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The idea of a finite collection of closed sets having "linearly regular intersection" at a point is crucial in variational analysis. This central theoretical condition also has striking algorithmic consequences: in the case of two sets, one of which satisfies a further regularity condition (convexity or smoothness for example), we prove that von Neumann's method of "alternating projections" converges locally to a point in the intersection, at a linear rate associated with a modulus of regularity. As a consequence, in the case of several arbitrary closed sets having linearly regular intersection at some point, the method of "averaged projections" converges locally at a linear rate to a point in the intersection. Inexact versions of both algorithms also converge linearly.

Introduction

An important theme in computational mathematics is the relationship between "conditioning" of a problem instance and speed of convergence of iterative solution algorithms on that instance. A classical example is the method of conjugate gradients for a positive definite system of linear equations: the relative condition number of the associated matrix gives a bound on the linear convergence rate. More generally, Renegar [START_REF] Renegar | Incorporating condition measures into the complexity theory of linear programming[END_REF][START_REF] Renegar | Linear programming, complexity theory and elementary functional analysis[END_REF][START_REF] Renegar | Condition numbers, the barrier method, and the conjugate gradient method[END_REF] showed that the rate of convergence of interior-point methods for conic convex programming can be bounded in terms of the "distance to ill-posedness" of the program.

In studying the convergence of iterative algorithms for nonconvex minimization problems or nonmonotone variational inequalities, we must content ourselves with a local theory. A suitable analogue of the distance to ill-posedness is then the notion of "metric regularity", fundamental in variational analysis. Loosely speaking, a constraint system, such as a system of inequalities, for example, is metrically regular when, locally, we can bound the distance from a trial solution to an exact solution by a constant multiple of the error in the equation generated by the trial solution. The constant needed is called the "regularity modulus", and its reciprocal has a natural interpretation as a distance to ill-posedness for the equation [START_REF] Dontchev | The radius of metric regularity[END_REF]. While not appropriate as a universal condition on general variational systems [START_REF] Mordukhovich | Failure of metric regularity for major classes of variational systems[END_REF], metric regularity is often a reasonable assumption for constraint systems.

This philosophy suggests understanding the speed of convergence of algorithms for solving constraint systems in terms of the regularity modulus at a solution. Recent literature focuses in particular on the proximal point algorithm (see for example [START_REF] Aragón Artacho | Convergence of the proximal point method for metrically regular mappings[END_REF][START_REF] Combettes | Proximal methods for cohypomonotone operators[END_REF][START_REF] Iusem | Inexact versions of the proximal point algorithm without monotonicity[END_REF][START_REF] Pennanen | Local convergence of the proximal point algorithm and multiplier methods without monotonicity[END_REF]). After the initial version [START_REF] Lewis | Local convergence for alternating and averaged nonconvex projections[END_REF] of this article, an independent but related, proximal-type development was announced in [START_REF] Attouch | Alternating minimization and projection methods for nonconvex problems[END_REF]. A unified approach to the relationship between metric regularity and the linear convergence of a family of conceptual algorithms appears in [START_REF] Klatte | Optimization methods and stability of inclusions in Banach spaces[END_REF].

We here study a very basic algorithm for a very basic problem. We consider the problem of finding a point in the intersection of several closed sets, using the method of averaged projections: at each step, we project the current iterate onto each set, and average the results to obtain the next iterate. Global convergence of this method for convex sets was proved in 1969 in [START_REF] Auslender | Méthodes Numériques pour la Résolution des Problèmes d'Optimisation avec Contraintes[END_REF]. Here we show, in complete generality, that this method converges locally to a point in the intersection of the sets, at a linear rate governed by an associated regularity modulus. Our linear convergence proof is elementary: although we use the idea of the normal cone, we apply only the definition, and we discuss metric regularity only to illuminate the rate of convergence. Finding a point in the intersection of several sets is a problem of fundamental computational significance. In the case of closed halfspaces, for example, the problem is equivalent to linear programming. We mention some nonconvex examples below.

Our approach to the convergence of the method of averaged projections is standard [START_REF] Bauschke | On the convergence of von Neumann's alternating projection algorithm for two sets[END_REF][START_REF] Pierra | Eclatement de contraintes en parallèle pour la minimisation d'une forme quadratique[END_REF][START_REF] Pierra | Decomposition through formalization in a product space[END_REF]: we identify the method with von Neumann's alternating projections algorithm [START_REF] Neumann | Functional Operators[END_REF] on two closed sets (one of which is a linear subspace) in a suitable product space. A nice development of the classical method of alternating projections in the convex case may be found in [START_REF] Deutsch | Best Approximation in Inner Product Spaces[END_REF]. The convergence of the method for two intersecting closed convex sets was proved in [START_REF] Bregman | The method of successive projection for finding a common point of convex sets[END_REF], and linear convergence under a regular intersection assumption was proved in [START_REF] Bauschke | On the convergence of von Neumann's alternating projection algorithm for two sets[END_REF], strengthening a classical result of [START_REF] Gubin | The method of projections for finding the common point of convex sets[END_REF]. Our algorithmic contribution is to show that, assuming linear regularity, local linear convergence does not depend on convexity of both sets, but rather on a good geometric property (such as convexity, smoothness, or more generally, "amenability " or "prox-regularity") of just one of the two.

One consequence of our convergence proof is an algorithmic demonstration for the "exact extremal principle" of [START_REF] Mordukhovich | Maximum principle in the problem of time optimal response with nonsmooth constraints[END_REF] (see also [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications[END_REF]Theorem 2.8]). This result, a unifying theme in [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications[END_REF], asserts that if several sets have linearly regular intersection at a point, then that point is not "locally extremal": that is, translating the sets by sufficiently small vectors cannot render the intersection empty locally. To prove this result, we simply apply the method of averaged projections, starting from the point of regular intersection. In a further section, we show that inexact versions of the method of averaged projections, closer to practical implementations, also converge linearly.

The method of averaged projections is a conceptual algorithm that might appear hard to implement on concrete nonconvex problems. However, the projection problem for some nonconvex sets is relatively easy. A good example is the set of matrices of some fixed rank: given a singular value decomposition of a matrix, projecting it onto this set is immediate. Furthermore, nonconvex alternating projection algorithms and analogous heuristics are quite popular in practice, in areas such as inverse eigenvalue problems [START_REF] Chen | On the least squares solution of inverse eigenvalue problems[END_REF][START_REF] Chu | Constructing a Hermitian matrix from its diagonal entries and eigenvalues[END_REF], pole placement [START_REF] Orsi | Numerical methods for solving inverse eigenvalue problems for nonnegative matrices[END_REF][START_REF] Yang | Generalized pole placement via static output feedback: a methodology based on projections[END_REF], information theory [START_REF] Tropp | Designing structured tight frames via an alternating projection method[END_REF], low-order control design [START_REF] Grigoriadis | Alternating projection algorithm for linear matrix inequalities problems with rank constraints[END_REF][START_REF] Grigoriadis | Low-order control design for LMI problems using alternating projection methods[END_REF][START_REF] Orsi | A Newton-like method for solving rank constrained linear matrix inequalities[END_REF] and image processing [START_REF] Bauschke | Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization[END_REF][START_REF] Weber | Reconstruction of frequency-offset Fourier data by alternating projection on constraint sets[END_REF]. Previous convergence results on nonconvex alternating projection algorithms have been uncommon, and have either focussed on a very special case (see for example [START_REF] Chen | On the least squares solution of inverse eigenvalue problems[END_REF][START_REF] Lewis | Alternating projections on manifolds[END_REF]), or have been much weaker than for the convex case [START_REF] Combettes | Method of successive projections for finding a common point of sets in metric spaces[END_REF][START_REF] Tropp | Designing structured tight frames via an alternating projection method[END_REF]. For more discussion, see [START_REF] Lewis | Alternating projections on manifolds[END_REF].

Our results primarily concern R-linear convergence: we show that our sequences of iterates converge, with error bounded by a geometric sequence. In a final section, we employ a completely different approach to show that the method of averaged projections, for prox-regular sets with regular intersection, has a Q-linear convergence property: each iteration guarantees a fixed rate of improvement. In a final section, we illustrate these theoretical results with an elementary numerical example coming from signal processing.

Our interest here is not in the development of practical numerical methods. Notwithstanding linear convergence proofs, basic alternating and averaged projection schemes may be slow in practice. Rather we aim to study the interplay between a simple, popular, fundamental algorithm and a variety of central ideas from variational analysis. Whether such an approach can help in the design and analysis of more practical algorithms remains to be seen.

Notation and definitions

We fix some notation and definitions. Our underlying setting throughout this work is a Euclidean space E with corresponding closed unit ball B. For any point x ∈ E and radius ρ > 0 , we write B ρ (x) for the set x + ρB.

Consider first two sets F, G ⊂ E. A point x ∈ F ∩G is locally extremal [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications[END_REF] for this pair of sets if there exists a constant ρ > 0 and a sequence of vectors z r → 0 in E such that (F + z r ) ∩ G ∩ B ρ (x) = ∅ for all r = 1, 2, . . .. In other words, restricting to a neighborhood of x and then translating the sets by arbitrarily small distances can render their intersection empty. Clearly x is not locally extremal if and only if

0 ∈ int ((F -x) ∩ ρB) -((G -x) ∩ ρB) for all ρ > 0.
For recognition purposes, it is easier to study a weaker property than local extremality. We say that two sets F, G ⊂ E have linearly regular intersection at the point x ∈ F ∩ G if there exist constants α, δ > 0 such that for all points x ∈ F ∩ B δ (x) and z ∈ G ∩ B δ (x), and all ρ ∈ (0, δ], we have

αρB ⊂ ((F -x) ∩ ρB) -((G -z) ∩ ρB).
(In [START_REF] Kruger | About regularity of collections of sets[END_REF] this property is called "strong regularity".) By considering the case x = z = x, we see that linear regularity implies that x is not locally extremal. This "primal" definition of linear regularity is often not the most convenient way to handle linear regularity, either conceptually or theoretically. By contrast, a "dual" approach, using normal cones, is very helpful.

Given a set F ⊂ E, we define the distance function and (multivalued) projection for F by

d F (x) = d(x, F ) = inf{ z -x : z ∈ F } P F (x) = argmin{ z -x : z ∈ F }. The normal cone to a closed set F ⊂ E at a point x ∈ F is N F (x) = lim i t i (x i -z i ) : t i ≥ 0, x i → x, z i ∈ P F (x i ) .
The centrality of this idea in variational analysis is described at length in [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications[END_REF][START_REF] Rockafellar | Variational Analysis[END_REF]). This construction dates back to [START_REF] Mordukhovich | Maximum principle in the problem of time optimal response with nonsmooth constraints[END_REF]: see [START_REF] Rockafellar | Variational Analysis[END_REF]Chapter 6 Commentary] and [33, Chapter 1 Commentary] for a discussion of the equivalence between this definition and that of [44, p. 199]. Notice two properties in particular. First, (2.1)

z ∈ P F (x) ⇒ x -z ∈ N F (z).
Secondly, the normal cone is a "closed" multifunction: for any sequence of points x r → x in F , any limit of a sequence of normals y r ∈ N F (x r ) must lie in N F (x). Indeed, the normal cone is the smallest cone satisfying the two properties. A noteworthy equivalence is

N F (x) = {0} ⇐⇒ x ∈ int F .
Normal cones provide an elegant alternative approach to defining linear regularity. A family of closed sets F 1 , F 2 , . . . F m ⊂ E has linearly regular intersection at a point x ∈ ∩ i F i , when the only solution to the system m i=1

y i = 0, with y i ∈ N F i (x) (i = 1, 2, . . . , m)
is y i = 0 for i = 1, 2, . . . , m (cf. the "exact extremal principle" of [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications[END_REF]Theorem 2.8]). In the case m = 2, this condition can be written

(2.2) N F 1 (x) ∩ -N F 2 (x) = {0},
and it is equivalent to our previous definition (see [START_REF] Kruger | About regularity of collections of sets[END_REF]Corollary 2], for example). We also note that this condition appears throughout variationalanalytic theory. For example, it guarantees the crucial inclusion (see [32, Theorem 1] and also [START_REF] Rockafellar | Variational Analysis[END_REF]Theorem 6.42])

N F 1 ∩...∩Fm (x) ⊂ N F 1 (x) + • • • + N Fm (x).
For convex F 1 and F 2 , condition (2.2) asserts the nonexistence of a separating hyperplane. More generally, linear regularity was introduced in [START_REF] Mordukhovich | Nonsmooth analysis with nonconvex generalized differentials and adjoint mappings[END_REF] as the "generalized nonseparation property". The notion of a "linear regular" family of convex sets [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF] is also related, though the definition we use here is local.

We will find it helpful to quantify the notion of linear regularity (cf. [START_REF] Kruger | About regularity of collections of sets[END_REF]). A straightforward compactness argument shows the following result.

Proposition 2.3 (quantifying linear regularity) A collection of closed sets F 1 , F 2 , . . . , F m ⊂ E have linearly regular intersection at a point x ∈ ∩F i if and only if there exists a constant k > 0 such that the following condition holds:

(2.4)

y i ∈ N F i (x) (i = 1, 2, . . . , m) ⇒ i y i 2 ≤ k i y i .
We define the condition modulus cond(F 1 , F 2 , . . . , F m |x) to be the infimum of all constants k > 0 such that property (2.4) holds. Since • 2 is convex, we notice that vectors y 1 , y 2 , . . . , y m ∈ E always satisfy the inequality (2.5)

i y i 2 ≥ 1 m i y i 2 , which yields (2.6) cond(F 1 , F 2 , . . . , F m |x) ≥ 1 √ m ,
except in the special case when N F i (x) = {0} (or equivalently x ∈ int F i ) for all i = 1, 2, . . . , m; in this case the condition modulus is zero. One goal of this paper is to show that, far from being of purely analytic significance, linear regularity has central algorithmic consequences, specifically for the method of averaged projections for finding a point in the intersection ∩ i F i . Given any initial point x 0 ∈ E, the algorithm proceeds iteratively as follows:

z i n ∈ P F i (x n ) (i = 1, 2, . . . , m) x n+1 = 1 m (z 1 n + z 2 n + • • • + z m n ).
Our main result shows, assuming only linear regularity, that providing the initial point x 0 is sufficiently near x, any sequence x 1 , x 2 , x 3 , . . . generated by the method of averaged projections converges linearly to a point in the intersection ∩ i F i , at a rate governed by the condition modulus.

Linear and metric regularity

The notion of linear regularity is well-known to be closely related to another central idea in variational analysis: "metric regularity". A concise summary of the relationships between a variety of regular intersection properties and metric regularity appears in [START_REF] Kruger | About regularity of collections of sets[END_REF]. We summarize the relevant ideas here. Consider a set-valued mapping Φ : E → → Y, where Y is a second Euclidean space. The inverse mapping Φ -1 : Y → → E is defined by x ∈ Φ -1 (y) ⇔ y ∈ Φ(x), for x ∈ E and y ∈ Y. For vectors x ∈ E and ȳ ∈ Φ(x), we say Φ is metrically regular at x for ȳ if there exists a constant κ > 0 such that all pairs (x, y) ∈ E × Y sufficiently near (x, ȳ) satisfy the inequality

d(x, Φ -1 (y)) ≤ κd(y, Φ(x)).
The infimum of all such constants κ is called the modulus of metric regularity of Φ at x for ȳ, denoted reg Φ(x|ȳ). See [44, Chapter 9G] for a discussion.

Intuitively, metric regularity gives a local linear bound for the distance to a solution of the constraint system y ∈ Φ(x) (where the vector y is given and we seek the unknown vector x), in terms of the the distance from y to the set Φ(x). The modulus is a measure of the sensitivity or "conditioning" of the constraint system y ∈ Φ(x). To take one simple example, if Φ is a single-valued linear map, the modulus of regularity is the reciprocal of its smallest singular value. In general, variational analysis provides a powerful calculus for computing the regularity modulus. In particular, we have the following formula (see [START_REF] Mordukhovich | Nonsmooth analysis with nonconvex generalized differentials and adjoint mappings[END_REF]Theorem 8] and [START_REF] Rockafellar | Variational Analysis[END_REF]Theorem 9.43]): where D * denotes the "coderivative". We now study these ideas for a particular mapping, highlighting the connections between metric and linear regularity. As in the previous section, consider closed sets F 1 , F 2 , . . . , F m ⊂ E and a point x ∈ ∩ i F i . We endow the space E m with the inner product (x 1 , x 2 , . . . , x m ), (y 1 , y 2 , . . . , y m ) = i x i , y i , and define set-valued mapping Φ :

E → → E m by Φ(x) = (F 1 -x) × (F 2 -x) × • • • × (F m -x).
Then the inverse mapping is given by Φ -1 (y) = ∩ i (F i -y i ), for y ∈ E m , and finding a point in the intersection ∩ i F i is equivalent to finding a solution of the constraint system 0 ∈ Φ(x). By definition, the mapping Φ is metrically regular at x for 0 if and only if there is a constant κ > 0 such that the following strong metric inequality holds:

(3.2) d x, i (F i -z i ) ≤ κ i d 2 (x, F i -z i ) for all (x, z) near (x, 0).
Furthermore, the regularity modulus reg Φ(x|0) is just the infimum of those constants κ > 0 such that inequality (3.2) holds.

To compute the coderivative D * Φ(x|0), we decompose the mapping Φ as Ψ -A, where, for points x ∈ E, we define Ψ

(x) = F 1 × F 2 × • • • × F m
and Ax = (x, x, . . . , x). The calculus rule [44, 10.43] 

yields D * Φ(x|0) = D * Ψ(x|Ax) -A * . Then, by definition, v ∈ D * Ψ(x|Ax)(w) ⇔ (v, -w) ∈ N gph Ψ (x, Ax),
and since gph Ψ = E × F 1 × F 2 × • • • × F m , we deduce D * Ψ(x|Ax)(w) = {0} if w i ∈ -N F i (x) ∀i ∅ otherwise
and hence

D * Φ(x|0)(w) = -i w i if w i ∈ -N F i (x) ∀i ∅ otherwise.
From the coderivative formula (3.1) we now obtain

(3.3) 1 reg Φ(x|0) = min i y i : i y i 2 = 1, y i ∈ N F i (x) ,
where, as usual, we interpret the right-hand side as +∞ if

N F i (x) = {0} (or equivalently x ∈ int F i ) for all i = 1, 2, . . . , m.
Thus the regularity modulus agrees exactly with the condition modulus that we defined in the previous section: reg

Φ(x|0) = cond(F 1 , F 2 , . . . , F m |x).
It is well-known [START_REF] Kruger | About regularity of collections of sets[END_REF] that linear regularity is equivalent to the strong metric inequality (3.2).

Clarke regularity and refinements

"Clarke regularity" is a basic variation-geometric property of sets, shared in particular by closed convex sets and smooth manifolds. We next study a slight refinement, crucial for our development. In the interest of maintaining as elementary approach as possible, we use the following definition of Clarke regularity, easy to interpret geometrically in terms of certain angles. To see this, suppose the property in the definition holds. Consider any unit vector v ∈ N C (x), and any unit "tangent direction" w to C at x. By definition, there exists a sequences u r → x, y r ∈ P C (u r ), and z r → x with z r ∈ C, such that

v r = u r -y r u r -y r → v w r = z r -x z r -x → w.
By assumption, given any δ > 0, for all sufficiently large r we have v r , w r ≤ δ, and hence v, w ≤ δ. Thus v, w ≤ 0, so Clarke regularity follows, by [START_REF] Rockafellar | Variational Analysis[END_REF]Corollary 6.29]. Conversely, if the property described in the definition fails, then for some δ > 0 and some sequences u r → x, y r ∈ P C (u r ), and z r → x with z r ∈ C, we have

u r -y r u r -y r , z r -x z r -x ≥ δ for all r.
Then any cluster points v and w of the two sequences of unit vectors defining the above inner product are respectively an element of N C (x) and a tangent direction to C at x, and satisfy v, w > 0, contradicting Clarke regularity.

The property we need for our development is an apparently-slight modification of Clarke regularity, again easy to interpret geometrically.

Definition 4.3 (super-regularity)

A closed set C ⊂ R n is super-regular at a point x ∈ C if,
for all δ > 0, any two points u, z sufficiently near x with z ∈ C, and any point y ∈ P C (u), satisfy z -y, u -y ≤ δ z -y • u -y .

An equivalent statement involves the normal cone. Proposition 4.4 (super-regularity and normal angles) A closed set C ⊂ R n is super-regular at a point x ∈ C if and only if, for all δ > 0, the inequality v, z -y ≤ δ v • z -y holds for all points y, z ∈ C sufficiently near x and all vectors v ∈ N C (y).

Proof Super-regularity follows immediately from the normal cone property described in the proposition, by property (2.1). Conversely, suppose the normal cone property fails, so for some δ > 0 and sequences of distinct points y r , z r ∈ C approaching x and unit normal vectors v r ∈ N C (y r ), we have, for all r = 1, 2, . . ., v r , z r -y r z r -y r > δ.

Fix an index r. By definition of the normal cone, there exist sequences of distinct points u j r → y r and y j r ∈ P C (u j r ) such that

lim j→∞ u j r -y j r u j r -y j r = v r .
Since lim j y j r = y r , we must have, for all sufficiently large j, u j r -y j r u j r -y j r , z r -y j r z r -y j r > δ.

Choose j sufficiently large to ensure both the above inequality and the inequality u j r -y r < 1 r , and then define points u ′ r = u j r and y ′ r = y j r . We now have sequences of points u ′ r , z r approaching x with z r ∈ C, and y ′ r ∈ P C (u ′ r ), and satisfying

u ′ r -y ′ r u ′ r -y ′ r , z r -y ′ r z r -y ′ r > δ.
Hence C is not super-regular at x. 2

Super-regularity is a strictly stronger property than Clarke regularity, as the following result and example make clear. ∞, +∞], taken from an example in [START_REF] Shapiro | On the asymptotics of constrained local M-estimation[END_REF]:

f (t) =    2 r (t -2 r ) (2 r ≤ t < 2 r+1 , r ∈ Z) 0 (t = 0) +∞ (t < 0).
This function has Clarke-regular epigraph at (0, 0), but an exercise shows it is not super-regular there. Indeed, a minor refinement of this example (smoothing the set slightly close to the nonsmooth points (2 r , 0) and (2 r , 4 r-1 )) shows that a set can be everywhere Clarke regular, and yet not super-regular.

Super-regularity is a common property: indeed, it is implied by two wellknown properties, that we discuss next. Following [START_REF] Rockafellar | Variational Analysis[END_REF], we say that a set C ⊂ R n is amenable at a point x ∈ C when there exists a neighborhood U of x, a C 1 mapping G : U → R ℓ , and a closed convex set D ⊂ R ℓ containing G(x), and satisfying the constraint qualification

(4.7) N D (G(x)) ∩ ker(∇G(x) * ) = {0}, such that C ∩ U = {x ∈ U : G(x) ∈ D}.
In particular, if C is defined by C 1 equality and inequality constraints and the Mangasarian-Fromovitz constraint qualification holds, then C is amenable. such that ∇G(y r ) * u r = v r . The sequence (u r ) must be bounded, since otherwise, by taking a subsequence, we could suppose u r → ∞ and u r -1 u r approaches some unit vector û, leading to the contradiction

û ∈ N D (G(x)) ∩ ker(∇G(x) * ) = {0}.
For all sufficiently large r, we now have ∇G(y r ) * u r , z r -y r > δ z r -y r , and by convexity of D, since u r ∈ N D (G(y r )), we have u r , G(z r ) -G(y r ) ≤ 0. Adding these two inequalities gives

u r , G(z r ) -G(y r ) -∇G(y r )(z r -y r ) < -δ z r -y r .
But as r → ∞, the left-hand side is o( z r -y r ), since the sequence (u r ) is bounded and G is C 1 . This contradiction completes the proof.

2

A rather different refinement of Clarke regularity is the notion of "proxregularity". Following [40, Thm 1.3], we call a set C ⊂ E is prox-regular at a point x ∈ C if the projection mapping P C is single-valued around x. (In this case, clearly C must be locally closed around x.) For example, if, in the definition of an amenable set that we gave earlier, we strengthen our assumption on the map G to be C 2 rather than just C 1 , the resulting set must be prox-regular. Without this strengthening, however, notice the set {(s, t) ∈ R 2 : t = |s| 3/2 } is amenable at the point (0, 0) (and hence superregular there), but is not prox-regular there. Proposition 4.9 (prox-regular implies super-regular) If a closed set C ⊂ R n is prox-regular at a point in C, then it is super-regular there.

Proof If the results fails at x ∈ C, then for some δ > 0, there exist sequences of points y r , z r ∈ C converging to the point x, and a sequence of normal vectors v r ∈ N C (y r ) satisfying the inequality v r , z r -y r > δ v r • z r -y r . By [40, Proposition 1.2], there exist constants ǫ, ρ > 0 such that

ǫ 2 v r v r , z r -y r ≤ ρ 2 z r -y r 2
for all large r. This gives a contradiction, since z r -y r ≤ δǫ ρ eventually. 2

We digress briefly to discuss relationships between super-regularity and other notions in the literature. First note the following equivalent definition, which is an immediate consequence of Proposition 4.4, and which gives an alternate proof of Proposition 4.9 via "hypomonotonicity" of the truncated normal cone mapping x → N C (x) ∩ B for prox-regular sets C [40, Thm 1.3].

Corollary 4.10 (approximate monotonicity)

A closed set C ⊂ R n is super-regular at a point x ∈ C if and only if, for all δ > 0, the inequality v -w, y -z ≥ -δ y -z holds for all points y, z ∈ C sufficiently near x and all normal vectors v ∈ N C (y) ∩ B and w ∈ N C (z) ∩ B.

If we replace the normal cone N C in the property described in the result above by its convex hull, the "Clarke normal cone", we obtain a stronger property, called "subsmoothness" in [START_REF] Aussel | Subsmooth sets: functional characterizations and related concepts[END_REF]. Similar proofs to those above show that, like super-regularity, subsmoothness is a consequence of either amenability or prox-regularity. However, subsmoothness is strictly stronger than superregularity. To see this, consider the graph of the function f : R → R defined by the following properties: f (0) = 0, f (2 r ) = 4 r for all integers r, f is linear on each interval [2 r , 2 r+1 ], and f (t) = f (-t) for all t ∈ R. The graph of f is super-regular at (0, 0), but is not subsmooth there.

In a certain sense, however, the distinction between subsmoothness and super-regularity is slight. Suppose the set F is super-regular at every point in F ∩ U, for some open set U ⊂ R n . Since super-regularity implies Clarke regularity, the normal cone and Clarke normal cone coincide throughout F ∩ U, and hence F is also subsmooth throughout F ∩ U. In other words, "local" super regularity coincides with "local" subsmoothness, which in turn, by [START_REF] Aussel | Subsmooth sets: functional characterizations and related concepts[END_REF]Thm 3.16] coincides with the "first order Shapiro property" [START_REF] Shapiro | Existence and differentiability of metric projections in Hilbert space[END_REF] (also called "near convexity" in [START_REF] Shapiro | First-order conditions for isolated locally optimal solutions[END_REF]) holding locally.

Alternating projections with nonconvexity

Having reviewed or developed over the last few sections the key variationalanalytic properties that we need, we now turn to projection algorithms. In this section we develop our convergence analysis of the method of alternating projections. The following result is our basic tool, guaranteeing conditions under which the method of alternating projections converges linearly. For flexibility, we state it in a rather technical manner. For clarity, we point out afterward that the two main conditions, (5.3) and (5.4), are guaranteed in applications via assumptions of linear regularity and super-regularity (or in particular, amenability or prox-regularity) respectively.

Given any sets F, C ⊂ E, an alternating projection sequence is any sequence of points {x j } in E satisfying the condition (5.1)

x 2n+1 ∈ P F (x 2n ) and

x 2n+2 ∈ P C (x 2n+1 ) (n = 0, 1, 2, . . .),
or the same property with F and C interchanged.

Theorem 5.2 (linear convergence of alternating projections)

Consider the closed sets F, C ⊂ E, and a point x ∈ F . Fix any constant ǫ > 0. Suppose for some constant c ′ ∈ (0, 1), the following condition holds:

(5.3) x ∈ F ∩ (x + ǫB), u ∈ -N F (x) ∩ B y ∈ C ∩ (x + ǫB), v ∈ N C (y) ∩ B ⇒ u, v ≤ c ′ .
Suppose for some constant δ ∈ [0, 1-c ′ 2 ) the following condition holds:

(5.4) y, z ∈ C ∩ (x + ǫB) v ∈ N C (y) ∩ B ⇒ v, z -y ≤ δ z -y .
Define a constant c = c ′ +2δ < 1. Then for any initial point x 0 ∈ C satisfying x 0x ≤ 1-c 4 ǫ, any alternating projection sequence {x j } for the sets F and C must converge with R-linear rate √ c to a point x ∈ F ∩ C satisfying the inequality x -x 0 ≤ 1+c 1-c x 0x . Proof Assume property (5.1). By the definition of the projections we have (5.5)

x 2n+3 -x 2n+2 ≤ x 2n+2 -x 2n+1 ≤ x 2n+1 -x 2n .
Clearly we therefore have

(5.6) x 2n+2 -x 2n ≤ 2 x 2n+1 -x 2n .
We next claim (5.7)

x 2n+1 -x ≤ ǫ 2 and x 2n+1 -x 2n ≤ ǫ 2 ⇒ x 2n+2 -x 2n+1 ≤ c x 2n+1 -x 2n .
To see this, note that if x 2n+2 = x 2n+1 , the result is trivial, and if x 2n+1 = x 2n then x 2n+2 = x 2n+1 so again the result is trivial. Otherwise, we have

x 2n -x 2n+1 x 2n -x 2n+1 ∈ N F (x 2n+1 ) ∩ B while x 2n+2 -x 2n+1 x 2n+2 -x 2n+1 ∈ -N C (x 2n+2 ) ∩ B.
Furthermore, using inequality (5.5), the left-hand side of the implication (5.7) ensures

x 2n+2 -x ≤ x 2n+2 -x 2n+1 + x 2n+1 -x ≤ x 2n+1 -x 2n + x 2n+1 -x ≤ ǫ.
Hence, by assumption (5.3) we deduce

x 2n -x 2n+1 x 2n -x 2n+1 , x 2n+2 -x 2n+1 x 2n+2 -x 2n+1 ≤ c ′ , so x 2n -x 2n+1 , x 2n+2 -x 2n+1 ≤ c ′ x 2n -x 2n+1 • x 2n+2 -x 2n+1 .
On the other hand, by assumption (5.4) we know

x 2n -x 2n+2 , x 2n+1 -x 2n+2 ≤ δ x 2n -x 2n+2 • x 2n+1 -x 2n+2 ≤ 2δ x 2n -x 2n+1 • x 2n+2 -x 2n+1 ,
using inequality (5.6). Adding this inequality to the previous inequality then gives the right-hand side of (5.7), as desired. Now let α = x 0x . We will show by induction the inequalities

x 2n+1 -x ≤ 2α 1 -c n+1 1 -c < ǫ 2 (5.8) x 2n+1 -x 2n ≤ αc n < ǫ 2 (5.9) x 2n+2 -x 2n+1 ≤ αc n+1 . (5.10)
Consider first the case n = 0. Since x 1 ∈ P F (x 0 ) and x ∈ F , we deduce x 1 -x 0 ≤ x -x 0 = α < ǫ/2, which is inequality (5.9). Furthermore,

x 1 -x ≤ x 1 -x 0 + x 0 -x ≤ 2α < ǫ 2 ,
which shows inequality (5.8). Finally, since x 1 -x 0 < ǫ/2 and x 1x < ǫ/2, the implication (5.7) shows

x 2 -x 1 ≤ c x 1 -x 0 ≤ c x -x 0 = cα,
which is inequality (5.10).

For the induction step, suppose inequalities (5.8), (5.9), and (5.10) all hold for some n. Inequalities (5.5) and (5.10) imply (5.11) x 2n+3 -x 2n+2 ≤ αc n+1 < ǫ 2 .

We also have, using inequalities (5.11), (5.10), and (5.8)

x 2n+3 -x ≤ x 2n+3 -x 2n+2 + x 2n+2 -x 2n+1 + x 2n+1 -x ≤ αc n+1 + αc n+1 + 2α 1 -c n+1 1 -c , so (5.12) x 2n+3 -x ≤ 2α 1 -c n+2 1 -c < ǫ 2 .
Now implication (5.7) with n replaced by n + 1 implies x 2n+4 -x 2n+3 ≤ c x 2n+3 -x 2n+2 , and using inequality (5.11) we deduce (5.13)

x 2n+4 -x 2n+3 ≤ αc n+2 .
Since inequalities (5.12), (5.11), and (5.13) are exactly inequalities (5.8), (5.9), and (5.10) with n replaced by n + 1, the induction step is complete and our claim follows.

We can now easily check that the sequence (x k ) is Cauchy and therefore converges. To see this, note for any integer n = 0, 1, 2, . . . and any integer k > 2n, we have

x k -x 2n ≤ k-1 j=2n x j+1 -x j ≤ α(c n + c n+1 + c n+1 + c n+2 + c n+2 + • • • ) so x k -x 2n ≤ αc n 1 + c 1 -c ,
and a similar argument shows (5.14)

x k+1 -x 2n+1 ≤ 2αc n+1 1 -c .
Hence x k converges to some point x ∈ E, and for all n = 0, 1, 2, . . . we have

(5.15) x -x 2n ≤ αc n 1 + c 1 -c and x -x 2n+1 ≤ 2αc n+1 1 -c .
We deduce that the limit x lies in the intersection F ∩ C and satisfies the inequality x -x 0 ≤ α 1+c 1-c , and furthermore that the inequality

x -x r ≤ α( √ c) r 1 + c 1 -c
holds for all r = 0, 1, 2, . . ., so the convergence is R-linear with rate √ c. 2

We can now prove our key result. To apply Theorem 5.2 to alternating projections between a closed and a super-regular set, we make use of the key geometric property of super-regular sets (Proposition 4.4). Theorem 5.16 (alternating projections with a super-regular set) Consider closed sets F, C ⊂ E and a point x ∈ F ∩ C. Suppose C is superregular at x (as holds, for example, if it is amenable or prox-regular there). Suppose furthermore that F and C have linearly regular intersection at x: that is, N F (x) ∩ -N C (x) = {0}, or equivalently, the constant

(5.17) c = max u, v : u ∈ N F (x) ∩ B, v ∈ -N C (x) ∩ B
is strictly less than one. Fix any constant c ∈ (c, 1). Then any alternating projection sequence with initial point sufficiently near x must converge to a point in F ∩ C with R-linear rate √ c.

Proof Let us show first the equivalence between c < 1 and linear regularity. The compactness of the intersections between normal cones and the unit ball guarantees the existence of u and v achieving the maximum in (5.17).

Observe then that u, v ≤ u v ≤ 1. The cases of equality in the Cauchy-Schwarz inequality permits to write c = 1 ⇐⇒ u and v are colinear ⇐⇒ N F (x) ∩ -N C (x) = {0}, which corresponds to the desired equivalence. Denote the alternating sequence {x j }. We can suppose x 0 ∈ C. Fix any constant c ′ ∈ (c, c) and define δ = c-c ′ 2 . To apply Theorem 5.2, we just need to check the existence of a constant ǫ > 0 such that conditions (5.3) and (5.4) hold. Condition (5.4) holds for all sufficiently small ǫ > 0, by Proposition 4.4. On the other hand, if condition (5.3) fails for all sufficiently small ǫ > 0, then there exist sequences of points x r → x in the set F and y r → x in the set C, and sequences of vectors u r ∈ -N F (x r ) ∩ B and v r ∈ N C (y r ) ∩ B, satisfying u r , v r > c ′ . After taking subsequences, we can suppose u r approaches some vector u ∈ -N F (x) ∩ B and v r approaches some vector v ∈ N C (x) ∩ B, and then u, v ≥ c ′ > c, contradicting the definition of the constant c. 2

Corollary 5.18 (improved convergence rate) With the assumptions of Theorem 5.16, suppose the set F is also super-regular at x. Then the alternating projection sequence converges with R-linear rate c.

Proof Inequality (5.7), and its analog when the roles of F and C are interchanged, together show x k+1 -x k ≤ c x k -x k-1 for all sufficiently large k, and the result then follows easily, using an argument analogous to that at the end of the proof of Theorem 5.2. 2

In the light of our discussion in the previous section, the linear regularity assumption of Theorem 5.16 is equivalent to the metric regularity at x for 0 of the set-valued mapping Ψ : E → → E 2 defined by Ψ(x) = (F -x) × (C -x), for x ∈ E. Using equation (3.3), the regularity modulus is determined by

1 reg Ψ(x|0) = min u + v : u ∈ N F (x), v ∈ N C (x), u 2 + v 2 = 1 ,
and a short calculation then shows

(5.19) reg Ψ(x|0) = 1 √ 1 - c .
The closer the constant c is to one, the larger the regularity modulus. We have shown that c also controls the speed of linear convergence for the method of alternating projections applied to the sets F and C. Inevitably, Theorem 5.16 concerns local convergence: it relies on finding an initial point x 0 sufficiently close to a point of linearly regular intersection. How might we find such a point? One natural context in which to pose this question is that of sensitivity analysis. Suppose we already know a point of linearly regular intersection of two closed sets, but now want to find a point in the intersection of two slight translations of these sets. The following result shows that, starting from the original point of intersection, the method of alternating projections will converge linearly to the new intersection. Proof As in the proof of Theorem 5.16, if we fix any constant c ′ ∈ (c, c) and define δ = c-c ′ 2 , then there exists a constant ǫ > 0 such that conditions (5.3) and (5.4) hold. Suppose the vector d satisfies

d ≤ (1 -c)ǫ 8 < ǫ 2 . Since y ∈ (C -d) ∩ (x + ǫ 2 B) and v ∈ N C-d (y) ⇒ y + d ∈ C ∩ (x + ǫB) and v ∈ N C (y + d),
we deduce from condition (5.3) the implication

x ∈ F ∩ (x + ǫ 2 B), u ∈ -N F (x) ∩ B y ∈ (C -d) ∩ (x + ǫ 2 B), v ∈ N C-d (y) ∩ B ⇒ u, v ≤ c ′ .
Furthermore, using condition (5.4) we deduce the implication

y, z ∈ (C -d) ∩ (x + ǫ 2 B) and v ∈ N C-d (y) ∩ B ⇒ y + d, z + d ∈ C ∩ (x + ǫB) and v ∈ N C (y + d) ∩ B, ⇒ v, z -y ≤ δ z -y .
We now apply Theorem 5.2 with the set C replaced by C -d and ǫ replaced by ǫ 2 . We deduce that any alternating projection sequence for the sets F and C -d, starting at the point x 0 = x -d ∈ C -d, converges with R-linear rate √ c to a point x ∈ F ∩(C -d) satisfying the inequality x-x 0 ≤ 1+c 1-c x 0x . The theorem statement then follows by translation.

2

Lack of convexity notwithstanding, more structure sometimes implies that the method of alternating projections converges Q-linearly, rather than just R-linearly, on a neighborhood of point of linearly regular intersection of two closed sets. One example is the case of two manifolds [START_REF] Lewis | Alternating projections on manifolds[END_REF].

Inexact alternating projections

Our basic tool, the method of alternating projections for a super-regular set C and an arbitrary closed set F , is a conceptual algorithm that may be challenging to realize in practice. We might reasonably consider the case of exact projection on the super-regular set C: for example, in the next section, for the method of averaged projections, C is a subspace and computing projections is trivial. However, projecting onto the set F may be much harder, so a more realistic analysis allows relaxed projections.

We sketch one approach. Given two iterates x 2n-1 ∈ F and x 2n ∈ C, a necessary condition for the new iterate x 2n+1 to be an exact projection on F , that is x 2n+1 ∈ P F (x 2n ), is

x 2n+1 -x 2n ≤ x 2n -x 2n-1 and x 2n -x 2n+1 ∈ N F (x 2n+1 ).
In the following result we assume only that we choose the iterate x 2n+1 to satisfy a relaxed version of this condition, where we replace the second part by the assumption that the distance

d N F (x 2n+1 ) x 2n -x 2n+1 x 2n -x 2n+1
from the normal cone at the iterate to the normalized direction of the last step is sufficiently small. Theorem 6.1 (inexact alternating projections) With the assumptions of Theorem 5.16, fix any constant γ < √ 1 -c 2 , and consider the following inexact alternating projection iteration. Given any initial points x 0 ∈ C and x 1 ∈ F , for n = 1, 2, 3, . . . suppose x 2n ∈ P C (x 2n-1 ) and x 2n+1 ∈ F satisfies

x 2n+1 -x 2n ≤ x 2n -x 2n-1 and d N F (x 2n+1 ) x 2n -x 2n+1 x 2n -x 2n+1 ≤ γ.
Then, providing x 0 and x 1 are sufficiently close to x, the iterates converge to a point in F ∩ C with R-linear rate

c 1 -γ 2 + γ √ 1 -c 2 < 1.
Sketch proof. Once again as in the proof of Theorem 5.16, we fix any constant c ′ ∈ (c, c) and define δ = c-c ′ 2 , so there exists a constant ǫ > 0 such that conditions (5.3) and (5.4) hold. Define a vector

z = x 2n -x 2n+1 x 2n -x 2n+1 .
By assumption, there exists a vector w ∈ N F (x 2n+1 ) satisfying w -z ≤ γ.

Easy manipulation then shows that the unit vector ŵ = w -1 w satisfies ŵ, z ≥ 1 -γ 2 . As in the proof of Theorem 5.2, assuming inductively that x 2n+1 is sufficiently close to both x and x 2n , since ŵ ∈ N F (x 2n+1 ), and

u = x 2n+2 -x 2n+1 x 2n+2 -x 2n+1 ∈ -N C (x 2n+2 ) ∩ B,
we deduce ŵ, u ≤ c ′ . We now see that, on the unit sphere, the arc distance between the unit vectors ŵ and z is no more than arccos( 1 -γ 2 ), whereas the arc distance between ŵ and the unit vector u is at least arccos c ′ . Hence by the triangle inequality, the arc distance between z and u is at least

arccos c ′ -arccos( 1 -γ 2 ), so z, u ≤ cos arccos c ′ -arccos( 1 -γ 2 ) = c ′ 1 -γ 2 + γ √ 1 -c ′2 .
Some elementary calculus shows that the quantity on the right-hand side is strictly less than one. Again as in the proof of Theorem 5.2, this inequality shows, providing x 0 is sufficiently close to x, the inequality

x 2n+2 -x 2n+1 ≤ c 1 -γ 2 + γ √ 1 -c 2 x 2n+1 -x 2n ,
and in conjunction with the inequality x 2n+1 -x 2n ≤ x 2n -x 2n-1 , this suffices to complete the proof by induction. 2

Local convergence for averaged projections

We return to the problem of finding a point in the intersection of several closed sets via averaged projections. Given sets F 1 , F 2 , . . . , F m ⊂ E, an averaged projection sequence is any sequence of points {x j } in E satisfying

x j+1 ∈ 1 m m i=1 P F i (x j ) (j = 0, 1, 2, . . .).
We apply our previous results to the method of averaged projections via the well-known reformulation of the algorithm as alternating projections on a product space. This leads to the main result of this section, Theorem 7.3, which shows linear convergence in a neighborhood of any point of linearly regular intersection, at a rate governed by the associated regularity modulus.

We begin with a characterization of linearly regular intersection, relating the condition modulus with a generalized notion of angle for several sets. Such notions, for collections of convex sets, have also been studied recently in the context of projection algorithms in [START_REF] Deutsch | The rate of convergence for the cyclic projections algorithm I: angles between convex sets[END_REF][START_REF] Deutsch | The rate of convergence for the cyclic projections algorithm II: norms of nonlinear operators[END_REF].

Proposition 7.1 (variational characterization of linear regularity)

Closed sets F 1 , F 2 , . . . , F m ⊂ E have linearly regular intersection at a point x ∈ ∩ i F i if and only if the optimal value c of the optimization problem

maximize i u i , v i subject to i u i 2 ≤ 1 i v i 2 ≤ 1 i u i = 0 u i ∈ E, v i ∈ N F i (x) (i = 1, 2, . . . , m)
is strictly less than one. Indeed, we have

(7.2) c2 =    0 (x ∈ ∩ i int F i ) 1 - 1 m • cond 2 (F 1 , F 2 , . . . , F m |x) (otherwise).
Proof When x ∈ ∩ i int F i , the result follows by definition. Henceforth, we therefore rule out that case.

For any vectors u i , v i ∈ E (i = 1, 2, . . . , m), by Lagrangian duality and differentiation we obtain max

u i i u i , v i : i u i 2 ≤ 1,
u i = 0 = min λ∈R + , z∈E max u i i u i , v i + λ 2 1 - i u i 2 + z, i u i = min λ∈R + , z∈E λ 2 + i max u i u i , v i + z - λ 2 u i 2 = min λ>0, z∈E λ 2 + 1 2λ i v i + z 2 = min z∈E i v i + z 2 = m i=1 v i - 1 m j v j 2 = i v i 2 - 1 m i v i 2 .
Consequently, c2 is the optimal value of the optimization problem

maximize i v i 2 - 1 m i v i 2 subject to i v i 2 ≤ 1 v i ∈ N F i (x) (i = 1, 2, . . . , m).
By homogeneity, the optimal solution must occur when the inequality constraint is active, so we obtain an equivalent problem by replacing that constraint by the corresponding equation. By equation (3.3) and the definition of the condition modulus, the optimal value of this new problem is

1 - 1 m • cond 2 (F 1 , F 2 , . . . , F m |x)
as required.
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Theorem 7.3 (linear convergence of averaged projections) Suppose closed sets F 1 , F 2 , . . . , F m ⊂ E have linearly regular intersection at a point x ∈ ∩ i F i . Define a constant c ∈ [0, 1) by equation (7.2), and fix any constant c ∈ (c, 1). Then any averaged projection sequence with initial point sufficiently near x converges to a point in the intersection ∩ i F i , with R-linear rate c (and if each set F i is super-regular at x, or in particular, prox-regular or amenable there, then the convergence rate is c 2 ). Furthermore, for any sufficiently small perturbations d i ∈ E for i = 1, 2, . . . , m, any averaged projection sequence for the sets d i + F i with the initial point x converges linearly to a nearby point in the intersection, with R-linear rate c.

Proof In the product space E m with the inner product

(u 1 , u 2 , . . . , u m ), (v 1 , v 2 , . . . , v m ) = i u i , v i ,
we consider the closed set F = i F i and the subspace L = {Ax : x ∈ E}, where the linear map A : E → E m is defined by Ax = (x, x, . . . , x). Notice Ax ∈ F ∩ L, and it is easy to check N F (Ax) = i N F i (x) and

L ⊥ = (u 1 , u 2 , . . . , u m ) : i u i = 0 .
Hence F 1 , F 2 , . . . , F m have linearly regular intersection at x if and only if F and L have linearly regular intersection at the point Ax. This latter property is equivalent to the constant c in Theorem 5.16 (with C = L) being strictly less than one. But that constant agrees exactly with that defined by equation (7.2), so we show next that we can apply Theorem 5.16 and Theorem 5.20.

To see this note that, for any point x ∈ E, we have the equivalence

(z 1 , z 2 , . . . , z m ) ∈ P F (Ax) ⇔ z i ∈ P F i (x) (i = 1, 2, . . . , m).
Furthermore a quick calculation shows, for any z 1 , z 2 , . . . , z m ∈ E,

P L (z 1 , z 2 , . . . , z m ) = 1 m (z 1 + z 2 + • • • + z m ).
Hence in fact the method of averaged projections for the sets F 1 , F 2 , . . . , F m , starting at an initial point x 0 , is essentially identical with the method of alternating projections for the sets F and L, starting at the initial point Ax 0 . If x 0 , x 1 , x 2 , . . . is a possible sequence of iterates for the former method, then a possible sequence of even iterates for the latter method is Ax 0 , Ax 1 , Ax 2 , . . .. For x 0 sufficiently close to x, this latter sequence must converge to a point Ax ∈ F ∩ L with R-linear rate c, by Theorem 5.16 and its corollary. Thus the sequence x 0 , x 1 , x 2 , . . . converges to x ∈ ∩ i F i at the same linear rate.

When each of the sets F i is super-regular at x, it is easy to check that the Cartesian product F is super-regular at Ax, so the rate is c 2 . The last part of the theorem follows from Theorem 5.20. 2

Applying Theorem 6.1 to the product-space formulation of averaged projections shows in a similar fashion that an inexact variant of the method of averaged projections will also converge linearly.

Remark 7.4 (linear regularity and local extremality) In the language of [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications[END_REF], that we have proved algorithmically that if closed sets have linearly regular intersection at a point, then that point is not "locally extremal".

Remark 7.5 (alternating versus averaged projections) For a feasibility problem for two super-regular sets F 1 and F 2 , assume that linear regularity holds at x ∈ F 1 ∩ F 2 and set κ = cond(F 1 , F 2 |x). Theorem 7.3 gives a bound on the rate of convergence of the method of averaged projections as

r av ≤ 1 - 1 2κ 2 .
Notice that each iteration involves two projections: one onto each of the sets F 1 and F 2 . On the other hand, Corollary 5.18 and (5. [START_REF] Dontchev | The radius of metric regularity[END_REF] give a bound on the rate of convergence of the method of alternating projections as

r alt ≤ 1 - 1 κ 2 ,
and each iteration involves just one projection. Thus we note that our bound on the rate of alternating projections r alt is always better than the bound on the rate of averaged projections r av . From the perspective of this analysis, averaged projections seems to have no advantage over alternating projections, although our proof of linear convergence for alternating projections needs a super-regularity assumption not necessary in the case of averaged projections.

Prox-regularity and averaged projections

If we assume that the sets F 1 , F 2 , . . . , F m are prox-regular, then we can refine our understanding of local convergence for the method of averaged projections using a completely different approach, explored in this section.

Proposition 8.1 Around any point x at which the set F ⊂ E is prox-regular, the squared distance to F is continuously differentiable, and its gradient ∇d 2 F = 2(I -P F ) has Lipschitz constant 2.

Proof This result corresponds essentially to [40, Prop 3.1], which yields the smoothness of d 2 F together with the gradient formula. This proof of this proposition also shows that for any sufficiently small δ > 0, all points x 1 , x 2 ∈ E near x satisfy the inequality [40, p. 5239]). Consequently we have

x 1 -x 2 , P F (x 1 ) -P F (x 2 ) ≥ (1 -δ) P F (x 1 ) -P F (x 2 ) 2 (see "Claim" in
(I -P F )(x 1 ) -(I -P F )(x 2 ) 2 -x 1 -x 2 2 = (x 1 -x 2 ) -(P F (x 1 ) -P F (x 2 )) 2 -x 1 -x 2 2 = -2 x 1 -x 2 , P F (x 1 ) -P F (x 2 ) + P F (x 1 ) -P F (x 2 ) 2 ≤ (2δ -1) P F (x 1 ) -P F (x 2 ) 2 ≤ 0, provided we choose δ ≤ 1/2. 2 
As before, consider sets F 1 , F 2 , . . . , F m ⊂ E and a point x ∈ ∩ i F i , but now let us suppose moreover that each set F i is prox-regular at x. Define a function

f : E → R by (8.2) f = 1 2m m i=1 d 2 F i .
This function is half the mean-squared-distance from the point x to the set system {F i }. According to the preceding result, f is continuously differentiable around x, and its gradient

(8.3) ∇f = 1 m m i=1 (I -P F i ) = I - 1 m m i=1 P F i
is Lipschitz continuous with constant 1 on a neighborhood of x. The method of averaged projections constructs the new iterate x + ∈ E from the old iterate x ∈ E via the update (8.4)

x + = 1 m m i=1 P F i (x) = x -∇f (x),
so we can interpret it as the method of steepest descent with a step size of one when the sets F i are all prox-regular. To understand its convergence, we return to our linear regularity assumption. The condition modulus controls the behavior of normal vectors not just at the point x but also at nearby points. Proposition 8.5 (local effect of condition modulus) Consider closed sets F 1 , F 2 , . . . , F m ⊂ E having linearly regular intersection at a point x ∈ ∩F i , and any constant k > cond(F 1 , F 2 , . . . , F m |x). Then for any points x i ∈ F i sufficiently near x, any vectors

y i ∈ N F i (x i ) (for i = 1, 2, . . . , m) satisfy the inequality i y i 2 ≤ k i y i .
Proof If the result fails, then we can find sequences of points x r i → x in F i and sequences of vectors

y r i ∈ N F i (x r i ) (for i = 1, 2, . . . , m) satisfying i y r i 2 > k i y r i for all r = 1, 2, . . .. Define new vectors u r i = 1 j y r j 2 y r i ∈ N F i (x r i )
for each index j = 1, 2, . . . , m and r. Notice i u r i 2 = 1 and i u r i < 1 k . For each i = 1, 2, . . . , the sequence u 1 i , u 2 i , . . . is bounded, so after taking subsequences we can suppose it converges to some vector u i ∈ E, and since the normal cone N F i is closed as a set-valued mapping from F i to E, we deduce u i ∈ N F i (x). But then we have i u i 2 = 1 and i u i ≤ 1 k , contradicting the definition of the modulus cond(F 1 , F 2 , . . . , F m |x).
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The size of the gradient of the mean-squared-distance function f , defined by equation (8.2), is closely related to the value of the function near a point of linearly regular intersection. To be precise, we have the following result. Proposition 8.6 (gradient of mean-squared-distance) Consider proxregular sets F 1 , F 2 , . . . , F m ⊂ E having linearly regular intersection at a point x ∈ ∩F i , and any constant k > cond(F 1 , F 2 , . . . , F m |x). Then on a neighborhood of x, the mean-squared-distance function

f = 1 2m m i=1 d 2 F i satisfies the inequalities (8.7) 1 2 ∇f 2 ≤ f ≤ k 2 m 2 ∇f 2 .
Proof Consider any point x ∈ E sufficiently near x. Equation (8.3) implies ∇f (x) = 1 m i y i , where

y i = x -P F i (x) ∈ N F i (P F i (x)) for each i = 1, 2, . . . , m. By definition, we have f (x) = 1 2m i y i 2 .
Using inequality (2.5), we obtain

m 2 ∇f (x) 2 = m i=1 y i 2 ≤ m m i=1 y i 2 = 2m 2 f (x)
But since x is sufficiently near x, so are the projections Then, for any averaged projection sequence {x j } with initial point x 0 sufficiently near x, the mean-squared-distance

P F i (x), so 2mf (x) = i y i 2 ≤ k 2 i y i 2 = k 2 m 2 ∇f (x)
f = 1 2m m i=1 d 2 F i
is reduced by at least a constant factor at each iteration:

f (x j+1 ) ≤ 1 - 1 k 2 m f (x j ) (j = 0, 1, 2, . . .).
Proof Consider any point x ∈ E near x. The function f is continuously differentiable around the minimizer x, so the gradient ∇f (x) must be small, and hence the new iterate x + = x -∇f (x) must also be near x. Hence, as we observed after equation (8. A simple induction argument now gives an independent proof in the proxregular case that the method of averaged projections converges linearly to a point in the intersection of the given sets. Specifically, the result above shows that mean-squared-distance f (x k ) decreases by at least a constant factor at each iteration, and Proposition 8.6 shows that the size of the step ∇f (x k ) also decreases by a constant factor. Hence the sequence (x k ) must converge R-linearly to a point in the intersection.

Comparing this result to Theorem 7.3 (linear convergence of averaged projections), we see that the predicted rates of linear convergence are the same. Theorem 7.3 guarantees that the squared distance to the intersection converges to zero with R-linear rate c 2 (for any constant c ∈ (c, 1)). The argument gives no guarantee about improvements in a particular iteration: it only describes the asymptotic behavior of the iterates. By contrast, the argument of Theorem 8.8, with the added assumption of prox-regularity, guarantees the same behavior but with the stronger information that the mean-squared-distance decreases monotonically to zero with Q-linear rate c 2 . In particular, each iteration must decrease the mean-squared-distance. compute the projections. The projection onto the linear subspace L can be computed with a pseudo-inverse. The manifold M corresponds to the set of matrices U whose singular values are all ones; it turns out that naturally the projection onto M is obtained by computing the singular value decomposition of U, and setting singular values to 1 (apply for example Theorem 27 of [START_REF] Lewis | Alternating projections on manifolds[END_REF]). Finally the projection onto C comes by shrinking entries of U (specifically, we operate min{max{u ij , -α}, α} for each entry u ij ). This feasibility problem can thus be treated by projection algorithms, and hopefully a matrix U ∈ L ∩ M ∩ C will correspond to a good compression matrix P .

To illustrate, we generate random entries (normally distributed) of the dictionary W (size 128 × 512, redundancy factor 4) and of an initial iterate U 0 ∈ L. (In practice, since the theory only guarantees local convergence, we would need a heuristic to find an initial iterate.) We fix α = 0.1 and run the averaged projection algorithm, thereby computing a sequence of U k that appear to be converging, as hoped, to a feasible solution to our problem. Furthermore the convergence appears linear: Figure 9 shows

10 log 10 f (U k ) with f (U) = d 2 L (U) + d 2 M (U) + d 2 C (U)
for each iteration k. We observe f (U k+1 )/f (U k ) < 0.9627 for all k, suggesting the expected local Q-linear convergence. Random examples are interesting for our simple test of averaged projections: the challenging question of checking a priori the linear regularity of the intersection of the three sets is open, but randomness seems to prevent irregular solutions, providing α is not too small. So in this situation, we would hope that the algorithm will converge locally linearly; this is indeed what the numerical results in Figure 9 suggest. We note furthermore that we tested iterated projections on this problem (involving three sets, so not explicitly covered by Theorem 5.16). We observed that the method still appears locally linearly convergent in practice, and again, that the rate is better than for averaged projections. This example illustrates how the projection algorithm behaves on random feasibility problems of this type. However the potential benefits of using optimized compression matrix versus random compression matrix in practice are still unclear. Further study and more complete testing have to be done for these questions; this is beyond the scope of this paper. 
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 4142 Clarke regularity) A closed set C ⊂ R n is Clarke regular at a point x ∈ C if, for all δ > 0, any two points u, z sufficiently near x with z ∈ C, and any point y ∈ P C (u), satisfy zx, u -y ≤ δ zx • u -y . This property is equivalent to the standard notion of Clarke regularity [44, Definition 6.4].
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 4246 5 (super-regularity implies Clarke regularity) At any point in a closed set C ⊂ R n , super regularity implies Clarke regularity. Proof Suppose the point in question is x. Fix any δ > 0, and set y = x in Proposition 4.4. Then clearly any unit tangent direction d to C at x and any unit normal vector v ∈ N C (x) satisfy v, d ≤ δ. Since δ was arbitrary, in fact v, d ≤ 0, so Clarke regularity follows by [44, Cor 6.29]. Consider the following function f : R → (-

Proposition 4 . 8 (

 48 amenable implies super-regular) If a closed set C ⊂ R n is amenable at a point in C, then it is super-regular there.Proof Suppose the result fails at some point x ∈ C. Assume as in the definition of amenability that, in a neighborhood of x, the set C is identical with the inverse image G -1 (D), where the C 1 map G and the closed convex set D satisfy the condition (4.7). Then by definition, for some δ > 0, there are sequences of points y r , z r ∈ C converging to x and unit normal vectors v r ∈ N C (y r ) satisfying v r , z r -y r > δ z r -y r for all r = 1, 2, . . .. Since the normal cone mapping N D is outer semicontinuous relative to D [44, Proposition 6.6], it is easy to check the conditionN D (G(y r )) ∩ ker(∇G(y r ) * ) = {0},for all sufficiently large r, since otherwise we contradict assumption (4.7). Consequently, using the standard chain rule [44, Exercise 10.26(d)], we deduce N C (y r ) = ∇G(y r ) * N D (G(y r )), so there are vectors u r ∈ N D (G(y r ))

Theorem 5 .

 5 20 (perturbed intersection) Given any closed sets F, C ⊂ E and any point x ∈ F ∩ C, suppose the assumptions of Theorem 5.16 hold. Then for any sufficiently small vector d ∈ E, any alternating projection sequence for the sets d+F and C, with the initial point x, must converge with R-linear rate √ c to a point in the set (d + F ) ∩ C ∩ B ρ (x), where ρ = 1+c 1-c d .
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 1111 3), the gradient ∇f has Lipschitz constant one on a neighborhood of the line segment [x, x + ]. Consequently,f (x + ) -f (x) -t∇f (x)) dt = ∇f (x), ∇f (x -t∇f (x)) dt = ∇f (x) 2 + ∇f (x), ∇f (x) -∇f (x -t∇f (x)) dt ≤ -∇f (x) 2 + ∇f (x) • ∇f (x) -∇f (x -t∇f (x)) dt ≤ -∇f (x) 2 + ∇f (x) 2 t dt = -
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 1 Figure 1: Convergence of averaged projection algorithm for designing compression matrix in compressed sensing.

  Consider prox-regular sets F 1 , F 2 , . . . , F m ⊂ E having linearly regular intersection at a point x ∈ ∩F i , and any constant k > cond(F 1 , F 2 , . . . , F m |x).
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A Numerical Example

In this final section, we give a numerical illustration showing the linear convergence of alternating and averaged projections algorithms. Some major problems in signal or image processing come down to reconstructing an object from as few linear measurements as possible. Several recovery procedures from randomly sampled signals have been proved to be effective when combined with sparsity constraints (see for instance the recent developments of compressed sensing [START_REF] Romberg | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF], [START_REF] Donoho | Compressed sensing[END_REF]). These optimization problems can be cast as linear programs. However for extremely large and/or nonlinear problems, projection methods become attractive alternatives. In the spirit of compressive sampling we use projection algorithms to optimize the compression matrix. This speculative example is meant simply to illustrate the theory rather than make any claim on real applications.

We consider the decomposition of images x ∈ R n as x = W z where W ∈ R n×m (n < m) is a "dictionary" (that is, a redundant collection of basis vectors). Compressed sensing consists in linearly reducing x to y = P x = P W z with the help of a compression matrix P ∈ R d×n (with d ≪ n); the inverse operation is to recover x (or z) from y. Compressed sensing theory gives sparsity conditions on z to ensure exact recovery [START_REF] Romberg | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF], [START_REF] Donoho | Compressed sensing[END_REF]. Reference [START_REF] Romberg | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF] in fact proposes a recovery algorithm based on alternating projections (on two convex sets). In general, we might want to design a specific sensing matrix P adapted to W , to ease this recovery process. An initial investigation on this question is [START_REF] Elad | Optimized projections for compressed-sensing[END_REF]; we suggest here another direction, inspired by [START_REF] Candès | Sparsity and incoherence in compressive sampling[END_REF] and [22], where averaged projections naturally appear.

Candes and Romberg [START_REF] Candès | Sparsity and incoherence in compressive sampling[END_REF] showed that, under orthogonality conditions, sparse recovery is more efficient when the entries |(P W ) ij | are small. One could thus use the componentwise ℓ ∞ norm of P W as a measure of quality of P . This leads to the following feasibility problem: to find U = P W such that UU ⊤ = I and with the infinity norm constraint U ∞ ≤ α (for a fixed tolerance α). The sets corresponding to these constraints are given by

The first set L is a subspace, the second set M is a smooth manifold while the third C is convex; hence the three are prox-regular. Moreover we can easily