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Abstract

We give a new proof of a theorem of Bourgain [3], asserting that solutions of linear
Schrödinger equations on the torus, with smooth time dependent potential, have Sobolev
norms growing at most like tǫ when t→ +∞, for any ǫ > 0. Our proof extends to Schrödinger
equations on other examples of compact riemannian manifolds.

1 Introduction

The main goal of this paper is to give a simpler proof of a theorem of Bourgain [3], and to obtain
extensions and generalizations of this result. LetM = T

d be the standard torus T
d = (R/2πZ)d,

and let V : R× T
d → R be a smooth function, bounded as well as its derivatives. Let u be the

solution of the Schrödinger equation

(i∂t −∆ + V (t, x))u = 0

u|t=0 = u0
(1.1)

with u0 ∈ Hs(M).

Theorem 1.1 (Bourgain) For any s > 0, there is a constant C > 0 such that for any u0 ∈
Hs(Td), the solution u to (1.1) satisfies, for any t ∈ R,

(1.2) ‖u(t, ·)‖Hs ≤ C(1 + |t|)‖u0‖Hs .

Remark: Actually, we shall obtain a slightly better estimate than (1.2), namely

‖u(t, ·)‖Hs ≤ C[‖u0‖Hs + |t|‖u0‖L2 ].

This work was partially supported by the ANR project Equa-disp.
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Since V is real valued, ‖u(t, ·)‖L2 = ‖u0‖L2 , so that interpolating with (1.2), one obtains that
for any s ∈ R, any ǫ > 0, there is C > 0 such that for any u0 ∈ Hs(Td), any t ∈ R,

(1.3) ‖u(t, ·)‖Hs ≤ C(1 + |t|)ǫ‖u0‖Hs .

Inequality (1.3) is the statement of Proposition 1 in Bourgain [3]. If one assumes that V is
analytic and time quasi-periodic, it had been proved previously by Bourgain [2] that (1.3) holds
with (1 + |t|)ǫ replaced by some power of log t when t ≥ 2. In dimension d = 1, Wei-Min
Wang [12] showed recently that such a logarithmic bound holds for any real analytic potential,
whose holomorphic extension to a complex strip around R×S

1 is bounded, adapting the method
of [3] to this setting. Let us mention that Bourgain [2] constructed examples of time periodic
potentials for which ‖u(t, ·)‖Hs is bounded from below by a power of log t when s > 0 and
t → +∞. On the other hand, in a recent work, Eliasson and Kuksin [10] have shown that if
the potential V on R × T

d is analytic in space, quasi-periodic in time, and small enough, then
for most values of the parameter of quasi-periodicity, the equation reduces to an autonomous
one. Consequently, the Sobolev norm of the solution is uniformly bounded. For Schrödinger
equations on the circle, Wei-Min Wang [13] has constructed an explicit example of a small time
periodic potential for which the solutions of the corresponding equation have bounded Sobolev
norms.

The proof of Theorem 1.1 given by Bourgain in [3] (see also appendix 1 of [4] for the case
d = 1) relies on reduction to a time periodic problem and then uses space-time Fourier series
decompositions. The alternative proof we propose here makes use only of “symbolic calculus”
properties, and is stationary in essence: we construct for every fixed time an operator, which
conjugates equation (1.1) to a similar equation, where the potential V has been replaced by
another operator V ′, exactly commuting to a modified Laplacian. The conclusion then follows
from energy inequalities and characterization of Sobolev regularity in terms of that modified
Laplacian.

In section 2 below, we shall actually state and prove an abstract version of Theorem 1.1, where
−∆, V are replaced by operators assumed to satisfy a list of assumptions. We check in section 3
that these assumptions hold for the Laplacian on T

d. We use for that the same geometric
properties of the spectrum of −∆ on T

d as Bourgain in [3].

A natural question is to know whether a result like Theorem 1.1 holds on other compact manifolds
than T

d. We are able to check that our abstract result does apply to a couple of classes of compact
manifolds.

Recall that a Zoll manifold is a compact manifold whose geodesic flow is periodic. The sphere
is such a manifold, and we refer to the book of Besse [1] for other examples. Our second result
is the following one:

Theorem 1.2 Let M be a Zoll manifold, and let V : M × R → R be smooth, with all its
derivatives bounded. For any s > 0, there is a constant C > 0 such that, for any u0 ∈ Hs(M),
the solution u of (1.1) satisfies, for any t ∈ R,

(1.4) ‖u(t, ·)‖Hs ≤ C(1 + |t|)‖u0‖Hs .
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Again, one deduces from (1.4) an estimate of the form (1.3). The proof of Theorem 1.2 is given
in section 4. We check that the assumptions of our abstract result of section 2 hold for −∆
on a Zoll manifold. The key point is a separation property of the eigenvalues of −∆ on M ,
which extends to higher dimensions the fact that on S

1 these eigenvalues are the squares of the
integers.

Theorems 1.1 and 1.2 above apply to examples of manifolds which are not stable under any
reasonable perturbation. One may ask if it is possible to get an estimate of the type of (1.2)
for solutions of Schrödinger equations, with time dependent potential on a continuous family
of compact manifolds. This is the aim of our third theorem, where we study the case of some
surfaces of revolution, for which the spectrum of the Laplace operator may be precisely described
by results of Colin de Verdière [7, 8].

Consider on the sphere S
2 a metric of revolution g. Denote by L the length of a meridian

geodesic going from the North pole to the South pole, and by σ the arc-length along that
geodesic. Assume that outside the poles g may be written g = a(σ)dθ2 + dσ2, where θ is the
polar angle, a : [0, L] → R+ is a smooth function satisfying a(0) = a(L) = 0, a(σ) > 0 if
σ ∈]0, L[, having a unique critical point σ0 in ]0, L[, and suppose that this critical point is non-
degenerate (so that a′′(σ0) < 0). We refer to page 63 of [8] for pictures of surfaces that do or
do not satisfy the above condition. Intuitively, it means that if M is isometrically embedded in
R

3, the distance from the axis of rotation to the point on a meridian geodesic with parameter
σ (which is given by

√
a(σ)) has only one extremum. In other words, M has only one equator.

Note also that the assumptions are stable under small perturbations of a.

Theorem 1.3 Let M be the above surface, V : R ×M → R a smooth potential, bounded as
well as all its derivatives. Then estimate (1.2) holds for solutions of (1.1) with Cauchy data
u0 ∈ Hs(M).

Again, the apparently stronger estimate (1.3) holds as well.

The proof of Theorem 1.3 will be given in section 5. We shall check that the assumptions of
our abstract theorem hold true using the results of Colin de Verdière [7, 8], which allow one to
describe the (joint) spectrum of the Laplacian on the surface we consider from the image of a
subset of the lattice Z

2 by a symbol.

The abstract result of section 2 does not apply just to Schrödinger operators. In section 6 we
treat the example of a “linear KdV” equation, proving the following:

Theorem 1.4 Let W : R × S
1 → R be a smooth function of (t, x) bounded as well as its

derivatives. Consider the equation on R× S
1

∂tu+ ∂3
xu+W∂xu+ ∂x(Wu) = 0

u|t=0 = u0.
(1.5)

Then for any s > 0, there is a constant C > 0 such that, for any u0 ∈ Hs(S1), the solution of
(1.5) satisfies (1.2) for any t ∈ R.
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Using again conservation of the L2 norm of u, one deduces from an estimate of type (1.2) a
bound of the form of (1.3).

2 Abstract result

This section is devoted to the statement and proof of a general result from which theorems 1.1
to 1.4 will follow. Let us introduce some notation. Let M be a compact riemannian manifold,
dx the riemannian volume, ∆ the Laplace-Beltrami operator, Hs(M) the Sobolev space on M .
Let m ∈ R+ be a fixed given number. We define for any s ∈ R a space Es of functions on R×M
by

(2.1) Es = {u ∈ C0(R;Hs(M));∀k ∈ N, ∂kt u ∈ C0(R;Hs−km(M))}.

For σ ∈ R, we denote by Lσ a subspace of the space of operators from C0(R;C∞(M)) to
C0(R;D′(M)) satisfying the following:

• Each Q ∈ Lσ is a smooth family in t of bounded operators from Hs(M) to Hs−σ(M).
• If one sets Ad(∂t)Q = [∂t, Q] = ∂tQ, for each k ∈ N, any Q ∈ Lσ, Adk(∂t)Q ∈ Lσ with
estimates

(2.2) ‖[Adk(∂t)Qu](t, ·)‖Hs−σ ≤ Ck,s‖u‖Hs

uniformly for t ∈ R, u ∈ Hs.
• If Q∗ denotes the adjoint of Q ∈ Lσ (at fixed time, for the usual L2-pairing), then Q∗ ∈ Lσ.
• For any σ1, σ2 ∈ R,

(2.3) Lσ1 ◦ Lσ2 ⊂ Lσ1+σ2 and, when σ1 ≤ σ2,Lσ1 ⊂ Lσ2 .

We denote L−∞ =
⋂
σ∈R Lσ.

Fix σ0 ∈ [0,m] and self-adjoint operators Λ ∈ Lm, V ∈ Lσ0 . Consider the abstract equation

(i∂t + Λ + V )u = 0

u|t=0 = u0,
(2.4)

where u0 is given in Hs(M) for some s ≥ 0. We introduce the following assumptions: For any
σ ∈ R, there are subspaces LσD,LσND of Lσ, invariant under Q→ Q∗, such that

• For any Q ∈ Lσ, there are Q(1) ∈ LσD, Q(2) ∈ LσND with

(2.5) Q = Q(1) +Q(2).

• There is ρ > 0 and, for every σ ∈ R, any Σ ∈ LσND, there is Q ∈ Lσ−ρ−σ0

ND such that

(2.6) [Q,Λ]− Σ ∈ L−∞.

• There is an element ∆̃ ∈ L2 and, for every s ∈ 2N, a constant C > 0 such that, for any Q ∈ LσD
(2.7) [Q, ∆̃] ∈ L−∞, [Λ, ∆̃] = 0, [i∂t, ∆̃] = 0
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and for any u ∈ Es, any t ∈ R,

(2.8) C−1‖u(t, ·)‖2Hs ≤ ‖u(t, ·)‖2L2 + ‖∆̃s/2u(t, ·)‖2L2 ≤ C‖u(t, ·)‖2Hs .

The main result of this section is the following:

Theorem 2.1 Under assumptions (2.5) to (2.8), for any s > 0, there is a constant C > 0 such
that, for any u ∈ Es solving equation (2.4), the bound

(2.9) ‖u(t, ·)‖Hs ≤ C(1 + |t|)‖u0‖Hs

holds for any t ∈ R.

We shall prove Theorem 2.1 rewriting equation (2.4) under an equivalent form, exploiting as-
sumptions (2.5) and (2.6).

Proposition 2.2 Assume that (2.5) and (2.6) hold. Let N ∈ N
∗. Set P0 = i∂t + Λ. There are

sequences (Q′j)1≤j≤N , (Q′′j )1≤j≤N satisfying

Q′j ∈ L−jρ, [Q′j ,Λ] ∈ Lσ0−(j−1)ρ, (Q′j)
∗ = −Q′j

Q′′j ∈ L−(j+1)ρ, [Q′′j ,Λ] ∈ Lσ0−jρ, (Q′′j )
∗ = Q′′j ,

(2.10)

there are elements V N ∈ Lσ0

D with (V N )∗ = V N , there are elements

RN1 ∈ Lσ0−Nρ, (RN1 )∗ = RN1

RN2 ∈ L−(N+2)ρ with [RN2 ,Λ] ∈ Lσ0−(N+1)ρ, (RN2 )∗ = RN2 ,

such that, if we set Qj = Q′j +Q′′j , Q
N =

∑N
j=1Qj

(2.11) (I +QN )∗(i∂t + Λ + V )(I +QN ) = i∂t + Λ + V N +RN1 +
1

2
[RN2 P0 + P0R

N
2 ].

Before proving the proposition, let us first compute the left hand side of (2.11).

Lemma 2.3 Let Q′j , Q
′′
j be given operators satisfying (2.10) for 1 ≤ j ≤ N . Denote Q′N =

∑N
j=1Q

′
j, Q

′′N =
∑N
j=1Q

′′
j . One may find

• Elements Sj ∈ L−(j+1)ρ, 1 ≤ j ≤ N + 1, such that [Λ, Sj ] ∈ Lσ0−jρ, S∗j = Sj, depending only
on Q′ℓ, 1 ≤ ℓ ≤ j,Q′′ℓ , 1 ≤ ℓ < j,
• Elements S̃j ∈ Lσ0−(j−1)ρ, 2 ≤ j ≤ N + 1, depending only on Q′ℓ, Q

′′
ℓ , 1 ≤ ℓ < j, such that

S̃∗j = S̃j,

so that, denoting SN =
∑N+1
j=1 Sj , S̃

N =
∑N+1
j=2 S̃j ,

(2.12) (I+QN )∗(P0+V )(I+QN ) = P0+V −[Q′N ,Λ]+Q′′NP0+P0Q
′′N+

1

2
[SNP0+P0S

N ]+S̃N .
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Proof: Using that (Q′N )∗ = −Q′N , (Q′′N )∗ = Q′′N , we write

(I +QN )∗(P0 + V )(I +QN ) = P0 + V − [Q′N , P0] +Q′′NP0 + P0Q
′′N

+
1

2
[(QN )∗QNP0 + P0(QN )∗QN ]

+
1

2
[(QN )∗[P0, Q

N ] + [(QN )∗, P0]QN ]

+(QN )∗V + V QN + (QN )∗V QN .

(2.13)

Let us check that the terms in the right hand side may be written as contributions to the right
hand side of (2.12). We write [Q′N , P0] as the sum of [Q′N ,Λ], which gives the third term in the
right hand side of (2.12), and of [Q′N , i∂t] that may be written

N+1∑

j=2

[Q′j−1, i∂t].

By (2.10) and the definition of Lσ classes, [Q′j−1, i∂t] ∈ L−(j−1)ρ ⊂ Lσ0−(j−1)ρ. Since this bracket

is self-adjoint, it contributes to S̃j . To study the (QN )∗QNP0 + P0(QN )∗QN contribution in
(2.13), decompose

(QN )∗QN = (Q′N )∗Q′N +B

B = (Q′N )∗Q′′N + (Q′′N )∗Q′N + (Q′′N )∗Q′′N .
(2.14)

Term B is the sum in j ≥ 2 of quantities

∑

j1+j2=j
1≤j1,j2≤N

(Q′j1
∗Q′′j2 +Q′′j2

∗Q′j1) +
∑

j1+j2=j−1
1≤j1,j2≤N

Q′′j1
∗Q′′j2 .

By (2.10), (2.3), this expression belongs to L−(j+1)ρ, its bracket with Λ is in Lσ0−jρ, and it is
self-adjoint. Moreover, it depends only on Q′ℓ, Q

′′
ℓ for ℓ < j and ℓ ≤ N . Consequently, it gives

in (2.12) a contribution to Sj when 2 ≤ j ≤ N , and to SN+1 when j ≥ N + 1.

Consider now the contribution of

(2.15) (Q′N )∗Q′NP0 + P0(Q′N )∗Q′N

to the right hand side of (2.13). We write (Q′N )∗Q′N as the sum for j ≥ 1 of

∑

j1+j2=j+1
1≤j1,j2≤N

(Q′j1)∗Q′j2 .

This is a self-adjoint quantity, belonging to L−(j+1)ρ, whose bracket with Λ is in Lσ0−jρ. More-
over, it depends only on Q′ℓ, ℓ ≤ min(j,N), so it contributes to Sj for j ≤ N − 1, and to SN for
j ≥ N , in the last but one term in (2.12).

Let us study next the

(2.16) (QN )∗[P0, Q
N ] + [(QN )∗, P0]QN
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term in the right hand side of (2.13). We may write (2.16) as a sum in j ≥ 2 of

(2.17)
∑

j1+j2=j
1≤j1,j2≤N

(Q∗j1 [P0, Qj2 ] + [Q∗j2 , P0]Qj1).

Since [P0, Qj ] = [i∂t, Qj ]+[Λ, Qj ] belongs to Lσ0−(j−1)ρ by (2.10), and since (2.17) is self-adjoint
and depends only on Q′ℓ, Q

′′
ℓ for ℓ < inf(j,N + 1), we get a contribution to S̃j when j ≤ N , and

to S̃N+1 when j > N , in the right hand side of (2.12).

We are left with examining the V -contributions in the right hand side of (2.13). Since (QN )∗V +
V QN is the sum for 2 ≤ j ≤ N + 1 of Q∗j−1V + V Qj−1 ∈ Lσ0−(j−1), and since V = V ∗, we get

again a contribution to S̃j in (2.12). The term (QN )∗V QN is treated in a similar way. This
concludes the proof of the lemma. ✷

Proof of Proposition 2.2: Let us show that we may construct recursively a sequence of operators
Q′1, Q

′′
1, . . . , Q

′
N , Q

′′
N so that the right hand side of (2.11) may be written for r = 1, . . . , N + 1,

i∂t + Λ + V r−1 −
N∑

j=r

[Q′j ,Λ] +
N∑

j=r

[Q′′jP0 + P0Q
′′
j ] +

1

2

N+1∑

j=r

[SjP0 + P0Sj ]

+
N∑

j=r

S̃j + R̃rN+1

(2.18)

where V r−1 ∈ Lσ0

D , (V r−1)∗ = V r−1 for r ≥ 2, V 0 = 0, S̃1 = V , R̃rN+1 ∈ Lσ0−Nρ, (R̃rN+1)∗ =
R̃rN+1. Note that (2.18) with r = 1 is the conclusion of Lemma 2.3 by our definition of V 0, S̃1 if
we set R̃1

N+1 = S̃N+1. Moreover, (2.18) with r = N+1 is exactly the conclusion (2.11) we want to

reach, setting RN1 = R̃N+1
N+1, RN2 = SN+1. Assume (2.18) has been obtained at rank r. Decompose

according to (2.5) S̃r = V r,(1) + V r,(2) with V r,(1) ∈ Lσ0−(r−1)ρ
D and V r,(2) ∈ Lσ0−(r−1)ρ

ND . Since
S̃∗r = S̃r, we may assume (V r,(1))∗ = V r,(1), (V r,(2))∗ = V r,(2). Moreover, these operators depend
only on Q′ℓ, Q

′′
ℓ , ℓ < r. We set V r = V r−1 + V r,(1) and we use property (2.6) to find Q′r ∈ L−rρND

such that [Q′r,Λ]−V r,(2) is an element of L−∞ that contributes to R̃r+1
N+1 in (2.18) at rank r+ 1.

Moreover, we may assume (Q′r)
∗ = −Q′r. This eliminates the S̃r contribution in (2.18).

We are left with finding Q′′r satisfying (2.10), such that

Q′′rP0 + P0Q
′′
r = −1

2
[SrP0 + P0Sr].

Since by Lemma 2.3, Sr depends only on Q′1, . . . , Q
′
r, Q
′′
1, . . . , Q

′′
r−1, which have been already

determined, we may define Q′′r = −1
2Sr. The conditions satisfied by Sr according to Lemma 2.3

show that Q′′r obeys (2.10). This concludes the proof of Proposition 2.2. ✷

Proof of Theorem 2.1: By interpolation, it is enough to prove (2.9) when s ∈ 2N. Apply
Proposition 2.2 with ρN ≥ s+m ≥ s+ σ0. We may find PN =

∑N
j=1 Pj , with Pj ∈ L−jρ, such

that

(2.19) (I +QN )(I + PN )− I = RN

7



belongs to L−ρ(N+1). If u solves (2.4), we set

v = (I + PN )u

so that, for a constant C depending only on N and on the index of regularity,

‖v(t, ·)‖Hs ≤ C‖u(t, ·)‖Hs
‖u(t, ·)‖Hs ≤ C[‖v(t, ·)‖Hs + ‖u(t, ·)‖L2 ]

‖∂tv(t, ·)‖Hσ ≤ C[‖∂tu(t, ·)‖Hσ + ‖u(t, ·)‖Hσ ] (σ ∈ R).

(2.20)

By (2.11) and (2.19) and the fact that u solves (2.4),

(i∂t + Λ + V N +RN1 +
1

2
[RN2 P0 + P0R

N
2 ])v

= (I +QN )∗[i∂t + Λ + V,RN ]u
def
= f.

By (2.2), (2.3) and the choice of N

‖f(t, ·)‖Hs ≤ C‖u(t, ·)‖L2

for some uniform constant C > 0. Consequently

(i∂t + Λ + V N )v = g

where by (2.2), (2.3) and the last inequality (2.20)

‖g(t, ·)‖Hs ≤ C[‖u(t, ·)‖L2 + ‖v(t, ·)‖L2 ].

By commutation condition (2.7), and the fact that V N ∈ Lσ0

D , we may write

(i∂t + Λ + V N )(∆̃s/2v) = w

with ‖w(t, ·)‖L2 ≤ C[‖u(t, ·)‖L2 + ‖v(t, ·)‖L2 ]. The L2-energy inequality – which holds since at
fixed t, Λ, V N are self-adjoint – together with (2.8) implies that for any t ≥ 0

‖v(t, ·)‖Hs ≤ C[‖v(0, ·)‖Hs +

∫ t

0
[‖u(τ, ·)‖L2 + ‖v(τ, ·)‖L2 ] dτ ].

Since by (2.20), ‖v(τ, ·)‖L2 ≤ C‖u(τ, ·)‖L2 and using the conservation of the L2-norm for (2.4)
‖u(τ, ·)‖L2 = ‖u(0, ·)‖L2 , we obtain

‖v(t, ·)‖Hs ≤ C[‖v(0, ·)‖Hs + ‖u(0, ·)‖L2t]

for any t ≥ 0. Estimate (2.9) follows from that and (2.20). ✷
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3 Schrödinger equation on T
d

We assume here that the manifold M is the torus T
d = (R/2πZ)d. Let V : R × T

d → R be a
C∞ function of (t, x), bounded as well as all its derivatives, and let u be a solution of (1.1). For
n ∈ Z

d, we denote by Πn the spectral projector

Πnu =
〈
u,
einx

(2π)d/2

〉 einx

(2π)d/2
.

Definition 3.1 For σ ∈ R, we denote by Lσ the space of smooth families in time of continuous
operators from C∞(Td) to D′(Td), such that, for any k,N ∈ N, there is C > 0 with

(3.1) ‖Πn∂kt Q(t, ·)Πn′‖L(L2) ≤ C(1 + |n|+ |n′|)σ〈n− n′〉−N

for any n, n′ ∈ Z
d, any t ∈ R (where 〈k〉 = (1 + |k|2)1/2).

The above definition implies immediately that conditions (2.2) and (2.3) are satisfied by the
class Lσ. Moreover, Λ = −∆ belongs to L2, and the operator of multiplication by V is in L0, as
follows from Fourier series decomposition of x→ V (t, x) at every fixed t. We shall consequently
apply the results of section 2 with m = 2, σ0 = 0. Let us state the following lemma due to
Bourgain ([3] Lemma 8.1; see also for the proof lemma 19.10 in [5]):

Lemma 3.2 (Bourgain) For any δ ∈]0, 1
10 [, there are ρ ∈]0, δ[, γ > 0 and a partition (Ωα)α∈A

of Z
d such that

∀α ∈ A, ∀n ∈ Ωα, ∀n′ ∈ Ωα, |n− n′|+ ||n|2 − |n′|2| < γ + |n|δ,
∀α, β ∈ A,α 6= β, ∀n ∈ Ωα, ∀n′ ∈ Ωβ, |n− n′|+ ||n|2 − |n′|2| > |n|ρ.

(3.2)

We denote for α ∈ A

(3.3) Π̃α =
∑

n∈Ωα

Πn.

Definition 3.3 We denote by LσD (resp. LσND) the subspace of Lσ given by those operators
Q ∈ Lσ such that for any α, β ∈ A with α 6= β (resp. any α ∈ A) Π̃αQΠ̃β ≡ 0 (resp.

Π̃αQΠ̃α ≡ 0).

Proof of Theorem 1.1: To deduce Theorem 1.1 from Theorem 2.1, we just need to check that
conditions (2.5) to (2.8) are satisfied by the class of operators we just defined. Take Q ∈ Lσ and
define

Q(1) =
∑

α∈A

Π̃αQΠ̃α ∈ LσD, Q(2) =
∑

α,β∈A
α 6=β

Π̃αQΠ̃β ∈ LσND.
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Then (2.5) holds true. Consider now Σ ∈ LσND and let us find Q ∈ Lσ−ρND solving (2.6) i.e.
−[Q,∆]− Σ ∈ L−∞. Write Σ = Σ1 +R with

(3.4) Σ1 =
∑

n∈Zd

∑

n′∈Zd

✶{||n|2−|n′|2|> 1

4
(|n|+|n′|)ρ}ΠnΣΠn′

where ρ is given by Lemma 3.2 when some δ ∈]0, 1
10 [ has been fixed. Since the equation−[Q,∆] =

Σ1 may be written

(3.5) (|n′|2 − |n|2)ΠnQΠn′ = ΠnΣ1Πn′ ,

we see that (3.5) defines an elementQ ∈ Lσ−ρND . We are left with checking thatR = Σ−Σ1 ∈ L−∞.
But

(3.6) ΠnRΠn′ = ✶{||n|2−|n′|2|≤ 1

4
(|n|+|n′|)ρ}ΠnΣΠn′

and since Σ ∈ LσND, this expression is non zero only when n and n′ belong to Ωα and Ωβ
with α 6= β. So the second condition in (3.2), together with the cut-off in (3.6), implies that
|n− n′| ≥ c(|n|+ |n′|)ρ for some c > 0. It follows from (3.1) that R ∈ L−∞.

We still have to check conditions (2.7) and (2.8). For any α ∈ A, we choose n(α) ∈ Ωα and
define

(3.7) ∆̃u =
∑

α∈A

|n(α)|2Π̃αu.

It follows from the definition of LσD that the first condition (2.7) holds (actually [∆̃, Q] = 0 for
Q ∈ LσD). The second and third conditions are trivially verified. Finally, by the first condition
in (3.2), there is C > 0 such that for any α ∈ A

C−1(1 + |n(α)|2)‖Π̃αu‖2L2 ≤
∑

n∈Ωα

(1 + |n|2)‖Πnu‖2L2 ≤ C(1 + |n(α)|2)‖Π̃αu‖2L2

which shows that (2.8) holds. Consequently, we may apply Theorem 2.1, which brings Theo-
rem 1.1. ✷

4 Schrödinger equation on Zoll manifolds

We assume now that M is a compact Zoll manifold. By results of Colin de Verdière [6] (see
also Duistermaat-Guillemin [9], Guillemin [11] and Weinstein [14]), it is known that if τ is the
minimal period of the geodesic flow, the eigenvalues of

√
−∆ on M are contained in

⋃+∞
n=0 In,

where for n ≥ 1

(4.1) In =
[2π
τ
n+ α− C

n0 + n
,
2π

τ
n+ α+

C

n0 + n

]

for some α ∈ R, some C > 0, some large n0 ∈ N, and where I0 is a finite set of positive numbers
strictly smaller than 2π

τ + α − C
n0+1 . If n0 is large enough, these intervals are disjoint. For any

n ∈ N, we define Πn to be the spectral projector associated to In.

10



Let V : R ×M → R a C∞ function of (t, x), bounded as well as its derivatives. We consider
again equation (1.1).

Definition 4.1 For σ ∈ R, we denote by Lσ the space of smooth families in time of continuous
operators from C∞(M) to D′(M) such that for any k,N ∈ N, there is C > 0 with

(4.2) ‖Πn∂kt Q(t, ·)Πn′‖L(L2) ≤ C(1 + n+ n′)σ〈n− n′〉−N

for any n, n′ ∈ N, any t ∈ R.

Conditions (2.2) and (2.3) are satisfied by elements of this class, as it follows from the charac-
terization of Sobolev spaces in terms of the spectral projectors Πn that

‖u‖2Hs ∼
+∞∑

n=0

(1 + |n|2)s‖Πnu‖2L2 .

We shall set Λ = −∆ ∈ L2 (so m = 2 with the notations of section 2), and the operator of
multiplication by V is in L0. Actually, if we set λn = 2π

τ n+α, n ∈ N
∗, λ0 = 1, there is a constant

C0 > 0 and, for every n ∈ N, an endomorphism An of the range of Πn, whose operator norm is
bounded by C0, such that

−∆Πn = λ2
nΠn +AnΠn.

Consequently

(4.3) (λ2
n − λ2

n′)ΠnVΠn′ = −AnΠnVΠn′ + ΠnVΠn′An′ −Πn[∆, V ]Πn′ ,

whence
|λ2
n − λ2

n′ |‖ΠnVΠn′‖L(L2) ≤ C(1 + λn + λn′)

since [∆, V ] is of order 1. Iterating (4.3), one obtains estimates of form (4.2) with σ = 0.

We shall apply the abstract results of section 2 with m = 2, σ0 = 0, ρ = 1. Let us introduce
some notation. For N0 an integer to be chosen below large enough, we set

Π̃0 =
N0∑

n=0

Πn, Π̃n = Πn if n ≥ N0 + 1

∆0 = −Π̃0 + (I − Π̃0)∆

−∆̃ = Π̃0 +
+∞∑

n=N0+1

(2π

τ
n+ α

)2
Π̃n.

(4.4)

Our assumptions made after (4.1) imply that 2π
τ n + α ≥ 0 for any n ∈ N

∗. Moreover (4.1)

implies that ∆0 − ∆̃ is bounded on L2.

Definition 4.2 We define LσD (resp. LσND) as the subspace of Lσ given by those operators
Q ∈ Lσ such that for any n, n′ in N0 = {0} ∪ {n ∈ N;n > N0} with n 6= n′ (resp. for any
n ∈ N0) Π̃nQΠ̃n′ = 0 (resp. Π̃nQΠ̃n = 0).

11



Proof of Theorem 1.2: We have again to check conditions (2.5) to (2.8). If Q ∈ Lσ, we
decompose it as Q = Q(1) +Q(2) with

Q(1) =
∑

n∈N0

Π̃nQΠ̃n, Q
(2) =

∑

n,n′∈N0

n6=n′

Π̃nQΠ̃n′

obtaining Q(1) ∈ LσD, Q(2) ∈ LσND. Next we have to establish (2.6) with Λ = −∆. Since
∆−∆0 ∈ L−∞, we just need to solve for Σ ∈ LσND, [∆0, Q] = Σ. Write this equation

(4.5) [∆̃, Q] + [(∆0 − ∆̃), Q] = Σ.

Setting as above λn = 2π
τ n+ α for n ≥ N0 + 1, λ0 = 1, define for Q ∈ Lσ−1

ND , Σ ∈ LσND

L0(Q) = [∆̃, Q] =
∑

n,n′∈N0

n6=n′

(λ2
n′ − λ2

n)Π̃nQΠ̃n′

L−1
0 (Σ) =

∑

n,n′∈N0

n6=n′

(λ2
n′ − λ2

n)
−1Π̃nΣΠ̃n′

(4.6)

so that L−1
0 (Σ) ∈ Lσ−1

ND and L0 ◦ L−1
0 (Σ) = Σ. We define

A(Q) = −[∆0 − ∆̃, Q].

By construction

(4.7) Π̃nA(Q)Π̃n′ = A(Π̃nQΠ̃n′)

vanishes if n = n′ = 0. Moreover, since for n ∈ N0 ‖(∆0 − ∆̃)Π̃n‖L(L2) ≤ C, we get

(4.8) ‖Π̃nA(Q)Π̃n′‖L(L2) ≤ C‖Π̃nQΠ̃n′‖L(L2)

for some uniform constant C > 0. By (4.6), we get for any n, n′ ∈ N0, n 6= n′

‖Π̃nL−1
0 ◦A(Q)Π̃n′‖L(L2) ≤

C

n+ n′ + 1
‖Π̃nQΠ̃n′‖L(L2),

and since we have seen that by (4.7) the left hand side vanishes when n = n′ = 0, we may
assume n+ n′ ≥ N0. If this integer is large enough, we get

(4.9) ‖Π̃nL−1
0 ◦A(Q)Π̃n′‖L(L2) ≤

1

2
‖Π̃nQΠ̃n′‖L(L2).

Define for N ≥ 2, LσND(N) to be the space of those Q satisfying estimate (4.2) with the exponent
N , and for k ≤ N . This is a Banach space for the norm ‖Q‖Lσ

ND
(N) given by the best constant

C in the right hand side of (4.2). Estimate (4.9) shows that L−1
0 ◦A is a bounded operator from

Lσ−1
ND (N) to itself, with operator norm smaller than 1

2 . Consequently, the series
∑+∞
k=0(L−1

0 ◦A)k

converges in Lσ−1
ND (N) for any N ≥ 2. Write equation (4.5) as

L0(Q)−A(Q) = Σ
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and invert it by
Q = (Id− L−1

0 ◦A)−1L−1
0 Σ.

By (4.6) L−1
0 Σ ∈ Lσ−1

ND , and by the above remarks, the series

+∞∑

k=0

(L−1
0 ◦A)kL−1

0 Σ

defines an operator in Lσ−1
ND . This establishes property (2.6). Finally, if Q ∈ LσD, [Q, ∆̃] =

0 because of the definition of ∆̃. Moreover, the last two properties in (2.7) hold trivially.
Inequalities (2.8) follow from the spectral characterization of Sobolev spaces. We may therefore
apply Theorem 2.1 in our framework, and get Theorem 1.2 as a consequence. ✷

5 Schrödinger equation on surfaces of revolution

We assume in this section that M = S
2 with a metric g satisfying the assumptions of Theo-

rem 1.3. Let us recall results of [8], mainly Theorem 6.1 of that paper. Under the preceding as-
sumptions, there are two first order commuting self-adjoint pseudo-differential operators Q1, Q2

satisfying the following:

• The joint spectrum of (Q1, Q2) is

(5.1) Λ0 =

{
n = (n1, n2) ∈

(
Z +

1

2

)
× Z; |n2| ≤ n1 −

1

2

}
.

In particular, there is an Hilbert basis (ϕn)n∈Λ0
of L2(M) made of joint eigenfunctions of (Q1, Q2)

i.e.

(5.2) Q1ϕn = n1ϕn, Q2ϕn = n2ϕn.

• There is a classical symbol of order 2, F , defined on R
2, with an asymptotic expansion in

homogeneous components F = F2 +F0 +F−1 + · · · where F2 is elliptic (on a conic neighborhood
of Λ0), such that −∆ = F (Q1, Q2). In particular

(5.3) −∆ϕn = F (n)ϕn, n ∈ Λ0.

For n ∈ Λ0, u ∈ D′(M), we set Πnu = 〈u, ϕn〉ϕn.

Definition 5.1 For σ ∈ R, we denote by Lσ the space of smooth families in time of continuous
operators from C∞(M) to D′(M) such that, for any k,N ∈ N, there is C > 0 with

(5.4) ‖Πn∂kt Q(t, ·)Πn′‖L(L2) ≤ C(1 + |n|+ |n′|)σ〈n− n′〉−N

for any n, n′ ∈ Λ0.
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It follows from (5.4) and the fact that ‖u‖2Hs ∼
∑
n∈Λ0
〈n〉2s‖Πnu‖2L2 that (2.2) and (2.3) hold.

Moreover −∆ ∈ L2. If (t, x) → V (t, x) is a smooth function on R × M , with all its (t, x)-
derivatives bounded, we see by iteration of the equality following from (5.2)

(nj − n′j)ΠnVΠn′ = Πn[Qj , V ]Πn′ , j = 1, 2,

that the operator of multiplication by V is in L0. We shall apply the results of section 2 to
Λ = −∆, m = 2, σ0 = 0. Let us check (2.5) to (2.8). We need to define decomposition (2.5).
Let us introduce some notation. For ρ ∈]0, 1

2 ], define for ℓ ∈ Z
2 − {0}

(5.5) Γℓ = {n ∈ Λ0; |F ′(n) · ℓ| < ρ|ℓ||n|ρ}.

We shall use the following properties of the above sets:

Lemma 5.2 (i) There is K > 0 such that for any ρ ∈]0, 1
2 ], for any ℓ ∈ Z

2 − {0}, any n ∈ Γℓ
with |n| ≥ K,

(5.6)

∣∣∣∣n ·
ℓ⊥

|ℓ|

∣∣∣∣ ≥
1

K
|n|

if ℓ⊥ = (−ℓ2, ℓ1) when ℓ = (ℓ1, ℓ2).

(ii) There is K > 0 and for any ρ ∈]0, 1
2 ], for any ℓ, ℓ′ ∈ Z

2 − {0} which are not collinear

Γℓ ∩ Γℓ′ ⊂ {n ∈ Λ0; |n| ≤ K(|ℓ|2 + |ℓ′|2)
1

1−ρ }.

Proof: (i) For |n| ≥ 1, we write F (n) = F2(n) + F̃ (n) where F̃ is a symbol of order zero and
F2 is homogeneous of degree two and elliptic. For 0 < |λ| < 1

2 , compute

F2((1 + λ)n) = (1 + λ)2F2(n) = F2(n) + F ′2(n) · (λn) +O(|λn|2).

Then
F ′2(n) · n = (2 + λ)F2(n) +O(|λ||n|2),

whence taking λ small enough, |F ′2(n) · n| ≥ c|n|2, which implies for |n| ≥ K large enough

(5.7) |F ′(n) · n| ≥ c|n|2

for some c > 0. If n ∈ Γℓ, decompose

F ′(n) = Aℓ(n)
ℓ

|ℓ| +Bℓ(n)
ℓ⊥

|ℓ|

with Aℓ(n) = F ′(n) · ℓ|ℓ| , Bℓ(n) = F ′(n) · ℓ⊥|ℓ| . If we use (5.7), estimate |Aℓ(n)| from the definition

of Γℓ, and |Bℓ(n)| by |F ′(n)| ≤ C|n|, we get

c|n|2 ≤ ρ|n|1+ρ + C|n|
∣∣∣∣
ℓ⊥

|ℓ| · n
∣∣∣∣
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for |n| ≥ K. Enlarging K if necessary, we get (5.6).

(ii) Let n ∈ Γℓ ∩ Γℓ′ and assume |n| > K(|ℓ|2 + |ℓ′|2)
1

1−ρ for some K > 0. If K is large enough,

(5.7) implies that |F ′(n)| ≥ c|n| and we may define e = F ′(n)
|F ′(n)| . Decompose ℓ = (ℓ·e)e+(ℓ·e⊥)e⊥,

so that

(5.8) det(ℓ, ℓ′) = (ℓ · e) det(e, ℓ′) + det(ℓ, e)(ℓ′ · e).

By definition of Γℓ,Γℓ′ , e,

|ℓ · e| < ρ
c
|ℓ||n|ρ−1, |ℓ′ · e| < ρ

c
|ℓ′||n|ρ−1.

Since det(ℓ, ℓ′) ∈ Z
∗, we deduce from (5.8)

1 ≤ 2ρ

c
|ℓ||ℓ′||n|ρ−1

which contradicts the assumption on n if K >
(ρ
c

) 1

1−ρ . This concludes the proof of the lemma.
✷

Let us define the subspaces LσD and LσND. Denote by P a subset of Z
2 − {0} such that for any

ℓ ∈ Z
2−{0}, there is a unique ℓ0 ∈ P and a unique d ∈ Z

∗ with ℓ = dℓ0, and such that if ℓ ∈ P,
Γℓ 6= ∅. Fix a number ρ ∈]0, 1

2 ].

Definition 5.3 Let A > 0 be a large constant to be chosen, σ ∈ R.

(i) We denote by LσND the subspace of those Q ∈ Lσ such that

(5.9) |n− n′| < 1

A
|n|ρ/2 and |F (n)− F (n′)| > 1

A
|n|ρ

if ΠnQΠn′ 6= 0.

(ii) We denote by LσD the subspace of those Q ∈ Lσ that may be written

(5.10) Q = Q0 +
∑

ℓ∈P

Qℓ +R,

where R ∈ L−∞, Q0 satisfies ΠnQ0Πn′ = 0 if n, n′ ∈ Λ0, n 6= n′, and for ℓ ∈ P, ΠnQℓΠn′ is non
zero only when

(5.11) n ∈ Γℓ, n
′ ∈ Γℓ, |ℓ| ≤ |n− n′| <

1

A
|n|ρ and n− n′ is collinear to ℓ.

Let us check that condition (2.5) is satisfied:

Lemma 5.4 Assume that A in (5.9) is large enough relatively to 1
ρ . For any Q ∈ Lσ there are

Q(1) ∈ LσD, Q(2) ∈ LσND such that Q = Q(1) +Q(2).
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Proof: Let us define

Q(2) =
∑

n∈Λ0

∑

n′∈Λ0

✶
{|n−n′|< 1

A
|n|ρ/2,|F (n)−F (n′)|> 1

A
|n|ρ}

ΠnQΠn′ .

Then Q(2) ∈ LσND. Set

R =
∑

n∈Λ0

∑

n′∈Λ0

✶
{|n−n′|≥ 1

A
|n|ρ/2}

ΠnQΠn′

so that R ∈ L−∞ ⊂ LσD. Consequently, we may write

Q−Q(2) −R =
∑

n∈Λ0

∑

n′∈Λ0

✶Γ(n, n′)ΠnQΠn′

where

(5.12) Γ =
{

(n, n′) ∈ Z
2 × Z

2; |n− n′| < 1

A
|n|ρ/2, |F (n)− F (n′)| ≤ 1

A
|n|ρ
}
.

In other words,

Q−Q(2) −R =
∑

ℓ∈P

∑

d∈Z∗

∑

n∈Λ0

✶Γ(n, n+ dℓ)✶Λ0
(n+ dℓ)ΠnQΠn+dℓ +

∑

n∈Λ0

ΠnQΠn

and we define

Qℓ =
∑

d∈Z∗

∑

n∈Λ0

✶Γ(n, n+ dℓ)✶Λ0
(n+ dℓ)ΠnQΠn+dℓ.

Q0 =
∑

n∈Λ0

ΠnQΠn.

Using (5.12), we see that the last two conditions in (5.11) are satisfied. We still have to check
that if ΠnQℓΠn′ 6= 0, then n ∈ Γℓ, n

′ ∈ Γℓ. By (5.12), if n′ = n+ dℓ,

|dℓ| < 1

A
|n|ρ/2, |F (n)− F (n+ dℓ)| ≤ 1

A
|n|ρ,

so that writing F (n+ dℓ) = F (n) + F ′(n) · (dℓ) +O(|dℓ|2),

|d||F ′(n) · ℓ| ≤ 1

A
|n|ρ + C|dℓ|2 < 1

A
|n|ρ
(

1 +
C

A

)
.

Since |d| ≥ 1, |ℓ| ≥ 1, we obtain for A large enough relatively to 1
ρ that n belongs to Γℓ. One

obtains in the same way that n′ = n+ dℓ ∈ Γℓ. This concludes the proof of the lemma. ✷

Proof of Theorem 1.3: Let us check that condition (2.6) is satisfied when Λ = −∆. Actually,
if Σ ∈ LσND, the equation [Q,−∆] = Σ may be written, according to (5.3),

(F (n′)− F (n))ΠnQΠn′ = ΠnΣΠn′ , n, n
′ ∈ Λ0,

and property (5.9) implies that we may find a solution Q ∈ Lσ−ρND of that equation.
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We are left with verifying conditions (2.7) and (2.8). Let us define the operator ∆̃. By (ii) of
Lemma 5.2, for ℓ 6= ℓ′ belonging to P, the sets

Γℓ ∩ {n; |n| > B|ℓ|
2

1−ρ }, Γℓ′ ∩ {n; |n| > B|ℓ′|
2

1−ρ }

are disjoint if B is a large enough constant. We define ∆̃ by the orthogonal sum

∆̃ =
∑

ℓ∈P

∑

n∈Λ0

(
n · ℓ

⊥

|ℓ|

)2

✶Γℓ(n)✶
{|n|>B|ℓ|

2

1−ρ }
Πn +

∑

n∈Ω

(1 + |n|2)Πn,

where Ω is the complement in Λ0 of

⋃

ℓ∈P

{n;n ∈ Γℓ, |n| > B|ℓ|
2

1−ρ }.

By (5.6),
∣∣∣n · ℓ⊥|ℓ|

∣∣∣
2
∼ |n|2 when n ∈ Γℓ so that, by orthogonality, condition (2.8) holds. By

definition, the last two conditions (2.7) hold as well. We just have to check that [Q, ∆̃] ∈ L−∞
for any Q ∈ LσD. It is enough to verify that [Q0, ∆̃] and

∑
ℓ∈P [Qℓ, ∆̃] are in L−∞ in decomposition

(5.10). The case Q0 is trivial. On the other hand, using (5.11)

Πn[∆̃, Qℓ]Πn′ =

(
n · ℓ

⊥

|ℓ|

)2

✶Γℓ(n)✶
{|n|>B|ℓ|

2

1−ρ }
ΠnQℓΠn′

−
(
n′ · ℓ

⊥

|ℓ|

)2

✶Γℓ(n
′)✶
{|n′|>B|ℓ|

2

1−ρ }
ΠnQℓΠn′ .

By (5.11), if ΠnQℓΠn′ 6= 0, we have n ∈ Γℓ, n
′ ∈ Γℓ and n− n′ collinear to ℓ, so that

Πn[∆̃, Qℓ]Πn′ =

(
n · ℓ

⊥

|ℓ|

)2[
✶
{|n|>B|ℓ|

2

1−ρ }
− ✶
{|n′|>B|ℓ|

2

1−ρ }

]
ΠnQℓΠn′ .

If we use (5.4), together with the fact that by (5.11), |n− n′| ≥ |ℓ|, and that |ℓ|
2

1−ρ ≥ 1
B |n| or

|ℓ|
2

1−ρ ≥ 1
B |n′|, we obtain

∥∥∥
∑

ℓ

Πn[∆̃, Qℓ]Πn′
∥∥∥
L(L2)

≤ CN (1 + |n|+ |n′|)−N

for any N . Since similar estimates hold for Adk(∂t)Qℓ, this shows that
∑
ℓ[∆̃, Qℓ] is in L−∞.

We have thus verified that assumptions (2.5) to (2.8) hold. We may therefore apply Theorem 2.1,
whose conclusion implies Theorem 1.3. ✷

6 The linear KdV equation

Let W be as in the statement of Theorem 1.4, and let us check that we may apply Theorem 2.1
to equation (1.5). Set

(6.1) Λ = i∂3
x, V = (Wi∂x + i∂xW ).
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For u ∈ L2(S1) and n ∈ Z, set

(6.2) Πnu =
〈
u,
einx√

2π

〉 einx√
2π

and define the space of operators Lσ by estimates (3.1). Then Λ ∈ L3, V ∈ L1 and we shall
apply the results of section 2 with m = 3, σ0 = 1, ρ = 1. We set

Π̃0 = Π0, Π̃n = Πn + Π−n, n ∈ N
∗,

and define LσD and LσND as those elements of Lσ satisfying respectively

Π̃nQΠ̃n′ = 0 if n 6= n′

Π̃nQΠ̃n = 0 for any n ∈ N.
(6.3)

Then any element of Lσ may be decomposed under form (2.5). Let us check that (2.6) holds.
The equation [Q, i∂3

x] = Σ for Σ ∈ LσND may be written

(6.4) (n′3 − n3)ΠnQΠn′ = ΠnΣΠn′ , n, n
′ ∈ Z.

Since Σ ∈ LσND, we may assume n 6= n′, which implies |n′3 − n3| ≥ c(1 + |n|2 + |n′|2) for some
c > 0, so that Q defined by (6.4) belongs to Lσ−2

ND , i.e. we get (2.6) with σ0 = ρ = 1.

Finally (2.7) is trivial, since we may take ∆̃ = ∆. We may therefore apply Theorem 2.1. This
concludes the proof of Theorem 1.4.
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