this estimate.
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The paper is organized as follows. Section 2 introduces somenotation and the
definition of the AMEM estimate. In Section 3, we state our main result (Theo-
rem 2). Section 4 is devoted to the proofs of our results.

2 Notation and definitions

2.1 Problem position

Let Φ be a continuous and bounded map defined on a subsetX of R
d and taking

values inRk. The set of finite measures on(X ,B(X )) will be denoted byM (X ),
whereB(X ) denotes the Borelσ -field of X . Let µX ∈ M (X ) be an unknown
finite measure onX and consider the following equation:

y =
∫

X

Φ(x)dµX(x). (2)

Suppose that we observe a perturbed versionyobs of the responsey:

yobs=
∫

X

Φ(x)dµX(x)+ ε,

whereε is an error term supposed bounded in norm from above by some positive
constantη , representing the maximal noise level. Based on the datayobs, we aim at
reconstructing the measureµX with a maximum entropy procedure. As explained
in the introduction, the true mapΦ is unknownand we assume knowledge of an
approximating sequenceΦm to the mapΦ, such that

‖Φm−Φ‖
L2(PX) =

√

E(‖Φm(X)−Φ(X)‖2) → 0,

at a rateϕm.
Let us first introduce some notation. For all probability measureν on R

n, we
shall denote byLν , Λν , andΛ∗

ν the Laplace, log-Laplace, and Cramer transforms
of ν, respectively defined for alls∈ R

n by:

Lν(s) =

∫

Rn
exp〈s,x〉dν(x),

Λν (s) = logLν(s),

Λ∗
ν (s) = sup

u∈Rn
{〈s,u〉−Λν(u)}.

Define the set
KY = {y∈ R

k : ‖y−yobs‖ 6 η},
i.e.,KY is the closed ball centered at the observationyobs and of radiusη .
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Let X be a set, and letP(X ) be the set of probability measures onX . For
ν,µ ∈ P(X ), the relative entropy ofν with respect toµ is defined by

H(ν|µ) =

{

∫

X
log
(

dν
dµ

)

dν ifν << µ
+∞ otherwise.

Given a setC ∈ P(X ) and a probability measureµ ∈ P(X ), an elementµ⋆ of
C is called anI-projectionof µ onC if

H(µ⋆|µ) = inf
ν∈C

H(ν|µ).

Now we let X be a locally convex topological vector space of finite dimen-
sion. The dual ofX will be denoted byX ′. The following two Theorems, due to
Csiszar (1984), characterize the entropic projection of a given probability measure
on a convex set. For their proofs, see Theorem 3 and Lemma 3.3 in Csiszar (1984),
respectively.

Theorem 1.Let µ be a probability measure onX . LetC be a convex subset ofX

whose interior has a non-empty intersection with the convexhull of the support of
µ . Let

Π (X ) = {P∈ P(X ) :
∫

X

xdP(x) ∈ C }.

Then the I-projectionµ⋆ of µ on Π(C ) is given by the relation

dµ⋆(x) =
expλ ⋆(x)

∫

X
expλ ⋆(u)dµ(u)

dµ(x),

whereλ ⋆ ∈ X ′ is given by

λ ⋆ = arg max
λ∈X ′

[

inf
x∈C

λ (x)− log
∫

X

expλ (x)dµ(x)

]

.

Now let νZ be a probability measure onR+. Let PX be a probability measure on
X having full support, and define the convex functionalIνZ(µ |PX) by:

IνZ(µ |PX) =

{

∫

X
Λ∗

νZ

(

dµ
dPX

)

dPX if µ << PX

+∞ otherwise.

Within this framework, we consider as a solution of the inverse problem (2) a mini-
mizer of the functionalIνZ(µ |PX) subject to the constraint

µ ∈ S(KY) = {µ ∈ M (X ) :
∫

X

Φ(x)dµ(x) ∈ KY}.
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2.1.1 The AMEM estimate

We introduce the approximate maximum entropy on the mean (AMEM) estimate as
a sequencêµm,n of discrete measures onX . In all of the following, the integerm
indexes the approximating sequenceΦm to Φ, while the integern indexes a random
discretization of the spaceX . For the construction of the AMEM estimate, we pro-
ceed as follows.

Let (X1, . . . ,Xn) be an i.i.d sample drawn fromPX. Thus the empirical measure
1
n ∑n

i=1 δXi converges weakly toPX.

Let Ln be the discrete measure with random weights defined by

Ln =
1
n

n

∑
i=1

ZiδXi ,

where(Zi)i is a sequence of i.i.d. random variables onR.

ForS a set we denote by coS its convex hull. LetΩm,n be the probability event
defined by

Ωm,n = [KY ∩coSuppF∗ν⊗n
Z 6= /0] (3)

where F : R
n → R

k is the linear operator associated with the matrixAm,n =
1
n(Φ i

m(Xj))(i, j)∈[1,k]×[1,n] and whereF∗ν⊗n
Z denotes the image measure ofν⊗n

Z by
F . For ease of notation, the dependence ofF on m andn will not be explicitely
written throughout.

Denote byP(Rn) the set of probability measures onR
n. For any mapΨ : X →

R
k define the set

Πn(Ψ ,KY) =

{

ν ∈ P(Rn) : Eν

[

∫

X

Ψ(x)dLn(x)

]

∈ KY

}

.

Let ν⋆
m,n be the I-projection ofν⊗n

Z on Πn(Φm,KY).

Then, on the eventΩm,n, we define the AMEM estimatêµm,n by

µ̂m,n = Eν⋆
m,n

[Ln] , (4)

and we extend the definition of̂µm,n to the whole probability space by setting it to
the null measure on the complementΩ c

m,n of Ωm,n. In other words, letting(z1, ...,zn)
be the expectation of the measureν⋆

m,n, the AMEM estimate may be rewritten more
conveniently as

µ̂m,n =
1
n

n

∑
i=1

ziδXi (5)
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with zi = Eν⋆
m,n

(Zi) on Ωm,n, and asµ̂m,n ≡ 0 on Ω c
m,n. It is shown in Loubes and

Pelletier (2008) thatP(Ωm,n) → 1 asm→ ∞ andn → ∞. Hence form andn large
enough, the AMEM estimatêµm,n may be expressed as in (5) with high probability,
and asymptotically with probability 1.

Remark 1.The construction of the AMEM estimate relies on a discretization of the
spaceX according to the probabilityPX. Therefore by varying the support ofPX, the
practitioner may easily incorporate some a-priori knowledge concerning the support
of the solution. Similarly, the AMEM estimate also depends on the measureνZ,
which determines the domain ofΛ∗

νZ
, and so the range of the solution.

3 Convergence of the AMEM estimate

3.1 Main Result

Assumption 1The minimization problem admits at least one solution, i.e., there
exists a continuous functiong0 : X → coSuppνZ such that

∫

X

Φ(x)g0(x)dPX(x) ∈ KY.

Assumption 2

(i) domΛνZ := {s : |ΛνZ(s)| < ∞} = R;
(ii)Λ ′

νZ
andΛ ′′

νZ
are bounded.

Assumption 3The approximating sequenceΦm converges toΦ in L2(X ,PX).
Its rate of convergence is given by

‖Φm−Φ‖
L2 = O(ϕ−1

m )

Assumption 4ΛνZ is a convex function

Assumption 5For all m, the components ofΦm are linearly independent

Assumption 6Λ ′
νZ

andΛ ′′
νZ

are continuous functions.
We are now in a position to state our main result.

Theorem 2 (Convergence of the AMEM estimate).Suppose that Assumption 1,
Assumption 2, and Assumption 3 hold. Letµ∗ be the minimizer of the functional

IνZ(µ |PX) =

∫

X

Λ∗
νZ

(

dµ
dPX

)

dPX

subject to the constraintµ ∈ S(KY) = {µ ∈ M (X ) :
∫

X
Φ(x)dµ(x) ∈ KY}.
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• Then the AMEM estimatêµm,n is defined by

µ̂m,n =
1
n

n

∑
i=1

Λ ′
νZ

(〈v̂m,n,Φm(Xi)〉)δXi

wherev̂m,n minimizes onRk

Hn(Φm,v) =
1
n

n

∑
i=1

ΛνZ(〈v,Φm(Xi)〉)− inf
y∈KY

〈v,y〉

• Moreover, under Assumption 4, Assumption 2, and Assumption3, it converges
weakly toµ∗ as m→ ∞ and n→ ∞. Its rate of convergence is given by

‖µ̂m,n− µ∗‖VT = OP(ϕ−1
m )+OP

(

1√
n

)

.

Remark 2.Assumption 2-(i) ensures that the functionH(Φ,v) in Theorem 2 attains
its minimum at a unique pointv⋆ belonging to the interior of its domain. If this
assumption is not met, Borwein and Lewis (1993) and Gamboa and Gassiat (1999)
have shown that the minimizers ofIνZ(µ |PX) overS(KY) may have a singular part
with respect toPX.

Proof. The rate of convergence of the AMEM estimate depends both on the dis-
cretizationn and the convergence of the approximated operatorm. Hence we con-
sider

v̂m,∞ = argmin
v∈Rk

H(Φm,v) = argmin
v∈Rk

{

∫

X

ΛνZ(〈Φm(x),v〉)dPX − inf
y∈KY

〈v,y〉
}

,

µ̂m,n =
1
n

n

∑
i=1

Λ ′
νZ

(〈v̂m,n,Φm(.)〉)δXi ,

µ̂m,∞ = Λ ′
νZ

(〈Φm(.), v̂m,∞〉)PX.

We have the following upper bound

‖µ̂m,n− µ∗‖VT 6 ‖µ̂m,n− µ̂m,∞‖VT +‖µ̂m,∞− µ∗‖VT,

where each term must be tackled separately.
First, let us consider‖µ̂m,n− µ̂m,∞‖VT.

‖µ̂m,n− µ̂m,∞‖VT=‖1
n

n

∑
i=1

Λ ′
νZ

(〈Φm, v̂m,n〉)δXi −Λ ′
νZ

(〈Φm, v̂m,∞〉)PX‖VT

6‖1
n

n

∑
i=1

(

Λ ′
νZ

(〈Φm, v̂m,n〉)−Λ ′
νZ

(〈Φm, v̂m,∞〉)
)

δXi‖VT

+ ‖1
n

n

∑
i=1

Λ ′
νZ

(〈Φm, v̂m,∞〉)δXi −Λ ′
νZ

(〈Φm, v̂m,∞〉)PX‖VT
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To bound the first term‖1
n

n

∑
i=1

(

Λ ′
νZ

(〈Φm, v̂m,n〉)−Λ ′
νZ

(〈Φm, v̂m,∞〉)
)

δXi‖VT, let g be

a bounded measurable function and write

1
n

n

∑
i=1

g(Xi)
(

Λ ′
νZ

(〈Φm(Xi), v̂m,n〉)−Λ ′
νZ

(〈Φm(Xi), v̂m,∞〉)
)

6 ‖g‖∞‖Λ ′′
νZ
‖∞

1
n

n

∑
i=1

〈Φm(Xi), v̂m,n− v̂m,∞〉

6 ‖g‖∞‖Λ ′′
νZ
‖∞‖v̂m,n− v̂m,∞‖

1
n

n

∑
i=1

‖Φm(Xi)‖

where we have used Cauchy-Schwarz inequality. Since(Φm)m converges inL2(PX),
it is bounded inL2(PX)-norm, yelding that1n ∑n

i=1‖Φm(Xi)‖ converges almost surely
to E‖Φm(X)‖ < ∞. Hence, there existsK1 > 0 such that

‖1
n

n

∑
i=1

(

Λ ′
νZ

(〈Φm, v̂m,n〉)−Λ ′
νZ

(〈Φm, v̂m,∞〉)
)

δXi‖VT 6 K1‖v̂m,n− v̂m,∞‖.

For the second term, we obtain

‖1
n

n

∑
i=1

Λ ′
νZ

(〈Φm, v̂m,∞〉)δXi −Λ ′
νZ

(〈Φm, v̂m,∞〉)PX‖VT = OP

(

1√
n

)

.

Hence we get

‖µ̂m,n− µ̂m,∞‖VT 6 K1‖v̂m,n− v̂m,∞‖+OP

(

1√
n

)

.

The second step is to consider‖µ̂m,∞ − µ∗‖VT and to follow the same guidelines.
So, we get

‖µ̂m,∞−µ∗‖VT=‖
(

Λ ′
νZ

(〈Φm, v̂m,∞〉)−Λ ′
νZ

(〈Φ,v∗〉)
)

PX‖VT

6‖
(

Λ ′
νZ

(〈Φm, v̂m,∞〉)−Λ ′
νZ

(〈Φm,v∗〉)
)

PX‖VT

+‖
(

Λ ′
νZ

(〈Φm,v∗〉)−Λ ′
νZ

(〈Φ,v∗〉)
)

PX‖VT

Fo any bounded measurable functiong, we can write still using Cauchy-Schwarz
inequality that

∫

X

g(x)
(

Λ ′
νZ

(〈Φm(x), v̂m,∞〉)−Λ ′
νZ

(〈Φm(x),v∗〉)
)

dPX(x)

6

∫

X

g(x)Λ ′′
νZ

(ξ )〈Φm(x), v̂m,∞ −v∗〉dPX(x)

6 ‖Λ ′′
νZ
‖∞

√

E(g(X))2
√

E(‖Φm(X)‖2)‖v̂m,∞ −v∗‖
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Hence there existsK2 > 0 such that

‖
(

Λ ′
νZ

(〈Φm, v̂m,∞〉)−Λ ′
νZ

(〈Φm,v∗〉)
)

PX‖VT 6 K2‖v̂m,∞ −v∗‖.

Finally, the last term‖
(

Λ ′
νZ

(〈Φm,v∗〉)−Λ ′
νZ

(〈Φ,v∗〉)
)

PX‖VT can be bounded. In-
deed, for any measurable boundedg

∫

X

g(x)
(

Λ ′
νZ

(〈Φm(x),v∗〉)−Λ ′
νZ

(〈Φ(x),v∗〉)
)

dPX(x)

=
∫

X

g(x)Λ ′′
νZ

(ξx)〈Φm(x)−Φ(x),v∗〉dPX(x)

6

∫

X

g(x)Λ ′′
νZ

(ξx)‖Φm(x)−Φ(x)‖‖v∗‖dPX(x)

6 ‖v∗‖‖Λ ′′
νZ
‖∞

√

E(g(X))2
√

E(‖Φm(X)−Φ(X)‖2)

Hence there existsK3 > 0 such that

‖
(

Λ ′
νZ

(〈Φm,v∗〉)−Λ ′
νZ

(〈Φ,v∗〉)
)

PX‖VT 6 K3‖Φm−Φ‖
L2

We finally obtain the following bound

‖µ̂m,n− µ∗‖VT 6 K1‖v̂m,n− v̂m,∞‖+K2‖v̂m,∞ −v∗‖+K3‖Φm−Φ‖
L2 +OP

(

1√
n

)

Using Lemmas 1 and 2, we obtain that

‖v̂m,n− v̂m,∞‖ = OP

(

1√
n

)

‖v̂m,∞ −v∗‖ = OP(ϕ−1
m )

Finally, we get

‖µ̂m,n− µ∗‖VT = OP(ϕ−1
m )+OP

(

1√
n

)

,

which proves the result.⊓⊔

3.2 Application to remote sensing

In remote sensing of aerosol vertical profiles, one wishes torecover the concentra-
tion of aerosol particules from noisy observations of the radiance field (i.e., a ra-
diometric quantity), in several spectral bands (see e.g. Gabella et al, 1997; Gabella,
Kisselev and Perona, 1999). More specifically, at a given level of modeling, the
noisy observationyobs may be expressed as
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yobs=

∫

X

Φ(x; tobs)dµX(x)+ ε, (6)

whereΦ : X ×T → R
k is a given operator, and wheretobs is a vector of angu-

lar parameters observed simultaneously withyobs. The aerosol vertical profile is a
function of the altitudex and is associated with the measureµX to be recovered,
i.e., the aerosol vertical profile is the Radon-Nykodim derivative ofµX with respect
to a given reference measure (e.g., the Lebesgue measure onR). The analytical ex-
pression ofΦ is fairly complex as it sums up several models at the microphysical
scale, so that basicallyΦ is available in the form of a computer code. So this prob-
lem motivates the introduction of an efficient numerical procedure for recovering
the unknwonµX from yobs and arbitrarytobs.

More generally, the remote sensing of the aerosol vertical profile is in the form of
an inverse problem where some of the inputs (namelytobs) are observed simultane-
ously with the noisy outputyobs. Suppose that random pointsX1, . . . ,Xn of X have
been generated. Then, applying the maximum entropy approach would require the
evaluations ofΦ(Xi , tobs) each timetobs is observed. If one wishes to process a large
number of observations, say(yobs

i ,tobs
i ), for different valuestobs

i , the computational
cost may become prohibitive. So we propose to replaceΦ by an approximationΦm,
the evaluation of which is faster in execution. To this aim, suppose first thatT is a
subset ofRp. Let T1, ...,Tm be random points ofT , independent ofX1, . . . ,Xn, and
drawn from some probability measureµT onT admitting a densityfT with respect
to the Lebesgue measure onR

p such thatfT(t) > 0 for all t ∈T . Next, consider the
operator

Φm(x, t) =
1

fT(t)
1
m

m

∑
i=1

Khm(t −Ti)Φ(x,Ti),

whereKhm(.) is a symetric kernel onT of smoothing sequencehn. It is a classical
result to prove thatΦm converges toΦ in quadratic norm providedhm tends to 0 at a
suitable rate, which ensures that Assumption 3 of Theorem 2 is satisfied. Since the
Ti ’s are independent from theXi , one may see that Theorem 2 applies, and so the
solution to the approximate inverse problem

yobs=

∫

X

Φm(x; tobs)dµX(x)+ ε,

will converge to the solution to the original inverse problem in Eq. 6. In terms of
computational complexity, the advantage of this approach is that the construction of
the AMEM estimate requires, for each new observation(yobs,tobs), the evaluation of
them kernels attobs, i.e.,Khm(tobs−Ti), them×n ouputsΦ(Xi ,Tj) for i = 1, . . . ,n
and j = 1, . . . ,m having evaluated once and for all.
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3.3 Application to deconvolution type problems in optical
nanoscopy

Following the framework defined in [17], the number of photons counted can be
expressed using a convolution ofp(x− y,y) the probability of recording a photon
emission at pointy when illuminating pointx, with dµ(y) = f (y)dy the measure of
the fluorescent markers.

g(x) =

∫

p(x−y,x) f (y)dy.

Herep(x−y,y) = p(x,y,φ(x)). Reconstruction ofµ can be achieved using AMEM
technics.

4 Tecnical Lemmas

Recall the following definitions

v̂m,∞ = argmin
v∈Rk

H(Φm,v) = argmin
v∈Rk

{

∫

X

ΛνZ(〈Φm(x),v〉)dPX − inf
y∈KY

〈v,y〉
}

,

v̂m,n = argmin
v∈Rk

Hn(Φm,v) = argmin
v∈Rk

{

1
n

n

∑
i=1

ΛνZ(〈v,Φm(Xi)〉)− inf
y∈KY

〈v,y〉
}

,

v∗ = argmin
v∈Rk

H(Φ,v) = argmin
v∈Rk

{

∫

X

ΛνZ(〈Φ(x),v〉)dPX(x)− inf
y∈KY

〈v,y〉
}

Lemma 1 (Uniform convergence at a given approximation levelm). For all m,
we get

‖v̂m,n− v̂m,∞‖ = OP

(

1√
n

)

Proof. v̂m,n is defined as the minimizer of an empirical constrast function Hn(Φm, .).
Indeed, set

hm(v,x) = ΛνZ(〈Φm(x),v〉)− inf
y∈KY

〈v,y〉,

hence
H(Φm,v) = PXhm(v, .).

Using classical theorem from the theory of M-estimation, weget the convergence in
probability ofv̂m,n towards ˆvm,∞ provided that the contrast converges uniformly over
every compact set ofRk towardsH(Φm, .) whenn→ ∞. More precisely Corollary
5.53 in van der Vaart (1998) states that if we considerx 7→ hm(v,x) a measurable

function and
.

hm a function inL2(P), such that for allv1 andv2 in a neighbourhood
of v∗



12 J-M. Loubes and P. Rochet

|hm(v1,x)−hm(v2,x)| 6
.

hm(x)‖v1−v2‖.
Moreover if v 7→ Phm(v, .) has a Taylor expansion of order at least 2 around its
unique minimumv∗ and if the Hessian matrix at this point is positive, hence pro-
vided Pnhm(v̂n, .) 6 Pnhm(v∗,)+ OP(n−1) then

√
n(v̂n−v∗) = OP(1).

We want to apply this result to our problem. Letη be an un upper bound for‖ε‖,
we sethm(v,x) = ΛνZ(〈Φm(x),v〉)−〈v,yobs〉− inf

‖y−yobs‖6η
〈v,y−yobs〉. Now note that

z 7→ 〈v,z〉 reaches its minimum onB(0,η) at the point−η
v
‖v‖ , so

hm(v,x) = ΛνZ(〈Φm(x),v〉)−〈v,yobs〉+ η‖v‖

For all v1, v2 ∈ R
k, we have

|hm(v1,x)−hm(v2,x)|
= |ΛνZ(〈Φm(x),v1〉)− inf

y∈KY
〈v1,y〉−ΛνZ(〈Φm(x),v2〉)+ inf

y∈KY
〈v2,y〉|

6 |ΛνZ(〈Φm(x),v1〉)−ΛνZ(〈Φm(x),v2〉)|+ | inf
y∈KY

〈v2,y〉− inf
y∈KY

〈v1,y〉|

6 |ΛνZ(〈Φm(x),v1〉)−ΛνZ(〈Φm(x),v2〉)|+ |〈v2−v1,y
obs〉−η(‖v2‖−‖v1‖)|

6

(

‖Λ ′
νZ
‖∞‖Φm(x)‖+‖yobs‖+ η

)

‖v1−v2‖

Define
.

hm : x 7→ ‖Λ ′
νZ
‖∞‖Φm(x)‖+‖yobs‖+η . Since(Φm)m is bounded inL2(PX),

(
.

hm)m is in L2(PX) uniformly with respect tom, which entails that

∃K,∀m,

∫

X

.
hm

2
dPX < K (7)

Hence the function
.

hm satisifes the first condition

|hm(v1,x)−hm(v2,x)| 6
.

hm(x)‖v1−v2‖

Now, considerH(Φm, .) Let Vm,v be the Hessian matrix ofH(Φm, .) at pointv. We
need to prove thatVm,v̂m,∞ is non negative. Let∂i be the derivative with respect to the
ith component. Setv 6= 0, we have

Vm,v
i j (v) = ∂i∂ jH(Φm,v) =

∫

X

∂i∂ jhm(v,x)dPX

=
∫

X

Φ i
m(x)Φ j

m(x)Λ ′′
νZ

(〈Φm(x),v〉)dPX + η ∂i∂ jN(v)

where letN beN : v 7→ ‖v‖.
Hence the Hessian matrixVm,v̂m,∞ of H(Φm, .) at pointv̂m,∞ can be split into the sum
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ot the following matrices

(M1)i j =
∫

X

Φ i
m(x)Φ j

m(x)Λ ′′
νZ

(〈Φm(x), v̂m,∞〉)dPX,

(M2)i j = ∂i∂ jN(v̂m,∞).

Under Assumptions (A3) and (A5),Λ ′′
νZ

is positive and belongs toL1(PX) since it

is bounded. So we can define
∫

X
Φ i

m(x)Φ j
m(x)Λ ′′

νZ
(〈Φm(x), v̂m,∞〉)dPX as the scalar

product ofΦ i
m andΦ j

m in the spaceL2(Λ ′′
νZ

(〈Φm(.), v̂m,∞〉PX).
M1 is a Gram matrix, hence using (A6) it is a non negative matrix.
M2 can be computed as follows. For allv∈ R

k/{0}, we have

N(v) =

√

∑k
i=1v2

i

∂iN(v) =
vi

‖v‖

∂i∂ jN(v) =















− viv j

‖v‖3 si i 6= j

‖v‖2−v2
i

‖v‖3 si i = j

Hence for alla∈ R
k, we can write

aTM2a

= ∑
16i, j6k

∂i∂ jN(v̂m,∞)aia j

=
k

∑
i=1

‖v̂m,∞‖2− v̂2
m,∞,i

‖v̂m,∞‖3 a2
i −∑

i 6= j

v̂m,∞,i v̂m,∞, j

‖v̂m,∞‖3 aia j

=
1

‖v̂m,∞‖3

(

‖v̂m,∞‖2
k

∑
i=1

a2
i −

k

∑
i=1

a2
i v̂2

m,∞,i − ∑
16i, j6k

ai v̂m,∞,ia j v̂m,∞, j +
k

∑
i=1

a2
i v̂2

m,∞,i

)

=
1

‖v̂m,∞‖3

(

‖v̂m,∞‖2‖a‖2− ∑
16i, j6k

ai v̂m,∞,ia j v̂m,∞, j

)

=
1

‖v̂m,∞‖3

(

‖v̂m,∞‖2‖a‖2−〈a, v̂m,∞〉2)
> 0 using Cauchy-Schwarz’s inequality.

SoM2 is clearly non negative, henceVm,v̂m,∞ = M1 + ηM2 is also non negative. Fi-
nally we conclude thatH(Φm, .) undergoes the assumptions of Theorem 5.1.⊓⊔

Lemma 2.
‖v̂m,∞ −v∗‖ = OP(ϕ−1

m )

Proof. First write,
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|H(Φm,v)−H(Φ,v)| = |
∫

X

ΛνZ(〈Φm(x),v〉)−ΛνZ(〈Φ(x),v〉)dPX(x)|

6 ‖Λ ′
νZ
‖∞‖v‖‖Φm−Φ‖

L2,

which implies uniform convergence over every compact set ofH(Φm, .) towards
H(Φ, .) whenm→ ∞, yelding that ˆvm,∞ → v∗ in probability. To compute the rate
of convergence, we use Lemma 3. As previously we can show thatthe Hessian
matrix of H(φ , .) at pointv∗ is positive. We need to prove uniform convergence of
∇H(φm, .) towards∇H(φ , .). For this, write

∂i [H(φm, .)−H(φ , .)](v)

=

∫

X

Φ i
m(x)Λ ′

νZ
(〈Φm(x),v〉)−Φ i(x)Λ ′

νZ
(〈Φ(x),v〉)dPX(x)

=

∫

X

(Φ i
m−Φ i)(x)Λ ′

νZ
(〈Φm(x),v〉)−Φ i(x)Λ ′′

νZ
(ξ )〈(Φ −Φm)(x),v〉dPX(x)

6‖Φ i −Φ i
m‖L2‖Λ ′

νZ
‖∞ +‖Φ i‖

L2‖Λ ′′
νZ
‖∞‖Φ −Φm‖L2‖v‖

using again Cauchy-Schwarz’s inequality. Finally we obtain

‖∇(H(φm, .)−H(Φ, .))(v)‖ 6 (C1 +C2‖v‖) ‖Φ −Φm‖L2

for positive constantsC1 andC2. For any compact neighbourhood ofv∗, S , the
function v 7→ ‖∇(H(φm, .)−H(Φ, .)) (v)‖ converges uniformly to 0. But form
large enough, ˆvm,∞ ∈ S almost surely. Using 2. in Lemma 3 with the function
v 7→ ‖∇(H(φm, .)−H(Φ, .))(v)‖1S (v) converging uniformly to 0, implies that

‖v̂m,∞ −v∗‖ = OP(ϕ−1
m ).⊓⊔

Lemma 3. Let f be defined onS ⊂ R
d → R, which reaches a unique minimum at

pointθ0. Let( fn)n be a sequence of continuous functions which converges uniformly
towards f . Letθ̂n = argminfn. If f is twice differentiable on a neighbourhood ofθ0

and provided its Hessian matrix Vθ0 is non negative, hence we get

1. there exists a positive constant C such that

‖θ̂n−θ0‖ 6 C
√

‖ f − fn‖∞

2. Moreover ifθ 7→ Vθ is continuous in a neighbourhood ofθ0 and‖∇ fn(.)‖ uni-
formly converges towards‖∇ f (.)‖, hence there exists a constant C′ such that

‖θ̂n−θ0‖ 6 C′‖∇( f − fn)‖∞

with ‖g‖∞ = sup
x∈S

‖g(x)‖

Proof. The proof of this classical result in optimization relies oneasy convex anal-
ysis tricks. For sake of completeness, we recall here the main guidelines.
1. There are non negative constantsC1 et δ0 such that
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∀ 0 < δ 6 δ0, inf
d(θ ,θ0)>δ

f (θ )− f (θ0) > C1δ 2

Set‖ fn− f‖∞ = εn. For 0< δ1 < δ0, let n be chosen such that 2εn 6 C1δ 2
1 . Hence

inf
d(θ ,θ0)>δ1

fn(θ ) > inf
d(θ ,θ0)>δ1

f (θ )− εn > f (θ0)+ εn > fn(θ0)

Finally fn(θ0) < inf
d(θ ,θ0)>δ1

fn(θ ) =⇒ θ̂n ∈ {θ : d(θ ,θ0) 6 δ1}, which enables to

conclude settingC =
√

2
C1

.

2. We prove the result ford = 1, which can be easily extended for alld. Using
Taylor-Lagrange expansion, there existsθ̃n ∈ ]θ̂n,θ0[ such that

f ′(θ0) = 0 = f ′(θ̂n)+ (θ0− θ̂n) f ′′(θ̃n).

Remind thatf ′′(θ̃n) −→
n→∞

f ′′(θ0) > 0. So, forn large enough there exitsC′ > 0 such

that

|θ0− θ̂n| =
| f ′(θ̂n)− f ′(θ0)|

| f ′′(θ̃n)|
6 C′‖ f ′− f ′n‖∞,

which ends the proof. ⊓⊔
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