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Abstract

Let M := (M(X), p) be a direct summand of the motive associated with a geometrically
split, geometrically variety over a field F satisfying the nilpotence principle. We show that
under some conditions on an extension E/F , if M is a direct summand of another motive M
over an extension E, then M is a direct summand of M over F .

1 Introduction

Let Λ be a finite commutative ring. Our main reference on the category CM(F ; Λ) of Chow-
Grothendieck motives with coefficients in Λ is [1].

The purpose of this note is to generalize the folowing theorem due to N. Karpenko ([2], propo-
sition 4.5). Throughout this paper we understand a F -variety over a field F as a separated scheme
of finite type over F .

Theorem 1.1. Let Λ be a finite commutative ring. Let X be a geometrically split, geometrically
irreducible F -variety satisfying the nilpotence principle. Let M ∈ CM(F ; Λ) be another motive.
Suppose that an extension E/F satisfies

1. the E-motive M(X)E ∈ CM(E; Λ) of the E-variety XE is indecomposable;

2. the extension E(X)/F (X) is purely transcendental;

3. the motive M(X)E is a direct summand of the motive M .

Then the motive M(X) is a direct summand of the motive M .

We generalize this theorem when the motive M(X) ∈ CM(F ; Λ) is replaced by a direct sum-
mand (M(X), p) associated with a projector p ∈ EndCM(F ;Λ)(M(X)). The proof given by N.
Karpenko in [2] cannot be used in the case where M(X) is replaced by a direct summand because
of the use on the multiplicity ([1], §75) as the multiplicity of a projector in the category CM(F ; Λ)
is not always equal to 1 (and it can even be 0). The proof given here for its generalization gives
also another proof of theorem 1.1.

2 Suitable basis of the dual space of a geometrically split

F -variety

Let X be a geometrically split, geometrically irreductible F -variety satisfying the nilpotence prin-
ciple. We note CH(X ; Λ) as the colimit of the CH(XK ; Λ) over all extensions K of F . By
assumption there is a integer n = rk(X) such that

CH(X ; Λ) ≃

n
⊕

i=0

Λ.

Let (xi)
n
i=0 be a base of the Λ-module CH(X ; Λ). Each element xi of the basis is associated with a

subvariety of XE , where E is a splitting field of X . We note ϕ(i) for the dimension of the E-variety
associated to xi.
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Proposition 2.1. Let X be a geometrically split F -variety. Then the pairing

Ψ :
CH(X ; Λ) × CH(X ; Λ) −→ Λ

(α, β) 7−→ deg(α · β)

is bilinear, symetric and non-degenerate.

The pairing Ψ induces an isomorphism between CH(X ; Λ) and its dual space HomΛ(CH(X ; Λ), Λ).
Considering the inverse images of the dual basis of HomΛ(CH(X, Λ); Λ) associated with the basis
xi, we get another basis (x∗

i )
n
i=0 of CH(X; Λ) such that

Ψ(xi, x
∗
j ) = δij

where δij is the usual Kronecker symbol.

Proposition 2.2. Let M and N be two motives in CM(F ; Λ) such that M is split. Then there is
an isomorphism

CH∗(M ; Λ) ⊗ CH∗(N ; Λ) −→ CH∗(M ⊗ N ; Λ)

Proof. c.f. [1] proposition 64.3.

Let Y be a smooth complete irreducible F -variety. We note M for the motive (M(Y ), q)
associated with a projector q ∈ End(M(Y )). Then we have the following computations.

Lemma 2.3. For any integers i, j, k and s less than rk(X) = n, and for any cycles y and y′ in
CH(Y ; Λ), with 1 being the identity class in either CH(X; Λ) or CH(Y ; Λ) we have

1. (xi × x∗
j ) ◦ (xk × x∗

s) = δis(xk × x∗
j )

2. (xi × y × 1) ◦ (xk × x∗
s) = δis(xk × y × 1)

3. (y′ × x∗
j ) ◦ (xi × y) = deg(y′ · y)(xi × x∗

j )

Proof. We only compute (2) (other cases are similar).

(xi × y × 1) ◦ (xk × x∗
s) = (XpY ×X

X
)∗((

X×XpY ×X)∗(xk × x∗
s) · (p

X×Y ×X

X
)∗(xi × y × 1)) (2.1)

= (XpY ×X

X
)∗((xk × x∗

s × 1 × 1) · (1 × xi × y × 1)) (2.2)

= (XpY ×X

X
)∗(xk × (x∗

s · xi) × y × 1) (2.3)

= δis(xk × y × 1) (2.4)

3 Rational cycles of a geometrically split F -variety

Let X be a geometrically split F -variety. We note (M(X), p) the direct summand of M(X)
associated with a projector p ∈ CHdim(X)(X × X ; Λ). Considering the motive M defined in the
previous section, if (M(XE), pE) is a direct summand of ME for some extension E/F , then there
exists cycles f ∈ CH(XE × YE ; Λ) and g ∈ CH(YE × XE; Λ) such that f ◦ g = pE . We can write
these cycles in suitable basis of CH(X ×Y ; Λ), CH(Y ×X; Λ) and CH(X ×X; Λ) by proposition
2.2. Thus there are two subsets F and G of {0, . . . , n}, scalars (which can be equal to 0) fi, gj, pij

and cycles yi, y′
j in CH(Y ; Λ) such that

1. f =
∑

i∈F fi(xi × yi)

2. g =
∑

j∈G gj(y
′
j × x∗

j )

3. p =
∑

i∈F

∑

j∈G pij(xi × x∗
j )

With pij = figj deg(y′
j · yi) by lemma 2.3 as g ◦ f = pE .
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Notation 3.1. Let p ∈ CHdim(X)(X×X) be a non-zero projector. Embedding p in a splitting field
of the F -variety X, we can write p =

∑

i∈P1

∑

j∈P2
pij(xi × x∗

j ). We define the least codimension
of p (denoted cdmin(p)) by

cdmin(p) := min
(i,j), pij 6=0

(dim(X) − ϕ(i))

Proposition 3.2. Let p ∈ CHdim(X)(X × X) be a non-zero projector. We consider its decompo-
sition p =

∑

i∈P1

∑

j∈P2
pij(xi × x∗

j ) in a splitting field of X. Then for any i ∈ P1 and j ∈ P2 we
have

pij =
∑

k∈P1∩P2

pkjpik

Proof. We can assume that ϕ(i) is constant on P1. Then a straightforward computation gives

p ◦ p = (
∑

i∈P1

∑

j∈P2

pij(xi × x∗
j )) ◦ (

∑

k∈P1

∑

s∈P2

pij(xi × x∗
j )) (3.1)

=
∑

i∈P1

∑

j∈P2

∑

k∈P1

∑

s∈P2

pijpks(xi × x∗
j ) ◦ (xk × x∗

s) (3.2)

=
∑

i∈P1

∑

j∈P2

∑

k∈P1

∑

s∈P2

pijpksδis(xk × x∗
j ) (3.3)

=
∑

k∈P1

∑

s∈P2

(

∑

i∈P1∩P2

pijpki(xk × x∗
s)

)

(3.4)

Moreover p ◦ p = p, thus if (k, s) ∈ P1 × P2 we have pks =
∑

i∈P1∩P2
pispki.

4 General properties of Chow groups

Embedding the Chow group of the F -variety X is quite usefull for computations, but the general-
ization of the theorem 1.1 needs a direct construction of some F -rational cycles f and g. We study
in this section some properties of rationnal elements in Chow groups and how they behave when
the extension E(X)/F (X) is purely transcendental.

Proposition 4.1. Let X and Y be two F -varieties. Let E/F be an extension such that E(X)/F (X)
is purely transcendental. Then the morphism

resE(X)/F (X) : CH(F (X) × Y ; Λ) −→ CH(E(X) × YE ; Λ)

is an epimorphism.

Proof. The morphism resE(X)/F (X) corresponds with the composition

CH(F (X) × Y ; Λ) −→ CH(F (X) × YE ; Λ) −→ CH(E(X) × YE ; Λ)

The first map is an epimorphism as it coincides with the pull back of the projection

(idF (X) × pY ) : F (X) × YE −→ F (X) × Y.

The second map corresponds with the composition

CH(F (X) × YE ; Λ) −→ CH(YE × A
n
F (X); Λ) −→ CH(E(X) × YE ; Λ).

As the extension E(X)/F (X) is purely transcendental, there is an isomorphism between E and the
function field of an affine space An

F (X) for some integer n. The first map is an epimorphism by the

homotopy invariance of Chow groups ([1], theorem 57.13) and the second map is an epimorphism
as well ([1], corollary 57.11).
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5 Generalization of the going-down theorem in the category

of Chow-Grothendieck motives

We now have all the material needed to prove the generalization of theorem 1.1.

Theorem 5.1. Let Λ be a finite commutative ring. Let X be a geometrically split, geometically
irreducible F -variety satisfying the nilpotence principle. Let also M ∈ CM(F ; Λ) be a motive.
Suppose that an extension E/F satisfies

1. the E-motive (M(X)E , pE) associated with the E-variety XE and a non-zero projector p is
indecomposable;

2. the extension E(X)/F (X) is purely transcendental;

3. the motive (M(XE), pE) is a direct summand of the E-motive ME.

Then the motive (M(X), p) is a direct summand of the motive M .

Proof. We can consider that M = (Y, q) for some smooth complete F -variety Y and a projector
q ∈ CHdim(Y )(Y × Y ; Λ).

As (M(X)E , pE) is a direct summand of ME , there are E-rationnal cycles f ∈ CHdim(XE)(XE× YE ; Λ)
and g ∈ CHdim(YE)(YE × XE ; Λ) such that g ◦ f = pE . Embedding these cycles in a splitting field
of (M(X), p) we get in suitable basis

1. f =
∑

i∈F fi(xi × yi)

2. g =
∑

j∈G gj(y
′
j × x∗

j )

3. p =
∑

i∈F

∑

j∈G pij(xi × x∗
j )

with pij = figj deg(y′
j · yi).

Splitting terms whose first codimension is minimal in f and p by introducing

F1 := {i ∈ F, ϕ(i) = cdmin(p)}

we get

1. f =
∑

i∈F1
fi(xi × yi) +

∑

i∈F\F1
fi(xi × yi)

2. p =
∑

i∈F1

∑

j∈G pij(xi × x∗
j ) +

∑

i∈F\F1

∑

j∈G pij(xi × x∗
j )

As E(X) is an extension of E, the cycle f is E(X)-rational. Proposition 4.1 implies that the
change of field resE(X)/F (X) is an epimorphism and we can consider f as a F (X)-rational cycle.

Considering the morphism Spec(F (X)) −→ X associated with the generic point of the geomet-
rically irreducible variety X , we get a morphism

ǫ : (X × Y )F (X) −→ X × Y × X

This morphism induces a pull-back ǫ∗ : CHdim(X)(X×Y ×X ; Λ) −→ CHdim(X)(X×Y ; Λ) sending
any cycle of the form α × β × 1 on α × β and vanishing on other elements. Moreover ǫ∗ induces
an epimorphism of F -rational cycles onto F (X)-rational cycles ([1], corollary 57.11). We can thus
choose a F -rational cycle f1 ∈ CHdim(X)(X × Y × X ; Λ) such that ǫ∗(f1) = f .

By the expression of the pull-back ǫ∗ we can assume

f1 =
∑

i∈F1

fi(xi × yi × 1) +
∑

i∈F\F1

fi(xi × yi × 1) +
∑

(α × β × γ)

where the codimension of the cycles γ is non-zero.
Considering f1 as a correspondance from X to X × Y , we consider f2 := f1 ◦ p which is also a

F -rational cycle. We have

f2 = (
∑

i∈F1

fi(xi × yi × 1)) ◦ (
∑

i∈F1

∑

j∈G

pij(xi × x∗
j )) +

∑

i∈F\F1

∑

j∈G

λij(xi × yj × 1) +
∑

α̃ × β̃ × γ̃

(5.1)

=
∑

i∈F1

∑

j∈F1∩G

fjpij(xi × yj × 1) +
∑

i∈F\F1

∑

j∈G

λij(xi × yj × 1) +
∑

α̃ × β̃ × γ̃ (5.2)
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where the cycles γ̃ are of non-zero codimension, the cycles α̃ are such that codim(α̃) ≥ cdmin(p)
and where elements λij are scalars.

We now consider the diagonal embedding

∆ :
X × Y −→ X × Y × X
(x, y) 7−→ (x, y, x)

The morphism ∆ induces a pull-back ∆∗ : CHdim(X)(X × Y ×X; Λ) −→ CHdim(X)(X × Y ; Λ)
We note f3 := ∆∗(f2), which is also a F -rational cycle and whose expression in a splitting field

of X is

f3 =
∑

i∈F1

∑

j∈F1∩G

fjpij(xi × yj) +
∑

i∈F\F1

∑

j∈G

λij(xi × yj) +
∑

(α̃ · γ̃) × β̃

where codim(α̃ · γ̃) > cdmin(p) as codim(α̃) ≥ cdmin(p) and codim(γ̃) > 0.
We can compute the composite g ◦ f3:

g ◦ f3 = g ◦ (
∑

i∈F1

∑

j∈G

fjpij(xi × yj)) + g ◦ (
∑

i∈F\F1

∑

j∈G

λij(xi × yj)) + g ◦ (
∑

(α̃ · γ̃) × β̃)) (5.3)

=
∑

i∈F1

∑

s∈G

∑

j∈F1∩G

gsfjpij(y
′
s × x∗

s) ◦ (xi × y) + (
∑

α × β) (5.4)

With cycles α such that codim(α) > cdmin(p). Computing the component of g ◦ f3 for elements
of the form xk × x∗

s with ϕ(k) = cdmin(p) we get

g ◦ f3 =
∑

i∈F1

∑

s∈G

∑

j∈F1∩G

gsfjpij(y
′
s × x∗

s) ◦ (xi × yj) + (
∑

α × β) (5.5)

=
∑

i∈F1

∑

s∈G

∑

j∈F1∩G

gsfjpij deg(y′
s · yj)(xi × x∗

s) (5.6)

Now we can see that if k ∈ F1, then the coefficient of g ◦ f3 relatively to an element xk × x∗
s is

equal to
∑

i∈F1∩G gsfipki deg(yi · y
′
s). Moreover proposition 3.2 says that

∑

i∈F1∩G

gsfipki deg(yi · y
′
s) =

∑

i∈F1∩G

pispki = pks

Since p is non-zero, there exists (k, s) with k ∈ F1 and pks 6= 0, thus we have shown that the
cycle g ◦ f3 as a decomposition

g ◦ f3 = pks(xk × x∗
s) +

∑

(i,j) 6=(k,s)

pij(xi × x∗
j ) +

∑

(α ◦ β)

where codim(α) > cdmin(p). Since p is a projector, for any integer n the n-th power of g ◦ f3 as
always a non-zero component relatively to xk × x∗

s which is equal to pks, that is to say

∀n ∈ N, (g ◦ f3)
◦n = pks(xk × x∗

s) +
∑

(i,j) 6=(k,s)

pij(xi × x∗
j ) +

∑

(α ◦ β)

where codim(α) > cdmin(p).
As the ring Λ is finite, there is a power of g◦(f3)E which is a non-zero idempotent (cf [2] lemma

3.2). Since the E-motive (M(X)E , pE) is indecomposable this power of g ◦ (f3)E is equal to pE .
Thus we have shown that there exists an integer n1 such that

(g ◦ (f3)E)◦n1 = pE

In particular if g1 := (g ◦ (f3)E)◦n1−1 ◦ g we get g1 ◦ (f3)E = pE .
Since the E-motive (M(XE), pE) is indecomposable, p is equal to its transpose as it is another

non-zero projector. We get t(f3)E ◦t g1 = pE . Repeating the same process as before, we get a
F -rational cycle g̃ and an integer n2 such that

(t(f3)E ◦ (g̃)E)◦n2 = pE
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If f̂ := (t(f3)E ◦ (g̃)E)◦n2−1 ◦t (f3)E , we have constructed two F -rational cycles f̂ and g̃ such that

f̂E ◦ g̃E = pE

Using the nilpotence principle again, there is an integer n ∈ N such that

(f̂ ◦ g̃)n = p

Hence if f̃ = (f̂ ◦ g̃)n−1 ◦ f̂ , f̃ is a F -rational cycle satisfying

f̃ ◦ g̃ = p

Thus we have shown that the motive (M(X), p) is a direct summand of the motive M .
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